Separable Statistics and Multidimensional Linear Cryptanalysis

Stian Fauskanger Igor Semaev

FFI, Norway
Univ. of Bergen, Norway

28 March 2019, FSE, Paris

Briefly

- Matsui's Linear Cryptanalysis is based on the distribution of

$$
x_{1} \oplus \ldots \oplus x_{s} \oplus y_{1} \oplus \ldots \oplus y_{t}
$$

where $X=x_{1}, \ldots, x_{s}$ some plain-text bits and $Y=y_{1}, \ldots, y_{t}$ some cipher-text bits in Algorithm1

- In Algorithm2 the bits X are inputs to the second round, and Y to the last round
- Starting point in our work: method for computing joint distribution of $(X, Y)=\left(x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}\right)$
- The distributions (both Matsui's and our's) are approximate
- They depend on small sets of the cipher key-bits or linear combinations
- Algorithm2-like cryptanalysis is then applied

Outline

- Matsui's Algorithm2 and LLR statistic
- New Statistic Construction
- Optimisation Problem and Search Algorithm
- Implementation for 16-round DES
- Multidimensional Distributions in Feistel Ciphers
- Conclusions

Outline

- Matsui's Algorithm2 and LLR statistic

Round Cipher Cryptanalysis with Algorithm2

CH-TEXT

Logarithmic Likelihood Ratio(LLR) Statistic

- To distinguish two distributions with densities $P(x), Q(x)$
- By independent observations $\nu_{1}, . ., \nu_{n}$
- Most powerful test(Neyman-Pearson lemma):
- Accept $P(x)$ if

$$
\sum_{i=1}^{n} \ln \frac{P\left(\nu_{i}\right)}{Q\left(\nu_{i}\right)}>\text { threshold }
$$

- Left hand side function is called LLR statistic

Algorithm2 Cryptanalisis with LLR statistic

- Distribution of (X, Y) depends on key-bits key
- Observation on (X, Y) depends on key-bits Key
- LLR statistic depends on key $\cup K e y$
- Distinguish correct and incorrect key \cup Key with LLR statistic
- by computing $2^{|k e y \cup K e y|}$ values of LLR
- For large (X, Y) the number of the key-bits involved $\mid k e y \cup$ Key \mid may be too large
- Not efficient

New Statistic

- Instead of $2^{|k e y \cup K e y|}$ computations of LLR-values
- Our work: $\ll 2^{|k e y \cup K e y|}\left(\approx 10^{3}\right.$ times faster in DES $)$
- By using a new statistic
- Which reflects the structure of the round function
- That has a price to pay, but trade-off is positive

Outline

- New Statistic Construction
\rightarrow
$-$

LLRs for Projections

- $\left(h_{1}, . ., h_{m}\right)$ some subvectors (projections) of (X, Y) such that
- Distribution and Observation for h_{i} depend on a lower number of the key-bits $\mathrm{key}_{i} \cup \mathrm{Key}_{i}$
- $L L R_{i}$ is a LLR-statistic for h_{i}
- Vector ($L L R_{1}, . ., L L R_{m}$) asymptotically distributed
- m-variate $\mathbf{N}(n \mu, n C)$ if key \cup Key is correct
- Close to $\mathbf{N}(-n \mu, n C)$ if key \cup Key is incorrect
- Mean vector μ, covariance matrix C, number of plain-texts n

LLR for Two Normal Distributions

- LLR statistic S to distinguish two normal distributions $\mathbf{N}(n \mu, n C)$ and $\mathbf{N}(-n \mu, n C)$
- S degenerates to linear:
- $S($ key $\cup K e y, \nu)=\sum_{i=1}^{m} S_{i}\left(\right.$ key $\left._{i} \cup K_{e y}^{i}{ }_{i}, \nu_{i}\right)$,
- where $S_{i}=\omega_{i} L L R_{i}$ weighted LLR statistic for h_{i}
- ν observation on (X, Y) and ν_{i} observation on h_{i}
- S is separable
- For polynomial distributions the theory of separable statistics was developed by Ivchenko, Medvedev,.. in 1970-s

