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Abstract. SNOW-V is a new member in the SNOW family of stream ciphers, hoping
to be competitive in the 5G mobile communication system. In this paper, we study the
resistance of SNOW-V against bitwise fast correlation attacks by constructing bitwise
linear approximations. First, we propose and summarize some efficient algorithms
using the slice-like techniques to compute the bitwise linear approximations of certain
types of composition functions composed of basic operations like �, ⊕, Permutation,
and S-box, which have been widely used in word-oriented stream ciphers such as
SNOW-like ciphers. Then, using these algorithms, we find a number of stronger
linear approximations for the FSM of the two variants of SNOW-V given in the
design document, i.e., SNOW-Vσ0 and SNOW-V�8,�8 . For SNOW-Vσ0 , where there
is no byte-wise permutation, we find some bitwise linear approximations of the FSM
with the SEI (Squared Euclidean Imbalance) around 2−37.34 and mount a bitwise
fast correlation attack with the time complexity 2251.93 and memory complexity 2244,
given 2103.83 keystream outputs, which improves greatly the results in the design
document. For SNOW-V�8,�8 , where both of the two 32-bit adders in the FSM are
replaced by 8-bit adders, we find our best bitwise linear approximations of the FSM
with the SEI 2−174.14, while the best byte-wise linear approximation in the design
document of SNOW-V has the SEI 2−214.80. Finally, we study the security of a closer
variant of SNOW-V, denoted by SNOW-V�32,�8 , where only the 32-bit adder used for
updating the first register is replaced by the 8-bit adder, while everything else remains
identical. For SNOW-V�32,�8 , we derive many mask tuples yielding the bitwise
linear approximations of the FSM with the SEI larger than 2−184. Using these linear
approximations, we mount a fast correlation attack with the time complexity 2377.01

and a memory complexity 2363, given 2253.73 keystream outputs. Note that neither
of our attack threatens the security of SNOW-V. We hope our research could further
help in understanding bitwise linear approximation attacks and also the structure of
SNOW-like stream ciphers.
Keywords: Stream ciphers · SNOW-V · FSM · Bitwise Fast correlation attack ·
Byte-wise Linear Approximations

1 Introduction
1.1 Background
SNOW-V [8] is a new member in the SNOW family of stream ciphers, hoping to be
competitive in the 5G mobile communication system. It is designed by revising the SNOW
3G architecture and has kept the general design from SNOW 3G. SNOW 3G [9] is one
member of the SNOW family with two predecessors SNOW 1.0 [7] and SNOW 2.0 [6].
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SNOW 1.0 was submitted to NESSIE project by Ekdahl and Johansson in 2000, and SNOW
2.0 is an improved version which was published in 2002 and selected as an ISO standard in
2005. Both SNOW 1.0 and SNOW 2.0 consist of two main components: a Linear Feedback
Shift Register (LFSR) and a Finite State Machine (FSM), based on operations on 32-bit
words, with high efficiency in both software and hardware environment. SNOW 3G was
designed in 2006 by ETSI/SAGE, different from SNOW 2.0 by introducing a third 32-bit
register to the FSM and a corresponding 32-bit nonlinear transformation for updating this
register. SNOW 3G serves as the core of 3GPP Confidentiality and Integrity Algorithms
UEA 2 & UIA2 for UMTS and LTE networks. It is currently in use in 3-4G mobile
telephony systems, while SNOW-V aims to adapt SNOW 3G for 5G.

SNOW-V has kept most of the design from SNOW 3G in terms of the LFSR and the
FSM, but both components are updated to better align with vectorized implementations.
The LFSR part is now a circular construction consisting of two LFSRs, each feeding into
the other, and the size of each register in the FSM part has been increased from 32 bits
to 128 bits. At each clock, SNOW-V generates a 128-bit keystream. The original version
of SNOW-V appeared on the IACR ePrint on November 29, 2018, and later a stronger
version was posted, where a byte-wise permutation σ was added in the updating function
of the first register R1 of the FSM.

Linear approximation attacks, including distinguishing attacks and correlation attacks,
have been widely used to analyze SNOW ciphers. The basic technique is to approximate
the nonlinear operations in the cipher and then derive a linear approximation relation
involving the keystream symbols. If the linear approximation involves also symbols from
the LFSR states, a correlation attack can be mounted by utilizing some correlation between
the keystream and the LFSR states. We give the references [4, 5] for the basic foundations
of correlation attacks.

1.2 Related Work
The resistance of SNOW 2.0 against distinguishing attacks and correlation attacks has been
widely studied. In these attacks, the first step is to approximate the FSM part through
the linear masking method as proposed in [3], and then to cancel out the contributions of
the registers by combining the expressions for several keystream words at different time
instances. In [20] and [19], distinguishing attacks were given with the complexities 2225

and 2174 respectively. At Asiacrypt 2008, a correlation attack [15] was proposed with the
complexity 2212.38 by building the bitwise linear approximations for the FSM. Note that all
the attacks in [20, 19, 15] were based on the bitwise linear approximations. At CRYPTO
2015, Zhang et al. [23] introduced the terminology “large-unit” linear approximations,
and mounted a fast correlation attack on SNOW 2.0 by building the byte-wise (8-bit)
linear approximations, giving the significantly reduced complexities all below 2164.15. In
this process, they derived two types of byte-wise linear approximations, and accordingly
provided two algorithms to compute the bias using the Squared Euclidean Imbalance (SEI)
as defined in [1] with the complexities 233.58 and 226.58 respectively for each given byte-wise
mask tuple. Later in [10], the correlation attack on SNOW 2.0 was improved slightly with
the complexity 2162.91. Recently, [11] investigated the bitwise linear approximation of a
certain type of composition function present in SNOW 2.0 and proposed a linear-time
algorithm to compute the correlation for an arbitrary given linear mask. Based on this
algorithm, they carried out a wider range of search for bitwise masks and found some
strong linear approximations which enable them to slightly improve the data complexity
of the previous fast correlation attacks by using multiple bitwise linear approximations.

For SNOW 3G, the bitwise linear approximations over three rounds of the FSM were
depicted in [19], but only rough estimates of the upper bounds of their correlations were
given. In [11], a fast correlation attack was given by constructing the bitwise linear
approximations whose correlations were accurately computed. In [22], inspired by the
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results of [23] where the large-unit approach was used to achieve improvements over the
previous attacks on SNOW 2.0, Yang et al. constructed the three-round byte-wise linear
approximations for the FSM of SNOW 3G and performed the searches for finding actual
byte-wise masks that gave high SEI values for the approximations. The byte-wise linear
approximations found in [22] were also applied to launch a fast correlation attack against
SNOW 3G.

For SNOW-V, there is no prior cryptanalysis of SNOW-V beyond its design document
[8], except for a result published in December 2020 [12] where a byte-based guess and
determine attack was proposed with complexity 2406. In [8], the designers presented their
best results of the linear approximation attacks on several close variants of SNOW-V,
including the original version of SNOW-V denoted by SNOW-Vσ0 , where the permutation
is assumed to be just the identity σ0, and also SNOW-V�8,�8 , where both of the two 32-bit
adders “�32” in the updating function of the FSM are replaced by the 8-bit ones “�8” while
everything else remains identical. In all these analyses, they utilized “large-unit” linear
approximations. For SNOW-Vσ0 , they constructed the byte-wise linear approximations and
computed the bias using the SEI, giving their best result with the SEI 2−58.7. With this
byte-wise linear approximation, they also mounted a fast correlation attack following the
method in [23] with the time complexity of about 2232, requiring a keystream of length 2203.
In the course of computing the SEI for any given byte-wise mask, the convolution algorithms
were used to compute large distributions which were computationally demanding. Beside,
they also searched for the byte-wise linear approximations for the FSM of SNOW-V�8,�8 .
In their best attempt, they got the total noise having the SEI 2−214.80. To the best of our
knowledge, there have been no significant research on SNOW-V in published literature
until now.

1.3 Our Contributions
In this paper, we investigate the bitwise linear approximations for the FSM of SNOW-V
through linear masking, and present fast correlation attacks on several close variants.

First, we summarize five types of sub-functions composed of basic operations like �,
⊕, Permutation, and S-box, which have been widely used in word-oriented stream ciphers
such as SNOW-like stream ciphers, and propose some linear-time algorithms to compute
the correlation of the bitwise linear approximation for an arbitrary given linear mask tuple.
For Type-I to Type-III, we utilize linear-time algorithms from [11, 19], and for Type-IV
and Type-V, we propose new linear-time algorithms for efficiently computing the bitwise
linear approximations by extending the techniques in [11, 19]. All these algorithms use
a technique we call “slice-like” to efficiently compute the correlations. The general idea
of the “slice-like” technique is to divide the n-bit values into d m-bit values (n = md)
according to the specific structure of the underlying function (m-bit S-box, for example),
and then pre-compute and store some specific matrices independent of the given linear
mask, and finally compute the correlation for any given mask in linear-time using these
pre-computed matrices. The novelty is the construction of specific matrices which can be
efficiently pre-computed. Using the slice-like techniques, the computations of bitwise linear
approximations cost only linear-time complexities by doing some matrix multiplications,
while the convolution algorithms on large distribution in [8] need much more computations.
Based on these algorithms, we are able to search for the bitwise linear masks in a much
larger range than the designers do for the byte-wise masks [8].

Then we apply these algorithms for the cryptanalysis of SNOW-V against linear
approximation attacks. Our attacks target three variants of SNOW-V, two were introduced
by SNOW-V designers in [8], while the third one is new.

• For SNOW-Vσ0 , we find a number of bitwise linear approximations which have
significantly larger SEI values than that of the best byte-wise linear approximation
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found in [8], and present a fast correlation attack by using these new-found bitwise
linear approximations. This attack costs a time complexity of 2251.93 and a memory
complexity of 2244, less than the exhaustive key search, and requires a keystream of
length around 2103.83, which improves greatly the result in [8] which is 2203.

• For SNOW-V�8,�8 , we give a brief study on the bitwise linear approximation of
the FSM. In our attempt to approximate the FSM, we have found our best bitwise
linear approximation with the SEI 2−174.14, while the SEI of the best byte-wise linear
approximation found in [8] is 2−214.80.

• For SNOW-V�32,�8 , a new and closer variant which has the byte-wise permutation σ
but only the 32-bit adder used for updating the first register is replaced by the 8-bit
adder, we derive many bitwise mask tuples yielding the bitwise linear approximations
with the SEI larger than 2−184. Using these linear approximations, we mount a fast
correlation attack with the time complexity 2377.01 and a memory complexity 2363,
given 2253.73 keystream outputs.

Note that neither of our attacks threatens the security of SNOW-V. But we hope our
research could further help in understanding bitwise linear approximation attacks and also
the structure of SNOW-like stream ciphers.

1.4 Paper Organization
Some basic notations and definitions are presented in Section 2 together with a brief
description of SNOW-V. In Section 3, we propose and summarize some algorithms to
efficiently compute the bitwise linear approximations of certain types of composition
functions. In Section 4 and Section 5, we apply these algorithms to the bitwise linear
approximations of the FSM of SNOW-Vσ0 and SNOW-V�32,�8 , respectively. A brief study
on the bitwise linear approximation of the FSM of SNOW-V�8,�8 is given in Section 6.
Finally, some conclusions are provided with the future work pointed out in Section 7.

2 Preliminaries
2.1 Notations and Definitions
The following notations and definitions are used throughout this paper.

• The bitwise exclusive-OR is denoted by “⊕” and the addition modulo 2m by “�m”.

• The binary field is denoted by F2 and its m-dimensional extension field is denoted
by F2m . Besides, we denote by F∗2m the multiplicative group of nonzero elements of
F2m .

• Given two binary vectors a = (a0, a1, ..., am−1) ∈ F2m and b = (b0, b1, ..., bm−1) ∈
F2m , the standard inner product is defined as a · b =

⊕m−1
i=0 aibi, where the product

aibi is taken in F2.

• Let n, m be two positive integers such that m divides n and d = n
m . For x ∈ F2n , it

can be written as x = (x0 ‖ ... ‖ xd−1), where xi ∈ F2m for 0 ≤ i ≤ d− 1, and x0 is
the least significant part.

• For a set S, the number of elements in S is denoted by |S|.

• Let X be a binary random variable, the correlation between X and zero is defined
as ε(X) = Pr{X = 0} − Pr{X = 1}.
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• An n-variable Boolean function f(x) is a mapping from F2n to F2, i.e., f : F2n → F2.

• The correlation of a Boolean function f : F2n → F2 to zero is defined as

ε(f) = 2−n(|{x ∈ F2n : f(x) = 0}| − |{x ∈ F2n : f(x) = 1}|)
= Pr{f(X) = 0} − Pr{f(X) = 1},

where X is a uniformly distributed random variable in F2n . Note that “correlation”
is often used to evaluate the efficiency of bitwise linear approximations in a linear
approximation attack, where the data complexity is proportional to 1/ε2(f).

• An (n,m)-function F (x) is a mapping from F2n to F2m , i.e., F : F2n → F2m such
that x 7→ (f0, ..., fm−1), where fis are n-variable Boolean functions. F is also called
an m-dimensional vectorial Boolean function.

• For an (n,m)-function F , the probability distribution DF of F is DF (a) =
|{x∈F2n :F (x)=a}|

2n for all a ∈ F2m .

• The Squared Euclidean Imbalance (SEI) of a distribution DF is defined as

∆(DF ) = 2m
∑

a∈F2m

(DF (a)− 1
2m )

2
,

which measures the distance between the target distribution and the uniform distri-
bution. Especially for m = 1, ∆(DF ) is closely related to the correlation of F by
∆(DF ) = ε2(F ). Note that the “SEI” of a distribution DF over a general alphabet
is used to evaluate the efficiency of large-unit linear approximations in a linear
approximation attack, where the data complexity is proportional to 1/∆(DF ).

• The correlation of an (n,m)-function F : F2n → F2m with a linear output mask
Γ ∈ F2m and a linear input mask Λ ∈ F2n is defined as

εF (Γ; Λ) = Pr{Γ · F (X) = Λ ·X} − Pr{Γ · F (X) 6= Λ ·X},

where X is a uniformly distributed random variable in F2n .

