ShiftRows Alternatives for AES-like Ciphers and Optimal Cell Permutations for Midori and Skinny

Gianira N. Alfarano ${ }^{1}$, Christof Beierle ${ }^{2}$, Takanori Isobe ${ }^{3}$, Stefan Kölbl ${ }^{4}$, Gregor Leander ${ }^{2}$

March 25th, 2019
${ }^{1}$ University of Zurich, Switzerland
${ }^{2}$ Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
${ }^{3}$ University of Hyogo, Japan
${ }^{4}$ Cybercrypt, Denmark

AES-like Primitives

AES-like Constructions are very popular

- Block Ciphers:
- Deoxys-BC, Kuzneychik, LED, Midori, Prince, Skinny, ...
- Hash Functions:
- Grøstl, Photon, Streebog, Whirlpool, ...
- Permutations:
- AESQ, Haraka, Prøst, Simpira, ...

AES-like Primitives

Building blocks:

AES-like Primitives

Building blocks:

SB

S	S	S	S
S	S	S	S
S	S	S	S
S	S	S	S

- Apply S-box on each cell
- Only non-linear component
- Vast area of research

AES-like Primitives

Building blocks:

- Multiply each column with matrix
- Vast area of research

AES-like Primitives

Building blocks:

Security of AES-like Primitives

Resistance against differential and linear cryptanalysis.

- S-box: Every active S-box has an effect on probability of differential trail.
- Mix: Gives a lower bound on active S-boxes in one round.
- Permute: Heavily influences bounds for multiple rounds.

Goal

Find a lower bound on the number of active S-boxes for a design.

Security of AES-like Primitives

Example AES

- MixColumns has branch number 5 .
- Only constraint active input + output ≥ 5.

Security of AES-like Primitives

Example AES

- MixColumns has branch number 5 .
- Only constraint active input + output ≥ 5.

Security of AES-like Primitives

Example AES

- MixColumns has branch number 5 .
- Only constraint active input + output ≥ 5.

Security of AES-like Primitives

Example AES

- MixColumns has branch number 5 .
- Only constraint active input + output ≥ 5.

Security of AES-like Primitives

Example AES

- MixColumns has branch number 5 .
- Only constraint active input + output ≥ 5.

Security of AES-like Primitives

Example AES

- MixColumns has branch number 5 .
- Only constraint active input + output ≥ 5.

Security of AES-like Primitives

Can be much more complex for other choices:

- Midori (Branch number 4)
- but not possible to have $2 \rightarrow 3$ (or $3 \rightarrow 2$) transitions.
- Skinny (Branch number 2)

…

AES-like Primitives

Known results on the permute layer

- M is MDS and $n \times n$ state \rightarrow AES ShiftRows optimal
- Linear Frameworks for Block Ciphers, Daemen, Knudsen, Rijmen, DCC, 2001
- Analyzing Permutations for AES-like Ciphers: Understanding ShiftRows, Beierle, Jovanovic, Lauridsen, Leander, Rechberger, CT-RSA, 2015

AES-like Primitives

Known results on the permute layer

- M is MDS and $n \times n$ state \rightarrow AES ShiftRows optimal
- Linear Frameworks for Block Ciphers, Daemen, Knudsen, Rijmen, DCC, 2001
- Analyzing Permutations for AES-like Ciphers: Understanding ShiftRows, Beierle, Jovanovic, Lauridsen, Leander, Rechberger, CT-RSA, 2015

Problem we solve

Given an $n \times m$ state of w-bit words with a fixed SB and Mix layer. What is the optimal choice for permute w.r.t. security against differential/linear cryptanalysis?

Security of AES-like Primitives

How can we find the optimal choice for p ?

- For a 4×4 state we already get $2^{44.25}$ choices.
- Need to evaluate cryptanalytical properties for all of them?
- How can we limit the search space?

Classifying Cell Permutations

First observation:

- Consider permutation p and ϑ.
- If Mix $_{\mathbf{M}} \circ$ Permute $_{\vartheta}=$ Permute $_{\vartheta} \circ$ Mix $_{\mathbf{M}} \ldots$
- ...then Permute ${ }_{p}$ and Permute $\vartheta_{\vartheta \circ \text { р } \vartheta^{-1}}$ have the same cryptographic properties.

Classifying Cell Permutations

First observation:

- Consider permutation p and ϑ.
- If Mix $_{\mathbf{M}} \circ$ Permute $_{\vartheta}=$ Permute $_{\vartheta} \circ$ Mix $_{\mathbf{M}} \ldots$
- ...then Permute ${ }_{p}$ and Permute $\vartheta_{\vartheta \circ p \circ \vartheta^{-1}}$ have the same cryptographic properties.

Classifying Cell Permutations

First observation:

- Consider permutation p and ϑ.
- If Mix $_{\mathbf{M}} \circ$ Permute $_{\vartheta}=$ Permute $_{\vartheta} \circ$ Mix $_{\mathbf{M}} \ldots$
- ...then Permute ${ }_{p}$ and Permute $\vartheta_{\vartheta \circ p \circ \vartheta^{-1}}$ have the same cryptographic properties.

Classifying Cell Permutations

Equivalence Relation:

- Two permutations p, p^{\prime} are \mathbf{M}-equivalent if there exists ϑ such that

$$
\begin{equation*}
p^{\prime}=\vartheta \circ p \circ \vartheta^{-1} \tag{1}
\end{equation*}
$$

and ϑ commutes with \mathbf{M}.

