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Abstract. Recent results on quantum cryptanalysis show that some symmetric key
schemes can be broken in polynomial time even if they are proven to be secure in
the classical setting. Liskov, Rivest, and Wagner showed that secure tweakable block
ciphers can be constructed from secure block ciphers in the classical setting. However,
Kaplan et al. showed that their scheme can be broken by polynomial time quantum
superposition attacks, even if underlying block ciphers are quantum-secure. Since
then, it remains open if there exists a mode of block ciphers to build quantum-secure
tweakable block ciphers. This paper settles the problem in the reduction-based
provable security paradigm. We show the first design of quantum-secure tweakable
block ciphers based on quantum-secure block ciphers, and present a provable security
bound. Our construction is simple, and when instantiated with a quantum-secure n-bit
block cipher, it is secure against attacks that query arbitrary quantum superpositions
of plaintexts and tweaks up to O(2n/6) quantum queries. Our security proofs use
the compressed oracle technique introduced by Zhandry. More precisely, we use an
alternative formalization of the technique introduced by Hosoyamada and Iwata.

Keywords: Provable security · Quantum security · Tweakable block cipher ·
Compressed oracle technique

1 Introduction
Post-quantum security attracts significant attention not only in the context of public
key cryptography but also in the context of symmetric key cryptography, from the view
point of both cryptanalysis [BN18, BNS19a, BNS19b, CNS17, GNS18, HSX17, KLLN16b,
KLLN16a] and provable security for modes of operations [BZ13, CHS19, HI19, HY18,
SY17, Zha19]. Recent results on symmetric key schemes show that some of the schemes
that are proven to be secure in the classical setting are completely broken by adversaries
with quantum computers in some specific situations [KM10, KM12, KLLN16a], which
implies that simple remedies such as “doubling the length of secret keys” would not be
sufficient to prepare for the threat of quantum computers, especially if it needs to be run
on a quantum computer.

There are two post-quantum security notions for symmetric key schemes: standard
security and quantum security [Zha12a]. Roughly speaking, a symmetric scheme is said to
have standard security if it is secure against adversaries with quantum computers that
have access to usual classical keyed oracles. On the other hand, the scheme is said to have
quantum security if it is secure even if adversaries with quantum computers have access
to quantum keyed oracles. A quantum keyed oracle allows adversaries to make quantum
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superposition queries, and returns responses in quantum superpositions1. A scheme with
quantum security has not only standard security, but it also remains secure in arbitrary
intermediate security notions between quantum security and standard security. Therefore,
in this sense, quantum security is theoretically the ultimate security goal that symmetric
key schemes can achieve.

Importance of studying quantum security. From the view point of long-term security
for symmetric key schemes, it is important to study their quantum security given the
current progress on the development of quantum computers. Since program codes to
compute a (deterministic) function implemented on classical computers can be ported
onto quantum computers, a scheme that does not have quantum security should not be
implemented in a black-box manner (by using, e.g., obfuscation). On the other hand, such
security concern does not exist for a scheme with quantum security. Moreover, a scheme
with quantum security will remain secure even in a far future when lots of computations
and communications are done in quantum superpositions, and it will be safely used in
other cryptographic schemes or protocols that are designed to run on quantum computers.2

Quantum security of tweakable block ciphers. A block cipher (BC) is a keyed permu-
tation, i.e., it takes a plaintext and a key as input to output a ciphertext, and a tweakable
block cipher (TBC) takes additional input called a tweak. TBCs have wide applications in
symmetric key cryptography, as they can be used to construct message authentication codes
and authenticated encryption schemes, see e.g. [Rog04, IMPS17, BGIM19, IKMP20]. The
notion of TBC was first formalized by Liskov, Rivest, and Wagner [LRW02, LRW11]. They
introduced two TBC constructions and proved that TBCs can be constructed from BCs in
the classical setting3. However, Kaplan et al. showed that these constructions are broken in
polynomial time when adversaries have access to quantum encryption oracles [KLLN16a]4.
There has been no proposal of modes of BCs to build TBCs that are proven to be secure
against quantum superposed attacks so far, and the existence of such modes remains open.
In this paper, we consider the following question:

Does there exist a mode to build quantum-secure TBCs from quantum-secure
BCs?

1.1 Our Contributions
We give a positive answer to the question in the reduction-based provable security paradigm
by giving the first construction of quantum-secure TBCs from quantum-secure BCs. Our
construction, which we call LRWQ, has a simple structure and is based on one of the two
constructions by Liskov, Rivest, and Wagner. If the underlying BC is an n-bit BC with
k-bit keys, then LRWQ becomes an n-bit TBC with 3k-bit keys and n-bit tweaks. We
show that LRWQ is indistinguishable from tweakable random permutations up to O(2n/6)
quantum queries5 in the setting that adversaries can query arbitrary superpositions of

1The security model that adversaries with quantum computers have access to only classical keyed
oracles is called Q1 model, and the model that they have access to quantum keyed oracles is called Q2
model [KLLN16b].

2This paper focuses only on cryptographic primitives that run on classical computers (and remain
secure even if they run on quantum computers) because our current goal is to build quantum-secure
cryptosystems with classical implementations so that we can achieve as high security as possible while
keeping costs for implementations as low as possible. However, it is possible to assume that cryptographic
primitives run only on quantum computers and all data including secret keys are in quantum superposition.

3Only a single construction is introduced in the journal version of the paper [LRW11], but an additional
construction is also introduced in the preliminary (conference) version of the paper [LRW02].

4Kaplan et al. showed a quantum attack only for one of the two TBC constructions by Liskov, Rivest,
and Wagner, but the attack can also be applied to the other construction. See Section 4.1.

5Here, we consider n as a security parameter.
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plaintexts and tweaks, i.e., we prove security against quantum chosen plaintext attacks
(qCPAs).

To prove quantum security of our construction LRWQ, we use an alternative formaliza-
tion [HI19] of the compressed oracle technique developed by Zhandry [Zha19]. We give
a summary of necessary proof techniques to show quantum oracle indistinguishability
introduced in a previous work [HI19, HI20], and then apply it to show quantum security
of LRWQ.

Our result is theoretically significant in the sense that we for the first time showed that
quantum-secure tweakable pseudorandom permutations (qP̃RP) can be constructed from
quantum-secure pseudorandom permutations (qPRP) (which establishes the fact that the
existence of qP̃RP is theoretically equivalent to the existence of qPRP). The problem of
whether a cryptographic primitive can be constructed from another primitive (whether
there exists a reduction) is fundamental and theoretically the most important in cryptology.
In addition, given that a qP̃RP can be obtained from quantum-secure pseudorandom
functions (qPRF) through 4-round Feistel cipher [HI19, HI20], our result establishes the
fact that a qP̃RP can be obtained from a qPRF.

On a practical side, it is plausible to assume AES [Nat01] to be qPRP given that there
has been no devastating quantum attack despite of recent efforts on quantum cryptanalysis
on it. Thus, we can certainly obtain qP̃RP by instantiating LRWQ with AES. This means
that our result enables us to directly benefit from recent efforts for quantum cryptanalysis
on AES [GLRS16, BNS19b, JNRV20].

Remark 1. To obtain qP̃RP, one obvious approach is to verify whether existing native
TBCs are quantum-secure (or design new ones), instead of using our mode LRWQ. However,
these two approaches do not negate the other, but complement each other, i.e., our result
gives another choice to construct qP̃RP for users. Even if there exists a quantum-secure
native TBC, this does not invalidate our result.

Remark 2. This paper does not provide security proofs against quantum chosen ciphertext
attacks (qCCAs), as our construction is broken if the decryption oracle is available even in
the classical setting, which is also the case for one of the original constructions by Liskov,
Rivest, and Wagner. Showing existence of TBCs that are secure against qCCAs is an
interesting future work. Since the compressed oracle technique can be used for random
functions but cannot be used for random permutations that allow inverse queries, an
entirely new proof technique has to be built to show that a scheme (if exists) is secure
against qCCAs. Note that TBCs that are secure against chosen-plaintext attacks (which
is not secure against chosen-ciphertext attacks) can be used to instantiate various efficient
message authentication codes and authenticated encryption schemes, e.g., ZMAC [IMPS17],
ZOTR [BGIM19], and Romulus [IKMP20]. Therefore, TBCs that are secure against
quantum chosen-plaintext attacks (qCPAs) are relevant.6

1.2 Paper Organization
Section 2 describes notations and basic definitions that are used throughout the paper.
Section 3 reviews previous proof techniques and gives a proof summary to show quantum
oracle indistinguishability results. Section 4 describes the specification of our construction
LRWQ, and proves its quantum security. Section 5 concludes this paper with possible
future works.

6We note that the argument here is to illustrate the relevance of TBCs that are secure against CPAs.
We are not claiming that the modes are secure against quantum attacks. We also note that there are
BC-based authenticated encryption modes that do not use the decryption of BCs, such as CCM [WHF02],
GCM [MV04], and OTR [Min14].
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2 Preliminaries
Throughout the paper, we assume that all algorithms are quantum algorithms, and make
quantum superposed queries to oracles. We assume that readers are familiar with basics
on quantum computations.

