
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2018, No. 2, pp. 1–19. DOI:10.13154/tosc.v2018.i2.1-19

Towards Low Energy Stream Ciphers
Subhadeep Banik1, Vasily Mikhalev2, Frederik Armknecht2, Takanori Isobe3,

Willi Meier4, Andrey Bogdanov5, Yuhei Watanabe6 and Francesco
Regazzoni7

1 Security and Cryptography Laboratory (LASEC), École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

subhadeep.banik@epfl.ch
2 University of Mannheim, Mannheim, Germany

{mikhalev,armknecht}@uni-mannheim.de
3 University of Hyogo, Hyogo, Japan
takanori.isobe@ai.u-hyogo.ac.jp

4 University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Windisch,
Switzerland

willi.meier@fhnw.ch
5 Department of Applied Mathematics and Computer Science (DTU Compute), Technical

University of Denmark, Kongens Lyngby, Denmark
anbog@dtu.dk

6 National Institute of Advanced Industrial Science and Technology, Osaka, Japan
yuhei.watanabe@aist.go.jp

7 Università della Svizzera italiana (USI), Lugano, Switzerland
regazzoni@alari.ch

Abstract. Energy optimization is an important design aspect of lightweight cryptog-
raphy. Since low energy ciphers drain less battery, they are invaluable components
of devices that operate on a tight energy budget such as handheld devices or RFID
tags. At Asiacrypt 2015, Banik et al. presented the block cipher family Midori which
was designed to optimize the energy consumed per encryption and which reduces
the energy consumption by more than 30% compared to previous block ciphers.
However, if one has to encrypt/decrypt longer streams of data, i.e. for bulk data
encryption/decryption, it is expected that a stream cipher should perform even better
than block ciphers in terms of energy required to encrypt.
In this paper, we address the question of designing low energy stream ciphers. To
this end, we analyze for common stream cipher design components their impact
on the energy consumption. Based on this, we give arguments why indeed stream
ciphers allow for encrypting long data streams with less energy than block ciphers
and validate our findings by implementations. Afterwards, we use the analysis results
to identify energy minimizing design principles for stream ciphers.
Keywords: Lightweight block cipher, Low energy, Stream Cipher

1 Introduction
1.1 Motivation
The field of lightweight cryptography has seen a number of cipher proposals in the past
few years, with block ciphers like CLEFIA [SSA+07], KATAN [CDK09], Klein [GNL11], LED
[GPPR11], Midori [BBI+15], PRESENT [BKL+07], Piccolo [SIH+11], PRINCE [BCG+12],
SIMON/SPECK [BSS+13] and stream ciphers like Lizard [HKM17] and Plantlet [MAM16]
to name a few. However, the Advanced Encryption Standard (AES) [DR02] still remains

Licensed under Creative Commons License CC-BY 4.0.
Received: 2017-09-01, Revised: 2018-03-01, Accepted: 2018-05-01, Published: 2018-06-07

https://doi.org/10.13154/tosc.v2018.i2.1-19
mailto:subhadeep.banik@epfl.ch
mailto:{mikhalev,armknecht}@uni-mannheim.de
mailto:takanori.isobe@ai.u-hyogo.ac.jp
mailto:willi.meier@fhnw.ch
mailto:anbog@dtu.dk
mailto:yuhei.watanabe@aist.go.jp
mailto:regazzoni@alari.ch
http://creativecommons.org/licenses/by/4.0/

2 Towards Low Energy Stream Ciphers

the de-facto standard when it comes to practical lightweight encryption, also due to the
numerous low-power/area architectures for AES being reported in literature [MPL+11,
SMTM01, FWR05].

However, we argue that for battery driven devices that run on tight battery budgets
like handheld devices, medical implants or RFID tags, a more relevant parameter is the
energy consumption. In a nutshell, it is a measure of the total electrical work done by the
battery source during the execution of any operation. In fact, some previous works have
investigated the energy efficiency of block ciphers. In [BDE+13, KDH+12], an evaluation
of several lightweight block ciphers with respect to various hardware performance metrics,
with a particular focus on the energy cost, was done. In [BBR15], the authors looked at
design strategies like serialization and round unrolling and the effect it has on the energy
consumption required to encrypt a single block of data. Serialization stretches out the
execution of each round function over a number of clock cycles and hence was found to
be unsuitable for energy efficiency. The authors then proposed a formal model for energy
consumption in any r-round unrolled block cipher architecture. The authors concluded
that the energy consumed for encrypting one block of plaintext for any r-round unrolled
implementation had a quasi-quadratic form (a, b, c are constants and R is the number of
iterations of the round function prescribed for the design):

Er = (ar2 + br + c) ·
(

1 +
⌈

R

r

⌉)
, (1)

where ar2 + br + c denotes the energy consumed per cycle and
(
1 +

⌈
R
r

⌉)
is the total clock

cycles required to encrypt. Although an r-round unrolled cipher consumes more energy per
cycle for increasing values of r, it takes fewer cycles to complete the encryption operation
itself. This makes the determination of the values of r at which the design has the lowest
energy consumption an interesting and important optimization problem. The authors
concluded that for block ciphers with lightweight round functions like PRESENT and SIMON,
r = 2 was the optimal configuration, whereas for “heavier” round functions like in AES and
Noekeon, r = 1 was optimal. Building on these ideas, the block cipher family Midori was
proposed in [BBI+15] that optimized the energy consumption per encryption.

However, previous work in this field [BBR15, BBI+15, BDE+13, KDH+12] has focused
on the energy consumption for encrypting one block of data. While this is reasonable
for scenarios that require the encryption of short data bursts, we show that when it
comes to encrypting significantly large data, a stream cipher may be energy-wise a better
solution than a block cipher. Stream ciphers like Grain [HJM07] and Trivium [CP08] use
an extremely simple state update operation that typically involves to compute multiple
boolean functions and state rotation. As a result, unrolling multiple rounds of a stream
cipher usually only involves to realize additional copies of the boolean function circuit
(if the number of rounds unrolled is small). This has the consequence that the power
consumption in stream cipher circuits increases very slowly with the number of rounds
unrolled. On the other hand, the number of clock cycles required to encrypt a given amount
of plaintext drops linearly with the level of unrolling and so does the energy required to
perform the encryption operation. This makes stream cipher promising candidates for low
energy encryption.

As an instructive example, we compare the energy consumptions of the single and
two-round unrolled Grain v1 circuits.