2.2 Description of SNOW-V
SNOW-V is a new proposed member in the SNOW family of stream ciphers. It has kept the
general design from SNOW 3G in terms of the LFSR and the FSM, but both components
are updated to better align with vectorized implementations, and also the size of the FSM
has been increased from 32 bits to 128 bits. The overall schematic of SNOW-V algorithm
is shown in Fig. 1. For more details on the design of SNOW-V, we refer to the original
design document [8].

The LFSR part consists of two LFSRs, namely LFSR-A and LFSR-B, both of 16
cells of length 16, giving 512 bits in total. Denote the states of the LFSRs at time t as
(at+15, at+14, ..., at) and (bt+15, bt+14, ..., bt) respectively for LFSR-A and LFSR-B, where
at+i and bt+i represent elements in F216 defined by different generating polynomials. The
elements at+i of LFSR-A are generated by the polynomial

gA(x) = x16 + x15 + x12 + x11 + x8 + x3 + x2 + x+ 1 ∈ F2[x]

and the elements bt+i of LFSR-B are generated by

gB(x) = x16 + x15 + x14 + x11 + x8 + x6 + x5 + x+ 1 ∈ F2[x]
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Figure 1: The keystream generation phase of the SNOW-V stream cipher

Figure 2: The AES encryption round function AESR with the round key constant being 0

Let α be a root of gA(x) and β be a root of gB(x). The LFSR-A sequence and LFSR-B
sequence are given by the expressions at+16 = bt ⊕ αat ⊕ at+1 ⊕ α−1at+8, and bt+16 =
at⊕βbt⊕ bt+3⊕β−1bt+8 respectively, where “⊕” denotes the bitwise XOR of 16-bit blocks.

The FSM of SNOW-V has three 128-bit registers, R1, R2 and R3. Let T1t be a 128-bit
word from the LFSR-B such that

T1t = (b8t+15, b8t+14, ..., b8t+8),

and T2t be a 128-bit word from the LFSR-A such that

T2t = (a8t+7, a8t+6, ..., a8t).

Let “�32” denote a parallel application of four additions modulo 232 over each sub-word,
and “⊕” denote the bitwise XOR operation of 128-bit blocks. The FSM takes the two
blocks T1t and T2t as inputs, produces a 128-bit keystream zt = (T1t �32 R1t)⊕R2t as



384 resistance of SNOW-V against fast correlation attacks

output, and updates the registers R1, R2 and R3 according to

R1t+1 = σ((T2t ⊕R3t)�32 R2t),
R2t+1 = AESR(R1t),
R3t+1 = AESR(R2t),

where σ is a byte-wise permutation given by

σ = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15],

and AESR(·) denotes a full AES encryption round function with the round key constant
being zero, as shown in Fig. 2. Let r be a 128-bit input to AESR(·), then r is mapped to
the state array of the AES round function in the following way:

(r0 ‖ r1 ‖ r2 ‖ r3 ‖ r4 ‖ r5 ‖ r6 ‖ r7 ‖ r8 ‖ r9 ‖ r10 ‖ r11 ‖ r12 ‖ r13 ‖ r14 ‖ r15)

⇐⇒


r0 r4 r8 r12
r1 r5 r9 r13
r2 r6 r10 r14
r3 r7 r11 r15

 , ri ∈ F28

and the output can be written as MixColumns(ShiftRows(SubBytes(r))).

3 Computing the Bitwise Linear Approximations of Certain
Types of Functions

In this section, we summarize some algorithms to efficiently compute the linear approx-
imations of certain types of composition functions composed of basic operations like �,
⊕, Permutation, and S-box, by using the slice-like techniques. These functions have been
widely used in word-oriented stream ciphers such as SOSEMANUK [2] and SNOW-like
ciphers.

3.1 Function Types
(1) Type-I function. We define the (n, n)-function Sbox : F2n → F2n as the Type-I

function, which is constructed by several parallel small-scale s-boxes sj such that

Sbox(x) = (s0(x0) ‖ s1(x1) ‖ ... ‖ sd−1(xd−1)), (1)

where x = (x0 ‖ x1 ‖ ... ‖ xd−1) with xj ∈ F2m and d = n
m , and sj are all (m,m)-

functions, j = 0, 1, ..., d− 1.
Problem 1. Compute the correlation of the bitwise linear approximation of the
Type-I function Sbox(·) with respect to the output mask Γ(0) and the input mask
Γ(1), which is denoted by Cor1(Γ(0); Γ(1)).
Method and Complexity. The computation of the bitwise linear approximation
of the Type-I function is usually carried out according to the preprocessing phase
and processing phase. After the preprocessing phase, the processing phase will cost
a linear-time complexity. The detailed process is described in Appendix A.

(2) Type-II function. We define the ρ-input addition modulo 2n as the Type-II
function, i.e., F : F2n × ...× F2n → F2n , such that

F (x(1), ...,x(ρ)) = x(1) �n · · ·�n x(ρ). (2)

Problem 2. Compute the correlation of the bitwise linear approximation of the
Type-II function F with respect to the output mask Γ(0) and the input masks
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Γ(1), ...,Γ(ρ), which is denoted by Cor2(Γ(0); Γ(1), ...,Γ(ρ)).
Method and Complexity. In [19], the authors have proposed a linear-time algo-
rithm to compute the correlation of the bitwise linear approximation of F for any
given mask tuple, we describe it in Appendix B.

(3) Type-III function. We define the following function G : F2n × F2n → F2n as the
Type- III function:

G(x(1),x(2)) = x(1) �n Sbox(x(2)), (3)
where Sbox(·) is the Type-I function defined above. We emphasize the importance
of this type of function, since they are at the core of SNOW ciphers like SNOW 2.0,
SNOW 3G and also SNOW-V, as later shown in Section 4.
Problem 3. Compute the correlation of the bitwise linear approximation of the
Type-III function G with respect to the output mask Γ(0) and the input masks
Γ(1),Γ(2), which is denoted by Cor3(Γ(0); Γ(1),Γ(2)).
Method and Complexity. In [11], a linear-time algorithm is proposed to compute
the correlation of the bitwise linear approximation of G under any given mask tuple,
and then used to mount attacks on SNOW 2.0 and SNOW 3G. At a very high
level, the idea is to divide the n-bit values into d values of m-bit according to the
specific structure of the function Sbox(·), and then pre-compute and store some useful
matrices, and finally compute the correlation by doing some matrix multiplications
using these pre-computed matrices. The details are given in Appendix C.

(4) Type-IV function. Let n,m be two positive integers such that m divides n and
d = n

m . For each variable x ∈ F2n , we can split it into d blocks and each block has
m bits, i.e., x = (x0 ‖ x1 ‖ ... ‖ xd−1) with xj ∈ F2m for j = 0, 1, ..., d − 1. Let p
be a permutation of 0 to d − 1 and define p(x) = (xp(0) ‖ xp(1) ‖ ... ‖ xp(d−1)) for
x ∈ F2n . Based on this, we define the function H : F2n × F2n × F2n → F2n as the
Type-IV function such that

H(x(1),x(2),x(3)) = x(1) �n p(x(2) �m x(3)), (4)

which is composed of the addition modulo 2n (“�n”) , the addition modulo 2m
(“�m”) and the permutation p.
Problem 4. Compute the correlation of the bitwise linear approximation of the
Type-IV function H with respect to the output mask Γ(0) and the input masks
Γ(1),Γ(2),Γ(3), which is denoted by Cor4(Γ(0); Γ(1),Γ(2),Γ(3)).
Method and Complexity. We will show how to compute the correlation of the
bitwise linear approximation of the Type-IV function H in Section 3.2.

(5) Type-V function. Let l, n,m be three positive integers such that m divides n and
n divides l, with d = n

m and d′ = l
n . For each variable X ∈ F2l , we can split it into

d′ blocks and each block has n bits, i.e., X = (X0 ‖ X1 ‖ ... ‖ Xd′−1) with Xk ∈ F2n

for k = 0, 1, ..., d′ − 1, and for each Xk ∈ F2n , it can be split into d blocks and each
block has m bits, i.e., Xk = (xkd ‖ xkd+1 ‖ ... ‖ xkd+(d−1)) with xkd+j ∈ F2m for
j = 0, 1, ..., d− 1. Let P be a permutation of 0 to d′d− 1 such that

P (X) =(xP (0) ‖ ... ‖ xP (d−1)︸ ︷︷ ︸ ‖ ... ‖ xP (kd) ‖ ... ‖ xP (kd+(d−1))︸ ︷︷ ︸ ‖ ...
‖ xP ((d′−1)d) ‖ ... ‖ xP (d′d−1)︸ ︷︷ ︸)

Based on this, we define the function H : F2l × F2l × F2l → F2l as the Type-V
function such that

H(X(1),X(2),X(3)) = X(1) �n P (X(2) �m X(3)), (5)
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which is composed of the addition modulo 2n (“�n”) , the addition modulo 2m
(“�m”) and the permutation P .
Problem 5. Compute the correlation of the bitwise linear approximation of the
Type-V function H with respect to the output mask Γ(0) and the input masks
Γ(1),Γ(2),Γ(3), which is denoted by Cor5(Γ(0); Γ(1),Γ(2),Γ(3)).
Method and Complexity. As later shown in Section 5, this type of function plays
an important role in analyzing the strength of SNOW-V against linear approxima-
tion attacks. We will show how to compute the correlation of the bitwise linear
approximation in Section 3.3.

3.2 Computing the Bitwise Linear Approximation of Type-IV Function
Problem 4. Compute the correlation of the bitwise linear approximation of the Type-IV
function H with respect to the output mask Γ(0) and the input masks Γ(1),Γ(2),Γ(3),
which is denoted by Cor4(Γ(0); Γ(1),Γ(2),Γ(3)).

Method and Complexity. Due to the definition of the permutation p, we have

p(x(2) �m x(3)) = ((x(2)
p(0) �m x(3)

p(0)) ‖ (x(2)
p(1) �m x(3)

p(1)) ‖ ... ‖ (x(2)
p(d−1) �m x(3)

p(d−1))),

which belongs to the Type-I function with sj(·) = x(2)
p(j) �m x(3)

p(j) for j = 0, 1, ..., d − 1.
Thus H is actually in the Type-III category, and can be solved using the method in [11]
(Theorem 3 in Appendix C). We describe the process as follows.

3.2.1 A Linear Representation of Cor4(Γ(0); Γ(1),Γ(2),Γ(3))

Similar with the method in Appendix C, we split the masks Γ(0),Γ(1),Γ(2),Γ(3) into d blocks
as Γ(i) = (Γ(i)

0 ‖ Γ(i)
1 ‖ ... ‖ Γ(i)

d−1) with Γ(i)
j ∈ F2m . Denote uj = x(1)

j + (x(2)
p(j)�mx(3)

p(j)),
j = 0, 1, ..., d− 1, we define the Boolean functions hj for j = 0, 1, ..., d− 1 as follows:

hj(·) = Γ(0)
j · (uj �m θj)⊕ Γ(1)

j · x
(1)
j ⊕ Γ(2)

p(j) · x
(2)
p(j) ⊕ Γ(3)

p(j) · x
(3)
p(j),

where θ0 = 0 and θj+1 = b(uj + θj)/2mc. Let Vj = (Γ(0)
j ,Γ(1)

j ,Γ(2)
p(j),Γ

(3)
p(j)) and CVj

be
the 2× 2 matrix such that

CVj
[α][θj ] = 2−3m(|{x(1)

j ,x(2)
p(j),x

(3)
p(j) ∈ F2m : hj(θj , ·) = 0, θj+1(θj , ·) = α}|

− |{x(1)
j ,x(2)

p(j),x
(3)
p(j) ∈ F2m : hj(θj , ·) = 1, θj+1(θj , ·) = α}|),

for α ∈ {0, 1} and θj ∈ {0, 1}. According to Theorem 3 in Appendix C, we have

Cor4(Γ(0); Γ(1),Γ(2),Γ(3)) = l2CVd−1 ...CV1CV0e0. (6)

That means the correlation of the bitwise linear approximation of H for the given mask
tuple (Γ(0),Γ(1),Γ(2),Γ(3)) can be accurately computed by doing d multiplications of a
2 × 2 matrix and a column vector, and one additional addition, which is a linear-time
procedure.

For a given partial mask tuple V = (γ(0), γ(1), γ(2), γ(3)) with γ(i) ∈ F2m , we define a
general expression for all the hj as follows:

h : {0, 1} × (F2m)3 → {0, 1} × F2

(iθ,x,y, z) 7→ (oθ, r)
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such that oθ(iθ, ·) = b(x + (y�m z) + iθ)/2mc and r(iθ, ·) = γ(0) · (x �m (y �m z) �m
iθ)⊕ γ(1) · x⊕ γ(2) · y⊕ γ(3) · z, where x,y, z ∈ F2m and iθ ∈ {0, 1}. Thus we have

CV [α][iθ] = 2−3m(|{x,y, z ∈ F2m : r(iθ, ·) = 0, oθ(iθ, ·) = α}|
− |{x,y, z ∈ F2m : r(iθ, ·) = 1, oθ(iθ, ·) = α}|).

(7)

for iθ ∈ {0, 1} and α ∈ {0, 1}. Based on this, we say that the row vector l2, the column
vector e0 and the matrices CV for all 24m possibilities of V form a linear representation of
the correlation of all the bitwise linear approximations of the Type-IV function H. Now
the task remains to compute these matrices.

For any given partial mask tuple V = (γ(0), γ(1), γ(2), γ(3)), the straightforward approach
to compute the matrix CV by (7) needs a time complexity of O(23m+1). If our goal is
to find all those mask tuples (Γ(0),Γ(1),Γ(2),Γ(3)) such that the linear approximations of
H would be highly biased, we seem to need to pre-compute the matrices CV for all 24m

possibilities of V, and thus the time complexity would be O(27m+1), which is impractical
for the most common value m = 8. Fortunately, this can be efficiently solved by adapting
the idea of Theorem 2 in Appendix B to our case to compute the matrices CV for all the
possible values of V.

In the following, we will derive a linear representation for the matrices CV by adapting
the bit-slicing technique of Theorem 2.

