MDS Matrices with Lightweight Circuits

Sébastien Duval

Gaëtan Leurent

March 26, 2019

e Search Algo 0000 Instantiating the Results 0000

SPN Ciphers

Shannon's criteria

1 Diffusion

- Every bit of plaintext and key must affect every bit of the output
- We usually use linear functions

2 Confusion

- Relation between plaintext and ciphertext must be intractable
- Requires non-linear operations
- Often implemented with tables: S-Boxes

Example: Rijndael/AES [Daemen Rijmen 1998]

Search Algo

Instantiating the Results

Block Cipher Security Analysis

Differential Attacks [Biham Shamir 91]

- Attacker exploits (a,b) such that
 - $E_{\mathcal{K}}(x)\oplus E_{\mathcal{K}}(x\oplus a)=b$ with high probability
- Maximum of the probability over all (a, b) bounded by

$$\left(\frac{\delta(S)}{2^n}\right)^{\mathcal{B}_d(L)-1}$$

ve Search Alge

Instantiating the Results 0000

MDS Matrices

L linear permutation on k words of n bits. Differential Branch Number

$$\mathcal{B}_d(L) = \min_{x \neq 0} \{w(x) + w(L(x))\}$$

where w(x) is the number of non-zero *n*-bits words in *x*.

Linear Branch Number

$$\mathcal{B}_l(L) = \min_{x \neq 0} \{ w(x) + w(L^{\top}(x)) \}$$

e Search Algo 0000 Instantiating the Results 0000

MDS Matrices

L linear permutation on k words of n bits. Differential Branch Number

$$\mathcal{B}_d(L) = \min_{x \neq 0} \{w(x) + w(L(x))\}$$

where w(x) is the number of non-zero *n*-bits words in *x*.

Linear Branch Number

$$\mathcal{B}_l(L) = \min_{x \neq 0} \{ w(x) + w(L^{\top}(x)) \}$$

Maximum branch number : k + 1Equivalent to MDS codes.

e Search Algo 0000 Instantiating the Results 0000

MDS Matrices

L linear permutation on k words of n bits. Differential Branch Number

$$\mathcal{B}_d(L) = \min_{x \neq 0} \{w(x) + w(L(x))\}$$

where w(x) is the number of non-zero *n*-bits words in *x*.

Linear Branch Number

$$\mathcal{B}_l(L) = \min_{x \neq 0} \{ w(x) + w(L^{\top}(x)) \}$$

Maximum branch number : k + 1Equivalent to MDS codes.

e Search Alg

Instantiating the Results

Matrices and Characterisation

AES MixColumns

Usually on finite fields: x a primitive element of \mathbb{F}_2^n Coeffs. $\in \mathbb{F}_2[x]/P$, with P a primitive polynomial $2 \leftrightarrow x$ $3 \leftrightarrow x + 1$

Characterisation

L is MDS iff its minors are non-zero

Introduction ○○○○●			6 / 18

Previous Works

Recursive Matrices [Guo et al. 2011]

A lightweight matrix A^i MDS Implement A, then iterate A i times.

Optimizing Coefficients

- Structured matrices: restrict to a small subspace with many MDS matrices
- ▶ More general than finite fields: inputs are binary vectors, matrix coeffs. are n × n matrices.
 - \Rightarrow less costly operations than multiplication in a finite field

ve Search Algo 0000 Instantiating the Results

Cost Evaluation

"Real cost"

Number of operations of the best implementation.

Xor count (naive cost)

Hamming weight of the binary matrix. Cannot reuse intermediate values.

Intermediate values

- Local optimisation: LIGHTER [Jean et al. 2017] cost of matrix multiplication = number of XORs + cost of the mult. by each coefficent.
- Global optimisation:
 - Hardware synthesis: straight line programs [Kranz et al. 2018]. Heuristics to implement binary matrices.
 - Our approach: Number of operations of the best implementation using operations on words.

n **Objective** Search Algorithm ooo ooo Instantiating the Results

Comparison with the Literatu

8/18

Metrics Comparison

e Search Algo

Instantiating the Results 0000

Formal Matrices

Formal matrices

Optimise in 2 steps:

000

- Find *M*(α) for α an undefined linear mapping.
- 2 Instantiate with the best choice of α
- Not necessarily a finite field.
- Then coeffs. are polynomials in α .

e Search Algo 0000 Instantiating the Results 0000

Formal Matrices

Formal matrices

Optimise in 2 steps:

000

- Find *M*(α) for α an undefined linear mapping.
- 2 Instantiate with the best choice of α
- Not necessarily a finite field.
- Then coeffs. are polynomials in α .

