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Abstract. We study possible alternatives for ShiftRows to be used as cell permutations
in AES-like ciphers. As observed during the design process of the block cipher Midori,
when using a matrix with a non-optimal branch number for the MixColumns operation,
the choice of the cell permutation, i.e., an alternative for ShiftRows, can actually
improve the security of the primitive. In contrast, when using an MDS matrix it is
known that one cannot increase the minimum number of active S-boxes by deviating
from the ShiftRows-type permutation.
However, finding the optimal choice for the cell permutation for a given, non-optimal,
MixColumns operation is a highly non-trivial problem. In this work, we propose
techniques to speed up the search for the optimal cell permutations significantly. As
case studies, we apply those techniques to Midori and Skinny and provide possible
alternatives for their cell permutations. We finally state an easy-to-verify sufficient
condition on a cell permutation, to be used as an alternative in Midori, that attains a
high number of active S-boxes and thus provides good resistance against differential
and linear attacks.
Keywords: Block Cipher · Midori · Skinny · AES · ShiftRows · Differential Crypt-
analysis · Linear Cryptanalysis · Active S-boxes · Matsui’s Algorithm · Diffusion

1 Introduction
The Advanced Encryption Standard (AES) [18] can certainly be considered to be the most
important block cipher in practice. Besides that, due to its simple and elegant structure,
the AES (and its predecessor SQUARE [10]) have influenced a large variety of cryptographic
primitives that build upon its general design ideas. In particular, many block-cipher and
hash-function designs start with the initial design structure of the AES and tweak it with
respect to one or more parts in order to fulfill their requirements. Examples of such designs
include, but are not limited to, Anubis [3], LED [13], mCrypton [15], Midori [2], Photon [12],
Prince [8], Qarma [1], Skinny and Mantis [6], and Whirlpool [4].

Interestingly, even though AES and its general design have been studied for over 20
years now, still new ideas pop up in this area and raise interesting questions. One of the
more recent ideas was presented in 2015 with the block cipher Midori. Midori, which is
the Japanese word for green, is a lightweight cipher that aims at minimizing the energy
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consumption of encryption. While Midori follows the general outline of the AES, almost
all components are modified in order to reach the goal of minimizing energy.

In particular, the authors decided to change the MixColumns operation in a way that
it applies multiplication with a binary matrix with branch number 4, compared to the non-
binary MixColumns operation in the AES with branch number 5. This has the benefit of
significantly reducing the energy consumption of this operation. However, the downside is
that, a priori, the number of active S-boxes reduces. More precisely, while for AES we have
at least 25 active S-boxes in any (linear or differential) four-round trail, moving to a branch
number of 4 reduces this number to 16. This follows from the four-round propagation
theorem (Section 9.5. in [11]), a powerful theoretical argument of the wide-trail strategy [9].
Indeed, the wide-trail strategy is one of the major design principles of the AES and allows
for obtaining useful, and mathematical provable, bounds on the minimum number of active
S-boxes. For states of quadric dimension and under the usage of a MixColumns operation
with optimal branch number, it was shown in [7] that one cannot increase the minimum
number of active S-boxes when substituting the ShiftRows operation by another, arbitrary,
cell permutation. Therefore, the interesting, and maybe unexpected, observation made by
the designers of Midori is that actually substituting ShiftRows can significantly increase
the number of active S-boxes if a MixColumns operation with non-optimal branch number
is employed. Indeed, by using a different cell permutation, the authors of Midori managed
to increase the minimum number of active S-boxes, e.g., from 20 to 30 for 6 rounds. On
top, changing the cell permutation does not come at any additional cost, at least when
considering hardware implementations. Later in 2016, Todo and Aoki analyzed which
binary matrices lead to an improved number of active S-boxes for the classical ShiftRows
permutation [20].

The interesting and important question raised by the designers of Midori is what
the optimal choice of the cell permutation, used as a substitute for ShiftRows, actually
is. The difficulty in answering this question comes from the fact that the four-round
propagation theorem is not capable of proving better bounds than one obtains by just
iterating four-round trails. In other words, with our current knowledge we are not able to
theoretically analyze those improved bounds on the number of active S-boxes, but rather
have to rely on computer search techniques like Matsui’s algorithm [16] or techniques based
on Mixed-Integer Linear Programming (MILP) [17]. Quite some progress has been made
on those tools in recent years, especially in the area of MILP (e.g. [19]). For a given cell
permutation, even for a higher number of rounds, it is still possible to compute (bounds
on) the number of active S-boxes within reasonable time using a single core of a standard
PC. However, there is a huge choice of possible permutations to be considered – roughly
244.25 in the case of Midori – which immediately renders the naive approach of simply
testing them all very inefficient.

The designers of Midori overcome this problem by heuristically reducing the search
space of all cell permutations to be considered. However, it stayed unclear if, by this
reduction, we actually exclude the best possible cell permutations. Interestingly, in the
design document of Midori [2], some conditions are given under which a permutation leads
to an optimal number of active S-boxes. Unfortunately, those conditions are given without
a proof or an intuition. Moreover, as we will see later, those conditions do not guarantee
an optimal number of active S-boxes for all number of rounds simultaneously.

Thus, the final goal is clearly to gain some theoretical insight on what exactly charac-
terizes the optimal cell permutations. However, as already mentioned, this seems out of
reach with our current knowledge. We then focus on the task of computationally finding
the best permutations among all permutations, i.e., without any restriction on the search
space.
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1.1 Our Contribution
The starting point of our work is the simple, but useful, observation given in Section 3, i.e.,
for any AES-like cipher, there are several cell permutations which basically lead to the same
cipher. More precisely, if two cell permutations p and p′ differ only by conjugation with a
permutation that commutes with the MixColumns operation, the entire two ciphers differ
only by a permutation on the plaintext and ciphertext and a corresponding permutation
of the round keys. This immediately implies that in particular, the ciphers have the
same cryptographic resistance against any attack that does not involve details about the
key-scheduling algorithm. Especially, the bounds on the number of active S-boxes are
necessarily the same.

For our task of finding the best permutation, this means that we have to check only
one of those cell permutations, p or p′. More formally, we show that being equal up to
conjugation with a permutation that commutes with a given MixColumns operation actually
defines an equivalence relation (see Definition 4) on the set of all possible permutations.
We then have to check only one representative of each possible equivalence class.

This naturally leads to the task of classifying cell permutations with respect to this
notion of equivalence. Again, when approaching this task in a naive manner, it quickly
turns very inefficient. In order to keep it still manageable, we first study a weakened notion
of equivalence, which allows us to significantly simplify the classification algorithm. We
furthermore give an easy to verify condition on when this a priori weakened equivalence
notion coincides with the equivalence notion mentioned above. This will be part of
Section 3.

The MixColumns operations used in Midori and Skinny then serve as case studies
for our general approach (see Section 4 and Section 5). Focusing on Midori is especially
interesting for the following two reasons. First, the MixColumns operation fulfills the
sufficient condition for which the weaker notion of equivalence coincides with the stronger
notion of equivalence we are actually interested in. This allows the simplified classification
mentioned above. Second, as we will explain in detail, the number of different equivalence
classes is especially small for Midori. Indeed, our algorithm reveals that there are only
about 221.7 equivalence classes. Thus, compared to checking 244.5 possible permutations,
we gain a speed-up factor of more than 222. All in all, this allows us to compare the
actual best cell permutation with respect to active S-boxes – without any restriction on
the search space – with the one actually used in Midori. For Skinny, we also have the
beneficial property that the weakened notion of equivalence coincides with the stronger
notion. However, compared to Midori, there are much more distinct equivalence classes
(≈ 239.66). Due to the increased search space, we therefore only focus on permutations
with diffusion properties as least as good as the original Skinny permutation, i.e., attaining
full cell diffusion after 6 rounds both in forward and backward direction.

We computed the bounds on the minimum number of active S-boxes up to 40 rounds
using Matsui’s approach. As it turns out, the original cell permutation used in Midori
does indeed give optimal bounds for any number of rounds ranging from 1 to 11, with the
remarkable exception of 9. For 9 rounds, there exist four permutations (up to equivalence)
that provide a higher number of active S-boxes than the one used in Midori. Moreover,
from 13 rounds onwards and up to 40 rounds, the original Midori permutation is never
the optimal one. Therefore, there is actually no single permutation that achieves the
optimal bound for all number of rounds simultaneously. It is also worth noticing that
the number of optimal permutations varies when considering different number of rounds.
Those results are visualized in Figure 3. Our analysis indicates that the conditions on
optimal cell permutations given by the Midori designers (see [2, pp. 15-16]) do not precisely
characterize the properties one wants to achieve. For Skinny, we obtained similar results.
Of all permutations with diffusion as least as good as the original Skinny permutation, the
original Skinny permutation is optimal for most of the number of rounds up to 26. From



Gianira Alfarano et al. 23

27 rounds onwards and up to 40 rounds, it is never optimal. Those results are visualized
in Figure 4.

It is worth remarking that the ciphers mCrypton and Mantis apply the same MixColumns
operation than Midori. This suggests that our findings are not limited to Midori, but may
instead be useful for future cipher designs. Especially if a new lightweight cipher similar to
Midori or Skinny has to be designed, the designers can now easily pick a cell permutation
that suits their security goals – depending on the size of the S-boxes and their cryptographic
properties. To make it easier for designers, we provide a comprehensive list of optimal cell
permutations in Appendix C.1 and C.2

Besides computer-aided results, one would also like to obtain a more theoretical
understanding of which cell permutations lead to high bounds on the minimum number
of active S-boxes. Basically, for AES-like ciphers, we know the four-round propagation
theorem as an elegant way to understand the best possible bounds on the minimum number
of active S-boxes over four rounds. With a more complex argument, in [14], the authors
formally proved that AES-128 guarantees high bounds on the minimum number of active
S-boxes in the related-key setting. In a similar manner, we finally provide a theoretical
argument on when a cell permutation, to be used as an alternative in Midori, attains
a high number of active S-boxes (in the single-key model). More precisely, we give an
easy-to-verify condition on a cell permutation to attain 28 active S-boxes over 6 rounds.

Parts of this work already appeared in the PhD thesis [5].

2 Preliminaries
In this work, we consider AES-like substitution-permutation networks (SPNs) as depicted
in Figure 1. Generally speaking, the SPN transforms an m× n state of the form

a0 am . . . a(n−1)m
a1 am+1 . . . a(n−1)m+1
...

...
. . .

...
am−1 am+(m−1) . . . anm−1

 ,
where each ai ∈ F2s for a given word size s. The SPN follows an iterative structure in
which a certain pre-defined round function is iterated several times. In an SP block cipher,
this iteration is interleaved with the addition of round-dependent keys in Fm×n2s . For
simplicity, we will omit this round-key addition in the following, as we are focusing only
on the cryptographic properties of the round function.1

We focus on a special kind of round function as described in Definition 1, which
resembles the structure applied in the AES. We further restrict to the case that a binary
F2s-linear MixColumns operation is employed, i.e., the m ×m matrix representing the
linear MixColumns transformation contains only the values 0 and 1 in F2s as its coefficients.
We give a formal definition of this AES-like round structure in the following. It is important
to note that many recently proposed lightweight designs fit into this notion, e.g., Midori [2]
or Skinny [6].

