
MDS Matrices with Lightweight Circuits

Sébastien Duval Gaëtan Leurent

March 26, 2019

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 2 / 18

SPN Ciphers

K0

S S S S

L

K1

S S S S

L

Plaintext

K2

Ciphertext

Shannon’s criteria

1 Diffusion

- Every bit of plaintext and key must affect every
bit of the output

- We usually use linear functions

2 Confusion

- Relation between plaintext and ciphertext must
be intractable

- Requires non-linear operations
- Often implemented with tables: S-Boxes

Example: Rijndael/AES [Daemen Rijmen 1998]

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 3 / 18

Block Cipher Security Analysis

K0

S S S S

L

K1

S S S S

L

x

K2

y

K0

S S S S

L

K1

S S S S

L

x ⊕ a

K2

y ⊕ b

Differential Attacks [Biham Shamir 91]

I Attacker exploits (a,b) such that

EK (x)⊕ EK (x ⊕ a) = b

with high probability

I Maximum of the probability
over all (a, b) bounded by(

δ(S)
2n

)Bd (L)−1

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 4 / 18

MDS Matrices

L

L linear permutation
on k words of n bits.

Differential Branch Number

Bd(L) = min
x 6=0
{w(x) + w(L(x))}

where w(x) is the number of
non-zero n-bits words in x .

Linear Branch Number

Bl(L) = min
x 6=0
{w(x) + w(L>(x))}

Maximum branch number : k + 1
Equivalent to MDS codes.

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 4 / 18

MDS Matrices

L

L linear permutation
on k words of n bits.

Differential Branch Number

Bd(L) = min
x 6=0
{w(x) + w(L(x))}

where w(x) is the number of
non-zero n-bits words in x .

Linear Branch Number

Bl(L) = min
x 6=0
{w(x) + w(L>(x))}

Maximum branch number : k + 1
Equivalent to MDS codes.

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 4 / 18

MDS Matrices

L

L linear permutation
on k words of n bits.

Differential Branch Number

Bd(L) = min
x 6=0
{w(x) + w(L(x))}

where w(x) is the number of
non-zero n-bits words in x .

Linear Branch Number

Bl(L) = min
x 6=0
{w(x) + w(L>(x))}

Maximum branch number : k + 1
Equivalent to MDS codes.

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 5 / 18

Matrices and Characterisation


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2


AES MixColumns

Usually on finite fields:
x a primitive element of Fn

2

Coeffs. ∈ F2[x]/P, with P a
primitive polynomial
2↔ x
3↔ x + 1

Characterisation

L is MDS iff its minors are non-zero

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 6 / 18

Previous Works

Recursive Matrices [Guo et al. 2011]

A lightweight matrix
Ai MDS
Implement A, then iterate A i times.

Optimizing Coefficients

I Structured matrices: restrict to a small subspace with many MDS
matrices

I More general than finite fields: inputs are binary vectors, matrix
coeffs. are n × n matrices.
⇒ less costly operations than multiplication in a finite field

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 7 / 18

Cost Evaluation

“Real cost”

Number of operations of the best implementation.

Xor count (naive cost)

Hamming weight of the binary matrix. Cannot reuse intermediate values.

Intermediate values

I Local optimisation: Lighter [Jean et al. 2017]
cost of matrix multiplication = number of XORs + cost of the
mult. by each coefficent.

I Global optimisation:
I Hardware synthesis: straight line programs [Kranz et al. 2018].

Heuristics to implement binary matrices.
I Our approach: Number of operations of the best implementation using

operations on words.

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 8 / 18

Metrics Comparison

3 2 2

2 3 2

2 2 3


x0 x1 x2

×2

Xor Count:


6 mult. by 2

3 mult. by 3

6 XORS

Our approach:

{
1 mult. by 2

5 XORS

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 9 / 18

Formal Matrices

Formal matrices

I Optimise in 2 steps:

1 Find M(α) for α an undefined linear
mapping.

2 Instantiate with the best choice of α

I Not necessarily a finite field.

