MDS Matrices with Lightweight Circuits

Sébastien Duval

Gaëtan Leurent

March 26, 2019

SPN Ciphers

Shannon's criteria

1 Diffusion

- Every bit of plaintext and key must affect every bit of the output
- We usually use linear functions

2 Confusion

- Relation between plaintext and ciphertext must be intractable
- Requires non-linear operations
- Often implemented with tables: S-Boxes

Example: Rijndael/AES [Daemen Rijmen 1998]

Block Cipher Security Analysis

Differential Attacks [Biham Shamir 91] Attacker exploits (a, b) such that

$$
E_{K}(x) \oplus E_{K}(x \oplus a)=b
$$

with high probability
Maximum of the probability over all (a, b) bounded by

$$
\left(\frac{\delta(S)}{2^{n}}\right)^{\mathcal{B}_{d}(L)-1}
$$

MDS Matrices

Differential Branch Number

L linear permutation on k words of n bits.

$$
\mathcal{B}_{d}(L)=\min _{x \neq 0}\{w(x)+w(L(x))\}
$$

where $w(x)$ is the number of non-zero n-bits words in x.

Linear Branch Number

$$
\mathcal{B}_{l}(L)=\min _{x \neq 0}\left\{w(x)+w\left(L^{\top}(x)\right)\right\}
$$

MDS Matrices

Differential Branch Number

L linear permutation on k words of n bits.

$$
\mathcal{B}_{d}(L)=\min _{x \neq 0}\{w(x)+w(L(x))\}
$$

where $w(x)$ is the number of non-zero n-bits words in x.

Linear Branch Number

$$
\mathcal{B}_{l}(L)=\min _{x \neq 0}\left\{w(x)+w\left(L^{\top}(x)\right)\right\}
$$

Maximum branch number : $k+1$ Equivalent to MDS codes.

MDS Matrices

Differential Branch Number

L linear permutation on k words of n bits.

$$
\mathcal{B}_{d}(L)=\min _{x \neq 0}\{w(x)+w(L(x))\}
$$

where $w(x)$ is the number of non-zero n-bits words in x.

Linear Branch Number

$$
\mathcal{B}_{l}(L)=\min _{x \neq 0}\left\{w(x)+w\left(L^{\top}(x)\right)\right\}
$$

Maximum branch number : $k+1$ Equivalent to MDS codes.

Matrices and Characterisation

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
2 & 3 & 1 & 1 \\
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 3 \\
3 & 1 & 1 & 2
\end{array}\right]} \\
& \text { AES MixColumns }
\end{aligned}
$$

Usually on finite fields: x a primitive element of \mathbb{F}_{2}^{n} Coeffs. $\in \mathbb{F}_{2}[x] / P$, with P a primitive polynomial
$2 \leftrightarrow x$
$3 \leftrightarrow x+1$

Characterisation

L is MDS iff its minors are non-zero

Previous Works

Recursive Matrices [Guo et al. 2011]

A lightweight matrix
$A^{i} \mathrm{MDS}$
Implement A, then iterate $A i$ times.

Optimizing Coefficients

Structured matrices: restrict to a small subspace with many MDS matrices

More general than finite fields: inputs are binary vectors, matrix coeffs. are $n \times n$ matrices.
\Rightarrow less costly operations than multiplication in a finite field

Cost Evaluation

"Real cost"

Number of operations of the best implementation.

Xor count (naive cost)
Hamming weight of the binary matrix. Cannot reuse intermediate values.
Intermediate values
Local optimisation: LIGHTER [Jean et al. 2017]
cost of matrix multiplication $=$ number of XORs + cost of the mult. by each coefficent.
Global optimisation:

- Hardware synthesis: straight line programs [Kranz et al. 2018]. Heuristics to implement binary matrices.
- Our approach: Number of operations of the best implementation using operations on words.

Metrics Comparison

$$
\left[\begin{array}{lll}
3 & 2 & 2 \\
2 & 3 & 2 \\
2 & 2 & 3
\end{array}\right]
$$

Xor Count: $\left\{\begin{array}{l}6 \text { mult. by } 2 \\ 3 \text { mult. by } 3 \\ 6 \text { XORS }\end{array}\right.$
Our approach: $\left\{\begin{array}{l}1 \text { mult. by } 2 \\ 5 \text { XORS }\end{array}\right.$

Formal Matrices

Formal matrices

Optimise in 2 steps:
1 Find $M(\alpha)$ for α an undefined linear mapping.
2 Instantiate with the best choice of α
Not necessarily a finite field.
Then coeffs. are polynomials in α.