Definition 1. An AES-like round is a permutation RS,p,M : Fmn2s → Fmn2s which is
parametrized by the state dimension m× n, the word size s, a permutation S : F2s → F2s ,
an m×m matrix M with (binary) coefficients in F2s , and a permutation p on Zmn. In
particular, the round function RS,p,M is composed of the bijective transformations SB,
Permutep and MixM operating on m× n states, such that RS,p,M = MixM ◦Permutep ◦ SB:

1Analyzing a cipher w.r.t. the most common attacks, i.e., differential and linear cryptanalysis, is usually
done under the assumption of adding independent and uniformly distributed round keys after each round.
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m . . . c

k0 k1 kt

RS,p,M RS,p,M RS,p,M

=RS,p,M

S S S S

S S S S

S S S S

S S S S

SB Permutep MixM

Figure 1: The iterative structure of a substitution-permutation cipher using an AES-like
round for a 4× 4 state.

1. SB is a parallel application of the S-box S : F2s → F2s to all m · n cells of the state.

SB : (F2s)mn → (F2s)mn

∀i ∈ Zm,∀j ∈ Zn : amj+i 7→ S(amj+i) .

2. Permutep permutes the cells of the state by the permutation p, i.e.,

Permutep : (F2s)mn → (F2s)mn

∀i ∈ Zm,∀j ∈ Zn : amj+i 7→ ap(mj+i) .

3. MixM applies left-multiplication by the m×m matrix M to all columns j ∈ Zn of
the state, i.e.,

MixM : (F2s)mn → (F2s)mn

∀j ∈ Zn : [amj+0, . . . , amj+(n−1)]> 7→M · [amj+0, . . . , amj+(n−1)]> .

We denote by Smn the set of all cell permutations on an m× n state. In the following,
we give the AES-like rounds of Midori64 and Skinny as examples.

Example 1 (Midori64). For the 64-bit version of the Midori block cipher, we have RS,p,M :
F16

24 → F16
24 . The state is represented as a 4× 4 matrix of words ai of length s = 4 bit by

a0 a4 a8 a12
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15

 .

The round function is composed of the following consecutive operations:

SubCell (SB). The S-box S : F24 → F24 employed in the SB operation is given in Table 1.

ShuffleCell (Permutep) operates on the cells of the state. In particular, it transforms the
state as 

a0 a4 a8 a12
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15

 7→

a0 a14 a9 a7
a10 a4 a3 a13
a5 a11 a12 a2
a15 a1 a6 a8

 .
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Table 1: The 4-bit S-box used in Midori64. We give the values for x and S(x) as elements
in Fs2 with respect to the natural basis, e.g., b represents the vector (1, 0, 1, 1).

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

This corresponds to the permutation

p =
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 10 5 15 14 4 11 1 9 3 12 6 7 13 2 8

)
∈ S16 .

MixColumns (MixM). The matrix

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ∈ GL(4,F24)

is applied to every column of the state.
Midori64 applies the round function RS,p,M 16 times in total (where the last round omits
the ShuffleCell and MixColumns operation).
Example 2 (Skinny64). As for Midori64, the round function of Skinny in its 64-bit version
is given as RS,p,M : F16

24 → F16
24 and the state is represented in the same way as for Midori64.

The round function is composed of the following consecutive operations:

SubCells (SB). The S-box S : F24 → F24 employed in the SB operation is given in Table 2.

Table 2: The 4-bit S-box used in Skinny64 in its natural basis representation.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

ShiftRows (Permutep) applies a cyclic rotation to the right on each of the rows of the
state. In particular, it transforms the state as

a0 a4 a8 a12
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15

 7→

a0 a4 a8 a12
a13 a1 a5 a9
a10 a14 a2 a6
a7 a11 a15 a3

 .

This corresponds to the permutation

p =
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 13 10 7 4 1 14 11 8 5 2 15 12 9 6 3

)
∈ S16 .

MixColumns (Mix). The matrix

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 ∈ GL(4,F24)

is applied to every column of the state.

Depending on the size of the tweakey state (64, 128, or 196 bit), Skinny64 applies the
round function RS,p,M 32, 36, or 40 times in total, respectively.
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2.1 Active S-boxes and Differential Cryptanalysis
The goal of differential cryptanalysis is to find a correlation between the difference of
plaintext pairs and the corresponding output difference which holds with high probability.
In order to estimate the probability of such a correlation we observe trails of differences
through the round function.

Definition 2 (Differential Trail (see [11])). Let E be an AES-like cipher with round
function RS,p,M operating on a state of dimension m× n with word size s. A t-round trail
is a (t + 1)-tuple (X(0), . . . , X(t)) ∈ ((F2s)mn)t+1. The weight of the differential trail is
defined as ∑

r∈Zt

∑
i∈Zm

∑
j∈Zn

X̃
(r)
mj+i ,

where X̃(r)
mj+i ∈ {0, 1} ⊆ Z such that X̃(r)

mj+i = 1 if and only if X(r)
mj+i 6= 0. A pair of inputs

x, x′ ∈ (F2s)mn is said to follow the differential trail (X(0), . . . , X(t)) over t rounds if and
only if X(0) = x+ x′ and

∀r ∈ {1, . . . , t} : X(r) = RrS,p,M(x) + RrS,p,M(x′) .

We say that a differential trail is valid for E if and only if there exists an input pair that
follows the trail.

As the only non-linear operation in the round function is S, the probability that an
input pair follows this trail is directly related to the weight of the trail. We refer to any
S-box which has a non-zero difference in the trail as an active S-box. In order to show
resistance of a cipher against differential cryptanalysis, it is important to find a good
bound on the minimum weight, resp. number of active S-boxes, in any valid (non-zero)
trail.

Definition 3 (Branch Number (see [11])). For an F2s -linear transformation L, the branch
number BL is defined as

BL = min
a 6=0
{wt(a) + wt(L(a))} ,

where wt(x) is the number of non-zero words in x.

The MixColumns layer of Midori has a branch number of 4. It has the further interesting
property that the number of possible transitions is highly limited. See Figure 10 in
Appendix A for a detailed overview of the possible transitions. For the MixColumns matrix
of Skinny, the branch number is only 2 and the possible transitions are even more restricted
(see Figure 11 in Appendix A).

Note that for analyzing the resistance against linear cryptanalysis, one has to evaluate
the minimum number of active S-boxes for the MixColumns matrix (M−1)>, where >
denotes the transpose of the matrix. As for Midori we have M = (M−1)>, the bounds
on the minimum number of active S-boxes are the same both with regard to linear and
differential cryptanalysis. However, for Skinny, this is not the case and the resistance
against linear cryptanalysis has to be evaluated separately. Throughout this paper, we
only concentrate on differential cryptanalysis.

In the remainder of this work, we will also consider diffusion properties of cell permu-
tations. We say that a cell permutation attains full diffusion after r rounds if, after r
rounds, every cell of the internal state depends on every cell of the input state.
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3 Classifying Cell Permutations
When designing a new block cipher, besides choosing a cryptographically strong S-box, a
crucial goal of the designer is to choose an appropriate linear layer in order to maximize
diffusion properties and prevent against differential and linear attacks. In the notion
of AES-like ciphers, the linear layer is fully specified by a matrix M ∈ GL(m,F2s)
corresponding to the MixColumns operation and by a cell permutation p ∈ Smn. A natural
designer’s approach is to first select the matrix M and then choose the cell permutation
that maximizes the minimum number of active S-boxes. Indeed, one of the major novelties
of the Midori design was to show that the choice of a specific type of cell permutation,
in combination with the appropriate MixColumns matrix, can guarantee a much higher
number of guaranteed active S-boxes, compared to just applying a simple ShiftRows-like
operation as it was done in the AES.

In order to reduce the search space of all permutations in Smn, it is crucial to identify
under which conditions two permutations lead to the same cryptographic properties.
In particular, we base our work on the following simple observation: If we consider a
permutation p ∈ Smn, then any permutation that is obtained from p by conjugation
with some ϑ ∈ Smn for which MixM ◦ Permuteϑ = Permuteϑ ◦ MixM lead to the same
cryptographic properties. In other words, the SP cipher instantiated with the AES-like
round RS,ϑ◦p◦ϑ−1,M is just a permuted version of the SP cipher instantiated with RS,p,M
(under a permutation of the round keys), whenever the permutation matrix of ϑ commutes
with the matrix corresponding to the operation MixM. This fact is illustrated in Figure 2.
Overall, this motivates the notion of M-equivalence as defined in the following. For given
state dimensions m,n, we will denote the set of all cell permutations ϑ for which Permuteϑ
commutes with MixM by T (M).

k0 k1 k2

SB Pϑ−1 Pp Pϑ MixM SB Pϑ−1 Pp Pϑ MixM

Pϑ−1 SB Pp Pϑ MixM Pϑ−1 SB Pp Pϑ MixM

Pϑ(k0) Pϑ(k1) k2

Pϑ−1 SB Pp MixM Pϑ Pϑ−1 SB Pp MixM Pϑ

Pϑ(k0) Pϑ(k1) Pϑ(k2)

id

(a)

(b)

(c)

Figure 2: This illustration shows how equivalent permutations lead to the same cipher
upto permutation of the input, the output and the round keys. One can easily see that
cipher (a) is the same as cipher (b) by using the fact that the S-box layer commutes with
the cell-permutation layer. The ciphers (b) and (c) are the same since Permuteϑ (here
denoted as Pϑ for short) commutes with MixM.

Definition 4 (M-equivalence). Let M ∈ GL(m,F2s) be an m ×m matrix with binary
coefficients. We say that two permutations p, p′ ∈ Smn are M-equivalent, if there exists a
permutation ϑ ∈ T (M) such that p′ = ϑ ◦ p ◦ ϑ−1. We write p ∼ p′ for two M-equivalent
permutations p and p′.

Note that T (M) is a subgroup of Smn which implies that the relation ∼ is symmetric,
reflexive and transitive. Thus, ∼ is indeed an equivalence relation on Smn.
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If p and p′ are M-equivalent permutations, by definition there exists a permutation ϑ
such that

RS,p′,M = Permuteϑ ◦ RS,p,M ◦ Permuteϑ−1 .

It is important to note that this can be extended for an arbitrary number of rounds. In
particular, for any t ∈ N, we have

RtS,p′,M = Permuteϑ ◦ RtS,p,M ◦ Permuteϑ−1 .

Thus, if any cryptanalysis is done independently of the actual specification of the round
keys, the corresponding ciphers share the same cryptographic properties. This holds in
particular for the case of differential and linear cryptanalysis. M-equivalent permutations
lead to the same bound on the minimum number of active S-boxes.

For given m,n ∈ N and M ∈ GL(m,F2s) with binary coefficients, we aim for classifying
all permutations in Smn up to M-equivalence. As described above, such a classification
would allow us to check only a single representative of each equivalence class for its
cryptographic properties and it thus may significantly reduce the complexity of finding the
best cell permutation. However, there is a difficulty in achieving this classification. Namely,
for an arbitrary M, it is not obvious how to efficiently determine T (M) and to separate
all permutations into their equivalence classes. In order to reach our goal, we therefore
first consider a weaker notion of M-equivalence and describe an algorithm to enumerate
all permutations up to this weak equivalence. Later, we will see that, for certain choices of
M, this weak equivalence coincides with the general notion of M-equivalence. Fortunately,
this approach allows us to finally classify all cell permutations upto M-equivalence in its
stronger notion for the case of Midori and Skinny.
Definition 5 (weak M-equivalence). Let P
 denote the set of all cell permutations that
permute whole columns of the state and let Pl be the set of cell permutations that operate
independently on the columns of the state. Formally,

P
 := {p ∈ Smn | ∃σ ∈ Sn : ∀i ∈ Zm, j ∈ Zn : mj + i
p7→ mσ(j) + i} .