3.2.2 A Linear Representation for the Matrices CV

Write x,y, z and also γ(i) in bits as

x = (x0 ‖ x1 ‖ ... ‖ xm−1),
y = (y0 ‖ y1 ‖ ... ‖ ym−1),
z = (z0 ‖ z1 ‖ ... ‖ zm−1),

and γ(i) = (γ(i)
0 ‖ γ(i)

1 ‖ ... ‖ γ(i)
m−1) for i = 0, 1, 2, 3, we have derived the following

expressions for (r, oθ) of the general expression h:

r(iθ, ·) = γ
(0)
0 · (x0 ⊕ (y0 ⊕ z0 ⊕ 0)⊕ iθ)⊕ γ(1)

0 · x0 ⊕ γ(2)
0 · y0 ⊕ γ(3)

0 · z0

⊕ γ(0)
1 · (x1 ⊕ (y1 ⊕ z1 ⊕ cr0

1)⊕ cr1
1)⊕ γ(1)

1 · x1 ⊕ γ(2)
1 · y1 ⊕ γ(3)

1 · z1

⊕ ......

⊕ γ(0)
j · (xj ⊕ (yj ⊕ zj ⊕ cr0

j )⊕ cr1
j )⊕ γ

(1)
j · xj ⊕ γ

(2)
j · yj ⊕ γ

(3)
j · zj

⊕ ......

⊕ γ(0)
m−1 · (xm−1 ⊕ (ym−1 ⊕ zm−1 ⊕ cr0

m−1)⊕ cr1
m−1)⊕ γ(1)

m−1 · xm−1

⊕ γ(2)
m−1 · ym−1 ⊕ γ(3)

m−1 · zm−1,

and oθ(iθ, ·) = cr1
m, where cr0

j , cr
1
j ∈ {0, 1} are local carries introduced by two additions

modulo 2m such that{
cr0

0 = 0,
cr0
j+1 =

⌊
(yj + zj + cr0

j )/2
⌋
, j = 0, 1, ...,m− 1

and {
cr1

0 = iθ,
cr1
j+1 =

⌊
(xj + (yj ⊕ zj ⊕ cr0

j ) + cr1
j )/2

⌋
, j = 0, 1, ...,m− 1

We let r0, r1, ..., rm−1 denote the expressions extracted from r such that

rj(·) = γ
(0)
j · (xj ⊕ (yj ⊕ zj ⊕ cr0

j )⊕ cr1
j )⊕ γ

(1)
j · xj ⊕ γ

(2)
j · yj ⊕ γ

(3)
j · zj ,
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then we have
r(iθ, ·) = r0(·)⊕ r1(·)⊕ ...⊕ rm−1(·).

Through the above analysis, we describe in the following theorem a linear-time algorithm
to compute the matrix CV for each given V.

Theorem 1. Let L be the 2× 4 constant matrix that L =
(

1 1 0 0
0 0 1 1

)
, and E be the

4×2 constant matrix that E =
(

1 0 0 0
0 0 1 0

)T
, For any given V = (γ(0), γ(1), γ(2), γ(3)),

let ~vj = (γ(0)
j , γ

(1)
j , γ

(2)
j , γ

(3)
j ), j = 0, 1, ...,m− 1, then the 2× 2 matrix CV can be computed

as:
CV = Lc~vm−1 ...c~v1c~v0E,

where c~vj
are 4× 4 matrices such that

c~vj
[2α1 + α0][2cr1

j + cr0
j ]

= 2−3(|{xj , yj , zj ∈ F2 : rj(cr0
j , cr

1
j , ·) = 0, cr0

j+1(cr0
j , ·) = α0, cr1

j+1(cr0
j , cr

1
j , ·) = α1}|

− |{xj , yj , zj ∈ F2 : rj(cr0
j , cr

1
j , ·) = 1, cr0

j+1(cr0
j , ·) = α0, cr1

j+1(cr0
j , cr

1
j , ·) = α1}|),

for α0, α1 ∈ {0, 1} and cr0
j , cr

1
j ∈ {0, 1}, which are pre-computed by Algorithm 2. We say

that the constant matrices L and E, and the 4× 4 matrices c~v for all ~v ∈ F4
2 form a linear

representation for all the 24m matrices CV .

Algorithm 2 Construction of the matrices c~v for all ~v
1: Prepare two 4× 4 matrices N0 and N1;
2: for ~v = (v(0), v(1), v(2), v(3)) ∈ F4

2 do
3: Create a matrix c~v of size 4× 4;
4: Initialize N0 and N1 with zeros;
5: for ic0 ∈ {0, 1}, ic1 ∈ {0, 1} and x, y, z ∈ F2 do
6: compute r = v(0) · [x⊕ (y ⊕ z ⊕ ic0)⊕ ic1]⊕ v(1) · x⊕ v(2) · y ⊕ v(3) · z;
7: compute oc0 =

⌊
(y + z + ic0)/2

⌋
;

8: compute oc1 =
⌊
(x+ (y ⊕ z ⊕ ic0) + ic1)/2

⌋
;

9: Nr[2 · oc1 + oc0][2 · ic1 + ic0] := Nr[2 · oc1 + oc0][2 · ic1 + ic0] + 1;
10: end for
11: for ic0, ic1 ∈ {0, 1} and oc0, oc1 ∈ {0, 1} do
12: c~v[2 · oc1 + oc0][2 · ic1 + ic0]

:= (N0[2 · oc1 + oc0][2 · ic1 + ic0]−N1[2 · oc1 + oc0][2 · ic1 + ic0])/23;
13: end for
14: end for
Output: all the matrices c~v for all 16 possible values of ~v.

Remark. From Algorithm 2, all the matrices c~v can be constructed with a total time
complexity of about 24 × 25 = 29 and a total memory complexity of 24 × (4× 4) = 28. For
a fixed V, the matrix CV can be computed according to Theorem 1 by doing m matrix
multiplications of small size, by utilizing the matrices c~vj

and the constant matrices L
and E, which needs only a linear-time complexity of O(m), whereas the straightforward
method by Eq. (7) would require a complexity of O(23m+1).

Now we summarize the general process for computing the correlation of the bitwise
linear approximation of H for any given mask tuple (Γ(0),Γ(1),Γ(2),Γ(3)) in the following
two phases:

• In the preprocessing phase, we pre-compute the matrices CV for all (at most) 24m

possible values of V according to Theorem 1, which requires a total time complexity
of O(m24m) and a total memory complexity of O(24m) for all V.
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• In the processing phase, we compute the correlation of the linear approxima-
tion of H for each given mask tuple (Γ(0),Γ(1),Γ(2),Γ(3)) according to (6), i.e.,
Cor4(Γ(0); Γ(1),Γ(2),Γ(3)) = l2CVd−1 ...CV1CV0e0, by doing d multiplications of a
2 × 2 matrix and a column vector, and one additional addition, which is a linear-
time procedure, and thus allows for a wide range of search of highly biased linear
approximations.

3.3 Computing the Bitwise Linear Approximation of Type-V Function
Problem 5. Compute the correlation of the bitwise linear approximation of the Type-V
function H with respect to the output mask Γ(0) and the input masks Γ(1),Γ(2),Γ(3),
which is denoted by Cor5(Γ(0); Γ(1),Γ(2),Γ(3)).
Method and Complexity. Note that H looks quite similar to the Type-IV function H.
We will present a similar method to compute the bitwise linear approximation of H by
utilizing the pre-computed matrices CV in Section 3.2. Considering the structure of H, we
represent the masks Γ(0),Γ(1),Γ(2),Γ(3) as

Γ(i) = (Γ(i)
0 ‖ ... ‖ Γ(i)

d−1︸ ︷︷ ︸ ‖ ... ‖ Γ(i)
kd ‖ ... ‖ Γ(i)

kd+(d−1)︸ ︷︷ ︸ ‖ ... ‖ Γ(i)
(d′−1)d ‖ ... ‖ Γ(i)

d′d−1︸ ︷︷ ︸),
where Γ(i)

kd+j ∈ F2m for i = 0, 1, 2, 3, j = 0, ..., d − 1 and k = 0, ..., d′ − 1. Let
Vkd+j = (Γ(0)

kd+j ,Γ
(1)
kd+j ,Γ

(2)
P (kd+j),Γ

(3)
P (kd+j)) ∈ (F2m)4 be vectors defined according to

Γ(0),Γ(1),Γ(2),Γ(3), and CVkd+j
be the matrices pre-computed according to Theorem 1.

By adapting Equation (6) for computing the bitwise linear approximation of H, we deduce
that

Cor5(Γ(0); Γ(1),Γ(2),Γ(3)) =
d′−1∏
k=0

(l2CVkd+(d−1) ...CVkd+1CVkd
e0), (8)

thus the correlation of the bitwise linear approximation of H for any given mask tuple
(Γ(0),Γ(1),Γ(2),Γ(3)) can be obtained according to Equation (8) by doing d′d matrix
multiplications of small size, which is a linear-time procedure.

4 Analysis of SNOW-V When Assuming σ to Be Identity
We consider a general approach to analyze SNOW-V against linear approximation attacks.
That is, we try to approximate the FSM part through linear masking and then to cancel
out the contributions of the registers R1, R2 and R3 by combining expressions for several
keystream outputs. In this section, we assume σ to be identity (denoted by σ0), i.e.,
there is no byte-wise permutation in the FSM part, as depicted in Fig. 3, which is also
the original version of SNOW-V appearing on the IACR ePrint on November 29, 2018.
We denote it SNOW-Vσ0 to make a distinction. We will first study the bitwise linear
approximations for the FSM of SNOW-Vσ0 by using the linear-time algorithms in Section
3, and then present a bitwise fast correlation attack accordingly.

4.1 Bitwise Linear Approximation of the FSM of SNOW-Vσ0

To build the bitwise linear approximation of the FSM of SNOW-Vσ0 , we consider to apply
the 128-bit linear masks Φ, Γ and Λ to zt−1, zt and zt+1 respectively, i.e.,

Φ · zt−1 = Φ · (T1t−1 �32 R1t−1)⊕Φ ·R2t−1,

Γ · zt = Γ · (T1t �32 R1t)⊕ Γ ·R2t,
Λ · zt+1 = Λ · (T1t+1 �32 R1t+1)⊕Λ ·R2t+1.
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Figure 3: The FSM part of SNOW-Vσ0

Let ut = R1t−1, vt = R2t−1 and wt = R1t. According to the update expressions for the
registers of the FSM, when σ is just the identity, the first register R1 is updated according
to R1t+1 = (T2t⊕R3t)�32R2t. We then have R1t+1 = (T2t⊕AESR(vt))�32AES

R(ut),
R2t = AESR(ut), and R2t+1 = AESR(wt), and thus

Φ · zt−1 = Φ · (T1t−1 �32 ut)⊕Φ · vt,
Γ · zt = Γ · (T1t �32 wt)⊕ Γ ·AESR(ut),

Λ · zt+1 = Λ · (T1t+1 �32 (T2t ⊕AESR(vt))�32 AES
R(ut))⊕Λ ·AESR(wt).

Regarding to the internal states and keystream outputs, we consider the following four
associated bitwise linear approximations by introducing a 128-bit intermediate linear mask
Θ, and write them as follows:
(a) Φ · (T1t−1 �32 ut) = Φ · T1t−1 ⊕Θ ·AESR(ut)⊕ n(t)

a ,
(b) Γ · (T1t �32 wt) = Γ · T1t ⊕Λ ·AESR(wt)⊕ n(t)

b ,
(c) Λ · (T1t+1 �32 (T2t ⊕AESR(vt))�32 AES

R(ut))
= Λ · T1t+1 ⊕Λ · (T2t ⊕AESR(vt))⊕ (Θ⊕ Γ) ·AESR(ut)⊕ n(t)

c ,

(d) Λ ·AESR(vt) = Φ · vt ⊕ n(t)
d .

where n(t)
a n

(t)
b , n

(t)
c , n

(t)
d are noises introduced by these linear approximations. Let n(t) =

n
(t)
a ⊕ n(t)

b ⊕ n
(t)
c ⊕ n(t)

d . With the above relations, the bitwise linear approximations of the
FSM of SNOW-Vσ0 have the following form:

Φ · zt−1 ⊕ Γ · zt ⊕Λ · zt+1 = Φ · T1t−1 ⊕ Γ · T1t ⊕Λ · (T1t+1 ⊕ T2t)⊕ n(t). (9)

Basically, we first want to find mask tuples (Φ,Γ,Λ) for (9) such that n(t) would be
highly biased, and then employ them in a bitwise fast correlation attack. For the four
linear approximation relations (a), (b), (c) and (d), we have the following illustrations.

1. For the linear approximation relation (a), we write

AESR(ut) = MixColumns(ShiftRows(SubBytes(ut))).

Denote xt = SubBytes(ut) as the output of 16 parallel AES S-boxes SR, then
AESR(ut) = MixColumns(ShiftRows(xt)). Given the mask Θ, we let Θ′ be the
mask such that Θ′ · xt = Θ · MixColumns(ShiftRows(xt)). Accordingly we can
rewrite the noise n(t)

a as

n(t)
a = Φ · (T1t−1 �32 SubBytes−1(xt))⊕Φ · T1t−1 ⊕Θ′ · xt,

where SubBytes−1(·) denotes the inverse of SubBytes(·), i.e., 16 parallel operations
of S−1

R . We refer to Appendix D for the computation of Θ′ from Θ.
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2. Similarly, for the linear approximation relation (b), we let yt = SubBytes(wt), and
Λ′ be the mask such that Λ′ · yt = Λ · MixColumns(ShiftRows(yt)), then the noise
n

(t)
b can be expressed as

n
(t)
b = Γ · (T1t �32 SubBytes−1(yt))⊕ Γ · T1t ⊕Λ′ · yt.

3. For the linear approximation relation (c), let ξt = T2t ⊕ AESR(vt) and ηt =
AESR(ut), then the noise n(t)

c can be expressed as

n(t)
c = Λ · (T1t+1 �32 ξt �32 ηt)⊕Λ · T1t+1 ⊕Λ · ξt ⊕ (Θ⊕ Γ) · ηt.

4. For the linear approximation relation (d), we note Λ ·AESR(vt) = Λ′ ·SubBytes(vt),
thus

n
(t)
d = Λ′ · SubBytes(vt)⊕Φ · vt.