Basic notations. For bit strings X ∈ {0, 1}m and Y ∈ {0, 1}n, let X||Y ∈ {0, 1}m+n

denote the concatenation of X and Y . For each bit string X of finite length, let |X| denote
the length of X in bits. For a positive integer m, GF(2m) denotes the finite field of order
2m. We identify the set of bit strings {0, 1}m with the set of integers {0, 1, . . . , 2m − 1}
unless otherwise noted.
‖ · ‖ and ‖ · ‖tr denote norm of vector and trace norm of matrix, respectively. td(·, ·)

denotes the trace distance function td(ρ, σ) := 1
2‖ρ − σ‖tr. H denotes the Hadamard

operator on 1-qubit states. We denote the identity operator for an n-qubit quantum
system by In or just I. In addition, we denote the vectors |φ〉 ⊗ |0s〉 and |0s〉 ⊗ |φ〉 by the
same symbol |φ〉, if there will be no confusion. For a unitary operator U , we denote the
operators U ⊗ I and I ⊗ U by the same symbol U .

Primitives. A keyed function F is a function from a product space {0, 1}k × {0, 1}m to
another space {0, 1}n, where {0, 1}k is called the key space of F . We denote the function
F (K, ·) : {0, 1}m → {0, 1}n by FK(·) for each key K ∈ {0, 1}k.

A block cipher (BC) is a keyed function E : {0, 1}k×{0, 1}n → {0, 1}n such that EK(·)
is a permutation for each key K. A tweakable block cipher (TBC) is a keyed function
Ẽ : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n such that Ẽ(K,T, ·) is a permutation on {0, 1}n
for each K ∈ {0, 1}k and T ∈ {0, 1}t. The space {0, 1}t is called the tweak space of Ẽ. We
often write ẼTK(M) instead of Ẽ(K,T,M).

2.1 (Oracle-aided) Quantum Algorithms
2.1.1 Information-Theoretic Model

First, we explain how we model (oracle-aided) quantum algorithms when we take only the
number of quantum queries into account as adversaries’ computational resources, i.e., we
consider quantum information-theoretic adversaries.

When a single quantum oracle is available7, following previous works [BDF+11, SY17,
Zha12a] we model an oracle-aided quantum algorithm A that makes at most q quantum
queries as a sequence of unitary operators (U0, . . . , Uq) that act on an s-qubit state space
(which is the state space of A), where U0 corresponds to an initialization process and Ui
corresponds to A’s offline computation after the i-th query, for i ≥ 1. Without loss of
generality we can assume that A does not make any intermediate measurements, and A’s
state space HA (a Hilbert space) is a joint system of an aquery-qubit quantum system
Hquery, an aans-qubit quantum system Hans, and an (s − aquery − aans)-qubit quantum
system Hwork . Here, Hquery, Hans, and Hwork correspond to the register to send queries to
oracles, the register to receive answers from oracles, and the register for A’s offline works,
respectively. We also model a quantum oracle O as the sequence of unitary operators
(O1, . . . , Oq). O may have some (classical) randomness, and each Oi may be chosen
randomly according to a distribution at the beginning of each game. O can maintain its
own quantum state. If O has s′-qubit quantum states, joint quantum states of A and O
are (s + s′)-qubit quantum states. We denote O’s state space by HO. When A makes
the i-th query, the unitary operator Oi acts on Hquery ⊗ Hans ⊗ HO. We assume that

7Note that in this paper we only consider the case that each quantum algorithm is given oracle access
to at most one quantum oracle (we do not have to consider the case that two or more quantum oracles are
available for adversaries, in later sections).
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initial states of A and O are set to be |0s〉 ∈ HA and |InitO〉 ∈ HO8. When we run A, the
unitary operators U0, O1, U1, . . . , Uq act on the initial state |0s〉 ⊗ |InitO〉 in a sequential
order (the resulting quantum state is |Φ〉 = UqOq · · ·O1U0(|0s〉⊗ |InitO〉)), A measures the
first s-qubit of the state |Φ〉 with the computational basis to obtain a classical s-bit string
z, and finally outputs (a part of) z. We denote the event that A outputs a bit string x
after it runs relative to O by x← AO.

Example of an oracle. Let F be a family of functions from {0, 1}m to {0, 1}n. Suppose
that a quantum algorithm A runs relative to a quantum oracle OF that first chooses f
randomly from F (according to a distribution on F ) and gives A a quantum oracle access
to f . Then Hquery and Hans are defined as m-qubit space and n-qubit space, respectively.
OF has no quantum states, and each Oi is the unitary operator defined by

Oi : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 .

When f is chosen just uniformly at random, then this is the quantum oracle of a random
function.

2.1.2 Non-Information-Theoretic Model

When we take other computational resources such as time and the number of available
qubits into account in addition to the number of quantum queries, we model a quantum
algorithm as a combination of classical algorithms and quantum circuits. In this paper we
consider the pure quantum circuit model and ignore the costs related to communication
complexity and error corrections. We regard that a quantum circuit of depth D runs in
time D. We assume that each quantum circuit is composed of (1) the Hadamard gate H,
(2) the π/8-gate T , (3) the phase gate S, (4) the CNOT gate, and (5) the oracle gate (if
an oracle is available). We assume that each of basic gates runs in time O(1), in addition
that CNOT can act on arbitrary pair of qubits.
Remark 3. In practice, computational complexity of quantum algorithms would signif-
icantly vary depending on error correction costs and quantum hardware architectures,
or communication costs. Our model might overestimate quantum algorithms’ abilities,
but schemes that are proven to be secure in this model will remain secure in other more
realistic models.

2.2 Security Definitions
Oracle distinguishing advantage. For quantum oracles O1 and O2, we define the quan-
tum distinguishing advantage of an oracle-aided quantum algorithm A by

Advdist
O1,O2

(A) :=
∣∣Pr
[
b← AO1 : b = 1

]
− Pr

[
b← AO2 : b = 1

]∣∣ .
Quantum PRF advantages. Let F : {0, 1}k × {0, 1}m → {0, 1}n be a keyed function,
and A be an oracle-aided quantum algorithm. By abuse of notation, let F also denote
the quantum oracle that chooses a key K ∈ {0, 1}k uniformly at random and gives a
quantum oracle access to F (K, ·). Following previous works [BDF+11, Zha12a], we define
the quantum pseudorandom function advantage (or qPRF advantage for short) by

AdvqPRF
F (A) := Advdist

F,RF (A) ,

where RF is the quantum oracle that gives a quantum oracle access to a random function
f : {0, 1}m → {0, 1}n.

8A more general situation could be the case that A takes inputs and runs with a non-trivial initial
state (other than |0s〉), but this paper treats only quantum algorithms that take no inputs.
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Quantum PRP advantages. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher, and
A be an oracle-aided quantum algorithm. By abuse of notation, let E also denote the
quantum oracle that chooses a key K ∈ {0, 1}k uniformly at random and gives a quantum
oracle access to E(K, ·). Following [HI19, Zha16], we define the quantum pseudorandom
permutation advantage (or qPRP advantage for short) by

AdvqPRP
E (A) := Advdist

E,RP (A) ,

where RP is the quantum oracle that gives a quantum oracle access to a random permutation
P : {0, 1}n → {0, 1}n.

Quantum TPRP advantages. Let Ẽ : {0, 1}k×{0, 1}t×{0, 1}n → {0, 1}n be a tweakable
block cipher, and A be an oracle-aided quantum algorithm. By abuse of notation, let Ẽ
also denote the quantum oracle that chooses a key K ∈ {0, 1}k uniformly at random and
gives a quantum oracle access to Ẽ(K, ·, ·). Extending the classical security notion [LRW02,
LRW11], we define the quantum tweakable pseudorandom permutation advantage (or
qP̃RP advantage for short) by

AdvqP̃RP
Ẽ

(A) := Advdist
Ẽ,R̃P

(A) ,

where R̃P is the quantum oracle that gives a quantum oracle access to a function P̃ :
{0, 1}t × {0, 1}n → {0, 1}n such that P̃ (T, ·) is a random permutation for each T ∈ {0, 1}t
(i.e., P̃ is a tweakable random permutation).

3 Proof Techniques in the Quantum Setting
This section reviews previous quantum proof techniques that are used in later sections. One
of the most significant obstacles to giving quantum security proofs is that we cannot record
transcripts of queries and answers: if we copy and record adversaries’ queries in the same
way as we do in the classical setting, it significantly affects the adversaries’ quantum states.
In [Zha19], Zhandry showed how we can overcome this obstacle with his proof technique
named “compressed oracle technique,” which enables us to record transcripts of queries
made to quantum random oracles to some extent. His technique is so powerful that it can
be used to show the indifferentiability of Merkle-Damgård construction, post-quantum
security of Fujisaki-Okamato transformation [Zha19], the quantum query lower bound
for the multicollision-finding problem on random functions [LZ19], and that the 4-round
Luby-Rackoff construction is a qPRP [HI19, HI20]. The technique not only enables us to
record quantum queries but also efficiently simulate random functions. In later sections, we
also use his technique to show that a function is indistinguishable from a random function
against information theoretic adversaries.

Because we do not have to care about efficient simulations of random functions in
our proofs when we focus on information theoretic adversaries, we use an alternative
formalization of the compressed oracle technique by Hosoyamada and Iwata named recording
standard oracle with errors [HI19, HI20], which ignores efficient simulations for random
functions and focuses on recording quantum queries. In [HI19, HI20], the authors showed
some indistinguishability results by using the recording standard oracle with errors. Their
techniques are arguably complex, making it hard to apply for other symmetric key schemes.
In this section, we give a summary of their proof strategy so that the readers can have a
good outlook on it9.