Characterisation of formally MDS matrices

- Objective: find $M(\alpha)$ s.t. $\exists A, M(A)$ MDS.
- For a minor of $M(\alpha)$ is null, then impossible.
- Otherwise, there always exists an A.

Characterisation possible on $M(\alpha)$.

Introduction Objective Search Algorithm Ir

Instantiating the Results

Comparison with the Literatu

10/18

Search Space

Search over circuits

Search Space

Operations:

- word-wise XOR
- $\sim lpha$ (generalization of a multiplication)
- Copy

Note: Only word-wise operations.

r registers:

```
one register per word (3 for 3 \times 3)
```

+ (at least) one more register \rightarrow more complex operations

Implementation: Main Idea

Tree-based Dijkstra search

- Node = matrix = sequence of operations
- Lightest circuit = shortest path to MDS matrix
- When we spawn a node, we test if it is MDS

Search results

- k = 3 fast (seconds)
- k = 4 long (hours)
- k = 5 out of reach
- Collection of MDS matrices with trade-off between cost and depth (latency).

■ Search Algo ○○●○ Instantiating the Results

Scheme of the Search

	Search Algorithm ○○○●		13 / 18

 A^*

Idea of A^*

- Guided Dijkstra
- weight = weight from origin + estimated weight to objective

	Search Algorithm ○○○●		13 / 18

 A^*

Idea of A^*

- Guided Dijkstra
- weight = weight from origin + estimated weight to objective

	Search Algorithm ○○○●		13 / 18

A^*

Idea of A^*

- Guided Dijkstra
- weight = weight from origin + estimated weight to objective

- Heuristic
- How far from MDS ?

	Search Algorithm ○○○●		13 / 18

*A**

Idea of A^*

- Guided Dijkstra
- weight = weight from origin + estimated weight to objective

- Heuristic
- How far from MDS ?
- Column with a 0: cannot be part of MDS matrix

		Search Algorithm ○○○●			13 / 18
--	--	--------------------------	--	--	---------

A^*

Idea of A^*

- Guided Dijkstra
- weight = weight from origin + estimated weight to objective

- Heuristic
- How far from MDS ?
- Column with a 0: cannot be part of MDS matrix
- Linearly dependent columns: not part of MDS matrix

A^*

Idea of A^*

- Guided Dijkstra
- weight = weight from origin + estimated weight to objective

Our estimate:

- Heuristic
- How far from MDS ?
- Column with a 0: cannot be part of MDS matrix
- Linearly dependent columns: not part of MDS matrix
- Estimate: m = rank of the matrix (without columns containing 0)
- Need at least k m word-wise XORs to MDS

Result: much faster

ntroduction Objective Search Algorithm Instantiating the l

Methodology of the Instantiation

The Idea

- **1** Input: Formal matrix $M(\alpha)$ MDS
- 2 Output: M(A) MDS, with A a linear mapping (the lightest we can find)

Characterisation of MDS Instantiations

MDS Test

- Intuitive approach:
 - Choose A a linear mapping
 - ► Evaluate *M*(*A*)
 - See if all minors are non-singular

Characterisation of MDS Instantiations

MDS Test

- Intuitive approach:
 - Choose A a linear mapping
 - Evaluate M(A)
 - See if all minors are non-singular
- We can start by computing the minors:
 - Let *I*, *J* subsets of the lines and columns
 - Define $m_{I,J} = \det_{\mathbb{F}_2[\alpha]}(M_{|I,J})$
 - M(A) is MDS iff all $m_{I,J}(A)$ are non-singular

Characterisation of MDS Instantiations

MDS Test

- Intuitive approach:
 - Choose A a linear mapping
 - Evaluate M(A)
 - See if all minors are non-singular
- We can start by computing the minors:
 - Let *I*, *J* subsets of the lines and columns
 - Define $m_{I,J} = \det_{\mathbb{F}_2[\alpha]}(M_{|I,J})$
 - M(A) is MDS iff all $m_{I,J}(A)$ are non-singular
- With the minimal polynomial
 - Let μ_A the minimal polynomial of A
 - M(A) is MDS iff $\forall (I, J), \operatorname{gcd}(\mu_A, m_{I,J}) = 1$

We want A s.t. $\forall (I, J), \operatorname{gcd}(\mu_A, m_{I,J}) = 1$

We want A s.t.
$$\forall (I,J), \operatorname{gcd}(\mu_A, m_{I,J}) = 1$$

Easy Way to Instantiate: Multiplications

 $\flat \ d > \max_{I,J} \{ deg(m_{I,J}) \}$

We want A s.t.
$$orall (I,J), \operatorname{\mathsf{gcd}}(\mu_{\mathsf{A}}, m_{I,J}) = 1$$