Pl := {p ∈ Smn | ∃σ0, . . . , σn−1 ∈ Sm : ∀i ∈ Zm, j ∈ Zn : mj + i
p7→ mj + σj(i)} .

Then, we say that a cell permutation p is weakly M-equivalent to a cell permutation p′,
written p ∼w p′, if there exists a cell permutation ϑ ∈ T (M) of the form ϑ = π ◦ φ, with
π ∈ P
 and φ ∈ Pl such that p′ = ϑ ◦ p ◦ ϑ−1.

Again, since {ϑ ∈ T (M) | ϑ = π ◦ φ with π ∈ P
 and φ ∈ Pl} is a subgroup of Smn,
the relation ∼w is indeed an equivalence relation. Further, p ∼w p′ trivially implies p ∼ p′.
For an equivalence class [p]∼w

, we consider the smallest permutation (in lexicographic
ordering ≺) as its canonical representative. For a given M, we will describe an algorithm
that enumerates a representative of each equivalence class.

3.1 Structure Matrix of a Cell Permutation
Let p ∈ Smn be a cell permutation on an m × n state. We define the structure matrix
of p as the n× n matrix Ap s.t. Api,j contains the number of cells of column i that are
permuted to column j. Formally,

Api,j = |{k ∈ Zmn | k = mi+ r for r ∈ Zm and mi+ r
p7→ mj + r′ with r′ ∈ Zm}| .

Example 3.
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 p7→


4 0 13 1
5 6 14 2
11 9 8 3
15 12 7 10

 , Ap =


0 1 0 3
2 1 1 0
1 1 1 1
1 1 2 0
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Note that an n× n matrix is a valid structure matrix for some permutation if and only
if the sum of each column as well as the sum of each row adds up to m. Let now σ ∈ Sn
be a permutation of Zn. For an n× n matrix A, we define Aσ as the n× n matrix that is
obtained from A by both permuting the rows and the columns according to σ. Formally,

∀i, j ∈ Zn : Aσ
i,j := Aσ(i),σ(j) .

We now define an equivalence relation ∼ on n× n structure matrices as

A ∼ B :⇔ ∃σ ∈ Sn : B = Aσ .

The following proposition explains how the weak M-equivalence of permutations and
equivalence of their corresponding structure matrices are related.

Proposition 1. Let m,n ∈ N and let M ∈ GL(m,F2s) with binary coefficients.

1. If p ∼w p′ for two p, p′ ∈ Smn, then Ap ∼ Ap′ .

2. Let A ∼ B for two valid n×n structure matrices of permutations in Smn. Then, for
any permutation p ∈ Smn that has A as structure matrix, there exist a permutation
p′ ∈ Smn that has B as structure matrix such that p ∼w p′.

Proof. 1. Let p ∼w p′. Then, by definition there exists permutations π ∈ P� and
φ ∈ Pl such that p′ = π ◦ φ ◦ p ◦ φ−1 ◦ π−1. Clearly, Ap = Aφ◦p◦φ−1 . Let now be
σ ∈ Sn chosen such that, for all i ∈ Zm and j ∈ Zn, mj + i

π7→ mσ(j) + i. Then, for
all i ∈ Zm and j ∈ Zn, it is

(Ap′)i,j = (Ap′◦π)σ−1(i),j = (Aπ−1◦p′◦π)σ−1(i),σ−1(j) = (Aφ◦p◦φ−1)σ−1(i),σ−1(j) .

This shows that Ap′ = Aσ−1

φ◦p◦φ−1 = Aσ−1

p .

2. Let p ∈ Smn such that Ap = A. By definition of the equivalence between A and
B, there exist a σ ∈ Sn such that Aσ

p = B. With the same observation as above,
it follows that there exists a π ∈ P� such that Aσ

p = Aπ◦p◦π−1 . This means that
π ◦ p ◦ π−1 has structure matrix B. Now, since Permuteπ commutes with MixM, we
have π ◦ p ◦ π−1 ∼w p.

This result (2) implies that, in order to characterize permutations upto weak M-
equivalence, it is enough to separate all valid structure matrices into their equivalence
classes, pick a representative of each class and search for all permutations (upto weak
M-equivalence) that fulfill the respective structure matrix.

3.2 Search Algorithm
Algorithm 1 for enumerating all permutations upto weak M-equivalence for a given
structure matrix A works as follows. We start with an m × n cell permutation pstart
which is undefined at any position (this is represented by a −1 value). Then, we apply
EnumerateRecursive to pstart. After each call, the permutation is extended by another
column until it is completely defined. Note that it can only be extended by a column which
meets the requirements given by the structure matrix A (see line 12 of Algorithm 1). Only
if the new extended permutation leads to a smallest representative of an equivalence class,
the algorithm will proceed with this permutation.2 This is checked in line 14. Since we

2We use the approach of constructing the permutations in a column-wise manner from their structure
matrices as we expect that iterating through all permutations and checking whether they are the smallest
representatives would be less efficient.
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only concentrate on a single structure matrix, checking if p is the smallest representative
can be done with at most |Pl| iterations.

After the algorithm terminates, it outputs a list of cell permutations that contains at
least one representative of each equivalence class. However, it can contain more than one
representative. As a last step, for each p in this list, it is therefore required to check if p is
the smallest permutation w.r.t. conjugation by all π ◦ φ with φ ∈ Pl and π ∈ P� that
leave the structure matrix of p invariant. In other words, it is to check if p is smaller than
any permutation π ◦ φ ◦ p ◦ φ−1 ◦ π−1, where φ ∈ Pl and π ∈ P� such that Ap = Aσ

p for
the σ ∈ Sn corresponding to the permutation π.

Algorithm 1 Enumerate all permutations upto weak M-equivalence for a given structure
matrix A
1: procedure EnumeratePermutations(A)
2: R← {}

3: pstart =

−1 . . . −1
...

. . .
...

−1 . . . −1


4: EnumerateRecursive(A, 0, pstart)
5: return R
6: end procedure
7:
8: procedure EnumerateRecursive(A, j, p)
9: if j ≥ n then
10: return
11: end if
12: for q = [q0, . . . , qm−1]> corresponding to A·,j do
13: pnew = Extend(p, q)
14: if pnew is permutation and @p′ ∈ [p]∼w

: p′ ≺ p then
15: if pnew is complete then
16: R← R ∪ {pnew}
17: else
18: return EnumerateRecursive(A, j + 1, pnew)
19: end if
20: end if
21: end for
22: end procedure
23:
24: procedure Extend(p, q)
25: for j ∈ {0, . . . , n− 1} do
26: if p·,j = [−1, . . . ,−1]> then
27: p·,j ← q
28: return p
29: end if
30: end for
31: end procedure

3.3 The Difference between Weak M-Equivalence and M-Equivalence
In this section, we outline the relations between weak M-equivalence and the stronger
notion of M-equivalence. The following proposition describes a sufficient condition on the
matrix M such that the notions of weak M-equivalence and M-equivalence are the same.
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Proposition 2. Let M ∈ GL(m,F2s) be an m ×m matrix with binary coefficients and
let G be the directed graph with m vertices that has M as its adjacency matrix. Then, if
G is a strongly connected directed graph, the notion of M-equivalence coincides with the
notion of weak M-equivalence.
Proof. Let ϑ be a cell permutation in T (M). We can write any cell position k ∈
{0, . . . ,mn − 1} of an m × n state uniquely as k = m · Block(k) + Index(k), where
0 ≤ Index(k) < m. We now have to show that, for all k, k′ ∈ {0, . . . ,mn− 1}, Block(k) =
Block(k′) implies Block(ϑ(k)) = Block(ϑ(k′)). In that case, ϑ can be written as π ◦ φ with
π ∈ P� and φ ∈ Pl.

We can represent the operation MixM, operating on the whole m × n state as the
mn×mn binary block-diagonal matrix which consists of n blocks of the m×m matrix
M, i.e.,

MixM =


M

M
. . .

M

 =: (bi,j)i,j∈{0,...,mn−1} ∈ GL(mn,F2s).

Thereby, bi,j denotes the entry in row i and column j of MixM. Since the permutation matrix
of ϑ has to commute with MixM, we necessarily have the property that bi,j = bϑ(i),ϑ(j)
for all i, j ∈ {0, . . . ,mn − 1}. Let now k, k′ ∈ {0, . . . ,mn − 1}. By the block-diagonal
structure of the matrix MixM, it is

bk,k′ = 1⇔
(
Block(k) = Block(k′) and Index(k′) ∈ TIndex(k)

)
,

where Ti := {j ∈ {0, . . . ,m− 1} |Mi,j = 1}. Since bk,k′ = bϑ(k),ϑ(k′), we have that, for all
k, k′ ∈ {0, . . . ,mn− 1},(

Block(k) = Block(k′) and Index(k′) ∈ TIndex(k)
)
⇒ Block(ϑ(k)) = Block(ϑ(k′)). (1)

Let now k, k′ ∈ {0, . . . ,mn − 1} with Block(k) = Block(k′) and not necessarily
Index(k′) ∈ TIndex(k). If G is a strongly connected directed graph, then for each pair
of vertices (v, v′) there exists a path from v to v′. Since G is the directed graph that has
M as its adjacency matrix, this means that, for all v, v′ ∈ {0, . . . ,m − 1}, there exists
v(0), . . . , v(t) ∈ {0, . . . ,m− 1} with v = v(0), v′ = v(t) and

∀i ∈ {0, . . . , t− 1} : v(i+1) ∈ Tv(i) .

We obtain that there exists k(0), . . . , k(t) ∈ {0, . . . ,mn − 1} s.t. k = k(0), k′ = k(t),
Block(k(i)) = Block(k(j)) for all i, j ≤ t, and

∀i ∈ {0, . . . , t− 1} : Index(k(i+1)) ∈ TIndex(k(i)).

But then, from Equation 1, Block(ϑ(k(i))) must be the same for all k(i) and, in particular,
Block(ϑ(k)) = Block(ϑ(k′)).

Example 4. Let M be the MixColumns matrix applied in Midori. Then, the directed
graph G with m vertices having adjacency matrix M can be given as

1 2

4 3 ,
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which is a strongly connected directed graph.

Corollary 1. For the Midori MixColumns matrix M, the notion of weak M-equivalence
coincides with the notion of M-equivalence.

Example 5. Let M be the MixColumns matrix applied in Skinny. Then, the directed
graph G with m vertices having adjacency matrix M can be given as

1 2

4 3

,

which is a strongly connected directed graph.

Corollary 2. For the Skinny MixColumns matrix M, the notion of weak M-equivalence
coincides with the notion of M-equivalence.

4 Case Study – The Best Cell Permutations for Midori
Midori operates on an m×n state with m = n = 4, using a word size of s = 4 for the 64-bit
block-size version and s = 8 for the 128-bit version, respectively. For such state dimensions,
there are 501 possible structure matrices upto equivalence (as described in Section 3.1).
The Midori MixColumns operation MixM has the useful property that Permuteφ commutes
with MixM for all 244 possible permutations φ ∈ Pl.