9The Asiacrypt version of their paper [HI19] has some technical errors in proofs, and corrected in the
revised version [HI20]. Our summary is based on the revised version rather than the Asiacrypt version.
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The organization of this section is as follows. In Section 3.1, we present an overview the
recording standard oracle with errors. In Section 3.2, we review and summarize how the
recording standard oracle with errors is used to show quantum oracle indistinguishability
in [HI19, HI20] (see Proposition 3). In Section 3.3, we review some other useful proof tools
for later use.

In Section 3.1 and Section 3.2, we focus on quantum information-theoretic adversaries,
and model quantum algorithms as in Section 2.1.1. In Section 3.3, we take the running
time and the number of available qubits into account when we estimate adversaries’
computational resources, as in Section 2.1.2.

3.1 Recording Standard Oracle with Errors
3.1.1 Standard Oracle

The quantum oracle of a random function (or quantum random oracle [BDF+11]) is
primarily defined as the oracle such that, a function f is chosen randomly at the beginning,
and then it gives an adversary quantum oracle access to f . Note that the quantum oracle
access to a function f is realized by the unitary operator Of : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 (See
the example in Section 2.1.1). Below, we give an equivalent model of the quantum oracle
of a random function, which we call the standard oracle for a random function.

For a function f : {0, 1}m → {0, 1}n, by the same symbol f let us denote the (n+1) ·2m-
bit string (0‖f(0))‖(0‖f(1))‖ · · · ‖(0‖f(2m − 1)). (Now we are considering the truth table
of f . Readers may wonder why there is a bit “0” before each f(i) although a natural
representation of the truth table would be the n · 2m-bit string f(0)||f(1)|| · · · ||f(2m − 1).
Actually, the bit “0” in our representation is essentially unnecessary to explain the standard
oracle, but we include this for later use.) In addition, let us define a unitary operator stO
for (n+m+ (n+ 1)2m)-qubit states by

stO : |x〉 |y〉 |S〉 7→ |x〉 |y ⊕ sx〉 |S〉 , (1)

where x ∈ {0, 1}m, y ∈ {0, 1}n, and S = (b0‖s0)‖(b1‖s1)‖ · · · ‖(b2m−1‖s2m−1), where
bi ∈ {0, 1} and si ∈ {0, 1}n for each i ∈ {0, 1}m. Then we have that (Of |x〉 |y〉)⊗ |f〉 =
stO |x〉 |y〉 |f〉 holds. That is, the oracle Of can be realized by the operator stO, which is
independent from functions, and the truth table of f .

By abuse of notation, let stO also denote the stateful quantum oracle such that its
initial state is the uniform superposition of all functions

∑
f

√
1

2n2m |f〉, and when a query
is made, the response is processed as in (1). Then, for any quantum algorithm A and any
(classical) possible output z, Pr

[
z ← AstO] = Pr

[
z ← ARF] holds.

3.1.2 Recording Standard Oracle with Errors

Next we review the recording standard oracle with errors, which is an alternative formal-
ization of Zhandry’s compressed oracle technique. It enables us to record transcripts of
queries made to random functions.

Define three unitary operators IH, CH, Utoggle that act on (n+ 1)2m-qubit states by

IH := (I1 ⊗H⊗n)⊗2m

,CH := (CH⊗n)⊗2m

, and
Utoggle := (I1 ⊗ |0n〉 〈0n|+X ⊗ (In − |0n〉 〈0n|))⊗2m

,

For completeness, we do not rely on any propositions in [HI19, HI20] that is related to the errors. The
propositions we cite from [HI19, HI20] in this paper are ones of which correctness can be confirmed just
by straightforward algebraic calculation (Proposition 1 and Proposition 2), and one that is just a simple
combination of other previous results (Proposition 4).
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where CH⊗n := |1〉 〈1| ⊗H⊗n + |0〉 〈0| ⊗ In is the controlled n-qubit Hadamard operator,
and X is the 1-qubit “NOT” operator defined by X |b〉 = |b⊕ 1〉. The actions of the
unitary operator Uenc := CH ·Utoggle · IH and its conjugate are called encoding and decoding,
respectively.
Definition 1 (Recording standard oracle with errors). The recording standard oracle
with errors is a quantum oracle with (n + 1)2m-qubit states such that the initial state
is |0(n+1)2m〉 and responses to queries are processed by the unitary operator RstOE :=
(I ⊗ Uenc) · stO · (I ⊗ U∗enc), where I denotes the identity operator on adversaries’ query
and answer registers, and U∗enc is the conjugate of Uenc. (See also Fig. 1.)

R
stO
E

𝑈1
R
stO
E

𝑈0

R
stO
E

𝑈𝑞𝑈2

0 𝑛+1 2𝑚

0𝑚

0𝑛

0ℓ

Figure 1: A quantum circuit that illustrates an adversary A that runs relative to RstOE.
The register |0(n+1)2m〉 at the top corresponds to the oracle’s state. The second and
third registers (|0m〉 and |0n〉) are used to send queries and receive answers, respectively.
The register |0`〉 at the bottom corresponds to A’s private working space for offline
computations.

From the definition of RstOE it immediately follows that, for any quantum algorithm A
and any (classical) possible output z, Pr

[
z ← ARstOE] = Pr

[
z ← AstO] = Pr

[
z ← ARF]

holds.
Let D be an (n + 1)2m-bit string (b0‖d0)‖ · · · ‖(b2m−1‖d2m−1). We call D a valid

database if there is no x such that dx 6= 0n ∧ bx = 0, and we call D an invalid database
otherwise. (Be careful not to confuse the (in)valid databases with the representations for
functions’ truth tables introduced in Section 3.1.1.)

Note that there is a natural one-to-one correspondence between the set of valid databases
and the set of partially defined functions from {0, 1}m to {0, 1}n that is defined by
D 7→ FD, where FD is the function such that FD(x) = dx if bx = 1 and FD(x) =
⊥ (i.e., FD is not defined on x) if bx = 0. In addition, there exists a trivial one-
to-one correspondence between the set of the partially defined function from {0, 1}m
to {0, 1}n and the set X := {S ⊂ {0, 1}m × {0, 1}n|x 6= x′ holds for (x, y) 6= (x′, y′) ∈ S}.
We identify valid databases with partially defined functions and elements in X via these
one-to-one correspondences. For a valid database D, we write D(x) = y to denote
bx = 1 and dx = y, and D(x) = ⊥ to denote bx = 0. When two valid databases
D 6= D′ satisfy D(x) = ⊥ ∧ D′(x) = α( 6= ⊥) for some x and D(x′) = D(x′) for other
x′( 6= x), we write D′ = D ∪ (x, α) and D = D′ \ (x, α). In addition, for a valid database
D = (b0‖d0)‖ · · · ‖(b2m−1‖d2m−1) such that D(x) = ⊥ and β 6= 0n ∈ {0, 1}n, we denote
the invalid database (b0‖d0)‖ · · · ‖(bx−1‖dx)‖(0‖β)‖(bx+1‖dx+1)‖ · · · ‖(b2m−1‖d2m−1) by
D ∪ J(x, β)K.
Remark 4 (Intuition behind RstOE). Intuitively, for a valid database D, bx = 1 means that
x has been queried and the corresponding answer is dx, and databases can be regarded
as transcripts of queries and answers. When a query is made, (valid) databases are first
“decoded” into truth tables of functions. Then the oracle responds with stO, and finally
the truth tables are “encoded” again into (valid) databases.

Let A be a quantum algorithm, and |ψi〉 be the whole quantum state of A and the
oracle just before the i-th query when it runs relative to the standard oracle RstOE. For
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ease of notation, let us denote |ψq+1〉 be the quantum state after all unitary processes
are finished. The following proposition guarantees that each database contains at most i
entries after i quantum queries.

Proposition 1. Let i ≥ 1. Suppose that we measure the oracle states’ register of |ψi+1〉
and obtained a database D. Then D is valid, and contains at most i entries.

We can deduce that the proposition holds from the discussions in [HI19, HI20], though,
we provide a proof of the proposition in Appendix A for completeness.

Remark 5. Unlike classical transcripts, even if |ψi〉 contains a database D (of non-zero
quantum amplitude) with an entry (x, dx), there is no guarantee that |ψi′〉 contains a
database with the entry (x, dx) for some i′ > i. That is, roughly speaking, there is a
possibility that a database will “forget” its entries. Furthermore, there is even a possibility
that the record (x, dx) is overwritten with another record (x, d′x) when a query is made.

The following proposition shows core technical properties for RstOE.

Proposition 2 (Proposition 1 in [HI19, HI20]). Let D be a valid database. Suppose that
D(x) = ⊥. Then, the following properties hold.