I Then coeffs. are polynomials in α.

x0 x1 x2

α

[α+1 α α
α α+1 α
α α α+1

]

Characterisation of formally MDS matrices

I Objective: find M(α) s.t. ∃A, M(A) MDS.

I If a minor of M(α) is null, then impossible.

I Otherwise, there always exists an A.

Characterisation possible on M(α).

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 9 / 18

Formal Matrices

Formal matrices

I Optimise in 2 steps:

1 Find M(α) for α an undefined linear
mapping.

2 Instantiate with the best choice of α

I Not necessarily a finite field.

I Then coeffs. are polynomials in α.

x0 x1 x2

α

[α+1 α α
α α+1 α
α α α+1

]

Characterisation of formally MDS matrices

I Objective: find M(α) s.t. ∃A, M(A) MDS.

I If a minor of M(α) is null, then impossible.

I Otherwise, there always exists an A.

Characterisation possible on M(α).

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 10 / 18

Search Space

Search over circuits

Search Space

Operations:

I word-wise XOR

I α (generalization of a multiplication)

I Copy

Note: Only word-wise operations.
r registers:

one register per word (3 for 3× 3)
+ (at least) one more register → more complex operations

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 11 / 18

Implementation: Main Idea

Tree-based Dijkstra search

I Node = matrix = sequence of operations

I Lightest circuit = shortest path to MDS matrix

I When we spawn a node, we test if it is MDS

Search results

I k = 3 fast (seconds)

I k = 4 long (hours)

I k = 5 out of reach

I Collection of MDS matrices with trade-off between cost and depth
(latency).

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 12 / 18

Scheme of the Search

x0 x1 x2 x3

α

x0 x1 x2 x3

α

x0 x1 x2 x3

α

x0 x1 x2 x3

α

x0 x1 x2 x3

α

x0 x1 x2 x3

α

x0 x1 x2 x3

α

x0 x1 x2 x3

α

x0 x1 x2 x3x0 x1 x2 x3x0 x1 x2 x3x0 x1 x2 x3

x0 x1 x2 x3x0 x1 x2 x3

x0 x1 x2 x3

.

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 13 / 18

Optimization: A∗

A∗

Idea of A∗

I Guided Dijkstra

I weight = weight from origin + estimated weight to objective

Our estimate:

I Heuristic

I How far from MDS ?

I Column with a 0: cannot be part of MDS matrix

I Linearly dependent columns: not part of MDS matrix

I Estimate: m = rank of the matrix (without columns containing 0)

I Need at least k −m word-wise XORs to MDS

Result: much faster

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 13 / 18

Optimization: A∗

A∗

Idea of A∗

I Guided Dijkstra

I weight = weight from origin + estimated weight to objective

Our estimate:

I Heuristic

I How far from MDS ?

I Column with a 0: cannot be part of MDS matrix

I Linearly dependent columns: not part of MDS matrix

I Estimate: m = rank of the matrix (without columns containing 0)

I Need at least k −m word-wise XORs to MDS

Result: much faster

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 13 / 18

Optimization: A∗

A∗

Idea of A∗

I Guided Dijkstra

I weight = weight from origin + estimated weight to objective

Our estimate:

I Heuristic

I How far from MDS ?

I Column with a 0: cannot be part of MDS matrix

I Linearly dependent columns: not part of MDS matrix

I Estimate: m = rank of the matrix (without columns containing 0)

I Need at least k −m word-wise XORs to MDS

Result: much faster

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 13 / 18

Optimization: A∗

A∗

Idea of A∗

I Guided Dijkstra

I weight = weight from origin + estimated weight to objective

Our estimate:

I Heuristic

I How far from MDS ?

I Column with a 0: cannot be part of MDS matrix

I Linearly dependent columns: not part of MDS matrix

I Estimate: m = rank of the matrix (without columns containing 0)

I Need at least k −m word-wise XORs to MDS

Result: much faster

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 13 / 18

Optimization: A∗

A∗

Idea of A∗

I Guided Dijkstra

I weight = weight from origin + estimated weight to objective

Our estimate:

I Heuristic

I How far from MDS ?