Applying Algorithm 1 can be done efficiently (up to a few days on a standard pc)
and thus, all cell permutations can be enumerated upto M-equivalence. One finally
obtains 3, 413, 774 ≈ 221.7 distinct equivalence classes. Out of those, 14, 022 permutations
correspond to the all-1 structure matrix, i.e.,

A1 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

Note that having the above structure matrix, containing only coefficients of value 1, is
necessary for a cell permutation to achieve optimal diffusion, i.e., full diffusion after three
rounds. Moreover, we can state the following as a necessary and sufficient condition. The
proof is given in Appendix B.

Proposition 3. Let p ∈ S16 be a cell permutation on a 4 × 4 state and let M be the
MixColumns matrix of Midori. The corresponding AES-like cipher instantiated with p and
M (and also its inverse) achieves full diffusion after 3 rounds if and only if both p and p2

have A1 as their structure matrix.

For each of the 3, 413, 774 distinct cell permutations p, we want to evaluate the
cryptographic properties of the corresponding cipher that is obtained by substituting the
original cell permutation of Midori by p. In particular, we would like to compute an exact
lower bound on the minimum number of active S-boxes.
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Figure 3: Bounds on the number of active S-boxes for the original Midori permutation
(red), the permutations which reach at least once the optimal bound for 9 ≤ r ≤ 40 (blue)
and all permutations which have an all-1 structure matrix (green). We did not consider
permutations guaranteeing only 40 or less active S-boxes over 10 rounds, so optimal refers
to the best bound over all permutations that have more than 40 active S-boxes over 10
rounds.

Note that it is not clear that all permutations which lead to an optimal number of
active S-boxes have the all-1 structure matrix. In fact, out of the 2218 optimal classes for
8 rounds, 162 do not have the all-1 structure matrix. However, this was the only number
of rounds for which we observed this kind of behavior.

4.1 Computing the Minimum Number of Active S-boxes
There are several ways to compute exact lower bounds on the minimum number of
active S-boxes for a given number of rounds in designs like Midori, for instance Matsui’s
algorithm [16] or MILP [17].

In order to find the exact bounds, we applied Matsui’s algorithm3 on all of the 221.7

candidates. It turned out to be significantly more efficient than the MILP approach due
to the highly-limited valid MixColumns transitions (see Figure 10). The most interesting
observation is that the Midori cell permutation is in fact not optimal for all number of rounds
simultaneously. In particular, there are four permutations upto equivalence that guarantee
44 active S-boxes for 9 rounds, while the permutation used in Midori only guarantees 41.
We illustrated our results in Figure 3 and provide a selection of cell permutations that
lead to optimal bounds on the number of active S-boxes in Appendix C.1.

In the case of Midori, the designers looked at a subset of cell permutations Sopt (which
they called optimal cell permutations) by first filtering all row-based permutations according
to Condition 1 and then applying a column permutation for which Condition 2 or Condition
3 holds. We recall those conditions as stated in [2, pp. 15-16].

• Condition 1: After applying a cell-permutation once and twice, each input cell in
a column is mapped into a cell in the different column.

3You can find our implementation of the algorithm at https://github.com/kste/matsui.

https://github.com/kste/matsui
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• Condition 2: After applying a cell-permutation twice and twice inversely, each
input cell in a column is mapped into a cell in the same row.

• Condition 3: After applying a cell-permutation once and three times inversely, each
input cell in a column is mapped into a cell in the same row.

For our optimal cell permutations for 9 rounds (and all permutations in this equivalence
class), we checked whether any of them contains a member in Sopt. This is not the case,
so it shows that these conditions are neither strictly necessary nor sufficient to maximize
the number of active S-boxes.

5 Case Study – The Best Cell Permutations for Skinny
The lightweight block cipher Skinny has a similar structure as Midori, i.e., a 4× 4 state
using a word size of s = 4 for the 64-bit block-size version and s = 8 for the 128-bit version.
However, Skinny uses a ShiftRows permutation and the MixColumns matrix is very sparse.

In order to find the best cell permutations for Skinny, we first used a similar approach as
described in Algorithm 1 to obtain all permutations up to M-equivalence. The difference
to the case of Midori is that only for 24 = 4! permutations p, the operation Permutep
commutes with the MixM operation. Those are exactly the 24 permutations in P
.
Therefore, we did not use the separation into different structure matrices as we did for
Midori. Instead, we iterated through all 16! permutations and checked which of them
are canonical representatives of their equivalence class, i.e., which are the smallest by
conjugation with all permutations in P
. The number of equivalence classes is ≈ 239.66

and it took about 23.8 CPU days on an Intel Xeon E5-2660 to find all classes. To further
reduce the number of permutations to consider, we filtered them by the minimum number
of rounds required to reach full diffusion in forward and backward direction. We limited it
to either requiring at most 6 rounds in both directions or less than 6 rounds in at least
one direction to reach full diffusion. Note that the original Skinny permutation required
6 rounds for full diffusion in both directions. We found that there exist slightly better
permutations with regard to diffusion in the sense that they require 5 rounds in forward
direction and 6 rounds in backward direction. However, they do not lead to optimal bounds
on the number of active S-boxes.

After the diffusion filtering, there were still 2,726,526 permutations left. For all of those
permutations, we found the minimum number of active S-boxes up to 40 rounds using
Matsui’s algorithm. This process took approximately 2937 CPU days. The results are
summarized in Figure 4 and Appendix C.2.

6 Proof on the Minimum Number of Active S-boxes for
the Midori Cell Permutation

The designers of Midori did not provide a theoretical proof why their cell permutation
guarantees a much higher number of active S-boxes compared to the ShiftRows permutation.
In this section, we formally prove that any non-trivial six-round trail in Midori has at least
28 active S-boxes. In particular, we show a much stronger result which states a simple
sufficient condition on the cell permutation p.

Proposition 4. Let p ∈ S16 be a cell permutation on a 4 × 4 state and let M be the
MixColumns matrix of Midori. If p, p2 and p3 have A1 as their structure matrix, the
corresponding AES-like cipher instantiated with p and M guarantees at least 28 active
S-boxes over 6 rounds.
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Figure 4: Bounds on the number of active S-boxes for the original Skinny permutation
(red), the permutations which reach at least once the optimal bound for 7 ≤ r ≤ 40
after filtering them for diffusion (blue) and a random sample of 10000 permutations after
filtering them for diffusion (green). There might be permutations attaining better bounds,
but having worse diffusion.

Proof. The corresponding six-round AES-like cipher can be equivalently expressed as the
three-round SP cipher SEK,3 using the Super S-box representation.4 An S-layer consists
of SB ◦MixM ◦ SB, which is regarded as four column-wise 16-bit functions (aka. Super
S-boxes) F : F(24)4 → F(24)4 , and a P-layer consists of Permutep ◦MixM ◦ Permutep. Let
an input state of an i-th round of SEK,3 be denoted as ISi−1, and let an internal state
before the first Permutep, MixM, and the the second Permutep of an i-th round be denoted
as IS(a)

i−1, IS
(b)
i−1, and IS

(c)
i−1, respectively. Figure 5 illustrates this three-round equivalent

SP cipher SEK,3, where the last P-layer is omitted (since it does not affect the number of
active S-boxes of SEK,3).

If p, p2 and p3 have A1 as its structure matrix, each input cell in a column is mapped
into different columns after applying Permutep, Permutep2 and Permutep3 , respectively.
Since the branch number of M is 4 and p has A1 as its structure matrix, any two rounds
of SEK,3 have at least 4 active Super S-boxes, and each Super S-box has at least 4 active
S-boxes. Thus, SEK,3 has at least 5 active Super S-boxes (20 active S-boxes) over 3 rounds.
To prove that SEK,3 has at least 28 active S-boxes, we will show that there is no valid
(non-zero) trail with 5 or 6 active Super S-boxes that attains less than 28 active S-boxes. A
valid trail with 5 active Super S-boxes would necessarily be of the form (1→ 3→ 1) and,
for 6 active Super S-boxes, there are only the four possible cases (1→ 3→ 2), (1→ 4→ 1),
(2→ 2→ 2), and (2→ 3→ 1). Since p−1, p−2, and p−3 also have A1 as their structure
matrix, if the trail of (1→ 3→ 2) does not exist, the trail of (2→ 3→ 1) does not exist
as well and so we only have to consider the four other cases. For a state ISi, we define
was[ISi] := (n0, n1, n2, n3, n4), where nj is the number of columns having j active cells in
ISi. For instance, if there are two columns having three active cells, one column having
two active cells, and the remaining one column having one active cell in the state IS2, we
have was[IS2] = (0, 1, 1, 2, 0).

4We omit the key addition for simplicity as it does not change the activity pattern of a trail.
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F F F F Permutep Permutep F F F F Permutep Permutep F F F F

S

S

S

S

S

S

S

S

IS0 IS
(a)
0 IS

(b)
0 IS

(c)
0

IS1 IS
(a)
1 IS

(b)
1 IS

(c)
1

IS2

m′ = Permutep(m)

Figure 5: The three-round Super S-box SP cipher SEK,3: An equivalent representation of
the six-round AES-like cipher employing a cell permutation p and the MixColumns matrix
of Midori.

Case of (1 → 3 → 1 or 1 → 3 → 2): We consider only the case was[IS(a)
0 ] = (0, 1, 0, 0, 0).

Otherwise, i.e., if the active column of IS(a)
0 has two, three, or four active cells, it

would lead to 4 active Super S-boxes in the second round (see description of the case
(1 → 4 → 1) and Figure 7). If was[IS(a)

0 ] is (0, 1, 0, 0, 0), then was[IS(a)
1 ] becomes

(0, 0, 0, 3, 0), since one active cell leads to three active cells by M, and three active
cells are mapped into different columns by Permutep as shown in Figure 6. The
four cells of the blank column in IS(a)

1 (yellow cells in Figure 6) are mapped into
different columns in IS(b)

1 by Permutep, and the three inactive cells of the remaining
three column in IS(a)

1 (blue cells in Figure 6), which come from a single column of
IS

(c)
0 , are mapped into different columns in IS(b)

1 due to the property of p2. Thus,
was[IS(b)

1 ] must be (0, 0, 3, 1, 0). After applying M, if there would be a column with
three or four active cells in IS(c)

1 , we would have three or four active Super S-boxes
in the third round due to the property of p. So, we only focus on the case where
two active cells remain two active cells, and three active cells become one active
cell by M, namely was[IS(c)

1 ] = (0, 1, 3, 0, 0) (see the possible transitions depicted in
Figure 10). In this case, the two sets of three inactive cells that come from a single
column of IS(c)

0 and IS
(a)
1 , respectively, remain in IS

(c)
1 (blue and yellow cells in

Figure 6). According to the property of p2 and p3, the three inactive cells in each set
are mapped into different columns in IS2. Furthermore, the remaining three inactive
cells in IS(c)

1 (white cells in Figure 6) are also mapped into different columns. Thus,
there must be 4 active columns in IS2. Therefore, there is no valid trail of the form
(1→ 3→ 1) or (1→ 3→ 2).

Case of (1 → 4 → 1): We start with three states of IS(a)
0 in which a single column of

IS
(a)
0 has two, three, or four active cells, i.e.,

was[IS(a)
0 ] ∈ {(0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)} .

We will see that those lead to 4 active Super S-boxes in the second round. To
show the impossibility of a trail of the form (1 → 4 → 1) with less than 28 active
S-boxes, we use a miss-in-the-middle approach between IS1 and IS(a)

1 . We will first
investigate possible values of was[IS1] that are derived from the three start states of
was[IS(a)

0 ].