• A single round implementation of the Grain v1 circuit synthesized with the standard
cell library of the STM 90nm logic process, takes around 1164 GE and has an average
power consumption of 40.567 uW at a clock frequency of 10 MHz. In order to
encrypt 64 bits of data, the circuit has to operate for 1 (loading the Key-IV) + 160
(for Key-IV mixing) + 64 = 225 clock cycles. Therefore the energy required for the
operation is approximately 40.567 ∗ 225 ≈ 912.8 pJ.

Subhadeep Banik et al. 3

• A two-round unrolled Grain v1 circuit, which performs 2 round operations in one
clock cycle, has an area of around 1200 GE and an average power consumption
of around 41 uW. However this circuit requires only 1+80+32=113 clock cycles to
encrypt 64-bit data, and so the energy requirement is only around 463 pJ. So a 2x
unrolling results in approximately a 2x reduction in energy.

Consequently, for a cipher like Grain v1 which was specifically designed to allow for efficient
unrolling of up to 16 rounds, we expect the trend to persist for at least up to 16th degree
of unrolling and perhaps beyond that as well.

1.2 Contribution
In this paper we investigate the energy consumption traits of stream ciphers. For our
analysis, we select the stream ciphers Trivium [CP08], Grain v1 [HJM07], Grain-128
[HJMM06], Lizard [HKM17], Plantlet [MAM16], and Kreyvium [CCF+16]. We take a
look at all implementation level aspects that are likely to affect the energy consumption of
stream ciphers and then draw conclusions from our studies. Our principal finding from
these experiments was that the 160x unrolled implementation of Trivium is about 9 times
more energy efficient than any block cipher based solution for encrypting long data streams,
and that unrolled stream ciphers in general outperform block ciphers in this domain.

1.3 Organization
The paper is organized as follows. In Section 2, we take a look at the factors that may
affect the energy consumption of stream ciphers. We try to identify parameters that
result in increase/decrease the energy consumption and try to draw necessary conclusions.
Section 3 concludes the paper.

2 Energy-Impact of Design Components
In [BBI+15], it was pointed out that for any given block cipher, the three main factors
that determine the quantity of energy dissipated in the circuit are:

(a) The clock frequency,

(b) the architecture of the individual components, and

(c) the number of unrolled rounds.

Since stream ciphers possess the same basic architecture as block ciphers in the sense that
both are round-based, the same is likely to be true (to some extent) for a stream cipher
as well. In this section, we investigate factors that may affect the energy consumption of
stream ciphers. The aim is to identify design principles and parameters that a designer
can choose to increase/decrease the energy consumption. To this end, we perform several
experiments with respect to the three factors mentioned above from which we derive
characteristics that an energy efficient stream cipher should possess. In all the simulations
reported in the paper, we maintained the following design flow. First, the design was
implemented at RTL level. A functional verification of the VHDL code was then done using
Mentorgraphics ModelSim. Thereafter, Synopsys Design Compiler was used to synthesize
the RTL design using the standard cell library of the STM 90nm CMOS logic process.
The switching activity of each gate of the circuit was collected by running post-synthesis
simulation. The average power was obtained using Synopsys Power Compiler, using the
back annotated switching activity. The energy was then computed as the product of the
average power and the total time taken for the encryption process.

4 Towards Low Energy Stream Ciphers

b b bRegister F1 F2 Fn

f(Key,IV,Const)

Figure 1: n round unrolled implementation of a stream cipher

2.1 Frequency of Operation

Note that the total energy dissipation for a CMOS gate can be written as Egate =
Edynamic + Estatic where

• Edynamic refers to the dynamic dissipation which is due to the charging and discharg-
ing of load capacitances and the short-circuit current and

• Estatic denotes the static dissipation which is due to leakage current and other current
drawn continuously from the power supply.

As pointed out in [KDH+12, BBR15], as the energy consumption is measured by the total
number of switching activities of a circuit during the encryption process, it should be
independent of the frequency of operation. While this is true at high frequencies where
dynamic energy Edynamic consumed is significantly larger than the total static energy
Estatic consumed by the system, the situation changes at lower frequencies. It was shown
in [BBR15] that for circuits designed with the standard cell library of the STM 90nm
CMOS process, at frequencies lower than 1 MHz the static energy gets a higher impact.
To remedy this effect, we fixed at our experiments the frequency of operation to 10 MHz
(this corresponds to a clock period of 100 ns), so that the leakage power plays minimal
role in the energy consumption.

2.2 Architecture

Often, there are different options for implementing a stream cipher. We will take a detailed
look at a few of them:

A. Scan Flip-Flops vs Regular Flip-Flops Figure 1 depicts the diagram of a stream cipher
which has been unrolled n times. Unrolling in stream ciphers refers to implementations
where we include logic gates for several instantiations of the update function such
that multiple rounds can be executed within a single clock cycle. In a stream cipher,
the storage elements, commonly realized by flip-flops, are usually preceded by a
multiplexer, which in the initial clock cycle filters a combination of the key and IV
on to the register and the output of the round function thereafter. The combination
of flip-flop and multiplexer can be replaced with a scan flip-flop which provides
the same logical functionality while occupying less area and less power. Hence the
intuition is that designs using scan flip-flops would be more energy-efficient than
those based on combining flip-flops and multiplexer.

To investigate this, we executed simulations for several hardware-based stream ciphers.
The results are tabulated in Table 1. The table shows simulation results for the six

Subhadeep Banik et al. 5

Table 1: A comparison of energy consumptions when using regular flip-flops (R) and scan
flip-flops (S).

Cipher FF Area Power (uW) Energy (pJ) Energy (nJ)
(GE) @ 10 MHz 1 block 1000 Blocks