To sum up, the four linear approximations can be rewritten as follows:

n(t)
a = Φ · (T1t−1 �32 SubBytes−1(xt))⊕Φ · T1t−1 ⊕Θ′ · xt,

n
(t)
b = Γ · (T1t �32 SubBytes−1(yt))⊕ Γ · T1t ⊕Λ′ · yt,
n(t)
c = Λ · (T1t+1 �32 ξt �32 ηt)⊕Λ · T1t+1 ⊕Λ · ξt ⊕ (Θ⊕ Γ) · ηt,

n
(t)
d = Λ′ · SubBytes(vt)⊕Φ · vt.

Since the distributions of the noises n(t)
a , n(t)

b , n(t)
c , n(t)

d are independent of the time instance
t, we will simplify them by writing na, nb, nc, nd respectively. Let εFSM(Φ,Γ,Λ) denote
the correlation of the linear approximation relation (9) corresponding to the linear mask
tuple (Φ,Γ,Λ). By applying the results about correlations over composition functions in
[18], we have

εFSM(Φ,Γ,Λ) = ε(nb)ε(nd)
∑

Θ
ε(na)ε(nc).

In the next part, we will show how to compute the correlations of the above noise terms
na, nb, nc and nd respectively, and finally obtain εFSM(Φ,Γ,Λ).

4.2 Computation of εFSM(Φ,Γ,Λ)
4.2.1 Computation of the Correlations of na and nb

Note that na and nb have the same form but different 128-bit linear mask tuples, which
is (Φ; Φ,Θ′) for na and (Γ; Γ,Λ′) for nb. Let G : F2128 × F2128 → F2128 be a vectorial
Boolean function such that

G(X(1),X(2)) = X(1) �32 SubBytes−1(X(2)),

where X(1) and X(2) are both 128-bit (4-word) random variables. Let X(1) = (x(1)
0 ‖

x(1)
1 ‖ x(1)

2 ‖ x(1)
3 ) and X(2) = (x(2)

0 ‖ x(2)
1 ‖ x(2)

2 ‖ x(2)
3 ), where x(1)

k ,x(2)
k ∈ F232 for all

k = 0, 1, 2, 3. We define another function G as follows:

G : F232 × F232 → F232

(x(1)
k ,x(2)

k ) 7→ x(1)
k �32 Sbox−1(x(2)

k ),

where Sbox−1(·) represents the output of four parallel operations of S−1
R . Then G belongs to

the Type-III function defined in Section 3.1 with the parameters n = 32, m = 8 and d = 4.
Note that the operation “�32” in G(·) is a parallel application of four additions modulo 232
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over each 32-bit sub-word. It is easy to verify that G(·) can be expressed as four functions
G in parallel. Based on this, we let Φ = (Φ0 ‖ Φ1 ‖ Φ2 ‖ Φ3), Θ′ = (Θ′0 ‖ Θ′1 ‖ Θ′2 ‖ Θ′3),
Γ = (Γ0 ‖ Γ1 ‖ Γ2 ‖ Γ3), Λ′ = (Λ′0 ‖ Λ′1 ‖ Λ′2 ‖ Λ′3), where Φk,Θ′k,Γk,Λ′k ∈ F232 for
k = 0, 1, 2, 3. Then the correlation of na with the mask tuple (Φ; Φ,Θ′) and the correlation
of nb with the mask tuple (Γ; Γ,Λ′) can be computed according to the Piling-up lemma
[17] as follows:

ε(na) =
3∏
k=0

Cor3(Φk; Φk,Θ′k) ,
3∏
k=0

ε(k)
a , ε(nb) =

3∏
k=0

Cor3(Γk; Γk,Λ′k) ,
3∏
k=0

ε
(k)
b .

Complexity. For any 32-bit masks A,B, we write A = (a0 ‖ a1 ‖ a2 ‖ a3) and
B = (b0 ‖ b1 ‖ b2 ‖ b3), where aj ,bj ∈ F28 for j = 0, 1, 2, 3, then Cor3(A; A,B) can be
efficiently computed by Theorem 3 in Appendix C as

Cor3(A; A,B) = l2M(a3,a3,b3)M(a2,a2,b2)M(a1,a1,b1)M(a0,a0,b0)e0,

where the matrices1 M(aj ,aj ,bj) are pre-computed by Algorithm 1 in Appendix C by
setting all the parallel functions sj to be S−1

R . Generally, to compute Cor3(A; A,B) for
any A,B ∈ F232 , we first pre-compute 28 × 28 = 216 matrices M(α,α,β) by trying all
the possibilities of α, β ∈ F28 , which requires a time complexity of 216 × (216 × 2) = 233

and a memory complexity of 216 × (2× 2) = 218 according to Algorithm 1. Using these
pre-computed matrices, Cor3(A; A,B) can be obtained by doing 4 matrix multiplications
of small size, and thus the value of ε(na) with any given (Φ; Φ,Θ′)(Resp. ε(nb) with any
given (Γ; Γ,Λ′)) can be easily derived.

For the value of Cor3(A; A,B) under any given masks A,B, we have the following
conclusion which will help in finding good linear approximations for the FSM of SNOW-Vσ0 .
The proof is given in Appendix E.

Corollary 1. For any 32-bit masks A = (a0 ‖ a1 ‖ a2 ‖ a3) and B = (b0 ‖ b1 ‖ b2 ‖ b3),
suppose Cor3(A; A,B) 6= 0. Then we have
(1) a3 =0x00 if and only if b3 =0x00;
(2) a3 = a2 =0x00 if and only if b3 = b2 =0x00;
(3) a3 = a2 = a1 =0x00 if and only if b3 = b2 = b1 =0x00;
(4) a3 = a2 = a1 = a0 =0x00 if and only if b3 = b2 = b1 = b0 =0x00.
(5) If A = B =0x00000000, then Cor3(A; A,B) = 1.

4.2.2 Computation of the Correlation of nc

Let F : F2128 × F2128 × F2128 → F2128 be a vectorial Boolean function such that

F(X(1),X(2),X(3)) = X(1) �32 X(2) �32 X(3),

where X(1), X(2), X(3) are 128-bit (4-word) random variables, then F can be viewed as a
parallel application of four Type-II functions defined in Section 3.1 with the parameters
n = 32 and ρ = 3.

For nc, we denote the involved masks Λ, Θ, Γ as Λ = (Λ0 ‖ Λ1 ‖ Λ2 ‖ Λ3), Γ = (Γ0 ‖
Γ1 ‖ Γ2 ‖ Γ3), Θ = (Θ0 ‖ Θ1 ‖ Θ2 ‖ Θ3), where Λk,Γk,Θk ∈ F232 . Then the correlation
of nc with the mask tuple (Λ; Λ,Λ,Θ⊕ Γ) can be computed as follows:

ε(nc) =
3∏
k=0

Cor2(Λk; Λk,Λk,Θk ⊕ Γk) ,
3∏
k=0

ε(k)
c .

1Note that we have simplified the representations of the matrices M(j,(γ(0),γ(1),γ(2))) by
M(γ(0),γ(1),γ(2)), since all the parallel functions sj(·) are the same in G which is S−1

R .
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Complexity. For any 32-bit mask A,B, we use the approach in Appendix B to compute
Cor2(A; A,A,B). For this computation, we only need to pre-compute four 3× 3 matrices
D(α,α;α;β) for α, β ∈ F2, corresponding to a time complexity of 4 × (23 × 3) = 26.58

and a memory complexity of 4 × (3 × 3) = 25.17. Let A = (a0 ‖ a1 ‖ ... ‖ a31) and
B = (b0 ‖ b1 ‖ ... ‖ b31), where aj , bj ∈ F2 for j = 0, 1, ..., 31, then Cor2(A; A,A,B) can
be efficiently computed according to Theorem 2 as

Cor2(A; A,A,B) = l3D(a31,a31,a31,b31)...D(a1,a1,a1,b1)D(a0,a0,a0,b0)e0,

which can be obtained by doing 32 matrix multiplications of small size, and thus the value
of ε(nc) with any given mask tuple (Λ; Λ,Λ,Θ⊕ Γ) can be easily derived.

4.2.3 Computation of the Correlation of nd

Note that n(t)
d = Λ′ · SubBytes(vt) ⊕ Φ · vt, where SubBytes(·) is an application of 16

AES S-boxes SR, and can also be represented as four parallel applications of the function
Sbox(·), which is the Type-I function with the parameters n = 32 and m = 8. Then the
correlation of nd with the mask tuple (Λ′; Φ) can be computed as

ε(nd) =
3∏
k=0

Cor1(Λ′k; Φk) ,
3∏
k=0

ε
(k)
d .

Complexity. We use the approach in Appendix A to compute Cor1(A; B) for any 32-bit
masks A,B. First, we pre-compute a linear approximation table (LAT) to store all the
linear approximations of SR by trying all the possibilities of a,b values, i.e., all the values
of εSR

(a; b) for all a,b ∈ F28 are stored in the row of LAT indexed by (a,b). The
pre-computation takes time 224. Let A = (a0 ‖ a1 ‖ a2 ‖ a3) and B = (b0 ‖ b1 ‖ b2 ‖ b3),
where aj ,bj ∈ F28 for j = 0, 1, 2, 3, we have

Cor1(A; B) = εSR
(a3; b3)εSR

(a2; b2)εSR
(a1; b1)εSR

(a0; b0),

which can be derived by table lookups four times, and thus the value of ε(nd) with any
given mask tuple (Λ′; Φ) can be directly derived.

4.2.4 Computation of εFSM(Φ,Γ,Λ)

From the above discussion, we have ε(na) =
3∏
k=0

ε
(k)
a , ε(nb) =

3∏
k=0

ε
(k)
b , ε(nc) =

3∏
k=0

ε
(k)
c , and

ε(nd) =
3∏
k=0

ε
(k)
d , where

ε(k)
a = Cor3(Φk; Φk,Θ′k), ε(k)

c = Cor2(Λk; Λk,Λk,Θk ⊕ Γk),

ε
(k)
b = Cor3(Γk; Γk,Λ′k), ε

(k)
d = Cor1(Λ′k; Φk),

thus the correlation of the linear approximation relation (9) corresponding to the linear
mask tuple (Φ,Γ,Λ) can be computed as follows:

εFSM(Φ,Γ,Λ) =
3∏
k=0

ε
(k)
b ε

(k)
d

∑
Θ

(
3∏
k=0

ε(k)
a ε(k)

c ). (10)

In the following part, we will show how to search for the mask tuples (Φ,Γ,Λ) such that
|εFSM(Φ,Γ,Λ)| are as large as possible.
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4.3 Search for Linear Masks (Φ,Γ,Λ) for εFSM(Φ,Γ,Λ)
In this part, we hope to find mask tuples (Φ,Γ,Λ) such that |εFSM(Φ,Γ,Λ)| computed
by Equation (10) are as large as possible. Obviously, executing the search for all possible
mask values is impractical. Therefore, we consider to use a search strategy attempting to
find some potential linear masks.

For ease of description, we define the following two sets Sid and Sid for id ∈ {0, 1, 2, 3}:

Sid = {Λ = (Λ0 ‖ Λ1 ‖ Λ2 ‖ Λ3) : Λid ∈ F∗232 ,Λk = 0 ∈ F232 for all k 6= id},
Sid = {Λ = (Λ0 ‖ Λ1 ‖ Λ2 ‖ Λ3) : Λid = 0xa ∈ F∗28 ,Λk = 0 ∈ F232 for all k 6= id}.

Note that Sid ⊂ Sid for a fixed value id. For Λ, let Λ′ be the mask such that Λ′ ·X =
Λ · MixColumns(ShiftRows(X)) for all X ∈ F2128 . According to the computation of Λ′
from Λ in Appendix D, we have the following observations:
(1) If Λ ∈ Sid and Λ′ ∈ Sid, then Λ′ ∈ Sid.
(2) If Λ′ ∈ Sid, then Λ ∈ Sid, and there are totally 255 choices of Λid for Λ ∈ Sid, which
are listed in Table 3 of Appendix F.
Based on this, we propose the following search strategy. Intuitively, we hope most terms
of the product in (10) to be 1. To achieve this, we choose the masks Φ,Γ,Λ such that
Φ,Γ,Λ ∈ Sid for any given id ∈ {0, 1, 2, 3}. Also, we hope Λ′ ∈ Sid. According to the
above observations, we have Λ′ ∈ Sid and obtain 255 possible values for Λ. Besides, we
can deduce according to Corollary 1 that the terms of the sum in Equation (10) have
nonzero values if and only if Θ ∈ Sid and Θ′ ∈ Sid, thus Θ′ ∈ Sid, and Θ have the same
255 possible choices with Λ. Under the above conditions, we derive

εFSM(Φ,Γ,Λ) = ε
(id)
b ε

(id)
d

∑
Θ′∈Sid

ε(id)
a ε(id)

c . (11)

Let id take a fixed value. Our search strategy for the mask tuples (Φ,Γ,Λ) begins
by setting Φ ∈ Sid,Γ ∈ Sid and choosing Λ ∈ Sid from Table 3. Then the search will be
carried out according to the following steps.

Step 1: Consider the term ε
(id)
d = Cor1(Λ′id; Φid) in Equation (11). Since Λ′ ∈ Sid, then

Λ′id ∈ F
∗
28 , we get that ε(id)

d 6= 0 only if Φid ∈ F∗28 , i.e., Φ ∈ Sid. Thus, we pick out
255 “promising" values for Φ. Based on this, we tried all 255× 255 combinations of
the selected (Φ,Λ′) and computed the values of ε(id)

d .

Step 2: Consider the term ε
(id)
b = Cor3(Γid; Γid,Λ′id) in Equation (11). Note that Λ′id ∈

F∗28 , according to Corollary 1, we deduce that ε(id)
b 6= 0 only if Γid ∈ F∗28 , i.e., Γ ∈ Sid.

Thus there are also 255 possibilities for Γ. We tried all 255× 255 combinations of
the selected (Γ,Λ′) and computed the values of ε(id)

b .

Step 3: Consider the terms ε(id)
a = Cor3(Φid; Φid,Θ′id) and ε

(id)
c = Cor2(Λid; Λid,Λid,Θid

⊕Γid) in Equation (11). For all the 255× 255× 255 ≈ 224 choices of (Φ,Γ,Λ), we
can compute

∑
Θ′∈Sid

ε
(id)
a ε

(id)
c by including 255 terms of the sum over Θ.