1. For any y, there exists a vector |ε1〉 such that ‖ |ε1〉 ‖ ≤ 5/
√

2n and RstOE |x〉 |y〉 ⊗
|D ∪ (x, α)〉 = |x〉 |y ⊕ α〉 ⊗ |D ∪ (x, α)〉+ |ε1〉 hold. More precisely,

RstOE |x, y〉 ⊗ |D ∪ (x, α)〉
= |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 (2)

+ 1√
2n
|x, y ⊕ α〉

|D〉 −
 ∑
γ∈{0,1}n

1√
2n
|D ∪ (x, γ)〉

 (3)

− 1√
2n
∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗

(
|D ∪ (x, γ)〉 − |Dinvalid

γ 〉
)

(4)

+ 1
2n |x〉 |0̂

n〉 ⊗

2
∑

δ∈{0,1}n

1√
2n
|D ∪ (x, δ)〉 − |D〉

 (5)

holds, where |Dinvalid
γ 〉 is a superposition of invalid databases that depend on γ defined

by

|Dinvalid
γ 〉 :=

∑
δ 6=0n

(−1)γ·δ√
2n
|D ∪ J(x, γ)K〉

and |0̂n〉 := H⊗n |0n〉.

2. For any y, there exists a vector |ε2〉 such that ‖ |ε2〉 ‖ ≤ 2/
√

2n and RstOE |x〉 |y〉 ⊗
|D〉 =

∑
α∈{0,1}n

1√
2n
|x〉 |y ⊕ α〉 ⊗ |D ∪ (x, α)〉+ |ε2〉 hold. More precisely,

RstOE |x〉 |y〉 ⊗ |D〉 =
∑

α∈{0,1}n

1√
2n
|x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉 (6)

+ 1√
2n
|x〉 |0̂n〉 ⊗

|D〉 − ∑
γ∈{0,1}n

1√
2n
|D ∪ (x, γ)〉

 (7)

holds, where |0̂n〉 = H⊗n |0n〉.
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Remark 6. Roughly speaking, Proposition 2 says that RstOE behaves as a quantum version
of the classical lazy sampling (up to a small error) when the state before a query is
not superposed: The second property is an analogy of the property of the classical lazy
sampling that, if the query x has not been queried before, then RstOE samples α uniformly
at random and responds with it (with some errors). The first property is an analogy of the
classical one that, if the query x has already been queried before and its answer was α, then
the response to the current query is α as before (with some errors). When the state before
a query is superposed, the effect of the error terms |ε1〉 and |ε2〉 becomes non-negligible and
quantum-specific properties (such that a record is deleted or overwritten from the database)
arise, and we have to provide careful analysis. Therefore, we can use classical intuitions to
come up with quantum security proofs with RstOE, but still sometimes classical intuitions
do not work and mathematically rigorous proofs are indispensable.

3.2 How to Show Quantum Oracle Indistinguishability with RstOE
Here we briefly review how the recording standard oracle with errors is used to show
quantum oracle indistinguishability in [HI20]. Note that this section focuses on quantum
information-theoretic adversaries, and we model quantum algorithms as in Section 2.1.1.
We first describe the proof strategy formally, and then explain some informal intuition
behind it.

Goal. Suppose that there are functions F f1,...,fr , Gg1,...,gs : X → Y that have access to
functions f1, . . . , fr and g1, . . . , gs in a black-box manner, respectively. Our goal is to give
an upper bound on the distinguishing advantage of an adversary A between F f1,...,fr and
Gg1,...,gs when each fi and gj are random functions.

Oracle implementations using RstOE. Below, we assume that elements in X and Y
are encoded into m-bit strings and n-bit strings for some positive integers m and n,
respectively.

When each fi is a fixed function (but not a random function), let Of1,...,fr

F denote
the quantum oracle of F f1,...,fr . We assume that the unitary operator Of1,...,fr

F of the
oracle Of1,...,fr

F is realized as a quantum circuit with oracle gates (that make queries
to f1, . . . , fr) and suppose that ` ancilla qubits are used to compute F . The ancilla
qubits are supposed to be |0`〉 before and after each evaluation of F when f1, . . . , fr are
some fixed functions. That is, we assume that Of1,...,fr

F is a unitary operator such that
Of1,...,fr

F : |x〉 |y〉 ⊗ |0`〉 7→ |x〉 |y ⊕ F f1,...,fr (x)〉 ⊗ |0`〉 holds, when each fi is fixed.
When f1, . . . , fr are random functions RF1, . . . ,RFr, we assume that they are im-

plemented by using the recording oracle with errors RstOE. We regard ORF1,...,RFr

F as
the quantum oracle of which quantum states are combinations of (superposed) valid
databases for RF1, . . . ,RFr and the ` ancilla qubits. Then, the joint quantum state of A
and ORF1,...,RFr

F is described as∑
u,DBF ,ξ`

au,DBF ,ξ`
|u〉 ⊗ |DBF 〉 |ξ`〉 ,

where u corresponds to A’s state, each DBF = (D1, . . . , Dr) denotes a (combined)
database for RF1, . . . ,RFr, each ξ` is a classical `-bit string, and au,DBF ,ξ`

satisfies∑
u,DBF ,ξ`

|au,DBF ,ξ`
|2 = 1. Below, we just write OF instead of ORF1,...,RFr

F for simplicity.
Similarly, when g1, . . . , gs are random functions RF′1, . . . ,RF′s, we assume that the

quantum oracle OG of GRF′
1,...,RF′

s are implemented by using RstOE. We assume that OG
uses `′ ancilla qubits to compute G. We denote a (combined) database for RF′1, . . . ,RF′s
by DBG := (D′1, . . . , D′s), where D′i is a valid database for each RF′i.
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Good and bad databases. Next, we classify valid databases for OF and OG into good
and bad databases, which correspond to good and bad transcripts in classical security
proofs. The important point is that the classification is done in such a way that there
is a one-to-one correspondence between good databases for OF and those for OG. For
each good database DBF for OF , we denote the corresponding good database for OG by
[DBF ]G. Similarly, for each good database DBG for OG, we denote the corresponding
database for OF by [DBG]F .

An upper bound of the oracle distinguishing advantage. Let A be an oracle-aided
quantum algorithm that makes at most q quantum queries. Let |ψi〉 (resp., |ψ′i〉) be the
entire quantum state just before the i-th query when A runs relative to OF (resp., OG).
By abuse of notation, let |ψq+1〉 (resp., |ψ′q+1〉) be the entire quantum state just before
the final measurement.

The technically hardest part to give an upper bound of Advdist
OF ,OG

(A) is to show that,
for i = 1, . . . , q + 1, there exist vectors |ψ

′good
i 〉, |ψ′bad

i 〉, |ψgood
i 〉, and |ψbad

i 〉 that satisfy the
following properties.

1. |ψ′i〉 = |ψ
′good
i 〉+ |ψ′bad

i 〉 and |ψi〉 = |ψgood
i 〉+ |ψbad

i 〉.

2. There exists complex number a(i)
xyzDBG

such that

|ψ
′good
i 〉 =

∑
x,y,z

DBG:good database for OG

a
(i)
xyzDBG

|x, y, z〉 ⊗ |DBG〉 , and (8)

|ψgood
i 〉 =

∑
x,y,z

DBG:good database for OG

a
(i)
xyzDBG

|x, y, z〉 ⊗ |[DBG]F 〉 (9)

hold, where x, y, and z correspond to A’s register to send queries to oracles, register
to receive answers from oracles, and register for offline computation, respectively.

3. It holds that∥∥∥|ψ′bad
i 〉

∥∥∥ ≤ ∥∥∥|ψ′bad
i−1 〉

∥∥∥+ ε
′(i−1)
bad and

∥∥|ψbad
i 〉

∥∥ ≤ ∥∥|ψbad
i−1〉

∥∥+ ε
(i−1)
bad (10)

for some positive values ε
′(i−1)
bad and ε

(i−1)
bad (we set |ψ′bad

0 〉 = |ψbad
0 〉 = 0, |ψ′bad

1 〉 =
|ψbad

1 〉 = 0, and ε(0)
bad = ε

′(0)
bad = 0).

The following proposition ensures that we will obtain an upper bound of the distin-
guishing advantage of A when we prove the existence of such vectors |ψ

′good
i 〉, |ψ′bad

i 〉,
|ψgood
i 〉, and |ψbad

i 〉.

Proposition 3. Suppose that there exist vectors |ψ
′good
i 〉, |ψ′bad

i 〉, |ψgood
i 〉, and |ψbad

i 〉 that
satisfy the above three properties. Then, Advdist

OF ,OG
(A) ≤

∑
1≤i≤q ε

′(i)
bad +

∑
1≤i≤q ε

(i)
bad

holds.

Though this proposition is essentially proved in [HI20], here we give a proof for
completeness.

Proof. From (10), it follows that
∥∥∥|ψ′bad

q+1〉
∥∥∥ ≤ ∑1≤i≤q ε

′(i)
bad and

∥∥|ψbad
q+1〉

∥∥ ≤ ∑1≤i≤q ε
(i)
bad.

In addition, td
(

TrOF

(
|ψgood
q+1 〉 〈ψ

good
q+1 |

)
,TrOG

(
|ψ

′good
q+1 〉 〈ψ

′good
q+1 |

))
= 0 follows from (8) and
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(9), where TrOF
and TrOG

denote the partial trace over the quantum systems of the oracle’s
states. Thus we have

Advdist
OF ,OG

(A) ≤ td
(
TrOF

(|ψq+1〉 〈ψq+1|) ,TrOG

(
|ψ′q+1〉 〈ψ′q+1|

))
≤
∥∥|ψbad

q+1〉
∥∥+

∥∥∥|ψ′bad
q+1〉

∥∥∥
≤
∑

1≤i≤q
ε

′(i)
bad +

∑
1≤i≤q

ε
(i)
bad, (11)

which completes the proof.