1 Grain v1 R 1164 40.6 912.8 260.28
S 1005 38.9 874.8 249.47

2 Grain 128 R 1700 71.5 2287.1 459.23
S 1455 57.8 1855.4 371.41

3 Trivium R 1870 78.4 9527.6 510.48
S 1584 75.6 9194.9 492.26

4 Plantlet R 886 35.4 1364.7 227.99
S 785 34.4 1363.1 227.73

5 Lizard2 R 1481 51.8 1663.2 332.93
S 1360 50.4 1617.5 323.78

6 Kreyvium R 3433 146.2 17792.5 952.53
S 2892 140.8 17135.4 917.35

hardware-based stream ciphers Grain v1, Grain 128, Trivium, Plantlet, Lizard 1 and
Kreyvium, synthesized with the standard cell library of the STM 90nm logic process.
It displays the energy consumptions for encrypting for both 1 and 1000 blocks of
plaintext where one block is taken to be equal to 64 bits.
The results confirm the intuition formulated above. For example, Grain v1 takes
1 (loading key-IV) + 160 (initialization) + 64 = 225 cycles to encrypt 1 block of
plaintext. As can be seen in Table 1, in case of using regular flip-flops this results into
requiring energy of 225×100 ns × 40.6 uW ≈ 912.8 pJ. Similarly, 161+64000 = 64161
cycles are required to encrypt 1000 blocks, and so the energy required for it can be
estimated as 64161 × 100 ns × 40.6 uW ≈ 260.28 nJ. In contrast, when using scan
flip-flops the energy requirement are ≈ 874.8 pJ and ≈ 249.47 nJ, respectively.
Main Conclusions: We can draw the following conclusions from the results re-
ported in Table 1. Designs implemented with scan flip-flops are shown to be better
both with respect to energy consumption and circuit area. Since all other factors
remain equal, reduced area when using scan flip-flops results into a reduced power
consumption. Since energy is of the power over time, this also results into reduced
energy consumption.

B. Fibonacci vs Galois Configuration Practically all stream ciphers deploy feedback shift
registers (FSR), either with linear update function (LFSR) or non-linear update
function (NLFSR). For these, a designer has the choice between the Fibonacci and
the Galois configuration. For instance, the designs of stream ciphers Grain v1, Grain
128 and Trivium consider the Fibonacci configuration of the deployed LFSRs. As
shown in Figure 2A, a shift register in Fibonacci configuration updates its states
by shifting all bits by one position and by inserting at the final position a bit that
has been computed by the round function from the current state (before shifting).
In comparison, in a shift register in Galois configuration each state bit is updated

1According to the designers, LIZARD is supposed to be implemented with serialized key/IV loading.
In [HKM17], they show that such an implementation of LIZARD requires less area and power than Grain
v1 (with and without serialized key/IV loading). However a serialized loading can not easily be adopted
to make a round unrolled structure which is critical to energy minimization, as we will shortly see. So we
evaluate all ciphers under one cycle key-IV loading process.

2We use the implementation of Lizard that loads key-IV in one clock cycle

6 Towards Low Energy Stream Ciphers

using a function separate fi applied to the entire current state (cf. Figure 2B).3
Galois equivalent implementations for Grain v1 and Grain 128 were proposed in

bbb

Round Function

bbb

a0

a0

a2a1 an−1

a1 a2 an−1f0 f1 f2 fn−1

A. Fibonacci Configuration

B. Galois Configuration

Figure 2: Fibonacci and Galois Configurations for Shift registers

[MD10, Dub09]. The authors showed that Galois configurations usually have lower
circuit latency and thus can allow for higher throughput. In Table 2, we tabulate for
several ciphers a comparison between Galois and Fibonacci configurations.
Note that we have to omit the Plantlet stream cipher as a realization using Galois
configuration is not possible. This is due to the fact that the non-linear register
update function takes inputs from the 39-th, being the last bit, which doesn’t allow
to apply the transformation given in [MD10].
Note that both configurations provide the same logical functionality and hence do not
offer any significant advantages over the other with respect to classical cryptanalysis.
However in [CMM14], it was shown that Galois registers are more vulnerable to
power attacks than Fibonacci registers: They were able to find the initial state of
the Galois register using approximately half the number of power traces as compared
to Fibonacci registers.
Main Conclusions: A Galois configuration does not seem to offer any significant
advantage over its Fibonacci counterpart with respect to energy consumption or
area size. Moreover, most ciphers designs primarily consider FSRs in Fibonacci
configuration. As we will see later, a more energy efficient realization of a stream
cipher needs to unroll it a multiple number of times. However, implementations
in Galois configuration for ciphers that were primarily designed for the Fibonacci
configuration cannot be unrolled beyond a certain limit (see [MD10]). All these make
Galois configurations unattractive for low energy designs.

C. Architecture of Round Function The round functions Fi in hardware-based stream
ciphers are generally very simple. They involve a one bit shift (that can be efficiently
implemented by shift registers) and one or multiple small boolean functions to update
the terminal bit of the register. We look at three possible ways of realizing these.

1. The first approach is to use a look-up table. For an n-variable boolean function
this is a table of 2n × 1 entries. For obvious reasons, although effective for small
n, this kind of circuit style is inadvisable for larger values of n.

3Note that although it is not shown explicitly in Figure 2, each of the functions fi are computed over
the entire state and not just the preceding bit.

Subhadeep Banik et al. 7

Table 2: Results for Fibonacci vs Galois configurations, 1 block=64 bits, G: Galois, F:
Fibonacci configuration
Cipher Conf Area (GE) Power (uW) Energy (pJ) Energy (nJ)

@ 10 MHz 1 block 1000 Blocks
1 Grain v1 G 1016 39.8 894.4 255.05

F 1005 38.9 874.8 249.47
2 Grain 128 G 1466 58.9 1890.9 378.52

F 1455 57.8 1855.4 371.41
3 Trivium G 1592 76.0 9253.6 495.40

F 1584 75.6 9194.9 492.26
4 Lizard G 1366 50.7 1626.0 325.49

F 1360 50.4 1617.5 323.78
5 Kreyvium G 2898 141.3 17196.2 920.61

F 2892 140.8 17135.4 917.35

2. The second approach is to feed the functional description (in terms of the
algebraic normal form) of the boolean function to the synthesizer and instructing
it to optimize for area and power. In this approach, we depend on the ability of
the circuit synthesizer.