Distribution

- S distributed 1 -variate $\mathbf{N}(u, u)$ if key \cup Key correct
- Close to $\mathbf{N}(-u, u)$ if incorrect
- for an explicit positive u

Cryptanalysis

- Find key $\cup K e y$ s.t.

$$
S(\text { key } \cup K e y, \nu)>\text { threshold }
$$

- without brute forcing key \cup Key
- Can be done as
- $S($ key $\cup K e y, \nu)=\sum_{i=1}^{m} S_{i}\left(k e y_{i} \cup K e y_{i}, \nu_{i}\right)$
- and $\left|k^{\prime} y_{i} \cup K e y_{i}\right|$ is much smaller than $|k e y \cup K e y|$
- \mid key $\cup K e y \mid=54$ and $\left|k^{\prime} y_{i} \cup K_{e y}\right| \approx 20$ in DES
- By solving efficiently an optimisation problem with a Search Algorithm

Outline

- Optimisation Problem and Search Algorithm

Optimisation Problem Example

S_{1}	0.1	0.2	0.3	0.1
$x_{1} \oplus x_{3}$	0	0	1	1
x_{2}	0	1	0	1

S_{2}	0.5	0.1
$x_{1} \oplus x_{2}$	0	1

S_{3}	0.4	0.5	0.7	0.1
x_{1}	0	0	1	1
$x_{2} \oplus x_{3}$	0	1	0	1

find binary x_{1}, x_{2}, x_{3} s.t.
$S\left(x_{1}, x_{2}, x_{3}\right)=S_{1}\left(x_{1} \oplus x_{3}, x_{2}\right)+S_{2}\left(x_{1} \oplus x_{2}\right)+S_{3}\left(x_{1}, x_{2} \oplus x_{3}\right)>1.3$
Threshold is 1.3 , solution 111

Search Tree

- One walks over a search tree and checks if the inequality $S_{1}\left(x_{1} \oplus x_{3}, x_{2}\right)+S_{2}\left(x_{1} \oplus x_{2}\right)+S_{3}\left(x_{1}, x_{2} \oplus x_{3}\right)>1.3$
- feasible under current fixation
- Cut if not feasible. Continue if feasible
- One is to check 6 linear inequalities. Brute force takes 8
- Same way one solves

$$
S(\text { key } \cup K e y, \nu)=\sum_{i=1}^{m} S_{i}\left(\text { key }_{i} \cup K e y_{i}, \nu_{i}\right)>\text { threshold }
$$

Success Probability\& Number of (key $\cup K e y)$-candidates

- Search tree output is $(k e y \cup K e y)$-candidates for the final brute force
- The distribution of $S($ key $\cup K e y, \nu)$ is known
- So one can compute success probability and
- The number of wrong solutions, that is (key $\cup K e y)$-candidates

Outline

- Implementation for 16 -round DES

Two 14-bit vectors

- $\operatorname{DES}_{K}\left(X_{0}, X_{1}\right)=\left(X_{17}, X_{16}\right)$
- Matsui's best linear approximation

$$
X_{2}\{24,18,7\} \oplus X_{15}\{15\} \oplus X_{16}\{24,18,7,29\}
$$

- We use two 14 -bit vectors

$$
\begin{aligned}
& X_{2}[24,18,7,29], X_{15}[16,15, . ., 11], X_{16}[24,18,7,29] \\
& X_{1}[24,18,7,29], X_{2}[16,15, . ., 11], X_{15}[24,18,7,29]
\end{aligned}
$$

- Considered independent as they incorporate different bits
- Computing their distributions took a few seconds

Projections

- 28 projections

$$
\begin{array}{r}
X_{2}[24,18,7,29], X_{15}[i, j], X_{16}[24,18,7,29] \\
X_{1}[24,18,7,29], X_{2}[i, j], X_{15}[24,18,7,29]
\end{array}
$$

- For each projection $L L R$ depends on (≤ 21) key-bits
- 54 key-bits overall
- Two separable statistics for two independent bunches of the projections
- Search Algorithm combines (≤ 21)-bit values to find 54-bit candidates
- Those candidates are brute forced