Intuitions. Here we explain some intuitions behind the above proof strategy. First,
when we define good and bad databases, we choose good databases so that the following
conditions will hold (in addition that there exists a one-to-one correspondence between
good databases for OF and those for OG).

1. The behavior of OF on a good database DBF is the same as that of OG on the
corresponding database [DBF ]G.

2. The “probability” (in a quantum sense) that a good database DBF (resp., DBG)
changes to a bad database at each query to OF (resp., OG) is small.

The first condition ensures that the adversary cannot distinguish OF and OG as long
as databases are good, which leads to the existence of vectors |ψgood

i 〉 and |ψ
′good
i 〉 that

satisfies (8) and (9) for each i. (Recall that, in the proof of Proposition 3, (8) and (9) for
i = q + 1 lead to the property that the adversary’s distinguishing advantage is bounded by
‖ |ψbad

q+1〉 ‖+ |ψ′bad
q+1〉 ‖.) The “probability” in the second condition corresponds to the terms(

ε
(i)
bad

)2
and

(
ε

′(i)
bad

)2
. If we can show that

(
ε

(i)
bad

)2
and

(
ε

′(i)
bad

)2
are very small, we can

show the indistinguishability of OF and OG through Proposition 3. In a later section, to
show that the “probability” is really small, we decompose OF (resp., OG) into a sequence
of RstOEf1 , . . . ,RstOEfr

(resp., RstOEg1 , . . . ,RstOEgs
), and prove that the “probability”

that a good database changes to a bad database is small at each query to RstOEfj
(resp.,

RstOEgj
) for each j.

3.3 Other Useful Tools
Here we review some useful proof tools for later use. Note that, in this section we take the
running time and the number of available qubits into account, in addition to the number of
quantum queries, when we estimate adversaries’ computational resources (see Section 2.1.2
for details).

Switching random functions and random permutations. The following theorem is a
quantum version of the RF-RP switching lemma, which was shown by Zhandry [Zha15].

Theorem 1 (Theorem 7 in [Zha15]). Let RF and RP denote quantum oracles of a random
function from {0, 1}n to {0, 1}n and an n-bit random permutation, respectively. Let A
be an oracle-aided quantum algorithm that makes at most q quantum queries. Then
Advdist

RF,RP(A) ≤ O(q3/2n) holds.

Simulating random functions in the quantum setting. For a positive integer k, k-wise
independent hash function family is a family of functions H = {hi : X → Y}i∈I (I is
a finite index set) such that Pri←$I [hi(x1) = y1 ∧ · · · ∧ hi(xk) = yk] = 1/|Y|k holds for
arbitrary tuple (x1, . . . , xk, y1, . . . , yk) ∈ X k × Yk such that xα 6= xβ for α 6= β.
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Zhandry showed that a random function can be perfectly simulated with 2q-wise
independent hash function families against quantum algorithms that make at most q
queries [Zha12b].

Theorem 2 (Theorem 3.1 in [Zha12b]). Let A be an oracle-aided quantum algorithm
that makes at most q quantum queries. Let H = {hi : {0, 1}m → {0, 1}n}i∈I be a 2q-wise
independent hash function family. By abuse of notation, let H also denote the quantum
oracle such that i ∈ I is chosen uniformly at random and the quantum oracle access to the
function hi is given to A. Then AdvqPRF

H (A) = 0 holds.

The set of polynomials over GF(2n) of which degree is at most 2q − 1 (≤ 2n) becomes
a 2q-wise independent hash function family (domains and ranges are GF(2n) = {0, 1}n).
Let H = {hi : {0, 1}n → {0, 1}n}i∈I denote this hash function family. Then H can be
regarded as a function from I × {0, 1}n to {0, 1}n. We can built a quantum circuit with
depth Õ(q) and width Õ(q) (Õ suppresses factors of polynomials in n) that computes the
function H : (i, x) 7→ hi(x). Therefore, the following corollary follows from Theorem 2.

Corollary 1. There exists a function family H = {hi : {0, 1}n → {0, 1}n}i∈I such that
(1) sampling i from I uniformly at random can be done in time Õ(q), (2) H : (i, x) 7→
hi(x) is implemented on a quantum circuit with depth Õ(q) and width Õ(q), and (3)
AdvqPRF

hi
(A) = 0 holds for any quantum algorithm A that makes at most q quantum

queries when i is chosen uniformly at random.

Indistinguishability of tweakable random permutation and random function. Let P̃ :
{0, 1}n × {0, 1}n → {0, 1}n be a tweakable random permutation, i.e., P (t, ·) : {0, 1}n →
{0, 1}n is a random permutation for each t ∈ {0, 1}n. In addition, let F : {0, 1}n×{0, 1}n×
{0, 1}n → {0, 1}n be a random function. Then the following proposition holds.

Proposition 4 (Proposition 5 in [HI19]). Let A be a quantum algorithm that makes at
most q quantum queries. Then,

Advdist
R̃P,RF

(A) = Advdist
P̃ ,F (A) ≤ O

(√
q6

2n

)
(12)

holds.

Remark 7. The upper bound given in Proposition 4 is much larger than that in Theorem 1.
We expect that the bound in (12) is not tight, while a better provable security bound is
not known.

4 A Quantum-Secure TBC
This section gives a new construction that converts block ciphers that are secure against
quantum superposition attacks into tweakable block ciphers that are secure against quan-
tum superposition attacks. Since our construction is a variant of the LRW construc-
tions [LRW02], we first review them before introducing ours.

4.1 The LRW Constructions
Liskov, Rivest, and Wagner introduced constructions that convert (classically) secure
block ciphers into (classically) secure tweakable block ciphers, which are called the LRW
constructions [LRW02].
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Figure 2: The LRW constructions. LRW1 is depicted on the left, and LRW2 is depicted
on the right.

Let E : {0, 1}k×{0, 1}n → {0, 1}n be a block cipher and h be an almost 2-xor-universal
hash function. Then the first construction, which we denote by LRW1, is defined as

LRW1[E]TK(M) = EK(EK(M)⊕ T ).

The second construction, which we denote by LRW2, is defined as

LRW2[E]T(K,h)(M) = EK(M ⊕ h(T ))⊕ h(T ),

where h is a part of the key. See Fig. 210.
Roughly speaking, both LRW1 and LRW2 are shown to be secure up to about 2n/2

queries (if h is a 1/2n-almost 2-xor-universal hash function) in the classical setting. LRW2
is also proven to be secure even if the decryption oracle is available to adversaries (That is,
LRW2 is a tweakable strong pseudorandom permutation. LRW1 is not a tweakable strong
pseudorandom permutation since it is broken if the decryption oracle is available).

In the quantum setting, however, Kaplan et al. showed that LRW2 can be distinguished
from a tweakable random permutation in polynomial time (in n) if quantum superposition
queries to keyed oracles are allowed [KLLN16a].

An overview of their attack is as follows: Choose two tweaks T 6= T ′ and define a
function FO by FO(M) := O(T,M) ⊕ O(T ′,M), where O is a quantum oracle such
that O = R̃P or O = LRW2. Then, we can show that FO(M ⊕ s) = FO(M) holds for
s := h(T )⊕ h(T ′) and all M if O = LRW2, which implies that FO is a periodic function,
but FO is far from periodic when O = R̃P. Therefore, we can distinguish LRW2 from R̃P
in polynomial time by using Simon’s period finding quantum algorithm [Sim97].

Similarly, we can distinguish LRW1 from a tweakable random permutation in polynomial
time with Simon’s algorithm: For LRW1, we choose two messagesM 6= M ′, define a function
GO by GO(T ) = O(T,M) ⊕ O(T,M ′), and apply Simon’s quantum algorithm on GO

instead of FO. When O = LRW1, the function GO has the period EK(M)⊕EK(M ′). We
see that the attack on LRW1 works with the same reasoning as Kaplan et al.’s attack on
LRW2 works.

Note that the attack on LRW1 implies that we can efficiently find a collision for the
function LRW1[E](·)K (·) : {0, 1}n × {0, 1}n → {0, 1}n in the quantum setting. If we can
efficiently recover the value EK(M)⊕EK(M ′) and set T ′ := T ⊕EK(M)⊕EK(M ′), then
LRW1[E]TK(M) = LRW1[E]T ′

K (M ′) holds. Finding such a collision by polynomial-time
CPAs is hard in the classical setting.

10We use the terms LRW1 and LRW2 following previous works [LST12, LS13].
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Figure 3: Specification of LRWQ[E].

4.2 LRWQ: A Quantum-Secure Construction
We next present our construction, LRWQ, which is a three-key block-cipher based tweakable
block cipher. If the block length of the underlying block cipher is n, both the block and
tweak lengths of LRWQ become n.

Let E be an n-bit block cipher with k-bit keys. Then the tweakable block cipher
LRWQ[E] : {0, 1}3k × {0, 1}n × {0, 1}n → {0, 1}n is defined as

LRWQ[E]T(K1,K2,K3)(M) = EK3(EK1(M)⊕ EK2(T )).

See Fig. 3. LRWQ is constructed based on LRW1. To prevent the quantum polynomial
time attack in Section 4.1, tweak is encrypted before added to EK1(M). This works since
intuitively, it is hard even for quantum adversaries to find (M,T ) and (M ′, T ′) such that
the corresponding outputs collide, i.e., LRWQ[E]T(K1,K2,K3)(M) = LRWQ[E]T ′

(K1,K2,K3)(M ′)
holds.