3. The third approach is to use a Decoder-Switch-Encoder (DSE) style config-
uration. This approach was previously considered in [BBR15, BBI+15] for
designing the 8-bit Rijndael S-box and was shown to be energy efficient. For
implementing boolean functions, the first step is the same as for realizing an
S-box circuit. We implement the decoder first i.e., for the case of an n-bit input
we construct a set of 2n wires, where logically, each wire represents one of the
2n possible minterms of n variables. It is easy to see that only one of the wires
would hold a logical HIGH signal for any given input value. Since there is
one wire corresponding to every minterm, we simply logically OR all the wires
whose minterms result in a logical HIGH in the truth table of the function. In
fact it is clear, that we don’t even need to expend hardware for constructing
all 2n wires: we can do with constructing only those wires whose minterms are
present in the canonical normal from of the function we are implementing.
However, the circuit size is still exponential in the input length, so we adopted
a simple tweak. Whenever the number of input variables of a function exceeded
10, we split the function into the sum of two component functions of roughly
equal size with an input size of less than 10 and constructed the circuits for
each of the component functions. Breaking up the function into components is
directly possible for some ciphers. For example, in Plantlet the NFSR update
function g is given as

g = n0 + n13 + n19 + n35 + n39 + n2 · n25 + n3 · n5 + n7 · n8 + n14 · n21+
n16 · n18 + n22 · n24 + n26 · n32 + n33 · n36 · n37 · n38+
n10 · n11 · n12 + n27 · n30 · n31

Although this is a function of 29 variables, each variable occurs only once and
hence there is no intersection of terms between any 2 monomials. Hence it
is easy to break up g as a sum of five functions (say g1 to g5) each of 5 or 6
variables, such that no two component functions depend on the same input
variable. However, this is not always the case. The NFSR update function of
Grain v1 for instance, has 13 variables, and breaking it up into functions of
disjoint variables is not straightforward. However the DSE construction does

8 Towards Low Energy Stream Ciphers

Table 3: Results for different realizations of the round functions. LUT: Lookup table, FUN:
Functional synthesis using Synopsys tool, DSE: DSE configuration
Cipher Conf Area (GE) Power (uW) Energy (pJ) Energy (nJ)

@ 10 MHz 1 block 1000 Blocks
1 Grain v1 LUT 1071 43.3 973.7 277.68

FUN 1005 38.9 874.8 249.47
DSE 1088 41.7 938.4 267.61

2 Grain-128 LUT 1449 57.9 1858.3 371.98
FUN 1455 57.8 1855.4 371.41
DSE 4165 76.3 2449.0 490.23

3 Trivium LUT 1589 75.7 9211.1 493.12
FUN 1584 75.6 9194.9 492.26
DSE 1680 78.4 9542.8 510.88

4 Plantlet LUT 785 34.5 1326.3 221.58
FUN 785 34.4 1324.6 221.30
DSE 1143 42.7 1644.1 274.68

5 Lizard LUT 1327 49.9 1601.8 320.64
FUN 1360 50.4 1617.5 323.78
DSE 1946 58.5 1878.5 376.03

6 Kreyvium LUT 2897 141.2 17184.0 919.96
FUN 2892 140.8 17135.4 917.35
DSE 2988 144.0 17524.8 938.20

not explicitly require that the inputs of the component functions be disjoint.
For example, the Grain v1 NFSR function can be written as the sum of four
non-disjoint functions of 8, 7, 6, 3 variables each.

Main Conclusions: In Table 3, we list the simulation results for the three realizations
of round function that we discussed. It is clear from the table that LUT or DSE style
constructions of the boolean function have no significant advantage over the circuit
optimized by the synthesizer.

2.3 Unrolling Rounds
Unrolling rounds is a design technique which aims to speed up the circuit throughput
at the cost of area. The core idea is to replace the round function designed for one
round by an augmented function that implements several rounds within one function. For
example, a two round unrolled AES circuit consists of two sequentially placed circuits
for the round functions, that computes the ciphertext in only 5 clock cycles (i.e. half the
time as compared to a single round circuit). We discussed in Section 1.1 already that
unrolling turned out to be an effective method for realizing low energy block ciphers and
that we expect similar benefits for stream ciphers. In fact, most hardware stream ciphers
have very simple round functions (consisting of a logical shift and a boolean function
computation). Consequently, we do not expect a significant increase in the algebraic
complexity when unrolling the design at least for the first few rounds. This would translate
into a rather small increase in the hardware complexity, a reasonable number of additional
logic gates. This would naturally limit the transient switching activity (signal glitches)
from one round to the next (cf. [BBR15]). Since less glitches results into a lower power
consumption, it is quite often the case that unrolling stream ciphers by one round does
not significantly increase the power consumption whereas it always decreases the number
of clock cycles required to encrypt a given amount of data. Thus, the overall energy

Subhadeep Banik et al. 9

b
b

b

b
b

b

⊕

g(N) f(L)

h(N,L)

NFSR LFSR

b
b

Figure 3: Up to 16x implementation of Grain v1

consumption decreases with unrolling. A good example for this effect is the Grain v1
cipher that we discussed already in Section 1.1. The single round and the 2 round unrolled
circuits have an average power consumptions of 40.567 and 41 uW respectively, at a clock
frequency of 10 MHz. Since the number of clock cycles required to encrypt data in the 2
round circuit is approximately half as compared to the single round circuit, a 2x unrolling
results in approximately a 2x reduction in energy as well.

2.3.1 Unrolling in RTL4

Stream ciphers like Grain v1, Grain 128 and Trivium were specifically designed to easily
allow unrolling. In Grain v1 for example, the last 16 bit positions in both the linear and
non-linear register are used neither in the round update function nor the output keystream
function. This implies that a 16x unrolling of Grain v1 is straightforward [HJM07], and
only requires 16 additional copies of the round and update functions to be added to the
circuit as shown in Figure 3. The same is true for Grain 128 (up to 32x unrolling) and
Trivium (up to 64x unrolling).

For degrees of unrolling higher than that specified in the design, the algebraic structure
of the resulting round update function gets more and more complicated, since simply
adding more copies of round functions will no longer lead to correct functionality. In
RTL however, unrolling beyond this specified limit is not very difficult to realize, and an
example of this is shown in Appendix A.

In Table 4, we list the simulation results for energy consumptions for different degrees of
unrolling. We use scan based flip-flops to construct the memory element and use functional
optimization of the round function circuit as motivated before. Next, we discuss several
aspects of the simulation and observations in details.

Comparison with block ciphers: We compare our results for stream ciphers with the
block ciphers PRESENT and Midori64. PRESENT has been included as a standard in
ISO/IEC 29192-2 and was shown in [BBR15] to be extremely energy efficient, while
the Midori block cipher family was designed specifically for low energy consumption.
Although a subspace attack [GJN+16, TLS16] that exploits a class of weak keys of
Midori64 has been reported, we keep the cipher in our comparisons as it sheds some
light on lower energy limits achievable with block ciphers.
As opposed to the case of block ciphers, it is difficult to express the energy consump-
tion of an r-round unrolled stream cipher by a simple equation as Equation (1). The
reason is that unlike to block ciphers, unrolling a stream cipher by an additional
round does not increase the circuit complexity uniformly. As a result the transient

4In digital circuit design, register-transfer level (RTL) is a design abstraction which models a synchronous
digital circuit in terms of the flow of digital signals (data) between hardware registers, and the logical
operations performed on those signals.