Results. In summary, we have tried all 224 combinations of (Φ,Γ,Λ) and computed
the values of εFSM(Φ,Γ,Λ) by Equation (11). The total time complexity is O(232). We
have obtained some results, listed in Table 1. Our best results are the linear mask tuples
(Φ,Γ,Λ) where Φ,Γ,Λ ∈ Sid and Φid=0x00000002, Γid=0x00000002, Λid=0x0f0c0805.
The corresponding best bitwise linear approximations have the correlation ±2−18.67 and
thus the SEI (squared correlation) 2−37.34.
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Table 1: The partial linear mask tuples (Φid,Γid,Λid) of (Φ,Γ,Λ) for the bitwise linear
approximations of the FSM of SNOW-Vσ0

Φid Γid Λid log(|
∑

ε
(id)
a ε

(id)
c |) log(|ε(id)b |) log(|ε(id)d |) log(|εFSM|)

0x00000002 0x00000002 0x0f0c0805 −11.71 −3.54 −3.42 −18.67
0x00000007 0x00000002 0x0f0c0805 −11.77 −3.54 −3.42 −18.73
0x00000031 0x00000002 0x0f0c0805 −12.30 −3.54 −3.00 −18.84
0x00000003 0x00000002 0x0f0c0805 −11.71 −3.54 −3.68 −18.93

4.4 Using the Bitwise Linear Approximations in a Fast Correlation
Attack on SNOW-Vσ0

The bitwise linear approximations of the FSM of SNOW-Vσ0 have the following form:

Φ · zt−1 ⊕ Γ · zt ⊕Λ · zt+1 = Φ · T1t−1 ⊕ Γ · T1t ⊕Λ · (T1t+1 ⊕ T2t)⊕ n(t).

We use the 4× 4 = 16 mask tuples in Table 1 for approximations (id takes 0, 1, 2, 3). These
bitwise linear approximation relations have an average correlation of α , 2−18.79.

Generally, the fast correlation attack is a key recovery attack, trying to recover the
key by utilizing the correlation between the keystream and the output of the LFSR states,
which is commonly modeled as a decoding problem, as that done in [13, 14, 15, 21]. We
need to decode a binary [N, l]-linear code through a Binary Symmetry Channel (BSC)
with the error probability p = 1

2 (1−α), where α = 2−18.79. The model is shown in Fig. 4.

Figure 4: Model for a bitwise fast correlation attack

Accordingly, the bitwise fast correlation attack on SNOW-Vσ0 is divided into the
preprocessing phase and the processing phase. In the preprocessing phase, we first collect
N samples involving only the keystream words and l = 512 LFSR initial state bits, and
then try to reduce the number of the involved LFSR initial state bits to l′(< l) bits at the
expense of a folded noise level by searching for some 4-tuples from these samples which
vanish on the most significant l − l′ bits to generate parity check equations. After this, we
enter the processing phase to recover the target l′ bits by using the Fast Walsh Transform
(FWT) as that done in [5, 16], and further the whole LFSR initial state of SNOW-Vσ0 .

For example, if l′ = 244, we need about 2l′ ln 2/(α4)2 = 2158.71 samples with correlation
α4 to recover them, i.e., the number of 4-tuples found from N samples should be at least
2158.71. To ensure this, the number N should satisfy (N4 ) 2−(l−l′) ≥ 2158.71, i.e., N should
be at least 2107.83. We let N = 2107.83, an approach to find all these sums requires a
time complexity of O(N2 logN) = O(2222.40). By using these 2158.71 new samples, we
can recover 244 bits of the LFSR initial state using the FWT with a time complexity of
O(2158.71 + l′2l′) = O(2251.93) and a memory complexity of O(2244). The above procedure
requires a keystream of length 2107.83

16 = 2103.83. Though all the complexities are lower
than 2256, the keystream length of SNOW-Vσ0 has been limited to a maximum of 264 for
a single pair of key and IV vectors. So this is not a feasible attack.
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4.5 Comparison
In the design document of SNOW-V [8], the designers have devoted one section to SNOW-
Vσ0 (see Section 3.4 of [8]), where they construct the byte-wise linear approximations and
compute the SEI of large distributions by the convolution algorithms, giving their best
result with the SEI 2−58.7. With this byte-wise linear approximation, they give a fast
correlation attack using the method in [23]. The time complexity is about 2232, and the
required length of the keystream is 2203.

Different from the designer’s method which utilizes large-unit approximations, this
paper exploits bitwise linear approximations to mount the fast correlation attacks. In the
above sections, we have described how to employ the linear-time algorithms in Section 3 to
efficiently compute the correlations of the noise terms na, nb, nc and nd, and finally obtain
εFSM(Φ,Γ,Λ) for any given linear mask tuple (Φ,Γ,Λ) of SNOW-Vσ0 . All these algorithms
combine the so-called “slice-like” technique, where some specific matrices independent
of the given linear mask are pre-computed, and the correlation of the bitwise linear
approximation for any given mask is computed by doing some matrix multiplications using
the pre-computed matrices. Our search algorithms cost only linear-time complexities for
an arbitrary given linear mask tuple, while the convolution algorithms on large distribution
in [8] need much more computations. Based on these algorithms, we carry out a larger
range of search for bitwise masks, and successfully found many stronger approximations
which are “outside” the byte-wise approximations given in [8], thus resulting in better
fast correlation attacks on SNOW-Vσ0 . The best bitwise linear approximations we found
have the SEI (squared correlation) 2−37.34, while the best byte-wise linear approximation
given in [8] has the SEI 2−58.7. That is, the new-found bitwise linear approximations
have significantly larger SEI values than that of the best 8-bit linear approximation in
[8]. Using the stronger approximations, we present a fast correlation attack, which costs a
time complexity of 2251.93 and a memory complexity of 2244, less than the exhaustive key
search, and requires a keystream of length around 2103.83, much less than that provided in
[8] which is 2203.

5 Analysis of SNOW-V When Using σ as Proposed

Figure 5: The FSM part of SNOW-V�32,�8

In this section, we will analyze the resistance of SNOW-V against linear approximation
attacks when using σ as proposed. In the design document of SNOW-V [8], the authors give
their research results on a variant of SNOW-V, where both of the two 32-bit adders “�32”
in the FSM are replaced by the 8-bit adders “�8”, which we denote by SNOW-V�8,�8 .
Note that we will give our analysis on SNOW-V�8,�8 in Section 6. Here, we focus on
another variant of SNOW-V, where only the 32-bit adder used for updating the first register
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R1 is replaced by “�8”, as depicted in Fig. 5, while everything else remains identical. We
denote it SNOW-V�32,�8 .

5.1 Bitwise Linear Approximation of the FSM of SNOW-V�32,�8

For SNOW-V�32,�8 , as shown in Fig. 5, the register R1 is updated according to R1t+1 =
σ((T2t⊕R3t)�8R2t). By applying the masks Φ, Γ and Λ to zt−1, zt and zt+1 respectively,
we have

Φ · zt−1 = Φ · (T1t−1 �32 ut)⊕Φ · vt,
Γ · zt = Γ · (T1t �32 wt)⊕ Γ ·AESR(ut),

Λ · zt+1 = Λ · (T1t+1 �32 σ((T2t ⊕AESR(vt))�8 AES
R(ut)))⊕Λ ·AESR(wt),

where ut = R1t−1, vt = R2t−1 and wt = R1t. In this case, we consider the bitwise linear
approximations with the following form:
(a) Φ · (T1t−1 �32 ut) = Φ · T1t−1 ⊕Θ ·AESR(ut)⊕ n(t)

a ,
(b) Γ · (T1t �32 wt) = Γ · T1t ⊕Λ ·AESR(wt)⊕ n(t)

b ,
(c) Λ · (T1t+1 �32 σ((T2t ⊕AESR(vt))�8 AES

R(ut)))
= Λ · T1t+1 ⊕ σ(Λ) · (T2t ⊕AESR(vt))⊕ (Θ⊕ Γ) ·AESR(ut)⊕ n(t)

c̄ ,

(d) σ(Λ) ·AESR(vt) = Φ · vt ⊕ n(t)
d̄
,

where n(t)
a and n(t)

b are the noises same as that in Section 4.1, and n(t)
c̄ and n(t)

d̄
are new

introduced noises by new linear approximation relations (c) and (d) respectively. Now
let n(t) = n

(t)
a ⊕ n(t)

b ⊕ n
(t)
c̄ ⊕ n

(t)
d̄
, then the bitwise linear approximation of the FSM of

SNOW-V�32,�8 is

Φ · zt−1 ⊕ Γ · zt ⊕Λ · zt+1 = Φ · T1t−1 ⊕ Γ · T1t ⊕Λ · T1t+1 ⊕ σ(Λ) · T2t ⊕ n(t). (12)

Let εFSM(Φ,Γ,Λ) denote the correlation of this linear approximation under the given
mask tuple (Φ,Γ,Λ). Then we have2

εFSM(Φ,Γ,Λ) = ε(nb)ε(nd̄)
∑

Θ
ε(na)ε(nc̄).

In the following, we will represent any 128-bit mask Λ in words as Λ = (Λ0 ‖ Λ1 ‖
Λ2 ‖ Λ3) with Λk ∈ F232 for k = 0, 1, 2, 3, and Λk can be further expressed in bytes as
Λk = (Λk,0 ‖ Λk,1 ‖ Λk,2 ‖ Λk,3) with Λk,j ∈ F28 for j = 0, 1, 2, 3. In this case, Λ and
σ(Λ) are mapped to the following matrix expressions respectively:

Λ =


Λ0,0 Λ0,1 Λ0,2 Λ0,3
Λ1,0 Λ1,1 Λ1,2 Λ1,3
Λ2,0 Λ2,1 Λ2,2 Λ2,3
Λ3,0 Λ3,1 Λ3,2 Λ3,3

 , σ(Λ) =


Λ0,0 Λ1,0 Λ2,0 Λ3,0
Λ0,1 Λ1,1 Λ2,1 Λ3,1
Λ0,2 Λ1,2 Λ2,2 Λ3,2
Λ0,3 Λ1,3 Λ2,3 Λ3,3

 , Λk,j ∈ F28

5.2 Search for Linear Masks (Φ,Γ,Λ) for εFSM(Φ,Γ,Λ)
5.2.1 Computation of the Correlations of na and nb

Note that n(t)
a and n

(t)
b are the same as that in Section 4.1, which can be rewritten as

follows:

n(t)
a = Φ · (T1t−1 �32 SubBytes−1(xt))⊕Φ · T1t−1 ⊕Θ′ · xt,

n
(t)
b = Γ · (T1t �32 SubBytes−1(yt))⊕ Γ · T1t ⊕Λ′ · yt.

2We simplify the noises n(t)
a , n(t)

b
, n(t)

c̄ and n(t)
d̄

by na, nb, nc̄ and nd̄ respectively.
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where ε(na) =
3∏
k=0

Cor3(Φk; Φk,Θ′k) and ε(nb) =
3∏
k=0

Cor3(Γk; Γk,Λ′k).

Let Rk,j = (Φk,j ,Φk,j ,Θ′k,j) for k = 0, 1, 2, 3 and j = 0, 1, 2, 3. According to Theorem
3 in Appendix C, we have

ε(na) =
3∏
k=0

Cor3(Φk; Φk,Θ′k) =
3∏
k=0

l2MRk,3MRk,2MRk,1MRk,0e0.

Similarly, let R′k,j = (Γk,j ,Γk,j ,Λ′k,j) for k = 0, 1, 2, 3 and j = 0, 1, 2, 3, we have

ε(nb) =
3∏
k=0

Cor3(Γk; Γk,Λ′k) =
3∏
k=0

l2MR′
k,3
MR′

k,2
MR′

k,1
MR′

k,0
e0.

5.2.2 Computation of the Correlation of nc̄

For the bitwise linear approximation relation (c), let ξt = T2t ⊕ AESR(vt) and ηt =
AESR(ut), then the noise n(t)

c̄ can be expressed as follows:

n
(t)
c̄ = Λ · (T1t+1 �32 σ(ξt �8 ηt))⊕Λ · T1t+1 ⊕ σ(Λ) · ξt ⊕ (Θ⊕ Γ) · ηt.

Obviously, nc̄ can be viewed as the noise introduced by the bitwise linear approximation of
the Type-V function H defined in Section 3.1 with the mask tuple (Λ; Λ, σ(Λ),Θ⊕ Γ).
For H, we have the parameters l = 128, n = 32, m = 8 and the permutation σ =
[0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15], equivalent to the transposition of a 4×4 matrix.

Let Vk,j = (Λk,j ,Λk,j ,Λk,j ,Θj,k ⊕ Γj,k) for k = 0, 1, 2, 3 and j = 0, 1, 2, 3. According
to Equation (8) in Section 3.3 for computing the bitwise linear approximation of H, we
have

ε(nc̄) = Cor5(Λ; Λ, σ(Λ),Θ⊕ Γ) =
3∏
k=0

l2CVk,3CVk,2CVk,1CVk,0e0.

Complexity. As shown in Section 3.3, to compute the correlation of nc̄ with the mask
tuple (Λ; Λ, σ(Λ),Θ⊕ Γ), we need to pre-compute the matrices CV for all V in the form
of V = (γ(0), γ(0), γ(0), γ(1)), where γ(0), γ(1) ∈ F28 . For each V of this form, CV can be
pre-computed by Theorem 1 by doing 8 matrix multiplications of small size, and thus all
the matrices CV in the form of V = (γ(0), γ(0), γ(0), γ(1)) can be obtained by doing 216 × 8
matrix multiplications of small size. After all these matrices are pre-computed, we can
compute ε(nc̄) = Cor5(Λ; Λ, σ(Λ),Θ ⊕ Γ) for the fixed mask tuple (Λ,Λ, σ(Λ),Θ ⊕ Γ)
by doing 16 matrix multiplications of small size.