Unlike the classical constructions LRW1 and LRW2, as we will show in Section 4.3,
LRWQ is secure against quantum superposition attacks when it is instantiated with n-bit
block ciphers that are secure against quantum superposition attacks. LRWQ is the first
mode of block ciphers to build a tweakable block cipher that is provably secure against
quantum superposition attacks.

4.2.1 Classical Security Analysis

Before going into the analysis in the quantum setting, we show that LRWQ is a secure
tweakable block cipher in the classical setting against chosen plaintext attacks up to
O(2n/2) queries, and the security bound is tight. In addition, we show that LRWQ is
broken in time O(1) only with O(1) queries if the decryption oracle is available (i.e., LRWQ
is not a tweakable strong pseudorandom permutation), even in the classical setting. Define
the distinguishing advantage Advdist, the pseudorandom permutation advantage AdvPRP,
and the tweakable pseudorandom permutation advantage AdvP̃RP for classical adversaries
in the same way as we did for quantum adversaries. Then the following proposition holds.

Proposition 5. Let A be a classical adversary that makes at most q queries and runs in
time τ . Then, there exist three classical adversaries B1, B2, and B3 that make at most q
queries and run in time Õ(τ + q) such that

AdvP̃RP
LRWQ[E](A) ≤

∑
i=1,2,3

AdvPRP
E (Bi) +O

(
q2

2n

)
(13)
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holds. In addition, there exists a classical algorithm C that makes O(2n/2) queries and
runs in time Õ(2n/2) such that AdvP̃RP

LRWQ[E](C) = Θ(1). If the decryption oracle is also
available to adversaries, there exists an algorithm C′ that distinguishes LRWQ[E] from R̃P
in time Õ(1) by making only O(1) queries with a constant probability.

This proposition can be shown in a straightforward manner, but we give a proof
intuition in Appendix B.

4.3 qP̃RP Security Proofs for LRWQ

Below, we give qP̃RP security proof for LRWQ. The goal is to show the following theorem.

Theorem 3. Let A be a quantum algorithm that runs in time τ , makes at most q quantum
queries, and uses Q qubits. Then there exist quantum algorithms B1, B2, and B3 that make
at most O(q) quantum queries and run in time τ1, τ2, and τ3, respectively, such that

AdvqP̃RP
LRWQ[E](A) ≤

∑
1≤i≤3

AdvqPRP
E (Bi) +O

(√
q6

2n

)

holds, where τ1 and τ2 are in Õ(τ + q2), τ3 is in Õ(τ + q), and Õ suppresses factors of
polynomials in n. B1 and B2 use Õ(Q+ q) qubits, and B3 uses Õ(Q) qubits.

4.3.1 Notations, Definitions, and Basic Properties

Here we introduce notations, definitions, and basic properties that are used to prove
qP̃RP security of LRWQ. Let f0, f1 : {0, 1}n → {0, 1}n denote random functions. Let
fsmall : {0, 1}n → {0, 1}n and fbig : {0, 1}3n → {0, 1}n also be random functions. Let us
define three functions FSum,FSFsmall,FSFbig : {0, 1}2n → {0, 1}n by

FSum(M,T ) := f0(M)⊕ f1(T ),
FSFsmall(M,T ) := fsmall (FSum(M,T )) ,

FSFbig(M,T ) := fbig (M,T,FSum(M,T )) .

See Fig. 4 for figures of FSum, FSFsmall, and FSFbig. Note that FSFsmall is defined in
the same way as LRWQ[E] except that it uses random functions instead of block ciphers.
FSFbig is completely indistinguishable from a random function since fbig is a random
function.

Reduction to qPRF Security of FSFsmall. The following proposition shows that the
problem of proving qP̃RP security of LRWQ[E] can be reduced to the problem of proving
qPRF security of FSFsmall when the underlying block cipher is a secure qPRP.

Proposition 6. Let A be a quantum algorithm that runs in time τ , makes at most q
quantum queries, and uses Q qubits. Then there exist quantum algorithms B1, B2, and B3
that make at most O(q) quantum queries and run in time τ1, τ2, and τ3, respectively, such
that

AdvqP̃RP
LRWQ[E](A) ≤

∑
1≤i≤3

AdvqPRP
E (Bi) + AdvqPRF

FSFsmall
(A) +O

(√
q6

2n

)

holds, where τ1 and τ2 are in Õ(τ + q2), τ3 is in Õ(τ + q), and Õ suppresses factors of
polynomials in n. B1 and B2 use Õ(Q+ q) qubits, and B3 uses Õ(Q) qubits.
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Figure 4: Comparison of FSFsmall(M,T ) and FSFbig(M,T ).

Proof. Let hi : {0, 1}n → {0, 1}n be EKi
or RFi, where RFi is a random function, for

1 ≤ i ≤ 3. Let LRWQ′[h1, h2, h3] be the function that is the same as LRWQ[E] except that
EKi is replaced with hi for each i (if hi = EKi for all i, LRWQ′[h1, h2, h3] is completely
the same as LRWQ[E]). Without loss of generality we assume that choosing a random key
for E and encryption with E can be done in time Õ(1) by using Õ(1) qubits.

Suppose that we are given access to a quantum oracle O3, which is either EK3 (the
key K3 is chosen randomly) or a random function RF3 : {0, 1}n → {0, 1}n. Then, we
construct an algorithm B3 to distinguish EK3 from RF3 as follows: First, B3 chooses
keys K1 and K2 for E uniformly at random. Then B3 runs A, simulating the oracle
of LRWQ′[EK1 , EK2 , EK3 ] = LRWQ[E] or LRWQ′[EK1 , EK2 ,RF3] by computing EK1 and
EK2 by itself, and computing EK3 or RF3 by making queries to O3. (If O3 is EK3 , then B3
perfectly simulates LRWQ[E]. Otherwise B3 perfectly simulates LRWQ′[EK1 , EK2 ,RF3].)
Finally, B3 outputs what A outputs. Then B3 runs in time Õ(τ + q), makes at most O(q)
quantum queries to O3, uses Õ(Q) qubits, and

Advdist
LRWQ[E],LRWQ′[EK1 ,EK2 ,RF3](A) = AdvqPRF

E (B3) ≤ AdvqPRP
E (B3) +O

(
q3

2n

)
(14)

holds, where we used Theorem 1 for the last inequality.
Next, suppose that we are given access to a quantum oracle O1, which is either EK1

(the key K1 is chosen randomly) or a random function RF1 : {0, 1}n → {0, 1}n. Then, we
construct an algorithm B1 to distinguish EK1 from RF1 as follows: B1 runs A, simulating
the oracle of LRWQ′[EK1 , EK2 ,RF3] or LRWQ′[RF1, EK2 ,RF3] by simulating RF3 as in
Corollary 1, choosing K2 and computing EK2 by itself, and computing EK1 or RF1 by
making queries to O1. (If O1 is EK1 , then B1 perfectly simulates LRWQ′[EK1 , EK2 ,RF3].
Otherwise B1 perfectly simulates LRWQ′[RF1, EK2 ,RF3].) Finally, B1 outputs what A
outputs. Since Corollary 1 holds, it follows that B1 runs in time Õ(τ + q2), makes at most
O(q) quantum queries to O1, uses Õ(Q+ q) qubits, and

Advdist
LRWQ′[EK1 ,EK2 ,RF3],LRWQ′[RF1,EK2 ,RF3](A) = AdvqPRF

E (B1)

≤ AdvqPRP
E (B1) +O

(
q3

2n

)
(15)

holds. Similarly, we can show that there exists a quantum algorithm B2 that runs in time
Õ(τ + q2), makes at most O(q) quantum queries, uses Õ(Q+ q) qubits, and

Advdist
LRWQ′[RF1,EK2 ,RF3],LRWQ′[RF1,RF2,RF3](A) ≤ AdvqPRP

E (B2) +O

(
q3

2n

)
(16)
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holds.
Since the distribution of the function LRWQ′[RF1,RF2,RF3] is the same as that of

FSFsmall,
AdvqPRF

LRWQ′[RF1,RF2,RF3](A) = AdvqPRF
FSFsmall

(A) (17)

follows. In addition,

Advdist
R̃P,RF

(A) ≤ O
(√

q6

2n

)
(18)

follows from Proposition 4.
Therefore, the claim of the proposition follows from (14), (15), (16), (17), and (18).

The most difficult part in the security proof for LRWQ is to show qPRF security of
FSFsmall, which is equivalent to showing indistinguishability of FSFsmall and FSFbig since
FSFbig is completely indistinguishable from a random function. To use the proof strategy in
Section 3.2, we describe how the quantum oracles of FSFsmall and FSFbig are implemented
with f0, f1, and fsmall or fbig, and define good and bad databases in such a way that there
exists a one-to-one correspondence between good databases for FSFsmall and those for
FSFbig.

Implementations of the quantum oracles of FSFsmall and FSFbig. We assume that
the quantum oracle of FSFsmall is implemented as follows when f0, f1, and fsmall are given
as quantum oracles. Suppose that |M,T 〉 |Y 〉 is queried to the oracle of FSFsmall. Here,
|Y 〉 is the register to which the answer from the oracle will be added.