10 Towards Low Energy Stream Ciphers

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1,000

Number of blocks encrypted

E
n
er
g
y
(p
J)

PRESENT (2x) Midori64 (2x)

Grain v1 (20x) Grain 128 (48x)

Trivium (160x) Plantlet (16x)

Lizard (16x) Kreyvium (128x)

Figure 4: Energy consumptions for up to 10 blocks for most energy-efficient implementa-
tions

signals do not increase uniformly across round functions as in block ciphers, and so
it is difficult to algebraically model the energy consumption.

A discussion on modes of operation: Usually for block ciphers, an additional
layer of mode of operation is a must before usage, while stream ciphers in general do
not require such a layer. For example, encrypting data using the CBC mode requires
an additional number of xor gates equal to the blocksize of the block cipher. And
encrypting data using the CTR mode requires an additional counter. It is clear that
additional hardware amounts to additional power consumption and hence additional
energy requirement. In Table 4, we tabulate the energy required for encrypting data
in ECB mode for PRESENT and Midori64. Which is to say, the tabulated values
reflect the energy consumed in the block cipher circuit only. Hence, using the above
ciphers combined with a mode of operation will therefore consume some more energy
than the values tabulated in the table. From Table 4 and Figure 4, our findings are
that a suitably unrolled version of Trivium or Grain v1 consumes energy much less
than most energy efficient stand-alone block cipher, as we increase the total amount
of encrypted data. Therefore we conclude that Trivium or Grain v1 would perform
better than a block cipher combined with a mode of operation.

Shorter vs. longer data lengths: Note that while for encrypting a single block of data,
block cipher outperform stream ciphers, the opposite is true for larger data. For
shorter lengths of data, the energy consumed by the stream cipher is dominated
by the key initialization phase. For example, the 1x implementation of Trivium
would take 1217 clock cycles to encrypt 64 bits, of which 1152 is used up by the
key initialization function. A one round implementation of Midori64 would take
only 17 cycles to encrypt 64 bits. For longer data, the effect of key initialization
on the energy consumption becomes less significant, since it is computed only
once. To encrypt 1000 blocks (64000 bits) of data, Trivium 1x would require only
64000 + 1152 + 1 = 65153 cycles. Clearly 1152 is a much smaller fraction of 65153
than of 1217. Multiple unrolling decreases the time to encrypt even further. For
example, the 160x implementation of Trivium can encrypt 160 bits in a single clock
cycle, and so around 1 +

⌈ 64000+1152
160

⌉
= 409 cycles are required for 1000 blocks.

Subhadeep Banik et al. 11

Grain v1 (1x) 38.9 uW Grain v1 (32x) 165.1 uW Grain v1 (64x) 561.3 uW

NFSR - 17.5 uW

LFSR - 17.1 uW

Logic Function - 2.1 uW

NFSR - 29.7 uW

LFSR - 22.7 uW

Logic Function - 107.0 uW

NFSR - 42.0 uW

LFSR - 30.1 uW

Logic Function - 460.0 uW

45.0%

44.0%

5.5%
5.5%

18.0%

13.8%

64.9%

3.3%
7.5%5.4%

82.0%

5.1%

(a)

Trivium (1x) 75.6 uW Trivium (64x) 129.0 uW Trivium (160x) 248.0 uW

Register - 72.3 uW

Logic Function - 2.9 uW

Register - 84.9 uW

Logic Function - 37.1 uW

Register - 96.2 uW

Logic Function - 134.0 uW

95.7%

3.8%
0.5%

66.0%

28.8%

5.2%

38.7%

53.9%

7.4%

(b)

Figure 5: Power consumption shares of Grain v1 for 1, 32, 64 degrees of unrolling, Trivium
for 1, 64, 160 degrees of unrolling (the sectors in blue denote power consumed in counters,
and other control logic)

On the other hand, the most energy-efficient version of Midori (2x) would take
9 ∗ 1000 = 9000 cycles to encrypt 1000 blocks. As a result we see that for the
most energy-efficient configuration of Trivium (160x) is around 9 times more energy
efficient than the most energy efficient version of Midori64. In Figure 4 we plot the
energy consumptions for encrypting up to 10 blocks of data with the most energy
efficient unrolled configurations of the ciphers. While for a single block of data
Midori64 performs best, for 6 blocks of data or more Trivium performs best.

Parabolic behavior with unrolling With respect to unrolling, the energy consumption
for stream ciphers follows the same parabolic behavior as block ciphers [BBR15],
particularly for longer lengths of data. Which is to say that for smaller degrees of
unrolling the energy consumption is very high, the energy consumption comes to a
minimum at some fixed degree of unrolling, and the energy consumption increases
again if the cipher is unrolled beyond this point. This is the result of two conflicting
effects. For lower degrees of unrolling, the energy consumption is obviously high due
to 1) a comparatively large number of initialization rounds and 2) a lower number of
bits encrypted per clock cycle. For example, a single round unrolled version of Grain
v1 encrypts one bit of plaintext per clock cycle. This means that to encrypt 32 bits,
the design has to pay for the energy consumption of the 160-bit register and the

12 Towards Low Energy Stream Ciphers

associated logic functions for 1 (key loading) + 160 (initialization) + 32 (keystream)
= 193 clock cycles.
Consequently, the energy consumption decreases when the degree of unrolling in-
creases. Larger degree of unrolling implies less time spent in initialization and more
bits encrypted per cycle. For example, a 32x unrolled version of Grain v1, would need
only 5 clock cycles for initialization. To encrypt 32 bits of data, the system would
have to pay for the energy consumption of the 160-bit register and logic functions for
1 + 5 + 1 = 7 clock cycles. However, the logic functions in a 32x unrolled version
are more than 32 times more complex than in a 1x design, and it is true that more
power is consumed in the hardware circuit of the logic functions. Despite of that, we
can see that a 32x implementation of Grain v1 is around 6.5 to 7 times more energy
efficient than the 1x version for short data lengths, and around 7.5 times better for
longer data lengths.
However, beyond a certain degree of unrolling, increasing the unrolling results into
an increase of energy consumption. The reason for that is the power consumed in the
logic functions increases sharply at that point. This happens due to the reasons which
are similar for block ciphers [BBI+15]. In [BBI+15, Figure 2], it was shown that
power consumption in sequentially placed logic functions increases uniformly because
of increased circuit latency which leads to increased glitch propagation. Because of
this, it was shown that each additional unrolled round results in quadratic increase
in power consumption (due to the term ar2 + br + c in Eq (1)), but only a linear
decrease in the computation time (due to

(
1 +

⌈
R
r

⌉)
). As a result, unrolling the

round functions beyond a fixed number usually proves counter-productive. Figure
5, demonstrates the increasing share of power consumed by the logic functions in
Grain v1 over 1, 32 and 64 degrees of unrolling. It is easy to see that at 64x, the
most power hungry element of the design is the round function.