5.2.3 Computation of the Correlation of nd̄

For the bitwise linear approximation relation (d), we denote σ(Λ)′ the mask such that
σ(Λ)′ ·X = σ(Λ) · MixColumns(ShiftRows(X)) for all X ∈ F2128 (See Appendix D for the
computation of σ(Λ)′ from σ(Λ)), then we have σ(Λ) ·AESR(vt) = σ(Λ)′ · SubBytes(vt),
and thus the noise n(t)

d̄
can be expressed as

n
(t)
d̄

= σ(Λ)′ · SubBytes(vt)⊕Φ · vt,

where SubBytes(·) is an application of 16 AES S-boxes SR. We use the notation Λ̂ to
denote σ(Λ)′, then the correlation of nd̄ can be computed as

ε(nd̄) =
3∏
k=0

εSR
(Λ̂k,3; Φk,3)εSR

(Λ̂k,2; Φk,2)εSR
(Λ̂k,1; Φk,1)εSR

(Λ̂k,0; Φk,0),

which can be obtained by looking up the LAT pre-computed in Section 4.2.3 16 times.
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5.2.4 Search for Linear Masks (Φ,Γ,Λ)

For a given mask tuple (Φ,Γ,Λ), the correlation of the linear approximation of the FSM
of SNOW-V�32,�8 is

εFSM(Φ,Γ,Λ) = ε(nb)ε(nd̄)
∑

Θ
ε(na)ε(nc̄). (13)

We will use the notation Sid defined in Section 4.3 to illustrate our search strategy,
where Sid = {Λ = (Λ0 ‖ Λ1 ‖ Λ2 ‖ Λ3) : Λid ∈ F∗232 ,Λk = 0 ∈ F232 for all k 6= id}. In
our attempt to search for (Φ,Γ,Λ) such that the linear approximation of the FSM of
SNOW-V�32,�8 would be highly biased, we observed that when both Φ ∈ Sid and Γ ∈ Sid
are satisfied, |εFSM(Φ,Γ,Λ)| is more likely to have high value. According to Corollary 1,
we must have Θ′ ∈ Sid (Resp. Λ′ ∈ Sid) to guarantee ε(na) 6= 0 (Resp. ε(nb) 6= 0). Besides,
considering the term ε(nd̄), since Φ ∈ Sid, we get that ε(nd̄) 6= 0 only if σ(Λ)′ ∈ Sid. Thus,
the constraints for Λ is both Λ′ ∈ Sid and σ(Λ)′ ∈ Sid are satisfied, from which we derive
that σ(Λ) = Λ, and for each fixed value of id ∈ {0, 1, 2, 3}, there are 255 choices for Λ,
which are defined as follows.
Choices for Λ. Let id take a fixed value. We take one of the 255 elements from Table 3
and assign it to Λid, and define Λ(id+1)mod 4 = Λid≫32 8, Λ(id+2)mod 4 = Λid≫32 16 and
Λ(id+3)mod 4 = Λid≫32 24, then Λ = (Λ0 ‖ Λ1 ‖ Λ2 ‖ Λ3) is one of the 255 candidates
for Λ. For example, let id = 0, we take the element 0x0f0c0805 from Table 3 and assign
it to Λ0, and define Λ1 =0x050f0c08, Λ2 =0x08050f0c and Λ3 =0x0c08050f, then the
following Λ is one of the 255 candidates, satisfying σ(Λ) = Λ and σ(Λ)′ = Λ′ ∈ Sid (here
id = 0), i.e.,

Λ = 0x0c08050f08050f0c050f0c080f0c0805 = σ(Λ)
Λ′ = 0x0000000000000000000000000e0e0e0e ∈ S0.

Further, taking into consideration the term
∑

Θ ε(na)ε(nc̄), we have the following observa-
tion from many examples of our experiments though we do not have a proof:

• For the linear masks Φ,Γ,Λ and Θ such that: (1) Φ ∈ Sid; (2) Θ′ ∈ Sid; (3)
Γ ∈ Sid; (4) σ(Λ) = Λ and σ(Λ)′ = Λ′ ∈ Sid (totally 255 candidates for Λ), we
observed that the value of ε(na)ε(nc̄) with Θ = σ(Λ) is nearly equal to the value of∑

Θ ε(na)ε(nc̄), that is to say, taking just one term with Θ = σ(Λ) in Equation (13)
yields sufficiently accurate estimates of the total correlation, i.e.,

εFSM(Φ,Γ,Λ) ≈ ε(na)ε(nb)ε(nc̄)ε(nd̄), where Θ = σ(Λ) = Λ. (14)

Based on the above observation, our search strategy for (Φ,Γ,Λ) is as follows.

Step 1: Let Θ = σ(Λ), and consider the term ε(nc̄) with Θ = σ(Λ) in Equation (14). For
each of the 255 candidates for Λ, we exhaust all 232 possible values of Γ ∈ Sid, and
collect those Γ such that |ε(nc̄)| ≥ 2−46. By the experiments, we observed that only
when

Λ = 0x0c08050f08050f0c050f0c080f0c0805 (id = 0), or
Λ = 0x08050f0c050f0c080f0c08050c08050f (id = 1), or
Λ = 0x050f0c080f0c08050c08050f08050f0c (id = 2), or
Λ = 0x0f0c08050c08050f08050f0c050f0c08 (id = 3),

there exists Γ ∈ Sid such that ε(nc̄) ≥ 2−50. For each one, we obtained 1596 such
values for Γ.

Step 2: Let Θ = σ(Λ), and consider the term ε(nb)ε(nc̄) in Equation (14). For Λ =
0x0c08050f08050f0c050f0c080f0c0805 (id = 0), we try all the 1596 values for Γ
obtained above, and collect those satisfying |ε(nb)ε(nc̄)| ≥ 2−62. We picked out 14
such values for Γ.
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Step 3: Let Θ = σ(Λ), and consider the term ε(na)ε(nd̄) in Equation (14). Let Λ =0x0c08
050f08050f0c050f0c080f0c0805 (id = 0), we exhaust all 232 possible values for
Φ ∈ Sid, and collect those Φ satisfying |ε(na)ε(nd̄)| ≥ 2−31. We obtained 199 such
values for Φ.

Step 4: Let Λ = 0x0c08050f08050f0c050f0c080f0c0805 (id = 0), for all the 14 ×
199 combinations of (Φ,Γ) obtained above, we compute the accurate values of
εFSM(Φ,Γ,Λ) according to Equation (13) by including all 232 terms of the sum over
Θ with Θ′ ∈ Sid, i.e., εFSM(Φ,Γ,Λ) = ε(nb)ε(nd̄)

∑
Θ′∈Sid

ε(na)ε(nc̄).

Results. In our best attempt to approximate the FSM of SNOW-V�32,�8 , we have
obtained the total noise having the correlation ±2−91.60, and thus the SEI 2−183.20. The
best linear mask tuples (Φ,Γ,Λ) we found out are listed in Table 2. Besides, for Λ =
0x0c08050f08050f0c050f0c080f0c0805 (id = 0), we obtained 216 combinations of (Φ,Γ)
such that |εFSM(Φ,Γ,Λ)| ≥ 2−92, thus there are totally 4×216 = 864 mask tuples (Φ,Γ,Λ)
(id takes 0, 1, 2, 3), under which the SEI of the bitwise linear approximation of the FSM of
SNOW-V�32,�8 are larger than 2184. Our results further confirm the observation made in
[8] that the introduction of the permutation σ in the FSM part makes the bias of linear
approximations for the FSM to be much smaller.

Table 2: The best linear masks (Φ,Γ,Λ) for the bitwise linear approximation of the FSM
of SNOW-V�32,�8

Λ (id = 0) Φ ∈ S0 Γ ∈ S0 log(|εFSM|)
0x0c08050f08050f0c 0x0000000000000000 0x0000000000000000

050f0c080f0c0805 0000000007b32407 0000000005000500 −91.603
0x0c08050f08050f0c 0x0000000000000000 0x0000000000000000

050f0c080f0c0805 0000000002b32407 0000000005000500 −91.606
Λ (id = 1) Φ ∈ S1 Γ ∈ S1 log(|εFSM|)

0x08050f0c050f0c08 0x0000000000000000 0x0000000000000000
0f0c08050c08050f 07b3240700000000 0500050000000000 −91.603

0x08050f0c050f0c08 0x0000000000000000 0x0000000000000000
0f0c08050c08050f 02b3240700000000 0500050000000000 −91.606

Λ (id = 2) Φ ∈ S2 Γ ∈ S2 log(|εFSM|)
0x050f0c080f0c0805 0x0000000007b32407 0x0000000005000500

0c08050f08050f0c 0000000000000000 0000000000000000 −91.603
0x050f0c080f0c0805 0x0000000002b32407 0x0000000005000500

0c08050f08050f0c 0000000000000000 0000000000000000 −91.606
Λ (id = 3) Φ ∈ S3 Γ ∈ S3 log(|εFSM|)

0x0f0c08050c08050f 0x07b3240700000000 0x0500050000000000
08050f0c050f0c08 0000000000000000 0000000000000000 −91.603

0x0f0c08050c08050f 0x02b3240700000000 0x0500050000000000
08050f0c050f0c08 0000000000000000 0000000000000000 −91.606

Remark. For the mask tuple (Φ,Γ,Λ) in the first row of Table 2 with id = 0, we
computed by experiments the values of ε(na)ε(nc̄) for all Θ such that Θ′ ∈ Sid and thus
obtained the accurate value of

∑
Θ′∈Sid

ε(na)ε(nc̄). Our results show that ε(na)ε(nc̄) 6= 0
only when Θ takes the value of σ(Λ), i.e., Θ = σ(Λ). Thus the value of ε(na)ε(nc̄) with
Θ = σ(Λ) is actually equal to the value of

∑
Θ′∈Sid

ε(na)ε(nc̄)(=
∑

Θ ε(na)ε(nc̄)), which is
an example to give an illustration of the above observation.

5.3 A Fast Correlation Attack on SNOW-V�32,�8

The bitwise linear approximations of the FSM of SNOW-V�32,�8 have the following form:

Φ · zt−1 ⊕ Γ · zt ⊕Λ · zt+1 = Φ · T1t−1 ⊕ Γ · T1t ⊕Λ · T1t+1 ⊕ σ(Λ) · T2t ⊕ n(t).
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We use those 864 mask tuples (Φ,Γ,Λ) such that |εFSM(Φ,Γ,Λ)| ≥ 2−92 for approxi-
mations. The corresponding bitwise linear approximation relations have the correlation
|εFSM(Φ,Γ,Λ)| ≥ 2−92 , α.

We first collect N samples involving only the keystream words and the LFSR initial
state bits of length l = 512, and then try to reduce the number of the involved LFSR initial
state bits to l′(< l) bits by searching for some pairs from the samples which vanish on the
most significant l−l′ bits, at the expense of the increased noise level with the correlation α2.
There are about M , N(N − 1)2−(l−l′+1) such pairs, corresponding to M approximation
relations with correlation α2 involving only l′ bits of the LFSR initial state, which can
be found by the sort-and-merge procedure with the time/memory complexity O(N). To
recover the value of the target l′ bits, we still use the FWT to speed up the evaluation of
the M linear approximation relations, which needs a time complexity O(M + l′2l′) and a
memory complexity O(2l′). Set M = 2l′ ln 2/(α2)2, the parameter N is determined to be
N ≈

√
M2l−l′+1, and the required number of keystream outputs is D = N/864.

Complexity Analysis. For SNOW-V�32,�8 , we follow the above procedure with the
parameters l = 512, l′ = 363. In this case, we need to prepare M = 2l′ ln 2/(α2)2 = 2376.98

approximation relations with correlation α2 involving the first 363 bits of the LFSR initial
state. The required number of samples is N =

√
M2l−l′+1 = 2263.49 and we need to

know D = N/864 = 2253.73 keystream outputs. The required time/memory complexity for
preparing M approximation relations is 2263.49. The FWT is utilized to determine the first
363 bits of the LFSR initial state, which needs a time complexity 2377.01 and a memory
complexity 2363. Once the first 363 bits are recovered, the other bits and the FSM state
can be recovered by using a similar method and a small-scale exhaustive search with a
much lower complexity.

6 Analysis of SNOW-V�8,�8

Figure 6: The FSM part of SNOW-V�8,�8

In this section, we give a brief study on the bitwise linear approximation of the FSM
of SNOW-V�8,�8 , of which the byte-wise linear approximation has been studied in the
design document of SNOW-V [8]. With this simplification all operations are byte-oriented.
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6.1 Bitwise Linear Approximation of the FSM of SNOW-V�8,�8

For SNOW-V�8,�8 , we consider the bitwise linear approximations of the following form:

n
(t)
1 = Φ · (T1t−1 �8 SubBytes−1(xt))⊕Φ · T1t−1 ⊕Θ′ · xt,

n
(t)
2 = Γ · (T1t �8 SubBytes−1(yt))⊕ Γ · T1t ⊕Λ′ · yt,

n
(t)
3 = Λ · (T1t+1 �8 σ(ξt �8 ηt))⊕Λ · T1t+1 ⊕ σ(Λ) · ξt ⊕ (Θ⊕ Γ) · ηt,

n
(t)
4 = σ(Λ)′ · SubBytes(vt)⊕Φ · vt.

In this case, the bitwise linear approximation of the FSM of SNOW-V�8,�8 is

Φ · zt−1 ⊕ Γ · zt ⊕Λ · zt+1 = Φ · T1t−1 ⊕ Γ · T1t ⊕Λ · T1t+1 ⊕ σ(Λ) · T2t ⊕ n(t).

where n(t) = n
(t)
1 ⊕ n

(t)
2 ⊕ n

(t)
3 ⊕ n

(t)
4 . Let ε̃FSM(Φ,Γ,Λ) denote the correlation of this

linear approximation under a given mask tuple (Φ,Γ,Λ). Then we have

ε̃FSM(Φ,Γ,Λ) = ε(n2)ε(n4)
∑

Θ
ε(n1)ε(n3).

Computation of the Correlations of n1 and n2. Let Rk,j = (Φk,j ,Φk,j ,Θ′k,j) and
R′k,j = (Γk,j ,Γk,j ,Λ′k,j) for k = 0, 1, 2, 3 and j = 0, 1, 2, 3, it’s easy to deduce that

ε(n1) =
3∏
k=0

3∏
j=0

l2MRk,j
e0, ε(n2) =

3∏
k=0

3∏
j=0

l2MR′
k,j

e0.

Computation of the Correlation of n3. Let Vk,j = (Λk,j ,Λk,j ,Λk,j ,Θj,k ⊕ Γj,k) for
k = 0, 1, 2, 3 and j = 0, 1, 2, 3, we deduce that

ε(n3) =
3∏
k=0

3∏
j=0

l2CVk,j
e0.