1. Query M to the oracle f0 to obtain the state

|M,T 〉 |Y 〉 ⊗ |f0(M)〉 . (19)

2. Query T to the oracle f1 to obtain the state

|M,T 〉 |Y 〉 ⊗ |f0(M)〉 |f1(T )〉 . (20)

3. Add f0(M) and f1(T ) to obtain the state

|M,T 〉 |Y 〉 ⊗ |f0(M)〉 |f1(T )〉 ⊗ |FSum(M,T )〉 . (21)

4. Query FSum(M,T ) to the oracle of fsmall and add the answer to |Y 〉 to obtain

|M,T 〉 |Y ⊕ FSFsmall(M,T )〉 ⊗ |f0(M)〉 |f1(T )〉 ⊗ |FSum(M,T )〉 . (22)

5. Uncompute Steps 1–3 to obtain |M,T 〉 |Y ⊕ FSFsmall(M,T )〉.

We assume that the quantum oracle of FSFbig is implemented in the same way, except
that the query in the fourth step is (M,T,FSum(M,T )) to fbig instead of FSum(M,T ) to
fsmall. See also Fig. 5.

In what follows, as explained in Section 3.2, we assume that the quantum oracles of the
random functions f0, f1, fsmall, and fbig are implemented by using the recording standard
oracle with errors, and thus the oracles FSFsmall and FSFbig keep the databases (and the
ancillary qubits that are temporarily used in (19)–(22)) as their states. Let OFSFsmall and
OFSFbig denote the unitary operators of the oracles FSFsmall and FSFbig to respond to
queries as above.
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Figure 5: Implementation of FSFsmall and FSFbig. “in” and “out” denote the registers to
send queries and receive answers, respectively. The functions f0, f1, fsmall, and fbig will be
implemented with the recording standard oracle with errors in security proofs.

Good and bad databases. Here we define good and bad databases for FSFsmall and FSFbig
in such a way that there exists a one-to-one correspondence between good databases for
FSFsmall and those for FSFbig.

Let D0, D1, Dsmall, and Dbig denote (valid) databases for f0, f1, fsmall, and fbig,
respectively. The oracles FSFsmall and FSFbig keep (quantum superpositions of) tuples of
databases (D0, D1, Dsmall) and (D0, D1, Dbig), respectively.

We say that a tuple of bit strings E = (W0,W1, Z0, Z1, V, C), where Wi, Zi, V, C ∈
{0, 1}n, is an expansion if V = Z0 ⊕ Z1. We say that a (combined) database DBsmall =
(D0, D1, Dsmall) for FSFsmall (resp., DBbig = (D0, D1, Dbig) for FSFbig) is good if and only
if it satisfies the following condition.

For each entry (V,C) ∈ Dsmall (resp., (W0||W1||V,C) ∈ Dbig), there exists a unique
expansion E = (W0,W1, Z0, Z1, V, C) such that (W0, Z0) ∈ D0 and (W1, Z1) ∈ D1.

We call the unique expansion E the expansion of (V,C) in DBsmall (resp., the expansion of
(W0||W1||V,C) in DBbig). We say that a (valid) database is bad if it is not good.

Intuition behind good and bad databases. Intuitively, a valid database DBsmall =
(D0, D1, Dsmall) for FSFsmall (resp., DBbig = (D0, D1, Dbig) for FSFbig) is bad if and only if,
there exist an element (V,C) in the database Dsmall (which records transcripts for fsmall)
and two or more pairs ((W0, Z0), (W1, Z1)) ∈ D0 ×D1 (D0 and D1 records transcripts for
f0 and f1, respectively) such that Z0 ⊕ Z1 = V (i.e., f0(W0)⊕ f1(W1) = V ). Otherwise
the database is good. Note that the database is defined to be bad when such a pair
exists even if W0 and W1 are not queried to f0 and f1 at the same time: A natural
definition of bad transcripts in the classical setting is that, a transcript is defined to
be bad if and only if, there exist a record (V,C = fsmall(V )) and two or more pairs of
records ((W0, Z0 = f0(W0)), (W1, Z1 = f1(W1))) such that Z0 ⊕ Z1 = V , and W0 and W1
are queried at the same time. However, in the quantum setting, the compressed oracle
technique (and the recording oracle with errors) cannot record the information about
whether certain pair of inputs are queried at the same time.11 Thus we defined good and

11It may be realized by replacing the “undefined” indicator qubit in each entry of the f table in the
state of stO (see Section 3.1.1) by q zero qubits and toggle the i-th of these qubits when the given input
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bad databases as above.

A one-to-one correspondence between good databases. By the above definition, we
can define a one-to-one correspondence between the set of good databases for FSFsmall
and that for FSFbig. We say that a valid database Dbig for fbig is consistent if there
does not exist distinct element (W0||W1||V,C) and (W ′0||W ′1||V ′, C ′) in Dbig that satisfy
(i) W0 = W ′0 ∧ W1 = W ′1 but V 6= V ′, or (ii) V = V ′ but C 6= C ′.12 Note that,
if there exist valid databases D0 and D1 such that DBbig := (D0, D1, Dbig) becomes
a (combined) good database for FSFbig, Dbig is consistent. For a consistent database
Dbig for fbig, let [Dbig]small be the database for fsmall such that (V,C) ∈ [Dbig]small if and
only if (W0||W1||V,C) ∈ Dbig for some W0,W1 ∈ {0, 1}n. In addition, for a (combined)
good database DBbig = (D0, D1, Dbig) for FSFsmall, let [DBbig]small := (D0, D1, [Dbig]small).
Then, the mapping DBbig 7→ [DBbig]small gives a one-to-one correspondence between
good databases for FSFbig and those for FSFsmall: For a (combined) good database
DBsmall = (D0, D1, Dsmall) for FSFsmall, let [Dsmall]big be the database for fbig such that
(W0||W1||V,C) ∈ [Dsmall]big if and only if (V,C) ∈ Dsmall and the expansion of (V,C) in
Dsmall is (W0,W1, Z0, Z1, V, C) for some Z0, Z1 ∈ {0, 1}n. Then the (combined) database
[DBsmall]big := (D0, D1, [Dsmall]big) is a good database for FSFbig. It is easy to confirm that
the mapping DBsmall 7→ [DBsmall]big is the inverse of the mapping DBbig 7→ [DBbig]small, and
vice versa.

Regular and irregular states of oracles. We say that a state vector of the oracle FSFsmall
is irregular if one of the databases is invalid, or ancillary qubits used in (19)–(22) are
not the all-zero state |00 · · · 0〉. We say that a state vector is regular if it is not irregular.
In addition, we say that a state vector of the oracle FSFsmall is pre-irregular if one of
the databases is invalid, or the least significant 2n qubits (the registers that correspond
to f1(T ) and FSum(M,T ) in (20)–(22)) are not |0n〉 |0n〉. We say that a state vector is
preregular if it is not pre-irregular. Similarly, we define (pre-)irregular and (pre)regular
states for FSFbig.

The following lemma shows that the behavior of RstOEfbig on a consistent database
Dbig is the same as that of RstOEfsmall on the corresponding database [Dbig]small.

Lemma 1. Let Dbig and D′big be consistent databases for FSFbig. Then, for arbitrary
M̃, T̃ , M̃ ′, T̃ ′ ∈ {0, 1}n and Ṽ , Ṽ ′, Ỹ , Ỹ ′ ∈ {0, 1}n,

〈D′big| 〈M̃ ′||T̃ ′||Ṽ ′, Ỹ ′|RstOEfbig |M̃ ||T̃ ||Ṽ , Ỹ 〉 |Dbig〉
= 〈[D′big]small| 〈M̃ ′||T̃ ′||Ṽ ′, Ỹ ′| I2n ⊗ RstOEfsmall |M̃ ||T̃ ||Ṽ , Ỹ 〉 |[Dbig]small〉 (23)

holds.

Proof. It suffices to show the claim in the case that M̃ = M̃ ′, T̃ = T̃ ′, and Ṽ = Ṽ ′

hold, since oracles do not affect input registers. Moreover, when RstOEfbig acts on
|M̃ ||T̃ ||Ṽ , Ỹ 〉 |Dbig〉, Ofbig affects only the register that contains information about the
element of M̃ ||T̃ ||Ṽ in Dbig, in addition to the Ỹ register. Hence it suffices to show the
claim in the cases that (i) Dbig is empty, or (ii) it has only a single entry (M̃ ||T̃ ||Ṽ , C) for
some C. In the case (i), [Dbig]small is also empty, and the equation follows from (6) and
(7) in Proposition 2. In the case (ii), [Dbig]small has only a single entry (Ṽ , C), and the
equation follows from (2)–(5) in Proposition 2.

was submitted in i-th query. However, currently we do not have any idea on how to formalize it, while
appropriately removing some records from database.

12In fact the first condition (i) may not happen but such a database can theoretically exist. Here we
exclude the condition (i) just for theoretical completeness.
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4.3.2 qPRF Security of FSFsmall

The goal of this section is to show the indistinguishability of FSFsmall and a random
function, which is equivalent to show indistinguishability of FSFsmall and FSFbig. Let A
be a quantum algorithm that makes at most q quantum queries. Let |ψi〉 and |ψ′i〉 denote
the whole quantum states of A and the oracle just before the i-th query when A runs
relative to FSFsmall and FSFbig, respectively. (By |ψq+1〉 and |ψ′q+1〉 we denote the whole
quantum states just before the final measurement when A runs relative to FSFsmall and
FSFbig, respectively, by abuse of notation.)