Light/heavy round function A further conclusion one can draw from Table 4 is that the
”lightness” of the round functions in stream ciphers has a similar effect as in the
case of block ciphers. It was shown in [BBR15] that block ciphers with light round
functions like PRESENT, Twine, SIMON produce less glitches when the circuits for
more than one round function are connected serially. Hence, block ciphers with light
round functions achieve energy optimality when unrolled twice, in contrast with
heavy round functions whose single round versions are most energy efficient. In Table
4, it can be seen that for ciphers like Grain v1, Lizard and Plantlet whose update
functions are more algebraically complex, the energy optimality is achieved at small
degrees of unrolling. In contrast, it holds for Trivium which has an extremely simple
round update function consisting of 3 and gates and 6 xor gates only that energy
optimality is achieved at 160x unrolling.
There is also a distinct advantage for unrolled stream ciphers with simple update
functions. This is due to reasons similar as in block ciphers. Simpler/lighter round
functions themselves produce less glitches, and thus even when the circuits for these
functions are unrolled several times, the propagation of glitches across circuits is
not significant enough to escalate the power consumed. Heavier round functions
produce more glitches, and their propagation becomes significant even for smaller
degrees of unrolling. Figures 5a,b provide a useful comparison between Grain v1
(heavy) and Trivium (light) round functions. At 160x unrolling, the round function
in Trivium consumes only 134 uW which is only around 54% of the total power. This
is in contrast with the 64x Grain v1 implementation, which consumes around 460
uW, which is 82 % of the total power.

Comparison with Kreyvium Since Kreyvium builds upon the Trivium structure by adding

Subhadeep Banik et al. 13

Table 4: Comparison of energy for different degrees of unrolling, r denotes # unrolled
rounds, Energy/bit figure calculated over 1000 blocks.
Cipher r Area Power (uW) Energy (pJ) Energy (nJ) Energy/bit

(GE) @ 10 MHz 1 block 1000 Blocks (pJ)
1 Grain v1 1 1005 38.9 874.8 249.47 3.90

16 2673 86.6 129.9 34.73 0.54
20 2888 102.9 133.8 33.02 0.52
24 3293 129.4 142.3 34.61 0.54
28 3711 156.5 140.8 35.88 0.56
32 3934 165.1 132.1 33.12 0.52
48 5751 343.1 205.9 45.91 0.72
64 7474 561.3 280.7 56.30 0.88

2 Grain-128 1 1455 57.8 1855.4 371.41 5.80
32 3579 126.8 139.4 25.47 0.40
40 4178 158.1 142.3 25.42 0.40
48 4749 188.8 151.0 25.29 0.40
56 5321 235.2 164.6 27.02 0.42
64 6336 282.7 169.6 28.41 0.44
80 7078 407.7 203.7 32.81 0.51

3 Trivium 1 1870 78.4 9527.6 510.48 7.97
64 3051 128.7 257.4 13.11 0.20
80 3457 148.1 251.7 12.08 0.19
96 3839 169.4 237.1 11.51 0.18
112 4241 189.3 227.1 11.04 0.17
128 4593 207.1 227.8 10.56 0.17
160 5409 248.2 223.4 10.15 0.16
192 6179 306.2 244.9 10.44 0.16
256 7755 419.5 251.7 10.73 0.17
288 8584 490.0 294.0 11.17 0.17

4 Plantlet 1 785 34.4 1324.6 221.30 3.46
8 1630 88.5 433.7 71.15 1.11
16 2254 161.6 404.0 64.98 1.02
32 3451 651.5 847.0 131.02 2.05

5 Lizard 1 1360 50.4 1617.5 323.78 5.06
8 2565 101.7 417.0 81.70 1.28
16 3954 200.0 420.0 80.34 1.26
32 6778 672.4 739.6 135.09 2.11

6 Kreyvium 1 2892 140.8 17135.4 917.35 14.33
64 4579 202.8 405.6 20.66 0.32
80 5045 224.0 380.8 18.28 0.29
96 5480 248.8 348.3 16.92 0.26
112 5939 273.1 327.7 15.92 0.25
128 5050 221.4 243.5 11.29 0.18
160 7268 364.7 328.2 14.92 0.23
192 8149 430.7 344.6 14.69 0.23
256 8612 452.6 271.6 11.59 0.18
288 10836 696.1 417.7 15.87 0.25

7 PRESENT 1 1440 52.2 172.3 172.3 2.69
2 1968 91.3 155.2 155.2 2.43
3 2500 149.0 178.8 178.8 2.79

8 Midori64 1 1542 60.6 103.0 103.0 1.61
2 2017 100.6 90.5 90.5 1.41
3 2826 273.8 191.7 191.7 3.00

14 Towards Low Energy Stream Ciphers

two additional registers for key and IV rotation and two additional xor gates, we can
see that an 1x unrolled version of Kreyvium consumes 1.5 to 2 times more energy as
Trivium – even for longer data lengths. This trend can be seen for higher degrees
of unrolling except for implementations where the number of unrolled rounds is a
multiple of 128. These versions do not need additional registers to implement key
and IV rotation since they can be assumed to be available on the wires, and hence
these implementations have lower energy consumption. Nonetheless, the additional
complexity of 2 XOR gates in the round function implies that even for multiples of
128, the most energy-efficient configuration of Kreyvium consumes around 10% more
energy than Trivium.

2.4 Lessons learnt
From the discussion in this section, it becomes clear for encrypting longer data streams,
stream ciphers with a simple update functions have a distinct advantage. These are easier
and more energy-efficient to unroll for higher degrees of unrolling. Higher degrees of
unrolling allows to encrypt more bits in one clock cycle, which is crucial in bringing down
the number of clock cycles required to encrypt a given length of data, and hence the energy
consumption. On the other hand, higher degree of unrolling results into a more complex
logic of the update function and hence needs more power to operate. Thus, a sufficiently
simple update function ensures that the additional power consumption resulting from
unrolling remains small enough to not outweigh the natural advantages obtained from
unrolling. Lastly, the number of initialization rounds does affect the energy numbers for
shorter data packets, but its effect becomes minimal with the increase in the length of
plaintext to be encrypted.