One Particular Projection

- projection h_{1} :

$$
X_{2}[24,18,7,29], X_{15}[16,15], X_{16}[24,18,7,29]
$$

- key $_{1} \cup$ Key $_{1}$ incorporates 20 unknowns

$$
\begin{array}{r}
x_{63}, x_{61}, x_{60}, x_{53}, x_{46}, x_{42}, x_{39}, x_{36}, x_{31}, \\
x_{30}, x_{27}, x_{26}, x_{25}, x_{22}, x_{21}, x_{12}, x_{10}, x_{7}, x_{5} \\
x_{57}+x_{51}+x_{50}+x_{19}+x_{18}+x_{15}+x_{14}
\end{array}
$$

x_{i} key-bits of 56-bit DES key

- 2^{20} values of $S_{1}=\omega_{1} L L R_{1}$
- Similar for other 27 projections

Key-variables Order for the Search Tree

- One needs key $\cup K e y$ ordered to run a tree search
- x_{2} appears in 14(maximal number) of $\mathrm{key}_{i} \cup \mathrm{Key}_{i}$, etc

$$
\begin{array}{r}
x_{2}, x_{19}, x_{60}, x_{34}, x_{10}, x_{17}, x_{59}, x_{36}, x_{42}, x_{27}, x_{25} \\
x_{52}, x_{11}, x_{33}, x_{51}, x_{9}, x_{23}, x_{28}, x_{5}, x_{55}, x_{46}, x_{22} \\
x_{62}, x_{15}, x_{37}, x_{47}, x_{7}, x_{54}, x_{39}, x_{31}, x_{29}, x_{20}, x_{61} \\
x_{63}, x_{30}, x_{38}, x_{26}, x_{50}, x_{1}, x_{57}, x_{18}, x_{14}, x_{35}, x_{44} \\
x_{3}, x_{21}, x_{41}, x_{13}, x_{4}, x_{45}, x_{53}, x_{6}, x_{12}, x_{43}
\end{array}
$$

Search Tree Algorithm Run

- We fixe desirable success rate 0.83
- solve equation $n=\mid$ keys to brute force \mid in n
- got $n=2^{41.8}$

- The number of tree nodes is shown, $\log _{2}$ scale
- $\mid($ key \cup Key $)$-candidates $\left|=2^{39.8},\right|$ keys to brute force $\mid=2^{41.8}$
- Number of nodes is $2^{45.5} \ll 2^{54}$. Constructing the nodes is faster (in bit operations) than final brute force
- Improves Matsui's result on $\operatorname{DES}\left(n=2^{43}, 0.85\right)$

Outline

- Multidimensional Distributions in Feistel Ciphers

r-Round DES

- $\operatorname{DES}_{K}(X)=Y$, where X random, \mathcal{E} any event
- We want to compute $\operatorname{Pr}(\mathcal{E})$ in r-round DES. Let's formalise
- $X_{0}, X_{1}, \ldots, X_{r+1}$ random independently generated 32-bit blocks. Event \mathcal{C} defines DES:

$$
X_{i-1} \oplus X_{i+1}=F_{i}\left(X_{i}, K_{i}\right), \quad i=1, \ldots, r
$$

- K_{1}, \ldots, K_{r} fixed round keys. We need

$$
\operatorname{Pr}(\mathcal{E} \mid \mathcal{C})=\frac{\operatorname{Pr}(\mathcal{E C})}{\operatorname{Pr}(\mathcal{C})}=2^{32 r} \operatorname{Pr}(\mathcal{E C})
$$

- infeasible as \mathcal{C} depends on all key-bits

Relax \mathcal{C}

- One chooses a larger event \mathcal{C}_{α} (that is \mathcal{C} implies \mathcal{C}_{α})

$$
X_{i-1}\left[\alpha_{i}\right] \oplus X_{i+1}\left[\alpha_{i}\right]=F_{i}\left(X_{i}, K_{i}\right)\left[\alpha_{i}\right], \quad i=1, \ldots, r
$$

- where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. Then

$$
\operatorname{Pr}\left(\mathcal{C}_{\alpha}\right)=2^{-\sum_{i=1}^{r}\left|\alpha_{i}\right|}
$$