$$
\left[\begin{array}{ccc}
\alpha+1 & \alpha & \alpha \\
\alpha & \alpha+1 & \alpha \\
\alpha & \alpha & \alpha+1
\end{array}\right]
$$

Formal Matrices

Formal matrices

Optimise in 2 steps:
1 Find $M(\alpha)$ for α an undefined linear mapping.
2 Instantiate with the best choice of α
Not necessarily a finite field.
Then coeffs. are polynomials in α.

$$
\left[\begin{array}{ccc}
\alpha+1 & \alpha & \alpha \\
\alpha & \alpha+1 & \alpha \\
\alpha & \alpha & \alpha+1
\end{array}\right]
$$

Characterisation of formally MDS matrices
Objective: find $M(\alpha)$ s.t. $\exists A, M(A)$ MDS.
If a minor of $M(\alpha)$ is null, then impossible.
Otherwise, there always exists an A.
Characterisation possible on $M(\alpha)$.

Search Space

Search over circuits
Search Space
Operations:
word-wise XOR
α (generalization of a multiplication)
Copy
Note: Only word-wise operations.
r registers:
one register per word (3 for 3×3)

+ (at least) one more register \rightarrow more complex operations

Implementation: Main Idea

Tree-based Dijkstra search
Node $=$ matrix $=$ sequence of operations
Lightest circuit $=$ shortest path to MDS matrix
When we spawn a node, we test if it is MDS

Search results
$k=3$ fast (seconds)
$k=4$ long (hours)
$k=5$ out of reach
Collection of MDS matrices with trade-off between cost and depth (latency).

Scheme of the Search

Optimization: A^{*}

A^{*}

Idea of A^{*}
Guided Dijkstra
weight $=$ weight from origin + estimated weight to objective

Optimization: A^{*}

A^{*}

Idea of A^{*}
Guided Dijkstra
weight $=$ weight from origin + estimated weight to objective Our estimate:

Optimization: A^{*}

A^{*}

Idea of A^{*}
Guided Dijkstra
weight $=$ weight from origin + estimated weight to objective
Our estimate:
Heuristic
How far from MDS ?

Optimization: A^{*}

A^{*}

Idea of A^{*}
Guided Dijkstra
weight $=$ weight from origin + estimated weight to objective
Our estimate:

- Heuristic
- How far from MDS ?
- Column with a 0: cannot be part of MDS matrix

Optimization: A^{*}

A*

Idea of A^{*}
Guided Dijkstra
weight $=$ weight from origin + estimated weight to objective
Our estimate:
Heuristic
How far from MDS ?
Column with a 0: cannot be part of MDS matrix
Linearly dependent columns: not part of MDS matrix

Optimization: A^{*}

A^{*}

Idea of A^{*}
Guided Dijkstra
weight $=$ weight from origin + estimated weight to objective
Our estimate:
Heuristic
How far from MDS ?
Column with a 0: cannot be part of MDS matrix
Linearly dependent columns: not part of MDS matrix
Estimate: $m=$ rank of the matrix (without columns containing 0) Need at least $k-m$ word-wise XORs to MDS

Result: much faster

Methodology of the Instantiation

The Idea
1 Input: Formal matrix $M(\alpha)$ MDS
2 Output: $M(A)$ MDS, with A a linear mapping (the lightest we can find)

Characterisation of MDS Instantiations

MDS Test

Intuitive approach:

- Choose A a linear mapping
- Evaluate $M(A)$
- See if all minors are non-singular

Characterisation of MDS Instantiations

MDS Test

Intuitive approach:

- Choose A a linear mapping
- Evaluate $M(A)$
- See if all minors are non-singular

We can start by computing the minors:

- Let I, J subsets of the lines and columns
- Define $m_{I, J}=\operatorname{det}_{\mathbb{F}_{2}[\alpha]}\left(M_{\mid I, J}\right)$
- $M(A)$ is MDS iff all $m_{I, J}(A)$ are non-singular

Characterisation of MDS Instantiations

MDS Test

Intuitive approach:

- Choose A a linear mapping
- Evaluate $M(A)$
- See if all minors are non-singular

We can start by computing the minors:

- Let I, J subsets of the lines and columns
- Define $m_{I, J}=\operatorname{det}_{\mathbb{F}_{2}[\alpha]}\left(M_{\mid I, J}\right)$
- $M(A)$ is MDS iff all $m_{l, J}(A)$ are non-singular

With the minimal polynomial

- Let μ_{A} the minimal polynomial of A
- $M(A)$ is MDS iff $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{I, J}\right)=1$