Computation of the Correlation of n4. With the notations as before, we have

ε(n4) =
3∏
k=0

3∏
j=0

εSR
(Λ̂k,j ; Φk,j).

Results. We will sketch some ideas on how to find good linear approximations, but list
the best linear approximations we found for SNOW-V�8,�8 . The results when using 8-bit
adders to replace 32-bit adders are as follows (id = 0):

Λ = 0x0c08050f08050f0c050f0c080f0c0805,
Γ = 0x00000000000000000000000001040202,
Φ = 0x00000000000000000000000002020202,

such that

|ε(n2)| = 2−19.50, |ε(n4)| = 2−13.66, |
∑

Θ
ε(n1)ε(n3)| = 2−53.91, |ε̃FSM(Φ,Γ,Λ)| = 2−87.07.

6.2 Comparison
As explained in Section 4.5, the analysis from the original design document of SNOW-V
[8] relied on byte-wise linear approximations, where the best byte-wise approximation
for the FSM of SNOW-V�8,�8 has the SEI 2−214.80, whereas ours uses bitwise linear
approximations, via the techniques from Section 3. We have computed the correlations of



Xinxin Gong and Bin Zhang 403

the involved noise terms n1, n2, n3 and n4 by doing some matrix multiplications using
the pre-computed matrices in Section 3, which cost only linear-time complexities and thus
allows for a wide range of search for bitwise masks. In our experiment, we have found
a number of stronger bitwise approximations than the best byte-wise one in [8], among
which the best bitwise one has the SEI 2−174.14. Thus we have increased the bias of the
linear approximation from 2−214.80 to 2−174.14, which is a big improvement.

7 Conclusion
In this paper, we present a number of stronger linear approximations for the FSM of
several variants of SNOW-V, i.e., SNOW-Vσ0 , SNOW-V�8,�8 and SNOW-V�32,�8 , and
further propose attacks accordingly, resulting in the bitwise fast correlation attacks faster
than those in the design document of SNOW-V [8]. We first propose and summarize some
efficient algorithms using the slice-like techniques to compute the linear approximations of
certain types of composition functions composed of basic operations like �, ⊕, Permutation
and S-box, which are the underlying functions arising in the linear approximations of SNOW-
like stream ciphers. Based on this, we find some bitwise linear approximations for the FSM
of SNOW-Vσ0 with the SEI around 2−37.34 and mount a bitwise fast correlation attack
with the time complexity 2251.93 and memory complexity 2244, given 2103.83 keystream
outputs, which improves greatly the results in the design document. Besides, we find our
best bitwise linear approximations for the FSM of SNOW-V�8,�8 with the SEI 2−174.14,
while the best byte-wise linear approximation in [8] has the SEI 2−214.80. Further, we
study a closer variant of SNOW-V, i.e., SNOW-V�32,�8 , we derive many mask tuples
for the FSM of SNOW-V�32,�8 , yielding linear approximations with the SEI larger than
2−184. Using these linear approximations, we mount a fast correlation attack with the
time complexity 2377.01 and a memory complexity 2363, given 2253.73 keystream outputs.
Although neither of our attacks threatens the security of SNOW-V, we provide new lights
on the structure of SNOW-like stream ciphers and also the bitwise linear approximation
attacks. We think the research in this paper is meaningful for our future work to study
the bitwise linear approximation of SNOW-V and mount attacks accordingly.
Further discussion. We first make a brief discussion on how likely similar attacks would
be on full SNOW-V. For full SNOW-V, two 32-bit adders “�32” are used in the FSM
part. One is used to generate the 128-bit keystream as zt = (T1t �32 R1t) ⊕ R2t, and
the other is used to update the first register R1 as R1t+1 = σ((T2t ⊕ R3t) �32 R2t).
In the course of approximating the FSM, we can derive a new type of function G :
F2128 × F2128 × F2128 → F2128 such that G(X(1),X(2),X(3)) = X(1) �32 σ(X(2) �32 X(3)).
Bitwise linear approximations for the FSM of SNOW-V can be constructed if the bitwise
linear approximation of G could be efficiently computed, and thus similar attacks would be
mounted. Actually, we have been doing research on full SNOW-V and achieved some initial
results. It is one of our future work to study deeply the bitwise linear approximations
of SNOW-V. Beside, it is well known that the SEI of a bitwise linear approximation is
always smaller than or equal to the SEI of a multidimensional linear approximation that
covers the masks of the bitwise approximations. We will also study the large-unit linear
approximations of SNOW-V or SNOW-V variants in the future.
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A Computing the Bitwise Linear Approximation of Type-I
Function

Problem 1. Compute the correlation of the bitwise linear approximation of the Type-I
function Sbox(·) with respect to the output mask Γ(0) and the input mask Γ(1), which is
denoted by Cor1(Γ(0); Γ(1)).
Method and Complexity. Since Sbox(·) is composed of parallel operations of sj , for a
given mask tuple (Γ(0),Γ(1)), we write Γ(0) = (Γ(0)

0 ‖ Γ(0)
1 ‖ ... ‖ Γ(0)

d−1) and Γ(1) = (Γ(1)
0 ‖

Γ(1)
1 ‖ ... ‖ Γ(1)

d−1) with Γ(0)
j ,Γ(1)

j ∈ F2m for j = 0, 1, ..., d− 1. According to the Piling-up
lemma, we have

Cor1(Γ(0); Γ(1)) =
d−1∏
j=0

εsj
(Γ(0)

j ; Γ(1)
j ).

The computation is usually carried out according to the following two phases:
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• In the preprocessing phase, we pre-compute d tables to store all the linear approxima-
tions of sj for j = 0, 1, ..., d− 1. Since the most common size of sj are 4-bit or 8-bit,
we use the trivial way to compute εsj

(γ(0); γ(1)) by trying all possibilities of γ(0), γ(1)

values. For this, for each γ(0) ∈ F2m and γ(1) ∈ F2m , we loop for each x ∈ F2m to
compute the values of γ(0) · sj(x)⊕ γ(1) · x, and can finally derive εsj

(γ(0); γ(1)) for
all j = 0, 1, ..., d− 1 with a total time complexity of O(d23m), affordable for small m.
All the values εsj

(γ(0); γ(1)) are stored in the row indexed by (γ(0), γ(1)) of the j-th
table. Thus the total memory complexity is O(d22m).

• In the processing phase, the correlation of the linear approximation of Sbox(·) for
each given mask tuple (Γ(0),Γ(1)) can be derived by table lookups d times indexed
by (Γ(0)

j ; Γ(1)
j ) in the j-th table, respectively. This is a linear-time procedure.

B Computing the Bitwise Linear Approximation of Type-II
Function

Problem 2. Compute the correlation of the bitwise linear approximation of the Type-II
function F with respect to the output mask Γ(0) and the input masks Γ(1), ...,Γ(ρ), which
is denoted by Cor2(Γ(0); Γ(1), ...,Γ(ρ)).
Method and Complexity. In [19], the authors have proposed a linear-time algorithm to
compute the correlation of the bitwise linear approximation of F for any given mask tuple,
we describe it in the following theorem.

Theorem 2. [19]. Let ρ > 1 be a fixed integer. For each R = (r0, r1, ..., rρ) ∈ Fρ+1
2 , let

DR be the ρ× ρ matrix with the (oc, ic)-element for ic, oc ∈ {0, ..., ρ− 1} computed as

DR[oc][ic] = 2−k(|{x ∈ Fρ2 : r0 · f(x, ic) = r̄ · x, g(x, ic) = oc}|
−|{x ∈ Fρ2 : r0 · f(x, ic) 6= r̄ · x, g(x, ic) = oc}|),

where3

r̄ = (r1, ..., rρ) ∈ Fρ2, x = (x1, ..., xρ) ∈ Fρ2,
f(x, ic) = (wH(x) + ic)mod 2, g(x, ic) = b(wH(x) + ic)/2c .

Let lρ be the row vector of length ρ with all elements equal to 1, and let e0 be the
column vector of length ρ with a single 1 in 0-th row and zero otherwise. For any given
mask tuple (Γ(0),Γ(1), ...,Γ(ρ)) of the ρ-input addition modulo 2n, write Γ(i) in bits as
Γ(i) = (γ(i)

0 ‖ γ
(i)
1 ‖ ... ‖ γ

(i)
n−1), i = 0, 1, ..., ρ, then we have

Cor2(Γ(0); Γ(1), ...,Γ(ρ)) = lρDRn−1 ...DR1DR0e0,

where Rj = (γ(0)
j , γ

(1)
j , ..., γ

(ρ)
j ) ∈ Fρ+1

2 for j = 0, 1, ..., n− 1.

According to Theorem 2, the procedure for computing the correlation of the bitwise
linear approximation of F for any given mask tuple can be divided into the following two
phases:

• In the preprocessing phase, 2ρ+1 matrices of size ρ× ρ should be pre-computed and
stored. For each given R ∈ Fρ+1

2 , the matrix DR can be constructed with a time
complexity of O(ρ2ρ) and a memory complexity of O(ρ2), thus it requires a total time
complexity of O(ρ22ρ+1) and a memory complexity of O(ρ22ρ+1) to pre-compute
DR for all the possibilities of R.

3Note that wH(x): 0 ≤ wH(x) ≤ ρ, denotes the Hamming weight of x, which is the number of non-zero
components of x.
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• In the processing phase, the correlation of the linear approximation of F for each
given mask tuple (Γ(0),Γ(1), ...,Γ(ρ)) can be obtained by doing n multiplications of a
ρ× ρ matrix and a column vector, and n additional additions, which is a linear-time
algorithm for a fixed ρ.

C Computing the Bitwise Linear Approximation of Type-
III Function

Problem 3. Compute the correlation of the bitwise linear approximation of the Type-III
function G with respect to the output mask Γ(0) and the input masks Γ(1),Γ(2), which is
denoted by Cor3(Γ(0); Γ(1),Γ(2)).
Method and Complexity. In [11], a linear-time algorithm is proposed to compute the
correlation of the linear approximation of G under any given mask tuple, and then used to
mount attacks on SNOW 2.0 and SNOW 3G. At a very high level, the idea is to divide
the n-bit values into d values of m-bit according to the specific structure of the function
Sbox(·), and then pre-compute and store some useful matrices, and finally compute the
correlation by doing some matrix multiplications using these pre-computed matrices. We
now describe this method in short.

According to the structure of Sbox(·), the masks Γ(0),Γ(1) and Γ(2) are split into d
blocks and each block has m bits, i.e., Γ(i) = (Γ(i)

0 ‖ Γ(i)
1 ‖ ... ‖ Γ(i)

d−1), where Γ(i)
j ∈ F2m

for i = 0, 1, 2 and j = 0, 1, ..., d − 1. Similarly, we also split the variables x(1), x(2) into
d blocks of m-bit as x(0) = (x(0)

0 ‖ x(0)
1 ‖ ... ‖ x(0)

d−1), x(1) = (x(1)
0 ‖ x(1)

1 ‖ ... ‖ x(1)
d−1). Let

uj = x(1)
j + sj(x(2)

j ), we define the Boolean functions gj for j = 0, 1, ..., d− 1 as follows:

gj(θj ,x(1)
j ,x(2)

j ) = Γ(0)
j · (uj �m θj)⊕ Γ(1)

j · x
(1)
j ⊕ Γ(2)

j · x
(2)
j ,

where θ0 = 0 and θj+1 = b(uj + θj)/2mc. Based on the above, we summarize the method
in [11] in the following theorem, which provides an efficient method to compute the bitwise
linear approximation of G.

Algorithm 1 Construction of the matrix M(j,(γ(0),γ(1),γ(2)))

Parameters: the parallel (m,m)-functions sj , j ∈ {0, 1, ..., d− 1}
Notations: +, the usual integer addition;

b c, the floor function of integers;
mod, the modulo operation of integers;

Input: the partial mask values γ(0), γ(1), γ(2) with γ(i) ∈ F2m , i = 0, 1, 2
1: Create a matrix M(j,(γ(0),γ(1),γ(2))) of size 2× 2;
2: Create two 2× 2 matrices N0 and N1 initialized with zeros;
3: for iθ ∈ {0, 1}, x(1) ∈ F2m and x(2) ∈ F2m do
4: compute u = x(1) + sj(x(2));
5: compute r = γ(0) · ((u+ iθ)mod 2m)⊕ γ(1) · x(1) ⊕ γ(2) · x(2);
6: compute oθ = b(u+ iθ)/2mc;
7: Nr[oθ][iθ] := Nr[oθ][iθ] + 1;
8: for iθ ∈ {0, 1} and oθ ∈ {0, 1} do
9: M(j,(γ(0),γ(1),γ(2)))[oθ][iθ] := (N0[oθ][iθ]−N1[oθ][iθ])/22m;
Output: the corresponding 2× 2 matrix M(j,(γ(0),γ(1),γ(2)))

Theorem 3. [11]. Let l2 = (1, 1) be a row vector and e0 = (1, 0)T be a column vector.
For any given mask tuple (Γ(0),Γ(1),Γ(2)), we have

Cor3(Γ(0); Γ(1),Γ(2)) = l2M(d−1,Rd−1)...M(1,R1)M(0,R0)e0,
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where R0,R1, ...,Rd−1 are vectors defined according to (Γ(0),Γ(1),Γ(2)) as Rj =
(Γ(0)

j ,Γ(1)
j ,Γ(2)

j ), and M(j,Rj) are 2× 2 matrices pre-computed by Algorithm 1 such that

M(j,Rj)[α][θj ] = 2−2m(|{x(1)
j ,x(2)

j ∈ F2m : gj(θj , ·) = 0, θj+1(θj , ·) = α}|

− |{x(1)
j ,x(2)

j ∈ F2m : gj(θj , ·) = 1, θj+1(θj , ·) = α}|),

for α ∈ {0, 1} and θj ∈ {0, 1}

Complexity Analysis. From Algorithm 1, for each given partial mask values γ(0), γ(1), γ(2)

and a given function sj , the matrix M(j,(γ(0),γ(1),γ(2))) can be constructed with a time
complexity O(22m+1) and a memory complexity O(1). To search for all those mask tuples
(Γ(0),Γ(1),Γ(2)) such that |Cor3(Γ(0); Γ(1),Γ(2))| are as large as possible, we seem to need
to compute M(j,(γ(0),γ(1),γ(2))) for all the possible values of γ(0), γ(1), γ(2) and at most d
different functions sj , and thus d23m matrices should be pre-computed, which requires
a pre-computation complexity of O(d25m+1) and a memory complexity of O(d23m) in
the worst case. However, as shown (by experimental results) in [11], this number can be
decreased by a factor of at least 2m, since the correlation value |Cor3(Γ(0); Γ(1),Γ(2))| may
be larger with Γ(1) = Γ(0) than with Γ(1) 6= Γ(0), especially in case of SNOW-like ciphers.
Using the pre-computed matrices, the correlation of the linear approximation of G for any
given mask tuple can be accurately computed by doing d multiplications of small size,
which costs a linear-time complexity of O(d), and thus allows for a wide range of search of
highly biased linear approximations.