I Column with a 0: cannot be part of MDS matrix

I Linearly dependent columns: not part of MDS matrix

I Estimate: m = rank of the matrix (without columns containing 0)

I Need at least k −m word-wise XORs to MDS

Result: much faster

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 13 / 18

Optimization: A∗

A∗

Idea of A∗

I Guided Dijkstra

I weight = weight from origin + estimated weight to objective

Our estimate:

I Heuristic

I How far from MDS ?

I Column with a 0: cannot be part of MDS matrix

I Linearly dependent columns: not part of MDS matrix

I Estimate: m = rank of the matrix (without columns containing 0)

I Need at least k −m word-wise XORs to MDS

Result: much faster

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 14 / 18

Methodology of the Instantiation

The Idea

1 Input: Formal matrix M(α) MDS

2 Output: M(A) MDS, with A a linear mapping (the lightest we can
find)

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 15 / 18

Characterisation of MDS Instantiations

MDS Test

I Intuitive approach:
I Choose A a linear mapping
I Evaluate M(A)
I See if all minors are non-singular

I We can start by computing the minors:
I Let I , J subsets of the lines and columns
I Define mI ,J = detF2[α](M|I ,J)
I M(A) is MDS iff all mI ,J(A) are non-singular

I With the minimal polynomial
I Let µA the minimal polynomial of A
I M(A) is MDS iff ∀(I , J), gcd(µA,mI ,J) = 1

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 15 / 18

Characterisation of MDS Instantiations

MDS Test

I Intuitive approach:
I Choose A a linear mapping
I Evaluate M(A)
I See if all minors are non-singular

I We can start by computing the minors:
I Let I , J subsets of the lines and columns
I Define mI ,J = detF2[α](M|I ,J)
I M(A) is MDS iff all mI ,J(A) are non-singular

I With the minimal polynomial
I Let µA the minimal polynomial of A
I M(A) is MDS iff ∀(I , J), gcd(µA,mI ,J) = 1

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 15 / 18

Characterisation of MDS Instantiations

MDS Test

I Intuitive approach:
I Choose A a linear mapping
I Evaluate M(A)
I See if all minors are non-singular

I We can start by computing the minors:
I Let I , J subsets of the lines and columns
I Define mI ,J = detF2[α](M|I ,J)
I M(A) is MDS iff all mI ,J(A) are non-singular

I With the minimal polynomial
I Let µA the minimal polynomial of A
I M(A) is MDS iff ∀(I , J), gcd(µA,mI ,J) = 1