Multiplications in a Finite Field

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{l, J}\right)=1$

Multiplications in a Finite Field

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{I, J}\right)=1$
Easy Way to Instantiate: Multiplications

$$
d>\max _{I, J}\left\{\operatorname{deg}\left(m_{l, J}\right)\right\}
$$

Multiplications in a Finite Field

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{I, J}\right)=1$
Easy Way to Instantiate: Multiplications
$d>\max _{I, J}\left\{\operatorname{deg}\left(m_{I, J}\right)\right\}$
Choose π an irreducible polynomial of degree d

Multiplications in a Finite Field

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{I, J}\right)=1$
Easy Way to Instantiate: Multiplications
$d>\max _{I, J}\left\{\operatorname{deg}\left(m_{l, J}\right)\right\}$
Choose π an irreducible polynomial of degree d

- π is relatively prime with all $m_{I, J}$

Multiplications in a Finite Field

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{I, J}\right)=1$
Easy Way to Instantiate: Multiplications
$d>\max _{I, J}\left\{\operatorname{deg}\left(m_{I, J}\right)\right\}$

- Choose π an irreducible polynomial of degree d
- π is relatively prime with all $m_{I, J}$
- Take $A=$ companion matrix of π

Multiplications in a Finite Field

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{I, J}\right)=1$
Easy Way to Instantiate: Multiplications
$d>\max _{I, J}\left\{\operatorname{deg}\left(m_{l, J}\right)\right\}$
Choose π an irreducible polynomial of degree d
π is relatively prime with all $m_{l, J}$
Take $A=$ companion matrix of π
A corresponds to a finite field multiplication

Multiplications in a Finite Field

We want A s.t. $\forall(I, J), \operatorname{gcd}\left(\mu_{A}, m_{I, J}\right)=1$
Easy Way to Instantiate: Multiplications
$d>\max _{I, J}\left\{\operatorname{deg}\left(m_{l, J}\right)\right\}$
Choose π an irreducible polynomial of degree d
π is relatively prime with all $m_{l, J}$
Take $A=$ companion matrix of π
A corresponds to a finite field multiplication

Low Cost Instantiation

Pick π with few coefficients: a trinomial requires 1 rotation +1 binary xor

Concrete Choices of A

We need to fix the size

Branches of size 4 bits $\left(\mathbb{F}_{2}^{4}\right)$
(companion matrix of $X^{4}+X+1$ (irreducible))

$$
\begin{aligned}
& \left.x^{8}+X^{\text {(companion matrix of }}+1=\left(X^{4}+X+1\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (minimal polynomial is } X^{4}+X^{3}+1 \text {) }
\end{aligned}
$$

Branches of size 8 bits $\left(\mathbb{F}_{2}^{8}\right)$
(minimal polynomial is $X^{8}+X^{6}+1$)

Comparison With Existing MDS Matrices

			Cost			
Size	Ring	Matrix	Naive	Best	Depth	Ref
$M_{4}\left(M_{8}\left(\mathbb{F}_{2}\right)\right)$	$G L\left(8, \mathbb{F}_{2}\right)$	Circulant	106			(Li Wang 2016)
	$G L\left(8, \mathbb{F}_{2}\right)$	Hadamard		72	6	$($ Kranz et al. 2018)
	$\mathbb{F}_{2}[\alpha]$	$M_{4,6}^{8,3}$		67	5	$\alpha=A_{8}$ or A_{8}^{-1}
	$\mathbb{F}_{2}[\alpha]$	$M_{4,4}^{8,4}$		69	4	$\alpha=A_{8}$
	$\mathbb{F}_{2}[\alpha]$	$M_{4,3}^{9,5}$		77	3	$\alpha=A_{8}$ or A_{8}^{-1}
$M_{4}\left(M_{4}\left(\mathbb{F}_{2}\right)\right)$	$G F\left(2^{4}\right)$	$M_{4, n, 4}$	58	58	3	(Jean Peyrin Sim 2017)
	$G F\left(2^{4}\right)$	Toeplitz	58	58	3	(Sarkar Syed 2016)
	$G L\left(4, \mathbb{F}_{2}\right)$	Subfield		36	6	(Kranz et al. 2018)
	$\mathbb{F}_{2}[\alpha]$	$M_{4,3}^{8,3}$		35	5	$\alpha=A_{4}$ or A_{4}^{-1}
	$\mathbb{F}_{2}[\alpha]$	$M_{4,4}^{8,4}$		37	4	$\alpha=A_{4}$
	$\mathbb{F}_{2}[\alpha]$	$M_{4,3}^{9,5}$		41	3	$\alpha=A_{4}$ or A_{4}^{-1}