- M-equivalent permutations will have same number of active S-boxes!
- Unclear how to efficiently determine M-equivalence.

Classifying Cell Permutations

weak M-equivalence:

- $\vartheta=\pi \circ \phi$
- π permutes whole columns of the state
- ϕ permutes insides columns individually

Classifying Cell Permutations

Structure matrix

Example

$$
\left[\begin{array}{cccc}
0 & 4 & 8 & 12 \\
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15
\end{array}\right] \stackrel{p}{\mapsto}\left[\begin{array}{cccc}
4 & 0 & 13 & 1 \\
5 & 6 & 14 & 2 \\
11 & 9 & 8 & 3 \\
15 & 12 & 7 & 10
\end{array}\right], \mathbf{A}_{p}=\left(\begin{array}{llll}
0 & 1 & 0 & 3 \\
2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 0
\end{array}\right)
$$

Classifying Cell Permutations

Structure matrix

Example

$$
\left[\begin{array}{cccc}
0 & 4 & 8 & 12 \\
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15
\end{array}\right] \stackrel{p}{\mapsto}\left[\begin{array}{cccc}
4 & 0 & 13 & 1 \\
5 & 6 & 14 & 2 \\
11 & 9 & 8 & 3 \\
15 & 12 & 7 & 10
\end{array}\right], \mathbf{A}_{p}=\left(\begin{array}{llll}
0 & 1 & 0 & 3 \\
2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 0
\end{array}\right)
$$

Classifying Cell Permutations

Structure matrix

Example

$$
\left[\begin{array}{cccc}
0 & 4 & 8 & 12 \\
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15
\end{array}\right] \stackrel{p}{\mapsto}\left[\begin{array}{cccc}
4 & 0 & 13 & 1 \\
5 & 6 & 14 & 2 \\
11 & 9 & 8 & 3 \\
15 & 12 & 7 & 10
\end{array}\right], \mathbf{A}_{p}=\left(\begin{array}{llll}
0 & 1 & 0 & 3 \\
2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 0
\end{array}\right)
$$

Classifying Cell Permutations

Structure matrix

Example

$$
\left[\begin{array}{cccc}
0 & 4 & 8 & 12 \\
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15
\end{array}\right] \stackrel{p}{\mapsto}\left[\begin{array}{cccc}
4 & 0 & 13 & 1 \\
5 & 6 & 14 & 2 \\
11 & 9 & 8 & 3 \\
15 & 12 & 7 & 10
\end{array}\right], \mathbf{A}_{p}=\left(\begin{array}{llll}
0 & 1 & 0 & 3 \\
2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 0
\end{array}\right)
$$

Classifying Cell Permutations

Structure matrix
Example

$$
\left[\begin{array}{cccc}
0 & 4 & 8 & 12 \\
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15
\end{array}\right] \stackrel{p}{\mapsto}\left[\begin{array}{cccc}
4 & 0 & 13 & 1 \\
5 & 6 & 14 & 2 \\
11 & 9 & 8 & 3 \\
15 & 12 & 7 & 10
\end{array}\right], \mathbf{A}_{p}=\left(\begin{array}{llll}
0 & 1 & 0 & 3 \\
2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 0
\end{array}\right)
$$

Classifying Cell Permutations

Result

We provide an efficient algorithm to enumerate all permutations up to weak M -equivalence.

Basic idea of the algorithm:

- Enumerates all permutations up to weak \mathbf{M} equivalence for given structure matrix.
- For example 4×4 state there are 10147 valid structure matrices.
- Find smallest representatives of each equivalence class.

Classifying Cell Permutations

When does weak \mathbf{M} imply \mathbf{M} equivalence?

- Consider the matrix M.
- Let G be the directed graph corresponding to the adjacency matrix of M.
- If G is strongly connected then \mathbf{M} coincides with weak \mathbf{M}.

Case Study: Midori

Midori block cipher

- Energy efficient cipher
- 4×4 state
- Uses generic p
- MixColumns (Branch number 4, not all transitions possible)

$$
\mathbf{M}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

Case Study: Midori

Case Study: Midori

Takes a few days on a standard PC to find all permutations up to M-equivalence.

- $2^{21.7}$ distinct equivalence classes.
- MILP (slow for larger number of rounds)
- Using branch and bound (Matsui's algorithm) much faster https://github.com/kste/matsui

Case Study: Midori

Case Study: Midori

Conclusion

- Original permutation optimal for 1 to 12 rounds
- ...except for 9 rounds: 44 active S-boxes (instead of 41).
- For any higher number of rounds it is never optimal.

Case Study: Midori

Proof in the paper

- If p, p^{2} and p^{3} have the structure matrix

$$
\mathbf{A}_{p}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \tag{2}\\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

then there are at least 28 active S-boxes for 6 rounds.

Case Study: Skinny

Skinny

- Lightweight Tweakable Block Cipher
- Uses AES ShiftRows
- MixColumns (Branch number 2)

Case Study: Skinny

Results using our algorithm

- weak M also implies M for Skinny MixColumns
- In total $2^{39.66}$ equivalence classes.
- Took 23.8 CPU days to find them.

Case Study: Skinny

We filter further:

- Only use permutations which give good diffusion
- Still 2.726.526 left...
- ≈ 2937 CPU days to run Matsui's for all variants

Case Study: Skinny

Conclusion

Summary

- Better theoretical understanding
- Useful tool for future designs
- Possible to evaluate the best choice for some designs