D Computing the mask Θ′ from the given mask Θ such
that Θ′ · x = Θ · MixColumns(ShiftRows(x))

In the FSM of SNOW-V, the full AES round function (denoted by AESR) is used to
update the 128-bit registers. Given a 128-bit output mask Θ of AESR, we let ∆ be the
mask computed from Θ by combining the MixColumns of the AES round function such
that

∆ · y = Θ · MixColumns(y), for all y ∈ F2128 ,

and let Θ′ be the mask computed from ∆ by combining the ShiftRows of the AES round
function such that

Θ′ · x = ∆ · ShiftRows(x), for all x ∈ F2128 .

We then have

Θ′ · x = Θ · MixColumns(ShiftRows(x)), for all x ∈ F2128 .

Before we describe how to compute the masks ∆ and Θ′, let us define a linear
transformation lin : F232 → F232 , where Λ′ = lin(Λ) represents the linear mask computed
from Λ by combining the MixColumn matrix (denoted by M) of the AES round function,
i.e., Λ′ · x = Λ ·Mx for all x ∈ F232 .

We now briefly describe how to compute Λ′ from Λ. For λ = (λ0 ‖ λ1 ‖ λ2 ‖ λ3 ‖ λ4 ‖
λ5 ‖ λ6 ‖ λ7) ∈ F28 , define λ′ = trans(λ) = (λ′0 ‖ λ′1 ‖ λ′2 ‖ λ′3 ‖ λ′4 ‖ λ′5 ‖ λ′6 ‖ λ′7) as:{

λ′i = λi+1, i = 0, 1, ..., 6
λ′7 = λ0 ⊕ λ1 ⊕ λ3 ⊕ λ4.



Xinxin Gong and Bin Zhang 409

Write Λ = (Λ0 ‖ Λ1 ‖ Λ2 ‖ Λ3), Λ′ = (Λ′0 ‖ Λ′1 ‖ Λ′2 ‖ Λ′3), where Λj ∈ F28 , Λ′j ∈ F28 ,
we have (Λ′0 ‖ Λ′1 ‖ Λ′2 ‖ Λ′3) = lin(Λ0 ‖ Λ1 ‖ Λ2 ‖ Λ3) such that

Λ′0 = trans(Λ0)⊕Λ1 ⊕Λ2 ⊕Λ3 ⊕ trans(Λ3).
Λ′1 = trans(Λ1)⊕Λ2 ⊕Λ3 ⊕Λ0 ⊕ trans(Λ0),
Λ′2 = trans(Λ2)⊕Λ3 ⊕Λ0 ⊕Λ1 ⊕ trans(Λ1),
Λ′3 = trans(Λ3)⊕Λ0 ⊕Λ1 ⊕Λ2 ⊕ trans(Λ2).

Based on the above, we describe how to compute the masks ∆ and Θ′ respectively.
— Computation of ∆. For any Θ ∈ F2128 , we can rewrite it in the form of array as

Θ =


Θ0 ‖ Θ1 ‖ Θ2 ‖ Θ3
Θ4 ‖ Θ5 ‖ Θ6 ‖ Θ7
Θ8 ‖ Θ9 ‖ Θ10 ‖ Θ11
Θ12 ‖ Θ13 ‖ Θ14 ‖ Θ15

 , with Θj ∈ F28 , for j = 0, 1, ..., 15

where Θ0 is the least significant byte, and Θ15 is the most significant byte. The mask ∆
is computed from Θ by combining the MixColumns of the AES round function. which can
be computed as follows,

∆ ,


∆0 ‖∆1 ‖∆2 ‖∆3
∆4 ‖∆5 ‖∆6 ‖∆7
∆8 ‖∆9 ‖∆10 ‖∆11
∆12 ‖∆13 ‖∆14 ‖∆15

 =


lin(Θ0 ‖ Θ1 ‖ Θ2 ‖ Θ3)
lin(Θ4 ‖ Θ5 ‖ Θ6 ‖ Θ7)
lin(Θ8 ‖ Θ9 ‖ Θ10 ‖ Θ11)
lin(Θ12 ‖ Θ13 ‖ Θ14 ‖ Λ15)

 ,

— Computation of Θ′. The mask Θ′ is computed from ∆ by combining the ShiftRows
of the AES round function, which can be computed as follows,

Θ′ ,


Θ′0 ‖ Θ′1 ‖ Θ′2 ‖ Θ′3
Θ′4 ‖ Θ′5 ‖ Θ′6 ‖ Θ′7
Θ′8 ‖ Θ′9 ‖ Θ′10 ‖ Θ′11
Θ′12 ‖ Θ′13 ‖ Θ′14 ‖ Θ′15

 =


∆0 ‖∆13 ‖∆10 ‖∆7
∆4 ‖∆1 ‖∆14 ‖∆11
∆8 ‖∆5 ‖∆2 ‖∆15
∆12 ‖∆9 ‖∆6 ‖∆3


E Proof of Corollary 1
Proof. We first present some observations on the pre-computed matrices M(α,α,β) for any
α, β ∈ F28 .

• The matrices M(α,α,0) for any α ∈ F∗28 are always equal to
( 1

512 − 1
512

− 1
512

1
512

)
;

• The matrices M(0,0,β) for any β ∈ F∗28 always have the form of
(

val val
−val −val

)
,

where val is a rational number.

• The matrix M(0,0,0) is equal to
( 257

512
255
512255

512
257
512

)
.

For any 32-bit masks A = (a0 ‖ a1 ‖ a2 ‖ a3) and B = (b0 ‖ b1 ‖ b2 ‖ b3), we have
Cor3(A; A,B) = l2M(a3,a3,b3)M(a2,a2,b2)M(a1,a1,b1)M(a0,a0,b0)e0 6= 0. According to the
above observations,

(1) If a3=0x00, we must have b3=0x00. Otherwise l2M(0,0,b3) = (0, 0), and thus
Cor3(A; A,B) = 0. Similarly, we can prove that, if b3=0x00, we must have a3=0x00.
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(2) If a3 = a2 =0x00, from the above we have b3=0x00, and l2M(a3,a3,b3) = l2. Besides,
we must have b2=0x00. Otherwise l2M(a3,a3,b3)M(0,0,b2) = l2M(0,0,b2) = (0, 0), and
thus Cor3(A; A,B) = 0. Similarly, we can prove that, if b3 = b2 =0x00, we must
have a3 = a2 =0x00.

(3) If a3 = a2 = a1 =0x00, we have b3 = b2 =0x00, and l2M(a3,a3,b3)M(a2,a2,b2) = l2.
Besides, we must have b1=0x00. Otherwise l2M(a3,a3,b3)M(a2,a2,b2)M(0,0,b1) =
l2M(0,0,b1) = (0, 0), and thus Cor3(A; A,B) = 0. Similarly, we can prove that, if
b3 = b2 = b1 =0x00, we must have a3 = a2 = a1 =0x00.

(4) If a3 = a2 = a1 = a0 =0x00, we have b3 = b2 = b1 =0x00, and
l2M(a3,a3,b3)M(a2,a2,b2)M(a1,a1,b1) = l2. Besides, we must have b0 6=0x00. Other-
wise Cor3(A; A,B) = 0. Similarly, we can prove that, if b3 = b2 = b1 = b0 =0x00,
we must have a3 = a2 = a1a0 =0x00.

(5) If A = B =0x00000000, Cor3(A; A,B) = l2M(0,0,0)M(0,0,0)M(0,0,0)M(0,0,0)e0 = 1.

Above all, we complete the proof.

F All 255 choices for Λ ∈ Sid such that Λ′ ∈ Sid

Table 3: All 255 choices of Λid for Λ ∈ Sid such that Λ′ ∈ Sid
0x014893ff, 0x02d9b501, 0x039126fe, 0x04b36b03, 0x05fbf8fc, 0x066ade02, 0x07224dfd,
0x082e45f8, 0x0966d607, 0x0af7f0f9, 0x0bbf6306, 0x0c9d2efb, 0x0dd5bd04, 0x0e449bfa,
0x0f0c0805, 0x1014190f, 0x115c8af0, 0x12cdac0e, 0x13853ff1, 0x14a7720c, 0x15efe1f3,
0x167ec70d, 0x173654f2, 0x183a5cf7, 0x1972cf08, 0x1ae3e9f6, 0x1bab7a09, 0x1c8937f4,
0x1dc1a40b, 0x1e5082f5, 0x1f18110a, 0x2029321f, 0x2161a1e0, 0x22f0871e, 0x23b814e1,
0x249a591c, 0x25d2cae3, 0x2643ec1d, 0x270b7fe2, 0x280777e7, 0x294fe418, 0x2adec2e6,
0x2b965119, 0x2cb41ce4, 0x2dfc8f1b, 0x2e6da9e5, 0x2f253a1a, 0x303d2b10, 0x3175b8ef,
0x32e49e11, 0x33ac0dee, 0x348e4013, 0x35c6d3ec, 0x3657f512, 0x371f66ed, 0x38136ee8,
0x395bfd17, 0x3acadbe9, 0x3b824816, 0x3ca005eb, 0x3de89614, 0x3e79b0ea, 0x3f312315,
0x4052643f, 0x411af7c0, 0x428bd13e, 0x43c342c1, 0x44e10f3c, 0x45a99cc3, 0x4638ba3d,
0x477029c2, 0x487c21c7, 0x4934b238, 0x4aa594c6, 0x4bed0739, 0x4ccf4ac4, 0x4d87d93b,
0x4e16ffc5, 0x4f5e6c3a, 0x50467d30, 0x510eeecf, 0x529fc831, 0x53d75bce, 0x54f51633,
0x55bd85cc, 0x562ca332, 0x576430cd, 0x586838c8, 0x5920ab37, 0x5ab18dc9, 0x5bf91e36,
0x5cdb53cb, 0x5d93c034, 0x5e02e6ca, 0x5f4a7535, 0x607b5620, 0x6133c5df, 0x62a2e321,
0x63ea70de, 0x64c83d23, 0x6580aedc, 0x66118822, 0x67591bdd, 0x685513d8, 0x691d8027,
0x6a8ca6d9, 0x6bc43526, 0x6ce678db, 0x6daeeb24, 0x6e3fcdda, 0x6f775e25, 0x706f4f2f,
0x7127dcd0, 0x72b6fa2e, 0x73fe69d1, 0x74dc242c, 0x7594b7d3, 0x7605912d, 0x774d02d2,
0x78410ad7, 0x79099928, 0x7a98bfd6, 0x7bd02c29, 0x7cf261d4, 0x7dbaf22b, 0x7e2bd4d5,
0x7f63472a, 0x80a4c97f, 0x81ec5a80, 0x827d7c7e, 0x8335ef81, 0x8417a27c, 0x855f3183,
0x86ce177d, 0x87868482, 0x888a8c87, 0x89c21f78, 0x8a533986, 0x8b1baa79, 0x8c39e784,
0x8d71747b, 0x8ee05285, 0x8fa8c17a, 0x90b0d070, 0x91f8438f, 0x92696571, 0x9321f68e,
0x9403bb73, 0x954b288c, 0x96da0e72, 0x97929d8d, 0x989e9588, 0x99d60677, 0x9a472089,
0x9b0fb376, 0x9c2dfe8b, 0x9d656d74, 0x9ef44b8a, 0x9fbcd875, 0xa08dfb60, 0xa1c5689f,
0xa2544e61, 0xa31cdd9e, 0xa43e9063, 0xa576039c, 0xa6e72562, 0xa7afb69d, 0xa8a3be98,
0xa9eb2d67, 0xaa7a0b99, 0xab329866, 0xac10d59b, 0xad584664, 0xaec9609a, 0xaf81f365,
0xb099e26f, 0xb1d17190, 0xb240576e, 0xb308c491, 0xb42a896c, 0xb5621a93, 0xb6f33c6d,
0xb7bbaf92, 0xb8b7a797, 0xb9ff3468, 0xba6e1296, 0xbb268169, 0xbc04cc94, 0xbd4c5f6b,
0xbedd7995, 0xbf95ea6a, 0xc0f6ad40, 0xc1be3ebf, 0xc22f1841, 0xc3678bbe, 0xc445c643,
0xc50d55bc, 0xc69c7342, 0xc7d4e0bd, 0xc8d8e8b8, 0xc9907b47, 0xca015db9, 0xcb49ce46,
0xcc6b83bb, 0xcd231044, 0xceb236ba, 0xcffaa545, 0xd0e2b44f, 0xd1aa27b0, 0xd23b014e,
0xd37392b1, 0xd451df4c, 0xd5194cb3, 0xd6886a4d, 0xd7c0f9b2, 0xd8ccf1b7, 0xd9846248,
0xda1544b6, 0xdb5dd749, 0xdc7f9ab4, 0xdd37094b, 0xdea62fb5, 0xdfeebc4a, 0xe0df9f5f,
0xe1970ca0, 0xe2062a5e, 0xe34eb9a1, 0xe46cf45c, 0xe52467a3, 0xe6b5415d, 0xe7fdd2a2,
0xe8f1daa7, 0xe9b94958, 0xea286fa6, 0xeb60fc59, 0xec42b1a4, 0xed0a225b, 0xee9b04a5,
0xefd3975a, 0xf0cb8650, 0xf18315af, 0xf2123351, 0xf35aa0ae, 0xf478ed53, 0xf5307eac,
0xf6a15852, 0xf7e9cbad, 0xf8e5c3a8, 0xf9ad5057, 0xfa3c76a9, 0xfb74e556, 0xfc56a8ab,
0xfd1e3b54, 0xfe8f1daa, 0xffc78e55
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