3 Conclusion
In this paper, we investigated the design of low energy ciphers. We conducted experiments
on various design parameters that affect the energy consumption of the encryption process
and were able to draw several conclusions out of it. Our initial investigations showed that
although block ciphers are more energy-efficient solutions for encryption of short data
streams, for longer data streams multiple round unrolled stream ciphers perform better.
Stream ciphers with simple update functions were found to be more energy-efficient since
these were easy to unroll without increasing the circuit complexity and power consumption
too much.

We found that the Trivium structure was best suited for this purpose. The 160x
unrolled implementation of Trivium was not only around 9 times better than the best
block cipher based solution in terms of energy consumption of 1000 data blocks.

Acknowledgements
Subhadeep Banik was supported by Commission for Technology and Innovation (Confédéra-
tion Suisse) grant no CTI 19339.1. Takanori Isobe was supported in part by Grant-in-Aid
for Young Scientist (B) (KAKENHI 17K12698) for Japan Society for the Promotion of
Science.

References
[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,

Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A

Subhadeep Banik et al. 15

block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume
9453 of Lecture Notes in Computer Science, pages 411–436. Springer, 2015.

[BBR15] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Exploring
energy efficiency of lightweight block ciphers. In Orr Dunkelman and Liam
Keliher, editors, Selected Areas in Cryptography - SAC 2015 - 22nd Inter-
national Conference, Sackville, NB, Canada, August 12-14, 2015, Revised
Selected Papers, volume 9566 of Lecture Notes in Computer Science, pages
178–194. Springer, 2015.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications
- extended abstract. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer
Science, pages 208–225. Springer, 2012.

[BDE+13] Lejla Batina, Amitabh Das, Baris Ege, Elif Bilge Kavun, Nele Mentens, Christof
Paar, Ingrid Verbauwhede, and Tolga Yalçin. Dietary recommendations for
lightweight block ciphers: Power, energy and area analysis of recently de-
veloped architectures. In Michael Hutter and Jörn-Marc Schmidt, editors,
Radio Frequency Identification - Security and Privacy Issues 9th International
Workshop, RFIDsec 2013, Graz, Austria, July 9-11, 2013, Revised Selected
Papers, volume 8262 of Lecture Notes in Computer Science, pages 103–112.
Springer, 2013.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight
Block Ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A practical
solution for efficient homomorphic-ciphertext compression. In Thomas Peyrin,
editor, Fast Software Encryption - 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers, volume 9783
of Lecture Notes in Computer Science, pages 313–333. Springer, 2016.

[CDK09] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN
and KTANTAN - A family of small and efficient hardware-oriented block
ciphers. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,

16 Towards Low Energy Stream Ciphers

Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes
in Computer Science, pages 272–288. Springer, 2009.

[CMM14] Abhishek Chakraborty, Bodhisatwa Mazumdar, and Debdeep Mukhopadhyay.
Fibonacci LFSR vs. galois LFSR: which is more vulnerable to power attacks?
In Rajat Subhra Chakraborty, Vashek Matyas, and Patrick Schaumont, editors,
Security, Privacy, and Applied Cryptography Engineering - 4th International
Conference, SPACE 2014, Pune, India, October 18-22, 2014. Proceedings,
volume 8804 of Lecture Notes in Computer Science, pages 14–27. Springer,
2014.

[CP08] Christophe De Cannière and Bart Preneel. Trivium. In Matthew J. B. Robshaw
and Olivier Billet, editors, New Stream Cipher Designs - The eSTREAM
Finalists, volume 4986 of Lecture Notes in Computer Science, pages 244–266.
Springer, 2008.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer Verlag, Berlin, Heidelberg, New York,
2002.

[Dub09] Elena Dubrova. A transformation from the Fibonacci to the Galois NLFSRs.
IEEE Trans. Information Theory, 55(11):5263–5271, 2009.

[FWR05] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES implementation on a
grain of sand. IEE Proceedings - Information Security, 152(1):13–20, Oct 2005.

[GJN+16] Jian Guo, Jérémy Jean, Ivica Nikolic, Kexin Qiao, Yu Sasaki, and Siang Meng
Sim. Invariant Subspace Attack Against Midori64 and The Resistance Criteria
for S-box Designs. IACR Trans. Symmetric Cryptol., 2016(1):33–56, 2016.

[GNL11] Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A new family of
lightweight block ciphers. In Ari Juels and Christof Paar, editors, RFID.
Security and Privacy - 7th International Workshop, RFIDSec 2011, Amherst,
USA, June 26-28, 2011, Revised Selected Papers, volume 7055 of Lecture Notes
in Computer Science, pages 1–18. Springer, 2011.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED block cipher. In Preneel and Takagi [PT11], pages 326–341.

[HJM07] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for
constrained environments. IJWMC, 2(1):86–93, 2007.

[HJMM06] M. Hell, T. Johansson, A. Maximov, and W. Meier. A Stream Cipher Proposal:
Grain-128. In 2006 IEEE International Symposium on Information Theory,
pages 1614–1618, July 2006.

[HKM17] Matthias Hamann, Matthias Krause, and Willi Meier. LIZARD - A Lightweight
Stream Cipher for Power-constrained Devices. IACR Trans. Symmetric Cryp-
tol., 2017(1):45–79, 2017.

[KDH+12] Stéphanie Kerckhof, François Durvaux, Cédric Hocquet, David Bol, and
François-Xavier Standaert. Towards green cryptography: A comparison of
lightweight ciphers from the energy viewpoint. In Emmanuel Prouff and Patrick
Schaumont, editors, Cryptographic Hardware and Embedded Systems - CHES
2012 - 14th International Workshop, Leuven, Belgium, September 9-12, 2012.
Proceedings, volume 7428 of Lecture Notes in Computer Science, pages 390–407.
Springer, 2012.

Subhadeep Banik et al. 17

[MAM16] Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On Ciphers that
Continuously Access the Non-Volatile Key. IACR Trans. Symmetric Cryptol.,
2016(2):52–79, 2016.

[MD10] Shohreh Sharif Mansouri and Elena Dubrova. An improved hardware im-
plementation of the grain stream cipher. In Sebastián López, editor, 13th
Euromicro Conference on Digital System Design, Architectures, Methods and
Tools, DSD 2010, 1-3 September 2010, Lille, France, pages 433–440. IEEE
Computer Society, 2010.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES.
In Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011
- 30th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 69–88. Springer,
2011.