• was[IS(a)
0 ] = (0, 0, 1, 0, 0) : was[IS(c)

0 ] becomes (0, 0, 0, 2, 0) by the deterministic
transition of one to three active S-boxes of M, and the property of p. Since
the two sets of four inactive cells in a blank column (yellow cells in the top of
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F F F F Permutep Permutep F F F F Permutep Permutep F F F F

IS0 IS
(a)
0 IS

(b)
0 IS

(c)
0

IS1 IS
(a)
1 IS

(b)
1 IS

(c)
1

IS2

m′ = Permutep(m)

(0, 1, 0, 0, 0) (0, 1, 0, 0, 0) (0, 0, 0, 1, 0) (0, 3, 0, 0, 0) (0, 0, 0, 3, 0) (0, 0, 3, 1, 0) (0, 1, 3, 0, 0) (0, 0, 3, 0, 1)

p

p2

p3

p

p2

p

Figure 6: A differential trail of the form (1 → 3 → 1) or (1 → 3 → 2) in SEK,3, where
Permutep is instantiated by the original cell permutation of Midori.

Figure 7) are mapped into different columns by Permutep, and the two inactive
cells of the remaining two columns (blue cells in the top of Figure 7) are mapped
to different columns due to the property of p2, we have was[IS1] = (0, 2, 2, 0, 0).

• was[IS(a)
0 ] = (0, 0, 0, 1, 0) : was[IS(c)

0 ] becomes (0, 0, 0, 3, 0). Since the four
inactive cells in a blank column (yellow cells) are mapped into different columns
by Permutep, and the three inactive cells of the remaining three columns (blue
cells) are mapped into different columns, we have was[IS1] = (0, 0, 3, 1, 0).

• was[IS(a)
0 ] = (0, 0, 0, 0, 1) : was[IS(c)

0 ] becomes (0, 0, 0, 4, 0). Since the four
inactive cells of four columns (blue cells) are mapped into different columns, we
have was[IS1] = (0, 0, 0, 4, 0).

Thus, was[IS1] ∈ {(0, 2, 2, 0, 0), (0, 0, 3, 1, 0), (0, 0, 0, 4, 0)}. Since p−1, p−2, and p−3

also have A1 as their structure matrix and since M is an involution, we also have
was[IS(a)

1 ] ∈ {(0, 2, 2, 0, 0), (0, 0, 3, 1, 0), (0, 0, 0, 4, 0)} when it is inversely computed
from the three start states of was[IS2] ∈ {(0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)}.
According to the possible transitions of M (see Figure 10), valid transitions are only

was[IS1] = (0, 0, 3, 1, 0)→ was[IS(a)
1 ] = (0, 0, 3, 1, 0) ,

was[IS1] = (0, 0, 0, 4, 0)→ was[IS(a)
1 ] = (0, 0, 0, 4, 0) .

• was[IS(a)
1 ] = (0, 0, 3, 1, 0) : According to the property of M (see Figure 10), the

positions of the two active cells in three columns of IS1 and IS(a)
1 are the same.

Thus, two sets of three inactive cells that come from a single column of IS(a)
0

and IS
(c)
0 , respectively, remain in IS

(a)
1 (blue and yellow cells in the middle

of Figure 6), and the three inactive cells in each set are mapped into different
columns in IS

(b)
1 by the property of p2 and p3. In this case, was[IS(b)

1 ] can
never become (0, 0, 0, 3, 0), which would be necessary for a trail of this form.
Thus, such a trail is invalid.

• was[IS(a)
1 ] = (0, 0, 0, 4, 0) : Since this trail has 24(= 4× 3× 2) active S-boxes in

the Super S-boxes in the second round, the number of active S-boxes is at least
32 ( = 24 + 4 + 4).

Therefore, there is no valid trail of (1→ 4→ 1) attaining less than 28 active S-boxes.
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F F F F Permutep Permutep F F F F Permutep Permutep F F F F

IS0 IS
(a)
0 IS

(b)
0 IS

(c)
0

IS1 IS
(a)
1 IS

(b)
1 IS

(c)
1

IS2

m′ = Permutep(m)

(0, 0, 1, 0, 0) (0, 2, 0, 0, 0) (0, 0, 0, 2, 0) (0, 2, 2, 0, 0)

p2

p

(0, 0, 0, 1, 0) (0, 3, 0, 0, 0) (0, 0, 0, 3, 0) (0, 0, 3, 1, 0) (0, 0, 3, 1, 0) (0, 1, 2, 0, 1)

p2

p

p2

p3

(0, 0, 0, 0, 1) (0, 4, 0, 0, 0) (0, 0, 0, 4, 0) (0, 0, 0, 4, 0)

p2

Figure 7: Differential trails of the form (1 → 4 → 1) in SEK,3, where Permutep is
instantiated by the original cell permutation of Midori.

Case of (2 → 2 → 2): We focus on the four start states in which the two active columns
of IS(a)

0 have the same number of active cells, i.e.,

was[IS(a)
0 ] ∈ {(0, 2, 0, 0, 0), (0, 0, 2, 0, 0), (0, 0, 0, 2, 0), (0, 0, 0, 0, 2)} .

If the number of active cells of the two active columns is different, IS(b)
0 would

have at least one column having only one active cell. This would lead to more than
3 active Super S-boxes in the second round as shown in Figure 8. To show the
impossibility of a trail of the form (2→ 2→ 2) with less than 28 active S-boxes by a
miss-in-the-middle approach, we will investigate possible values of was[IS1] that are
derived from the four start states of was[IS(a)

0 ].

• was[IS(a)
0 ] = (0, 2, 0, 0, 0) : After applying Permutep, we have was[IS(b)

0 ] ∈
{(0, 2, 0, 0, 0), (0, 0, 1, 0, 0)}. If was[IS(b)

0 ] = (0, 2, 0, 0, 0), one active cell of a
column in IS(b)

0 leads to 3 active Super S-boxes as discussed before. In the case
of was[IS(b)

0 ] = (0, 0, 1, 0, 0), only if the two active cells of the active column
in was[IS(b)

0 ] remain two active cells in was[IS(c)
0 ], it leads to 2 active Super

S-boxes as shown in the top of Figure 9. Otherwise, i.e., if two active cells
become four active cells by M, it causes 4 active Super S-boxes by Permutep.
Thus, was[IS1] = (0, 2, 0, 0, 0).
• was[IS(a)

0 ] = (0, 0, 2, 0, 0) : We have

was[IS(b)
0 ] ∈ {(0, 0, 2, 0, 0), (0, 2, 1, 0, 0), (0, 4, 0, 0, 0)} .

If was[IS(b)
0 ] is (0, 2, 1, 0, 0) or (0, 4, 0, 0, 0), one active cell of a column in

IS
(b)
0 causes 3 active Super S-boxes. was[IS(b)

0 ] = (0, 0, 2, 0, 0) must become
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F F F F Permutep Permutep F F F F Permutep Permutep F F F F

IS0 IS
(a)
0 IS

(b)
0 IS

(c)
0

IS1 IS
(a)
1 IS

(b)
1 IS

(c)
1

IS2

m′ = Permutep(m)

(0, 0, 0, 1, 1) (0, 1, 3, 0, 0) (0, 0, 3, 1, 0) (0, 0, 3, 1, 0)

p

Figure 8: A differential trail of the form (2→ 2→ 2) in SEK,3, where the number of active
cells of two active columns in IS(a)

0 is different and where Permutep is instantiated by the
original cell permutation of Midori.

was[IS(c)
0 ] = (0, 0, 2, 0, 0) after applying M, otherwise it leads to four active

Super S-boxes. Due to the property of p, was[IS1] must be (0, 0, 2, 0, 0).

• was[IS(a)
0 ] = (0, 0, 0, 2, 0) : We have was[IS(b)

0 ] ∈ {(0, 0, 3, 0, 0), (0, 2, 2, 0, 0)}.
If was[IS(b)

0 ] is (0, 2, 2, 0, 0), one active cell of a column in IS
(b)
0 would lead

to 3 active Super S-boxes. was[IS(b)
0 ] = (0, 0, 3, 0, 0) becomes was[IS(c)

0 ] =
(0, 0, 3, 0, 0) after applying M, otherwise four active cells in IS(c)

0 would lead to
four active Super S-boxes. Since the four inactive cells of each blank column in
IS

(a)
0 (blues cell in the bottom of Figure 9) are mapped into different columns

in was[IS1] by the property of p2, and the remaining two inactive cells in IS(c)
0

(yellow cells in the bottom of Figure 9) are mapped into different columns
in was[IS1] by Permutep, we have was[IS1] = (0, 2, 2, 0, 0), which causes four
active Super S-boxes.
• was[IS(a)

0 ] = (0, 0, 0, 0, 2) : There are at least 12(= 4× 2 + 2× 2) active S-boxes
in the first round. Thus SEK,3 has at least 28(= 12 + 2 × 4 + 2 × 4) active
S-boxes.

Therefore, was[IS1] should be (0, 2, 0, 0, 0) or (0, 0, 2, 0, 0). Since p−1, p−2, and p−3

also have A1 as their structure matrix and since M is an involution, was[IS(a)
1 ]

should also be (0, 2, 0, 0, 0) or (0, 0, 2, 0, 0) in the backward direction. According to
the possible transitions of M (see Figure 10), a valid transition is only

was[IS1] = (0, 0, 2, 0, 0)→ was[IS(a)
1 ] = (0, 0, 2, 0, 0) .

In the forward direction, this trail always follows the transition of two active cells to
two active cells in M. According to the property of M (see Figure 10), the position
of two active cells does not change after applying M in this transition. Thus, the
positions of active cells are controlled by only three operations of Permutep in these
rounds. Due to the property of p, p2 and p3, all four active cells must be mapped
to different columns in IS(b)

1 . More precisely, as shown in the middle of Figure 9,
the property of p, p2 and p3 ensures that the cell indexed by A must not be in the
same column of cells indexed by B, D, and C, respectively, in IS

(b)
1 . The other

cells indexed by B, C, D are also ensured by these properties. Since IS(b)
1 must be

(0, 4, 0, 0, 0), which causes at least 3 active Super S-boxes in the third round, there is
no valid trail of the form (2→ 2→ 2) with less than 28 active S-boxes.

Therefore, there is no valid (non-trivial) trail attaining less than 28 active S-boxes.
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F F F F Permutep Permutep F F F F Permutep Permutep F F F F

IS0 IS
(a)
0 IS

(b)
0 IS

(c)
0

IS1 IS
(a)
1 IS

(b)
1 IS

(c)
1

IS2

m′ = Permutep(m)

(0, 2, 0, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 2, 0, 0, 0)

p

A

B

C

D

A

D

B

C

A

D

B

C D

B

C

A

D

B

C

A

B

A D

C

(0, 0, 2, 0, 0) (0, 0, 2, 0, 0) (0, 0, 2, 0, 0) (0, 0, 2, 0, 0) (0, 0, 2, 0, 0) (0, 4, 0, 0, 0) (0, 0, 0, 4, 0)

p

p3

p2

p

(0, 0, 0, 2, 0) (0, 0, 3, 0, 0) (0, 0, 3, 0, 0) (0, 2, 2, 0, 0)

p

p2

p

Figure 9: Differential trails of the form(2→ 2→ 2) in SEK,3, where Permutep is instantiated
by the original cell permutation of Midori.