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 16 / 18

Multiplications in a Finite Field

We want A s.t. ∀(I , J), gcd(µA,mI ,J) = 1

Easy Way to Instantiate: Multiplications

I d > maxI ,J{deg(mI ,J)}
I Choose π an irreducible polynomial of degree d

I π is relatively prime with all mI ,J

I Take A = companion matrix of π

I A corresponds to a finite field multiplication

Low Cost Instantiation

I Pick π with few coefficients: a trinomial requires 1 rotation + 1
binary xor

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 16 / 18

Multiplications in a Finite Field

We want A s.t. ∀(I , J), gcd(µA,mI ,J) = 1

Easy Way to Instantiate: Multiplications

I d > maxI ,J{deg(mI ,J)}

I Choose π an irreducible polynomial of degree d

I π is relatively prime with all mI ,J

I Take A = companion matrix of π

I A corresponds to a finite field multiplication

Low Cost Instantiation

I Pick π with few coefficients: a trinomial requires 1 rotation + 1
binary xor

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 16 / 18

Multiplications in a Finite Field

We want A s.t. ∀(I , J), gcd(µA,mI ,J) = 1

Easy Way to Instantiate: Multiplications

I d > maxI ,J{deg(mI ,J)}
I Choose π an irreducible polynomial of degree d

I π is relatively prime with all mI ,J

I Take A = companion matrix of π

I A corresponds to a finite field multiplication

Low Cost Instantiation

I Pick π with few coefficients: a trinomial requires 1 rotation + 1
binary xor

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 16 / 18

Multiplications in a Finite Field

We want A s.t. ∀(I , J), gcd(µA,mI ,J) = 1

Easy Way to Instantiate: Multiplications

I d > maxI ,J{deg(mI ,J)}
I Choose π an irreducible polynomial of degree d

I π is relatively prime with all mI ,J

I Take A = companion matrix of π

I A corresponds to a finite field multiplication

Low Cost Instantiation

I Pick π with few coefficients: a trinomial requires 1 rotation + 1
binary xor

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 16 / 18

Multiplications in a Finite Field

We want A s.t. ∀(I , J), gcd(µA,mI ,J) = 1

Easy Way to Instantiate: Multiplications

I d > maxI ,J{deg(mI ,J)}
I Choose π an irreducible polynomial of degree d

I π is relatively prime with all mI ,J

I Take A = companion matrix of π

I A corresponds to a finite field multiplication

Low Cost Instantiation

I Pick π with few coefficients: a trinomial requires 1 rotation + 1
binary xor

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 16 / 18

Multiplications in a Finite Field

We want A s.t. ∀(I , J), gcd(µA,mI ,J) = 1

Easy Way to Instantiate: Multiplications

I d > maxI ,J{deg(mI ,J)}
I Choose π an irreducible polynomial of degree d

I π is relatively prime with all mI ,J

I Take A = companion matrix of π

I A corresponds to a finite field multiplication

Low Cost Instantiation

I Pick π with few coefficients: a trinomial requires 1 rotation + 1
binary xor

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 16 / 18

Multiplications in a Finite Field

We want A s.t. ∀(I , J), gcd(µA,mI ,J) = 1

Easy Way to Instantiate: Multiplications

I d > maxI ,J{deg(mI ,J)}
I Choose π an irreducible polynomial of degree d

I π is relatively prime with all mI ,J

I Take A = companion matrix of π

I A corresponds to a finite field multiplication

Low Cost Instantiation

I Pick π with few coefficients: a trinomial requires 1 rotation + 1
binary xor

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 17 / 18

Concrete Choices of A

We need to fix the size

Branches of size 4 bits (F4
2)

A4 =

[
. 1 . .
. . 1 .
. . . 1
1 1 . .

]
(companion matrix of X 4 + X + 1 (irreducible))

A−1
4 =

[
1 . . 1
1 . . .
. 1 . .
. . 1 .

]
(minimal polynomial is X 4 + X 3 + 1)

Branches of size 8 bits (F8
2)

A8 =


. 1
. . 1
. . . 1
. . . . 1 . . .
. 1 . .
. 1 .
. 1
1 . 1


(companion matrix of

X 8 + X 2 + 1 = (X 4 + X + 1)2)

A−1
8 =


. 1 1
1
. 1
. . 1
. . . 1
. . . . 1 . . .
. 1 . .
. 1 .


(minimal polynomial is X 8 + X 6 + 1)

Introduction Objective Search Algorithm Instantiating the Results Comparison with the Literature 18 / 18

Comparison With Existing MDS Matrices

Cost

Size Ring Matrix Naive Best Depth Ref

M4

(
M8(F2)

)
GL(8,F2) Circulant 106 (Li Wang 2016)
GL(8,F2) Hadamard 72 6 (Kranz et al. 2018)

F2[α] M8,3
4,6 67 5 α = A8 or A−1

8

F2[α] M8,4
4,4 69 4 α = A8

F2[α] M9,5
4,3 77 3 α = A8 or A−1

8

M4

(
M4(F2)

)
GF (24) M4,n,4 58 58 3 (Jean Peyrin Sim 2017)
GF (24) Toeplitz 58 58 3 (Sarkar Syed 2016)
GL(4,F2) Subfield 36 6 (Kranz et al. 2018)

F2[α] M8,3
4,6 35 5 α = A4 or A−1

4

F2[α] M8,4
4,4 37 4 α = A4

F2[α] M9,5
4,3 41 3 α = A4 or A−1

4