[PT11] Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic Hardware and
Embedded Systems - CHES 2011 - 13th International Workshop, Nara, Japan,
September 28 - October 1, 2011. Proceedings, volume 6917 of Lecture Notes in
Computer Science. Springer, 2011.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: An ultra-lightweight blockcipher. In
Preneel and Takagi [PT11], pages 342–357.

[SMTM01] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A compact
rijndael hardware architecture with s-box optimization. In Colin Boyd, editor,
Advances in Cryptology - ASIACRYPT 2001, 7th International Conference
on the Theory and Application of Cryptology and Information Security, Gold
Coast, Australia, December 9-13, 2001, Proceedings, volume 2248 of Lecture
Notes in Computer Science, pages 239–254. Springer, 2001.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
The 128-bit blockcipher CLEFIA (extended abstract). In Alex Biryukov,
editor, Fast Software Encryption, 14th International Workshop, FSE 2007,
Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers, volume
4593 of Lecture Notes in Computer Science, pages 181–195. Springer, 2007.

[TLS16] Yosuke Todo, Gregor Leander, and Yu Sasaki. Nonlinear invariant attack -
practical attack on full scream, iscream, and midori64. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology
and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part II, volume 10032 of Lecture Notes in Computer Science, pages 3–33, 2016.

18 Towards Low Energy Stream Ciphers

Appendices

A Unrolling in RTL

The VHDL code snippet in Listing 1 shows an implementation of the round function of
Grain 128 with degree of unrolling equal to any integer mul. Note that NxDI, LxDI are 128
bit signals denoting the current round NFSR and LFSR state bits respectively. We define
the two sets of wires IxD, JxD of width 128+mul each. For 0 ≤ i ≤ 127, IxD(i), JxD(i)
will simply carry the NFSR, LFSR signals. Thereafter we functionally define IxD(128+i),
JxD(128+i) as the ith update of the NFSR and LFSR respectively (for 0 ≤ i ≤mul-1).
It is easy to see that IxD(128 to 128+mul-1), JxD(128 to 128+mul-1) are the update
values of the NFSR, LFSR respectively in the next clock cycle. The input signal KSAxSI
is HIGH during the initialization process, and so the ZUxD is the output signal fed back
during this period. Finally, OupxD is the signal denoting the output keystream. The code
can be used to achieve any multiplicity of unrolling and can easily be extended to other
Grain or Trivium-like ciphers.

Listing 1: Unrolling Grain 128
IxD (0 to 127) <= NxDI;
JxD (0 to 127) <= LxDI;

a1: for i in 0 to mul -1 generate

JxD (128+ i) <= JxD(i) xor JxD(i+7) xor JxD(i+38) xor JxD(i+70) xor
JxD(i+81) xor JxD(i+96) xor ZUxD(i);

IxD (128+ i) <= IxD(i+26) xor IxD(i+56) xor IxD(i+91) xor IxD(i+96) xor
IxD(i) xor (IxD(i+3) and IxD(i +67)) xor (IxD(i+11) and IxD(i +13)) xor
(IxD(i+17) and IxD(i +18)) xor (IxD(i+27) and IxD(i +59)) xor
(IxD(i+40) and IxD(i +48)) xor (IxD(i+61) and IxD(i +65)) xor
(IxD(i+68) and IxD(i +84)) xor JxD(i) xor ZUxD(i);

OupxD (i) <= IxD(i+2) xor IxD(i+15) xor IxD(i+36) xor IxD(i+45) xor IxD(i+64) xor
IxD(i+73) xor IxD(i+89) xor JxD(i+93) xor (IxD(i+12) and JxD(i+8)) xor
(JxD(i+13) and JxD(i +20)) xor (IxD(i+95) and JxD(i +42)) xor
(JxD(i+60) and JxD(i +79)) xor (IxD(i+12) and IxD(i+95) and JxD(i +95));

ZUxD(i) <= OupxD (i) and KSAxSI (i);

end generate a1;

LopxDO <= JxD (128 to 128+ mul -1);
NopxDO <= IxD (128 to 128+ mul -1);
OupxDO <= OupxD ;

For Trivium-like ciphers in which the 3 registers are mutually interdependent on each
other, the unrolling follows the same principle. We present a VHDL code snippet in
Listing 2, that shows an implementation of the Trivium round function with degree of
unrolling mul. The signal NxDI represents the 288 bits of the current state. We define.
similarly as above three sets of wires R1xD, R2xD, R3xD, so that R1xD(mul to 92+mul),
R2xD(mul to 83+mul), R3xD(mul to 110+mul) would simply carry the NxDI signal. The
concatenation of the bits R1xD(0 to 92), R2xD(0 to 83), R3xD(0 to 110) represents
the updated state bits for the next clock cycle.

Subhadeep Banik et al. 19

Listing 2: Unrolling Trivium

R1xD(mul to 92+ mul) <= NxDI (0 to 92);

R2xD(mul to 83+ mul) <= NxDI (93 to 176);

R3xD(mul to 110+ mul) <= NxDI (177 to 287);

a1: for i in 0 to mul -1 generate

A1xD(i) <= (R1xD (65 + mul - i) xor R1xD (92+ mul -i));
A2xD(i) <= (R2xD (161 + (mul -93) -i) xor R2xD (176 + (mul -93) -i));
A3xD(i) <= (R3xD (242 + (mul -177) -i) xor R3xD (287 + (mul -177) -i));

R2xD(mul - i -1) <= (R1xD (90+ mul -i) and R1xD (91+ mul -i)) xor
A1xD(i) xor R2xD (170 + (mul -93) -i);

R3xD(mul - i -1) <= (R2xD (174 + (mul -93) -i) and R2xD (175 + (mul -93) -i)) xor
A2xD(i) xor R3xD (263+ (mul -177) -i);

R1xD(mul - i -1) <= (R3xD (285 + (mul -177) -i) and R3xD (286 + (mul -177) -i)) xor
A3xD(i) xor R1xD (68+ mul - i);

ZxDO(i) <= A1xD(i) xor A2xD(i) xor A3xD(i);

end generate a1;

NextxDO <= R1xD (0 to 92) & R2xD (0 to 83) & R3xD (0 to 110);

	Introduction
	Motivation
	Contribution
	Organization

	Energy-Impact of Design Components
	Frequency of Operation
	Architecture
	Unrolling Rounds
	Lessons learnt

	Conclusion
	Unrolling in RTL