7 Conclusion
In this work, we showed that it is feasible to classify all cell permutations for ciphers like
Midori and Skinny and to find the optimal cell permutations with respect to diffusion and
the minimum number of active S-boxes. We showed how the full search space can be
reduced by classifying all the cell permutations up to a reasonable notion of equivalence.

We determined the exact bounds on the minimum number of active S-boxes using
Matsui’s approach. We provided several new permutations which can achieve a higher
number of active S-boxes as the original cell permutations used in those primitives. Note
that we only considered active S-boxes with regard to differential cryptanalysis. For Midori,
the number of active S-boxes with regard to linear cryptanalysis is actually the same. For
Skinny, the bounds for linear cryptanalysis have to be computed separately. For that, one
could also use our implementation of Matsui’s algorithm.

Overall, we think the methods presented in this work will be particular useful for future
designers as they allow to explore the whole design space for cell permutations. Moreover,
for the particular MixColumns operations used in Skinny and Midori, designers could now
easily pick the cell permutation that best suit their security goals, depending on the their
choice of S-box.
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A MixColumns Propagation in Midori and Skinny

Figure 10: All possible transitions from active nibbles in a column to active nibbles after
applying the Midori MixColumns matrix.

Figure 11: All possible transitions from active nibbles in a column to active nibbles after
applying the Skinny MixColumns matrix.
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p
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0 IS1 IS′

1 IS2 IS′
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S S S S

S S S S
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S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

S S S S

Permutep Permutep Permutep

Figure 12: The diffusion property over three rounds of the AES-like cipher employing the
MixColumns matrix of Midori and a cell permutation p that fulfills the condition that p
and p2 both have A1 as their structure matrix.

B Proof of Proposition 3

Let the input state of the i-th round be ISi−1 and let the internal state before MixM of the
i-th round be IS′i−1 as shown in Figure 12. If both p and p2 have A1 as their structure
matrix, each input cell in a column is mapped into different columns after applying both
Permutep and Permutep ◦ Permutep.

We fix a single cell in IS0 for which we analyze the propagation of the dependencies in
the subsequent states. We refer to the cells that depend on this single cell as active cells.
The active cell in IS0 activates three cells of a single column in IS1 after applying M.
According to the property of p, those three cells are permuted into different columns in
IS′1 and then activate 9 cells in IS2 after applying M, where three columns have 3 active
cells and the remaining column does not have any active cell (we call it a blank column).
In the third round, the four cells of the blank column in IS2 (yellow cells in Figure 12) are
mapped into four different columns after applying Permutep. In addition, each inactive
cell of the remaining three columns in IS2 (blue cells) is mapped into a different column
in IS′2 due to the property of p2 (those inactive cells all come from a single column in
IS1). Therefore, IS′2 has three columns with 2 active cells and one column with 3 active
cells. Since 2 and 3 active cells in a column affect all cells in a corresponding column after
applying M, all 16 cells in IS3 become active. Thus, if both p and p2 have A1 as their
structure matrix, it achieves the three-round full diffusion.

On the other hand, for three-round full diffusion, each column of IS′2 must have at
least two active cells, because one active cell in a column activates only three cells after
applying M. This implies that IS′2 and IS2 must have at least 8 active cells. Recall that
a single active cell in IS0 activates three cells of a single column in IS1. Only if p ensures
that each cell of a column in IS1 is mapped into different columns after applying Permutep
in round two, it achieves 9 active cells in IS2 by MixM. Otherwise, the number of active
cells would be at most 7. Therefore, p must have A1 as its structure matrix. Furthermore,
in the case of the a single active cell in IS0, IS2 must consist of three columns with 3
active cells and one blank column. Only if p ensures that each cell of a column in IS1 is
mapped into different columns after applying Permutep ◦ Permutep, each column of IS′2
has at least two active cells, which results in the full diffusion. Otherwise, there would
exist a column having 0 or 1 active cell only. Therefore, the condition that p and p2 have
A1 as their structure matrix is also necessary to achieve three-round full diffusion.

Since p−1 and p−2 also have A1 as their structure matrix whenever p and p2 have and
since M is an involution, this holds also in the inverse direction.
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C Optimal Permutations
In C.1, we list some equivalence classes of permutations for the Midori MixColumns matrix
that lead to optimal5 bounds on the number of active S-boxes for some number of rounds
between 9 and 40. We provide the actual bounds and the number of rounds for full
diffusion in both forward and backward direction. Any optimal bound is emphasized in
red. The first line represents the actual permutation used in the primitive. Note that, as
the transpose of the MixColumns matrix is identical to the inverse of the matrix, those
bounds are also valid for the case of linear cryptanalysis.

In C.2, we give a list of all equivalence classes of permutations for the Skinny Mix-
Columns matrix that

• require at most 6 rounds for full diffusion in both forward and backward direction or
require less than 6 rounds for full diffusion in at least one direction, and

• lead to optimal6 bounds on the number of active S-boxes for some number of rounds
between 7 and 40.

We provide the actual bounds and the number of rounds for full diffusion in both forward
and backward direction. Any optimal bound is emphasized in red. The first line represents
the actual permutation used in the primitive. Note that those bounds are not valid for the
case of linear cryptanalysis.

5Optimal refers to the best bound over all permutations that have more than 40 active S-boxes over 10
rounds.

6Optimal refers to the best bound over all permutations that require at most 6 rounds for full diffusion
in both forward and backward direction or require less than 6 rounds for full diffusion in at least one
direction.
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C.1 Midori