- Let's accept

$$
\operatorname{Pr}(\mathcal{E} \mid \mathcal{C}) \approx \operatorname{Pr}\left(\mathcal{E} \mid \mathcal{C}_{\alpha}\right)=\frac{\operatorname{Pr}\left(\mathcal{E} \mathcal{C}_{\alpha}\right)}{\operatorname{Pr}\left(\mathcal{C}_{\alpha}\right)}=2^{\sum_{i=1}^{r}\left|\alpha_{i}\right|} \operatorname{Pr}\left(\mathcal{E} \mathcal{C}_{\alpha}\right)
$$

- \mathcal{C}_{α} depends on a lower number of the key-bits. Now feasible and may be computed exactly

Regular Trails

- To compute the distribution of

$$
Z=X_{0}\left[\alpha_{1}\right], X_{1}\left[\alpha_{2} \cup \beta_{1}\right], X_{r}\left[\alpha_{r-1} \cup \beta_{r}\right], X_{r+1}\left[\alpha_{r}\right]
$$

- One chooses event \mathcal{C}_{α}, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$, and the trail

$$
X_{i}\left[\beta_{i}\right], F_{i}\left[\alpha_{i}\right], \quad i=1, \ldots, r
$$

- The trail is called regular if

$$
\gamma_{i} \cap\left(\alpha_{i-1} \cup \alpha_{i+1}\right) \subseteq \beta_{i} \subseteq \gamma_{i}, \quad i=1, \ldots, r
$$

where $X_{i}\left[\gamma_{i}\right]$ input bits relevant to $F_{i}\left[\alpha_{i}\right]$

- For a regular trail $\operatorname{Pr}\left(Z=A \mid \mathcal{C}_{\alpha}\right)$ is computed with a convolution-type formula, only depends on α_{i}

Convolution Formula

- $Z=X_{0}\left[\alpha_{1}\right], X_{1}\left[\alpha_{2} \cup \beta_{1}\right], X_{r}\left[\alpha_{r-1} \cup \beta_{r}\right], X_{r+1}\left[\alpha_{r}\right]$
- Then $\operatorname{Pr}\left(Z=A_{0}, A_{1}, A_{r}, A_{r+1} \mid \mathcal{C}_{\alpha}\right)=$

$$
\frac{2^{\sum_{i=2}^{r-1}\left|\alpha_{i}\right|}}{2^{\sum_{i=1}^{r}\left|\left(\alpha_{i-1} \cup \alpha_{i+1}\right) \backslash \beta_{i}\right|}} \sum_{A_{2}, \ldots, A_{r-1}} \prod_{i=1}^{r} \mathbf{q}_{\mathbf{i}}\left(A_{i}\left[\beta_{i}\right],\left(A_{i-1} \oplus A_{i+1}\right)\left[\alpha_{i}\right], k_{i}\right)
$$

- probability distribution on round sub-vectors

$$
\mathbf{q}_{\mathbf{i}}(b, a, k)=\operatorname{Pr}\left(X_{i}\left[\beta_{i}\right]=b, F_{i}\left[\alpha_{i}\right]=a \mid K_{i}\left[\delta_{i}\right]=k\right)
$$

- $K_{i}\left[\delta_{i}\right]$ key-bits relevant to $F_{i}\left[\alpha_{i}\right]$
- May be computed iteratively by splitting encryption into two parts. A few seconds for 14 -round DES

Outline

```
- Conclusions
```


Conclusions

- Method of computing joint distribution of encryption internal bites X, Y (for Feistel ciphers) is found
- Conventional LLR statistic is inefficient for large X, Y. New statistic reflects round function structure
- We computed its distribution and able to predict success probability and the size of the final brute force
- Efficient Search Algorithm to find key-candidates which fall into critical region is presented
- Got an improvement over Matsui's results in DES (at least in bit operations)
- Predicted correctly success probability(8-round DES) and the number of final key-candidates(16-round DES)
- Search Algorithm is 10^{3} times faster than brute forcing all key-bits which affect the statistic

