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iating the Results Comparison with the Literature

SPN Ciphers
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Ciphertext

Shannon’s criteria

1 Diffusion
- Every bit of plaintext and key must affect every
bit of the output
- We usually use linear functions
2 Confusion
- Relation between plaintext and ciphertext must
be intractable
- Requires non-linear operations
- Often implemented with tables: S-Boxes

Example: Rijndael/AES [Daemen Rijmen 1998]
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MDS Matrices
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L linear permutation
on k words of n bits.

Differential Branch Number

S40) S W) =FUAE));

where w(x) is the number of
non-zero n-bits words in x.

Linear Branch Number

B(L) = min{w(x) + w(LT (x))}
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Linear Branch Number

L linear permutation Bi(L) = min{w(x) + w(L"(x))}
on k words of n bits. e

Maximum branch number : kK +1
Equivalent to MDS codes.
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Matrices and Characterisation
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AES MixColumns

Characterisation
L is MDS iff its minors are non-zero

Usually on finite fields:

X a primitive element of [F5
Coeffs. € Fa[x]/P, with P a
primitive polynomial

24 x

3+ x+1




Comparison with the Literature

Previous Works

Recursive Matrices [Guo et al. 2011]

A lightweight matrix
A’ MDS
Implement A, then iterate A j times.

Optimizing Coefficients
Structured matrices: restrict to a small subspace with many MDS
matrices
More general than finite fields: inputs are binary vectors, matrix

coeffs. are n x n matrices.
= less costly operations than multiplication in a finite field
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Cost Evaluation

“Real cost”
Number of operations of the best implementation.

Xor count (naive cost)
Hamming weight of the binary matrix. Cannot reuse intermediate values.

Intermediate values
Local optimisation: LIGHTER [Jean et al. 2017]
cost of matrix multiplication = number of XORs + cost of the
mult. by each coefficent.
Global optimisation:
» Hardware synthesis: straight line programs [Kranz et al. 2018].
Heuristics to implement binary matrices.
» Our approach: Number of operations of the best implementation using
operations on words.
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Formal Matrices

Formal matrices

Optimise in 2 steps:
1 Find M(«) for a an undefined linear

mapping.
2 Instantiate with the best choice of «

Not necessarily a finite field.

Then coeffs. are polynomials in «.
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Formal Matrices

Formal matrices

Optimise in 2 steps:
1 Find M(«) for a an undefined linear

mapping. <
2 Instantiate with the best choice of « & I:"

Not necessarily a finite field.

Then coeffs. are polynomials in «.
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Characterisation of formally MDS matrices
Objective: find M(«a) s.t. 3A, M(A) MDS.
If a minor of M(«) is null, then impossible.

Otherwise, there always exists an A.

Characterisation possible on M(«).
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Search Space

Search over circuits

Search Space

Operations:
word-wise XOR
« (generalization of a multiplication)
Copy

Note: Only word-wise operations.
r registers:
one register per word (3 for 3 x 3)
+ (at least) one more register — more complex operations
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Implementation: Main |dea

Tree-based Dijkstra search
Node = matrix = sequence of operations
Lightest circuit = shortest path to MDS matrix

When we spawn a node, we test if it is MDS

11/18

Search results
k = 3 fast (seconds)
k = 4 long (hours)
k =5 out of reach

Collection of MDS matrices with trade-off between cost and depth
(latency).




Scheme of the Search
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Optimization: A*

A*
Idea of A*
Guided Dijkstra

weight = weight from origin 4 estimated weight to objective




Search Algorithm
ooe

Optimization: A*

A*
Idea of A*

Guided Dijkstra

weight = weight from origin 4 estimated weight to objective

Our estimate:




Search Algorithm
ooe

Optimization: A*

A*
Idea of A*

Guided Dijkstra

weight = weight from origin 4 estimated weight to objective
Our estimate:

Heuristic

How far from MDS ?




Search Algorithm
ooe

Optimization: A*

A*
Idea of A*

Guided Dijkstra

weight = weight from origin 4 estimated weight to objective
Our estimate:

Heuristic

How far from MDS ?

Column with a 0: cannot be part of MDS matrix




Search Algorithm
ooe

Optimization: A*

A*
Idea of A*

Guided Dijkstra
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Optimization: A*

A*
Idea of A*
Guided Dijkstra
weight = weight from origin 4 estimated weight to objective
Our estimate:
Heuristic
How far from MDS ?
Column with a 0: cannot be part of MDS matrix
Linearly dependent columns: not part of MDS matrix
Estimate: m = rank of the matrix (without columns containing 0)
Need at least k — m word-wise XORs to MDS

Result: much faster
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Methodology of the Instantiation

The ldea
1 Input: Formal matrix M(«) MDS

2 Output: M(A) MDS, with A a linear mapping (the lightest we can
find)
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Characterisation of MDS Instantiations

MDS Test

Intuitive approach:

» Choose A a linear mapping
» Evaluate M(A)
> See if all minors are non-singular
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Characterisation of MDS Instantiations

MDS Test

Intuitive approach:
» Choose A a linear mapping
» Evaluate M(A)
> See if all minors are non-singular
We can start by computing the minors:
» Let /, J subsets of the lines and columns
> Define my = detFZ[a](M“,J)
» M(A) is MDS iff all m; j(A) are non-singular
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Characterisation of MDS Instantiations

MDS Test

Intuitive approach:

» Choose A a linear mapping

» Evaluate M(A)

> See if all minors are non-singular
We can start by computing the minors:

» Let /, J subsets of the lines and columns

> Define my = deth[a](M“,J)

» M(A) is MDS iff all m; j(A) are non-singular
With the minimal polynomial

> Let pua the minimal polynomial of A
» M(A) is MDS iff (I, J), ged(pa, m; y) =1
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Multiplications in a Finite Field

We want A s.t. Y(/,J), ged(pa, miy) =1

Easy Way to Instantiate: Multiplications
d > max; j{deg(m; )}
Choose 7 an irreducible polynomial of degree d
m is relatively prime with all m,
Take A = companion matrix of 7
A corresponds to a finite field multiplication

Low Cost Instantiation
Pick 7 with few coefficients: a trinomial requires 1 rotation + 1
binary xor
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Concrete Choices of A

We need to fix the size

Branches of size 4 bits (F3) Branches of size 8 bits (F$)
i
Sl N I T
Ag =
A4={::?i] Tt
S R i
i1l

(companion matrix of X* 4+ X + 1 (irreducible))
(companion matrix of
X84+ X2+ 1=(X*+X+1)?)

1 % .1 il ..... 1
A =15 Sin
o1 -
(minimal polynomial is X* 4+ X3 4 1) R |

(minimal polynomial is X8 + X% + 1)



Comparison with the Literature

Comparison With Existing MDS Matrices

Cost
Size Ring Matrix Naive Best Depth Ref
Ms(Mg(F2)) GL(8,F2) Circulant 106 (Li Wang 2016)
GL(8,F,) Hadamard 72 6 (Kranz et al. 2018)
Fa[a] Mo 67 5 a=Agor Ayl
Fa[a] My 69 4 a=Ag
F2[a] M3 77 3 a=Agor Ayl
Ma(Ma(F2))  GF(2%) Ma,n.a 58 58 3 (Jean Peyrin Sim 2017)
GF(2*)  Toeplitz 58 58 3 (Sarkar Syed 2016)
GL(4,F,)  Subfield 36 6 (Kranz et al. 2018)
Fa[a] Mo 35 5 a=Agor Ayt
IF[o] My 37 4 a=A
Fola] Mi’g 41 3 a = Ay or A;l