Rounds
[p]∼ Diff 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

[0 4 8 12 5 9 3 13 14 1 6 11 10 7 15 2] (3,3) 23 30 35 38 41 50 57 62 67 72 75 84 89 94 101 106 109 116 121 128 133 138 143 148 155 160 165 170 175 182 187 192 197 202 209 214
[1 4 8 12 2 6 13 9 10 5 14 0 15 3 11 7] (3,3) 23 30 35 38 41 50 57 62 67 72 75 84 89 94 101 106 109 116 121 128 133 138 143 148 155 160 165 170 175 182 187 192 197 202 209 214
[0 4 8 12 5 9 1 13 10 14 6 3 15 2 11 7] (3,3) 23 28 33 38 41 48 55 61 67 72 77 82 91 95 102 108 113 118 125 131 137 142 149 154 161 166 173 178 183 190 195 202 208 213 219 226
[0 4 8 12 9 1 5 13 14 10 3 6 7 15 11 2] (3,3) 23 28 33 38 41 48 55 61 67 72 77 82 91 95 102 108 113 118 125 131 137 142 149 154 161 166 173 178 183 190 195 202 208 213 219 226
[0 4 8 12 5 2 9 13 10 14 6 3 15 7 1 11] (3,3) 23 28 33 38 41 50 55 60 65 70 77 84 88 96 99 104 111 116 120 128 132 136 144 148 152 160 164 168 176 180 184 192 196 200 208 212
[0 4 8 12 5 2 9 13 14 6 3 10 11 15 7 1] (3,3) 23 28 33 38 41 50 55 60 65 70 77 84 88 96 99 104 111 116 120 128 132 136 144 148 152 160 164 168 176 180 184 192 196 200 208 212
[0 4 8 12 5 9 3 13 10 6 14 1 15 2 11 7] (3,3) 23 28 30 36 42 50 54 56 62 68 78 80 82 88 94 104 106 108 114 120 130 132 134 140 146 156 158 160 166 172 182 184 186 192 198 208
[0 4 8 12 5 9 3 13 14 2 7 10 11 6 1 15] (3,3) 20 28 34 38 42 48 57 62 64 70 76 81 88 94 99 103 109 116 121 126 131 138 142 148 153 158 165 170 175 180 185 192 197 202 207 212
[0 4 8 12 9 1 7 13 14 10 3 6 5 2 11 15] (3,3) 20 28 34 38 42 48 57 62 64 70 76 81 88 94 99 103 109 116 121 126 131 138 142 148 153 158 165 170 175 180 185 192 197 202 207 212
[0 4 8 12 9 1 7 13 14 10 5 2 6 3 15 11] (3,3) 23 28 30 36 42 50 54 56 62 68 78 80 82 88 94 104 106 108 114 120 130 132 134 140 146 156 158 160 166 172 182 184 186 192 198 208
[0 4 8 12 9 2 5 13 14 6 3 10 7 15 11 1] (3,3) 23 28 30 36 42 50 54 56 62 68 78 80 82 88 94 104 106 108 114 120 130 132 134 140 146 156 158 160 166 172 182 184 186 192 198 208
[1 4 8 12 2 6 13 9 10 7 3 14 15 0 5 11] (3,3) 20 28 34 38 42 48 57 62 64 70 76 81 88 94 99 103 109 116 121 126 131 138 142 148 153 158 165 170 175 180 185 192 197 202 207 212
[1 4 8 12 9 0 7 13 2 6 11 14 15 10 3 5] (3,3) 20 28 34 38 42 48 57 62 64 70 76 81 88 94 99 103 109 116 121 126 131 138 142 148 153 158 165 170 175 180 185 192 197 202 207 212
[0 4 8 12 2 6 9 13 7 14 3 11 5 15 10 1] (4,4) 18 24 30 38 44 48 52 56 60 70 76 80 84 88 92 96 106 112 116 120 124 128 132 142 148 152 156 160 164 168 178 184 188 192 196 200
[0 4 8 12 2 6 9 13 10 3 7 14 11 1 5 15] (4,4) 18 24 30 38 44 48 52 56 60 70 76 80 84 88 92 96 106 112 116 120 124 128 132 142 148 152 156 160 164 168 178 184 188 192 196 200
[1 4 8 12 2 6 13 9 5 10 0 14 3 15 7 11] (4,4) 18 24 30 38 44 48 52 56 60 70 76 80 84 88 92 96 106 112 116 120 124 128 132 142 148 152 156 160 164 168 178 184 188 192 196 200
[1 4 8 12 5 9 2 13 0 14 6 10 3 15 7 11] (4,4) 18 24 30 38 44 48 52 56 60 70 76 80 84 88 92 96 106 112 116 120 124 128 132 142 148 152 156 160 164 168 178 184 188 192 196 200
[0 4 8 12 2 6 9 13 14 7 3 10 15 5 1 11] (4,4) 20 28 34 38 43 48 54 62 68 72 76 82 88 96 100 104 110 116 122 128 132 138 144 150 156 160 166 172 178 184 188 194 200 206 212 216
[1 4 8 12 5 2 9 13 14 7 3 10 11 15 6 0] (4,4) 22 28 32 38 41 48 54 60 68 72 75 82 88 95 100 104 109 116 120 128 132 136 143 148 152 160 164 168 176 180 184 192 196 200 208 212
[0 4 8 12 2 5 9 13 7 1 10 14 11 15 6 3] (4,4) 20 28 32 38 41 50 55 60 67 74 77 83 91 94 101 107 111 118 125 130 137 142 147 154 159 164 171 178 181 188 195 200 206 212 217 224
[0 4 8 12 2 5 9 13 7 1 10 14 15 11 3 6] (4,4) 20 28 32 38 41 50 55 60 67 74 77 83 91 94 101 107 111 118 125 130 137 142 147 154 159 164 171 178 181 188 195 200 206 212 217 224
[0 4 8 12 2 6 9 13 7 1 10 14 11 15 5 3] (4,4) 22 28 33 38 41 48 55 62 67 74 77 84 90 96 102 108 113 120 125 130 136 142 148 154 160 166 170 176 182 188 195 200 206 210 216 222
[0 4 8 12 2 6 13 9 5 1 10 14 15 11 3 7] (4,4) 22 28 33 38 41 48 55 62 67 74 77 84 90 96 102 108 113 120 125 130 136 142 148 154 160 166 170 176 182 188 195 200 206 210 216 222
[0 4 8 12 5 9 1 13 7 10 2 14 11 15 3 6] (4,4) 22 28 32 38 41 48 56 62 67 74 77 84 90 95 101 108 113 118 124 130 137 144 149 154 160 166 173 178 184 190 196 201 207 214 220 226
[0 4 8 12 5 9 1 13 14 10 2 6 7 3 15 11] (4,4) 22 28 32 38 41 48 56 62 67 74 77 84 90 95 101 108 113 118 124 130 137 144 149 154 160 166 173 178 184 190 196 201 207 214 220 226
[0 4 8 12 5 2 9 13 7 14 1 10 15 11 3 6] (4,4) 20 28 32 38 43 48 55 60 67 72 79 84 89 96 101 108 114 120 125 130 137 144 148 155 161 166 171 178 183 190 197 201 207 212 219 225
[0 4 8 12 5 2 9 13 10 1 14 7 11 15 6 3] (4,4) 20 28 32 38 43 48 55 60 67 72 79 84 89 96 101 108 114 120 125 130 137 144 148 155 161 166 171 178 183 190 197 201 207 212 219 225
[0 4 8 12 5 9 1 13 14 3 6 10 7 15 11 2] (4,4) 22 26 31 38 43 48 53 60 65 72 79 84 87 96 101 108 113 120 123 130 137 141 147 154 160 166 172 177 183 188 195 201 207 212 219 224
[0 4 8 12 5 9 1 13 14 6 2 10 7 3 15 11] (4,4) 22 28 33 38 43 50 55 62 67 72 79 84 90 96 101 108 114 120 126 130 136 142 148 154 160 166 172 176 182 188 194 200 206 212 218 222
[0 4 8 12 5 9 1 13 14 10 6 2 7 15 11 3] (4,4) 22 28 33 38 43 50 55 62 67 72 79 84 90 96 101 108 114 120 126 130 136 142 148 154 160 166 172 176 182 188 194 200 206 212 218 222
[0 4 8 12 5 9 1 13 14 10 6 3 15 7 2 11] (4,4) 22 28 32 38 43 48 55 60 65 72 79 84 89 96 101 106 113 118 125 130 135 142 147 152 157 164 169 176 181 186 193 198 203 208 215 220
[0 4 8 12 5 9 1 13 14 10 7 3 6 15 2 11] (4,4) 22 28 33 38 43 48 53 60 67 72 79 84 89 96 101 106 113 118 125 130 137 142 147 152 159 164 171 178 183 188 195 200 205 212 217 224
[0 4 8 12 5 9 2 13 14 3 6 10 15 1 7 11] (4,4) 20 28 31 38 43 48 55 60 65 72 79 84 89 96 101 108 113 118 123 130 137 143 147 154 159 166 171 176 181 188 195 201 205 212 217 224
[0 4 8 12 5 9 2 13 14 3 7 11 6 15 1 10] (4,4) 22 28 33 38 43 50 57 62 67 72 79 86 91 96 101 108 115 120 125 132 137 144 150 156 161 166 173 180 185 190 195 202 209 214 221 226
[0 4 8 12 5 9 3 13 7 14 1 11 15 10 2 6] (4,4) 22 28 33 38 43 50 57 62 67 72 79 86 91 96 101 108 115 120 125 132 137 144 150 156 161 166 173 180 185 190 195 202 209 214 221 226
[0 4 8 12 5 9 3 13 14 6 2 10 11 1 15 7] (4,4) 22 26 31 38 43 48 53 60 65 72 79 84 87 96 101 108 113 120 123 130 137 141 147 154 160 166 172 177 183 188 195 201 207 212 219 224
[0 4 8 12 9 1 5 13 14 3 7 10 11 15 2 6] (4,4) 22 28 33 38 43 48 53 60 67 72 79 84 89 96 101 106 113 118 125 130 137 142 147 152 159 164 171 178 183 188 195 200 205 212 217 224
[0 4 8 12 9 1 5 13 14 10 6 3 11 7 15 2] (4,4) 22 28 32 38 43 48 55 60 65 72 79 84 89 96 101 106 113 118 125 130 135 142 147 152 157 164 169 176 181 186 193 198 203 208 215 220
[0 4 8 12 9 2 7 13 6 10 3 14 11 15 5 1] (4,4) 20 28 31 38 43 48 55 60 65 72 79 84 89 96 101 108 113 118 123 130 137 143 147 154 159 166 171 176 181 188 195 201 205 212 217 224
[1 4 8 12 0 6 9 13 3 10 7 14 15 2 5 11] (4,4) 22 28 32 38 43 48 55 60 65 72 79 82 88 96 101 106 113 118 123 130 136 142 149 154 159 164 171 177 181 188 195 198 204 212 217 222
[1 4 8 12 0 6 9 13 3 14 7 10 15 2 11 5] (4,4) 22 28 31 36 43 49 55 61 67 72 79 84 91 96 102 108 113 120 125 132 138 142 149 156 161 166 173 178 184 190 197 202 207 214 220 226
[1 4 8 12 0 6 9 13 5 10 14 3 2 15 11 7] (4,4) 20 28 31 38 43 48 55 60 67 72 79 82 89 96 101 108 113 118 125 130 135 142 149 154 161 166 171 178 183 188 195 202 207 212 219 224
[1 4 8 12 0 6 9 13 5 14 2 10 15 7 3 11] (4,4) 22 28 32 38 43 48 55 60 65 72 79 84 89 96 101 106 113 118 123 130 137 142 147 154 159 164 171 176 183 188 195 200 205 212 217 222
[1 4 8 12 0 6 9 13 7 10 3 14 2 15 5 11] (4,4) 22 28 31 36 43 49 55 61 67 72 79 84 91 96 102 108 113 120 125 132 138 142 149 156 161 166 173 178 184 190 197 202 207 214 220 226
[0 4 8 12 2 5 9 13 7 14 1 11 10 6 3 15] (4,4) 22 28 32 38 41 48 57 61 67 72 75 84 91 97 103 106 109 118 125 133 137 140 143 152 159 168 171 174 177 186 193 202 205 208 211 220
[0 4 8 12 2 5 9 13 14 1 7 11 10 6 3 15] (4,4) 22 28 32 38 41 48 57 61 67 72 75 84 91 97 103 106 109 118 125 133 137 140 143 152 159 168 171 174 177 186 193 202 205 208 211 220
[0 4 8 12 5 9 1 13 10 2 14 7 15 11 3 6] (4,4) 22 28 32 38 41 48 57 61 67 72 75 84 91 97 103 106 109 118 125 133 137 140 143 152 159 168 171 174 177 186 193 202 205 208 211 220
[0 4 8 12 5 9 3 13 10 1 14 7 15 11 2 6] (4,4) 22 28 32 38 41 48 57 61 67 72 75 84 91 97 103 106 109 118 125 133 137 140 143 152 159 168 171 174 177 186 193 202 205 208 211 220
[0 4 8 12 9 1 5 13 14 10 2 7 6 11 15 3] (4,4) 22 28 32 38 41 48 57 61 67 72 75 84 91 97 103 106 109 118 125 133 137 140 143 152 159 168 171 174 177 186 193 202 205 208 211 220
[0 4 8 12 9 3 5 13 14 10 1 7 6 11 15 2] (4,4) 22 28 32 38 41 48 57 61 67 72 75 84 91 97 103 106 109 118 125 133 137 140 143 152 159 168 171 174 177 186 193 202 205 208 211 220
[0 4 8 12 2 6 9 13 10 14 5 3 7 1 11 15] (4,4) 22 28 32 38 41 48 55 62 65 72 77 84 90 94 101 108 113 120 126 130 137 144 149 154 159 166 171 178 181 190 195 200 207 214 217 224
[0 4 8 12 2 6 13 9 7 3 10 14 11 15 5 1] (4,4) 22 28 32 38 41 48 55 62 65 72 77 84 90 94 101 108 113 120 126 130 137 144 149 154 159 166 171 178 181 190 195 200 207 214 217 224
[0 4 8 12 2 6 13 9 7 10 14 1 11 3 15 5] (4,4) 22 28 32 38 42 48 55 62 67 72 78 84 90 96 102 108 114 119 126 132 138 144 150 155 160 168 173 178 184 190 196 203 208 214 220 226
[0 4 8 12 2 6 13 9 14 1 7 10 5 15 3 11] (4,4) 22 28 32 38 42 48 55 62 67 72 78 84 90 96 102 108 114 119 126 132 138 144 150 155 160 168 173 178 184 190 196 203 208 214 220 226
[0 4 8 12 2 6 13 9 7 10 1 14 5 15 11 3] (4,4) 22 28 33 38 43 48 55 62 67 72 78 84 90 96 101 108 113 120 125 131 137 144 149 154 161 166 173 178 184 190 196 202 207 214 219 226
[0 4 8 12 2 6 13 9 10 1 7 14 15 3 11 5] (4,4) 22 28 33 38 43 48 55 62 67 72 78 84 90 96 101 108 113 120 125 131 137 144 149 154 161 166 173 178 184 190 196 202 207 214 219 226
[0 4 8 12 1 6 9 13 7 3 10 14 15 5 2 11] (4,4) 20 28 33 38 41 49 55 60 67 72 77 84 90 96 102 108 113 118 125 131 137 142 149 154 161 166 173 178 184 190 195 202 207 214 220 226
[0 4 8 12 1 6 9 13 14 7 3 10 5 2 11 15] (4,4) 20 28 33 38 41 49 55 60 67 72 77 84 90 96 102 108 113 118 125 131 137 142 149 154 161 166 173 178 184 190 195 202 207 214 220 226
[0 4 8 12 2 5 9 13 7 10 1 14 11 3 15 6] (4,4) 22 28 32 38 43 48 55 60 67 72 78 84 89 96 101 108 113 119 125 132 137 143 149 154 161 167 173 178 185 190 196 202 208 214 220 226
[0 4 8 12 2 5 9 13 10 1 7 14 6 15 3 11] (4,4) 22 28 32 38 43 48 55 60 67 72 78 84 89 96 101 108 113 119 125 132 137 143 149 154 161 167 173 178 185 190 196 202 208 214 220 226
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[p]∼ Diff 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