- $\flat d > \max_{I,J} \{ deg(m_{I,J}) \}$
- Choose π an irreducible polynomial of degree d

We want A s.t. $\forall (I, J), \operatorname{gcd}(\mu_A, m_{I,J}) = 1$

- $\flat \ d > \max_{I,J} \{ deg(m_{I,J}) \}$
- Choose π an irreducible polynomial of degree d
- π is relatively prime with all $m_{I,J}$

We want A s.t. $\forall (I, J), \operatorname{gcd}(\mu_A, m_{I,J}) = 1$

- $\flat \ d > \max_{I,J} \{ deg(m_{I,J}) \}$
- Choose π an irreducible polynomial of degree d
- π is relatively prime with all $m_{I,J}$
- Take A = companion matrix of π

We want A s.t. $\forall (I, J), \operatorname{gcd}(\mu_A, m_{I,J}) = 1$

- $\flat \ d > \max_{I,J} \{ deg(m_{I,J}) \}$
- Choose π an irreducible polynomial of degree d
- π is relatively prime with all $m_{I,J}$
- Take A = companion matrix of π
- A corresponds to a finite field multiplication

We want A s.t. $\forall (I, J), \operatorname{gcd}(\mu_A, m_{I,J}) = 1$

Easy Way to Instantiate: Multiplications

- $\flat \ d > \max_{I,J} \{ deg(m_{I,J}) \}$
- Choose π an irreducible polynomial of degree d
- π is relatively prime with all $m_{I,J}$
- Take A = companion matrix of π
- A corresponds to a finite field multiplication

Low Cost Instantiation

Pick π with few coefficients: a trinomial requires 1 rotation + 1 binary xor

ive Search Al 0000 Instantiating the Results

Concrete Choices of A

We need to fix the size

Branches of size 4 bits (\mathbb{F}_2^4)

$$A_4 = \begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & i & \cdot & 1 \\ i & i & \cdot & \cdot \end{bmatrix}$$

(companion matrix of $X^4 + X + 1$ (irreducible))

$$A_4^{-1} = \begin{bmatrix} 1 & \cdot & 1 \\ 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}$$

(minimal polynomial is $X^4 + X^3 + 1$)

Branches of size 8 bits (\mathbb{F}_2^8) $A_{8} = \begin{vmatrix} \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \end{vmatrix}$ (companion matrix of $X^{8} + X^{2} + 1 = (X^{4} + X + 1)^{2}$) $A_{8}^{-1} = \begin{vmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & 1 & \dots & \dots \\ \dots & 1 & \dots & \dots \\ \dots & \dots & 1 & \dots \\ \dots & \dots & 1 & \dots \\ \dots & \dots & \dots & 1 & \dots \end{vmatrix}$

(minimal polynomial is $X^8 + X^6 + 1$)

Comparison With Existing MDS Matrices

				Cost		
Size	Ring	Matrix	Naive	Best	Depth	Ref
$M_4(M_8(\mathbb{F}_2))$	$GL(8,\mathbb{F}_2)$	Circulant	106			(Li Wang 2016)
	$GL(8, \mathbb{F}_2)$	Hadamard		72	6	(Kranz <i>et al.</i> 2018)
	$\mathbb{F}_2[\alpha]$	$M_{4,6}^{8,3}$		67	5	$lpha={\sf A}_8$ or ${\sf A}_8^{-1}$
	$\mathbb{F}_2[\alpha]$	$M^{8,3}_{4,6}$ $M^{8,4}_{4,4}$		69	4	$\alpha = A_8$
	$\mathbb{F}_2[\alpha]$	$M_{4,3}^{9,5}$		77	3	$lpha={\sf A}_8$ or ${\sf A}_8^{-1}$
$M_4(M_4(\mathbb{F}_2))$	$GF(2^{4})$	$M_{4,n,4}$	58	58	3	(Jean Peyrin Sim 2017)
	$GF(2^4)$	Toeplitz	58	58	3	(Sarkar Syed 2016)
	$GL(4, \mathbb{F}_2)$	Subfield		36	6	(Kranz <i>et al.</i> 2018)
	$\mathbb{F}_2[\alpha]$	$M^{8,3}_{4,6}$ $M^{8,4}_{4,6}$		35	5	$lpha=A_4$ or A_4^{-1}
	$\mathbb{F}_2[\alpha]$	$M_{4,4}^{8,4}$		37	4	$\alpha = A_4$
	$\mathbb{F}_2[\alpha]$	$M_{4,3}^{9,5}$		41	3	$lpha=A_4$ or A_4^{-1}