[0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11] (6,6) 26 36 41 46 51 55 58 61 66 75 82 88 92 96 102 108 112 116 124 128 132 136 142 148 154 160 164 168 172 176 182 188 194 200
[4 1 10 15 12 5 2 11 0 9 14 7 8 13 6 3] (6,6) 26 36 41 46 51 55 58 61 66 75 82 88 92 96 102 108 112 116 124 128 132 136 142 148 154 160 164 168 172 176 182 188 194 200
[4 9 2 15 0 13 6 11 12 5 10 3 8 1 14 7] (6,6) 26 36 41 46 51 55 58 61 66 75 82 88 92 96 102 108 112 116 124 128 132 136 142 148 154 160 164 168 172 176 182 188 194 200
[4 9 14 3 8 13 2 7 12 1 6 11 0 5 10 15] (6,6) 26 36 41 46 51 55 58 61 66 75 82 88 92 96 102 108 112 116 124 128 132 136 142 148 154 160 164 168 172 176 182 188 194 200
[0 1 6 11 4 5 14 3 8 9 2 15 12 13 10 7] (6,6) 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160
[0 5 10 15 4 1 14 11 12 9 2 7 8 13 6 3] (6,6) 28 32 36 40 43 46 51 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160
[4 5 2 11 8 9 6 15 12 13 10 3 0 1 14 7] (6,6) 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160
[4 5 10 3 8 9 14 7 12 13 2 11 0 1 6 15] (6,6) 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160
[4 5 10 15 0 1 14 11 12 13 6 3 8 9 2 7] (6,6) 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160
[4 9 2 15 0 13 10 7 12 1 6 11 8 5 14 3] (6,6) 28 32 36 40 43 46 51 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160
[0 7 8 13 12 1 6 9 10 3 14 5 2 11 4 15] (6,6) 26 32 37 42 47 52 58 63 68 72 78 83 88 93 98 105 110 114 120 125 130 136 141 146 153 158 162 167 170 177 181 184 189 196
[0 7 8 15 10 13 2 5 6 1 14 9 12 11 4 3] (6,6) 27 32 37 42 47 52 58 60 65 70 76 81 86 88 93 98 104 109 114 116 121 126 132 137 142 144 149 154 160 165 170 172 177 182
[0 1 4 9 6 11 2 15 10 7 14 3 12 13 8 5] (6,6) 26 32 37 42 47 53 58 63 68 72 77 85 90 96 100 105 111 115 120 126 130 136 143 148 153 159 164 170 173 179 186 190 195 202
[0 1 4 9 8 7 2 15 6 3 12 5 10 11 14 13] (6,6) 22 28 34 41 46 51 58 62 66 69 75 80 85 90 95 103 108 114 118 123 129 134 139 144 149 155 160 165 170 175 181 187 191 196
[0 1 4 9 14 11 2 7 12 13 10 5 6 15 8 3] (6,6) 25 32 37 43 47 52 58 61 66 73 79 84 90 94 99 104 109 116 121 125 130 136 141 147 152 158 163 168 174 180 185 190 195 200
[0 1 4 11 2 9 12 13 6 3 8 5 14 7 10 15] (6,6) 22 28 34 41 46 51 58 62 66 69 75 80 85 90 95 103 108 114 118 123 129 134 139 144 149 155 160 165 170 175 181 187 191 196
[0 1 4 11 10 7 14 5 12 9 2 13 6 3 8 15] (6,6) 19 26 35 42 46 52 58 62 66 71 75 78 83 90 96 101 107 112 119 124 127 132 139 142 147 154 159 165 171 176 182 188 191 196
[0 1 4 11 10 9 6 15 8 7 2 13 14 3 12 5] (6,6) 19 26 35 42 46 52 58 62 66 71 75 78 83 90 96 101 107 112 119 124 127 132 139 142 147 154 159 165 171 176 182 188 191 196
[0 1 6 11 2 15 8 5 14 3 4 9 12 13 10 7] (6,6) 26 32 37 42 47 53 58 63 68 72 77 85 90 96 100 105 111 115 120 126 130 136 143 148 153 159 164 170 173 179 186 190 195 202
[0 1 6 11 4 5 2 15 12 13 10 7 8 9 14 3] (6,6) 27 34 38 41 46 52 58 64 70 74 79 85 91 95 101 107 112 118 124 128 134 140 145 151 157 161 167 173 178 184 190 194 200 206
[0 1 6 11 12 13 4 9 14 3 10 5 2 7 8 15] (6,6) 25 32 37 43 47 52 58 61 66 73 79 84 90 94 99 104 109 116 121 125 130 136 141 147 152 158 163 168 174 180 185 190 195 200
[0 1 6 11 12 13 10 7 8 9 14 3 4 5 2 15] (6,6) 27 34 38 41 46 52 58 64 70 74 79 85 91 95 101 107 112 118 124 128 134 140 145 151 157 161 167 173 178 184 190 194 200 206
[2 5 10 13 8 15 0 7 4 3 12 11 14 9 6 1] (6,6) 27 32 37 42 47 52 58 60 65 70 76 81 86 88 93 98 104 109 114 116 121 126 132 137 142 144 149 154 160 165 170 172 177 182
[2 7 8 13 0 5 10 15 12 9 6 3 14 11 4 1] (6,6) 27 32 37 42 47 52 58 60 65 70 76 81 86 88 93 98 104 109 114 116 121 126 132 137 142 144 149 154 160 165 170 172 177 182
[2 7 8 15 6 3 12 11 0 1 10 13 4 5 14 9] (6,6) 22 30 37 43 48 53 58 63 68 71 77 83 89 95 100 105 110 115 120 125 130 136 140 145 150 155 160 165 170 175 181 185 190 195
[2 7 10 15 0 1 4 9 12 13 8 5 14 11 6 3] (6,6) 22 30 37 43 48 53 58 63 68 71 77 83 89 95 100 105 110 115 120 125 130 136 140 145 150 155 160 165 170 175 181 185 190 195
[4 1 8 13 10 15 0 7 6 3 12 9 2 5 14 11] (6,6) 26 32 37 42 47 52 58 63 68 72 78 83 88 93 98 105 110 114 120 125 130 136 141 146 153 158 162 167 170 177 181 184 189 196
[4 3 10 13 12 9 0 7 2 11 14 5 6 15 8 1] (6,6) 25 30 36 41 45 51 58 62 68 73 78 83 88 93 99 106 110 114 119 124 130 137 142 147 152 157 161 166 174 179 183 188 193 200
[4 3 10 13 12 9 0 7 6 1 8 15 2 5 14 11] (6,6) 25 30 35 42 48 52 58 63 67 73 79 84 89 93 99 106 110 115 120 125 132 136 142 148 153 158 164 169 174 179 184 189 194 199
[4 3 10 13 14 7 0 9 2 5 12 11 6 15 8 1] (6,6) 22 28 33 38 45 52 58 61 65 70 75 81 86 93 99 104 110 114 119 123 129 134 139 145 152 157 163 168 172 177 182 188 193 198
[4 3 10 15 8 13 6 1 14 5 2 11 0 7 12 9] (6,6) 25 30 35 42 48 52 58 63 67 73 79 84 89 93 99 106 110 115 120 125 132 136 142 148 153 158 164 169 174 179 184 189 194 199
[4 5 2 11 12 13 10 3 0 1 6 15 8 9 14 7] (6,6) 27 34 38 41 46 52 58 64 70 74 79 85 91 95 101 107 112 118 124 128 134 140 145 151 157 161 167 173 178 184 190 194 200 206
[4 5 8 1 14 3 10 7 12 13 0 9 6 11 2 15] (6,6) 22 30 37 43 48 53 58 63 68 71 77 83 89 95 100 105 110 115 120 125 130 136 140 145 150 155 160 165 170 175 181 185 190 195
[4 5 8 13 0 1 12 9 14 11 2 7 10 15 6 3] (6,6) 26 32 37 42 47 53 58 63 68 72 77 85 90 96 100 105 111 115 120 126 130 136 143 148 153 159 164 170 173 179 186 190 195 202
[4 5 10 1 14 7 0 11 12 13 2 9 6 15 8 3] (6,6) 22 30 37 43 48 53 58 63 68 71 77 83 89 95 100 105 110 115 120 125 130 136 140 145 150 155 160 165 170 175 181 185 190 195
[4 5 10 3 12 13 2 11 0 1 14 7 8 9 6 15] (6,6) 27 34 38 41 46 52 58 64 70 74 79 85 91 95 101 107 112 118 124 128 134 140 145 151 157 161 167 173 178 184 190 194 200 206
[4 5 10 15 0 1 14 11 2 7 8 13 6 3 12 9] (6,6) 26 32 37 42 47 53 58 63 68 72 77 85 90 96 100 105 111 115 120 126 130 136 143 148 153 159 164 170 173 179 186 190 195 202
[4 9 0 13 2 15 6 11 14 3 8 5 10 7 12 1] (6,6) 22 28 33 38 45 52 58 61 65 70 75 81 86 93 99 104 110 114 119 123 129 134 139 145 152 157 163 168 172 177 182 188 193 198
[4 9 2 15 14 3 8 5 12 1 10 7 6 11 0 13] (6,6) 27 32 37 42 47 52 58 60 65 70 76 81 86 88 93 98 104 109 114 116 121 126 132 137 142 144 149 154 160 165 170 172 177 182
[4 11 0 9 10 13 6 1 14 3 12 5 2 7 8 15] (6,6) 23 30 37 41 46 51 58 61 65 70 76 81 86 92 97 100 106 112 118 122 124 130 136 142 146 148 154 160 166 170 172 178 184 190
[4 11 0 15 2 13 6 9 14 5 8 3 10 7 12 1] (6,6) 25 30 36 41 45 51 58 62 68 73 78 83 88 93 99 106 110 114 119 124 130 137 142 147 152 157 161 166 174 179 183 188 193 200
[4 11 2 9 10 13 0 7 14 3 12 5 6 15 8 1] (6,6) 23 30 37 41 46 51 58 61 65 70 76 81 86 92 97 100 106 112 118 122 124 130 136 142 146 148 154 160 166 170 172 178 184 190
[0 5 11 2 8 13 3 10 12 9 7 14 4 1 15 6] (6,6) 23 34 40 44 50 54 57 62 65 72 79 85 92 95 101 107 110 116 121 127 133 138 143 149 155 161 164 170 176 181 187 192 197 203
[0 5 11 6 8 13 3 14 12 9 7 10 4 1 15 2] (6,6) 23 34 40 44 50 54 57 62 65 72 79 85 92 95 101 107 110 116 121 127 133 138 143 149 155 161 164 170 176 181 187 192 197 203
[0 7 8 15 12 1 4 9 2 13 10 5 14 11 6 3] (6,6) 26 33 37 42 46 52 56 61 68 73 79 85 88 93 100 105 110 115 122 128 132 138 143 148 154 159 164 170 176 181 185 190 195 202
[2 7 8 15 6 3 12 11 0 5 10 13 4 1 14 9] (6,6) 26 32 37 41 46 52 55 62 67 72 78 85 89 93 100 105 110 114 121 128 134 138 143 149 154 159 164 169 174 179 184 189 194 199
[2 7 10 15 12 1 4 9 0 13 8 5 14 11 6 3] (6,6) 26 32 37 41 46 52 55 62 67 72 78 85 89 93 100 105 110 114 121 128 134 138 143 149 154 159 164 169 174 179 184 189 194 199
[4 1 10 13 14 7 0 11 12 5 2 9 6 3 8 15] (6,6) 26 33 37 42 46 52 56 61 68 73 79 85 88 93 100 105 110 115 122 128 132 138 143 148 154 159 164 170 176 181 185 190 195 202
[4 9 12 1 10 15 2 7 6 3 14 11 8 5 0 13] (6,6) 26 32 37 41 46 52 55 62 67 72 78 85 89 93 100 105 110 114 121 128 134 138 143 149 154 159 164 169 174 179 184 189 194 199
[4 9 14 1 10 7 0 15 6 11 12 3 8 5 2 13] (6,6) 26 32 37 41 46 52 55 62 67 72 78 85 89 93 100 105 110 114 121 128 134 138 143 149 154 159 164 169 174 179 184 189 194 199
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