The technically hardest part of proving the indistinguishability is to show the following
proposition. In what follows, for each summation symbol, we separate variables over which
the summation is taken and the conditions imposed on the variables by “;”, to simplify
notations. For example, by

∑
α,β;α∈A,α+β∈B we indicate that the summation is taken over

all possible α and β such that α ∈ A and α+ β ∈ B.

Proposition 7. For each 1 ≤ i ≤ q + 1, there exist vectors |ψ
′good
i 〉, |ψ′bad

i 〉, |ψgood
i 〉, and

|ψbad
i 〉 that satisfy the following properties.

1. |ψ′i〉 = |ψ
′good
i 〉+ |ψ′bad

i 〉 and |ψi〉 = |ψgood
i 〉+ |ψbad

i 〉.

2. There exists complex number a(i)
MTY ZD0D1Dbig

such that

|ψ
′good
i 〉 =

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good

a
(i)
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉 ⊗ |D0, D1, Dbig〉 ,

(24)
and

|ψgood
i 〉 =

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good

a
(i)
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉⊗|[D0, D1, Dbig]small〉

(25)
hold, where (M,T ), Y , and Z correspond to A’s register to send queries to ora-
cles, register to receive answers from oracles, and register for offline computation,
respectively.

3. For each database (D0, D1, Dbig) in |ψ
′good
i 〉 (resp., (D0, D1, Dsmall) in |ψgood

i 〉) with
non-zero quantum amplitude, |D0| ≤ 2(i − 1), |D1| ≤ 2(i − 1), and |Dbig| ≤ i − 1
(resp., |Dsmall| ≤ i− 1).

4.
∥∥∥|ψ′bad

i 〉
∥∥∥ ≤ ∥∥∥|ψ′bad

i−1 〉
∥∥∥+O

(√
i2

2n

)
and

∥∥|ψbad
i 〉

∥∥ ≤ ∥∥|ψbad
i−1〉

∥∥+O

(√
i2

2n

)
hold.

Let RstOEf0 , RstOEf1 , RstOEfsmall , and RstOEfbig be the recording standard oracle with
errors for f0, f1, fsmall, and fbig, respectively. Then, the unitary operators OFSFsmall and
OFSFbig are decomposed into 7 unitary operators as

OFSFsmall = RstOE∗f0
· RstOE∗f1

· XOR∗ · RstOEfsmall · XOR · RstOEf1 · RstOEf0

and
OFSFbig = RstOE∗f0

· RstOE∗f1
· XOR∗ · RstOEfbig · XOR · RstOEf1 · RstOEf0 ,

respectively, where XOR denotes the unitary operation to add the values f0(M) and
f1(T ) in Step 3 (state (21)) of the implementation of the oracles, which is defined by
XOR |a〉 |b〉 |c〉 = |a〉 |b〉 |c⊕ a⊕ b〉.

To show the proposition, we study how the states |ψ′i〉 and |ψi〉 change when the 7
unitary operators act, in a sequential order. First, we show the following lemma.
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Lemma 2 (Action of RstOEf0). Suppose that there exist i and vectors |ψ
′good
j 〉, |ψ′bad

j 〉,
|ψgood
j 〉, and |ψbad

j 〉 that satisfy the four properties in Proposition 7 for j = 1, . . . , i. Then,
there exist vectors |ψ

′good,1
i 〉, |ψ

′bad,1
i 〉, |ψgood,1

i 〉, and |ψbad,1
i 〉 that satisfy the following

properties.

1. RstOEf0 |ψ′i〉 = |ψ
′good,1
i 〉+ |ψ

′bad,1
i 〉 and RstOEf0 |ψi〉 = |ψgood,1

i 〉+ |ψbad,1
i 〉.

2. There exists complex number a(i),1
MTY ZD0D1Dbig

such that

|ψ
′good,1
i 〉 =

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0(M) 6=⊥

a
(i),1
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0, D1, Dbig〉 ⊗ |D0(M)〉 ,

(26)

and

|ψgood,1
i 〉 =

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0(M)6=⊥

a
(i),1
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |[D0, D1, Dbig]small〉 ⊗ |D0(M)〉

(27)
hold, where (M,T ), Y , and Z correspond to A’s register to send queries to ora-
cles, register to receive answers from oracles, and register for offline computation,
respectively.

3. For each database (D0, D1, Dbig) in |ψ
′good,1
i 〉 (resp., (D0, D1, Dsmall) in |ψgood,1

i 〉) with
non-zero quantum amplitude, |D0| ≤ 2(i− 1) + 1, |D1| ≤ 2(i− 1), and |Dbig| ≤ i− 1
(resp., |Dsmall| ≤ i− 1).

4.
∥∥∥|ψ′bad,1

i 〉
∥∥∥ ≤ ∥∥∥|ψ′bad

i 〉
∥∥∥+O

(√
i2

2n

)
and

∥∥∥|ψbad,1
i 〉

∥∥∥ ≤ ∥∥|ψbad
i 〉

∥∥+O

(√
i2

2n

)
hold.

Proof. Let Πvalid denote the projection onto the space spanned by the vectors that corre-
spond to valid databases. Then, by applying Proposition 2 to RstOEf0 , we have that

ΠvalidRstOEf0 |ψ
′good
i 〉

= ΠvalidRstOEf0

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good

a
(i)
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0, D1, Dbig〉

= ΠvalidRstOEf0

∑
M,T,Y,Z,α,(D0,D1,Dbig);

(D0,D1,Dbig):valid
D0(M)=⊥

(D0∪(M,α),D1,Dbig):good

a
(i)
MTY ZD0∪(M,α)D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0 ∪ (M,α), D1, Dbig〉

+ ΠvalidRstOEf0

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid
D0(M)=⊥

(D0,D1,Dbig):good

a
(i)
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0, D1, Dbig〉

=
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

a
(i)
MTY ZD0∪(M,α)D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0 ∪ (M,α), D1, Dbig〉 ⊗ |α〉

(28)

−
∑

M,T,Y,Z,α,γ,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

1
2n a

(i)
MTY ZD0∪(M,α)D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0 ∪ (M,γ), D1, Dbig〉 ⊗ |γ〉

(29)
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+
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0,D1,Dbig):good

1√
2n
a

(i)
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉

⊗ |D0 ∪ (M,α), D1, Dbig〉 ⊗ |α〉

(30)

+ |ε′〉

holds, where

|ε′〉 =
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

1√
2n
a

(i)
MTY ZD0∪(M,α)D1Dbig

|M,T 〉 |Y 〉 |Z〉

⊗

(
|D0〉 −

∑
γ

1√
2n
|D0 ∪ (M,γ)〉

)
|D1, Dbig〉 ⊗ |α〉

(31)

+
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

1
2n a

(i)
MTY ZD0∪(M,α)D1Dbig

|M,T 〉 |Y 〉 |Z〉

⊗

(
2
∑
γ

1√
2n
|D0 ∪ (M,γ)〉 − |D0〉

)
|D1, Dbig〉 ⊗ |0̂n〉

(32)

+
∑

M,T,Y,Z,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0,D1,Dbig):good

1√
2n
a

(i)
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉

⊗

(
|D0〉 −

∑
γ

1√
2n
|D0 ∪ (M,γ)〉

)
|D1, Dbig〉 ⊗ |0̂n〉 .

(33)

The terms (28), (29), and (30) correspond to (the valid component of) the terms (2), (4),
and (6), respectively. In addition, the terms (31), (32), and (33) correspond to (the valid
component of) the terms (3), (5), and (7), respectively. Let us denote the terms (31), (32),
and (33) by |(31)〉, |(32)〉, and |(33)〉, respectively. Then

‖|(31)〉‖2 =
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

1
2n
∣∣∣a(i)
MTY ZD0∪(M,α)D1Dbig

∣∣∣2

+
∑

M,T,Y,Z,α,γ,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

1
22n

∣∣∣a(i)
MTY ZD0∪(M,α)D1Dbig

∣∣∣2

≤ O
(

1
2n

)

holds. Similarly we have ‖|(33)〉‖2 ≤ O
( 1

2n

)
. In addition,

‖|(32)〉‖2 ≤ 5
∑

M,T,Y,Z,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥

∣∣∣∣∣∣∣∣
∑
α;

(D0∪(M,α),D1,Dbig):good

a
(i)
MTY ZD0∪(M,α)D1Dbig

2n

∣∣∣∣∣∣∣∣
2
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≤ 5
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

∣∣∣a(i)
MTY ZD0∪(M,α)D1Dbig

∣∣∣2
2n

≤ O
(

1
2n

)
,

where we used the convexity of the function X 7→ X2. Hence

‖ |ε′〉 ‖ ≤ O

(√
1
2n

)
(34)

holds.
In the same way, we can show

ΠvalidRstOEf0 |ψ
good
i 〉

=
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

a
(i)
MTY ZD0∪(M,α)D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0 ∪ (M,α), D1, [Dbig]small〉 ⊗ |α〉

−
∑

M,T,Y,Z,α,γ,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

1
2n a

(i)
MTY ZD0∪(M,α)D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0 ∪ (M,γ), D1, [Dbig]small〉 ⊗ |γ〉

+
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0,D1,Dbig):good

1√
2n
a

(i)
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉

⊗ |D0 ∪ (M,α), D1, [Dbig]small〉 ⊗ |α〉

+ |ε〉 , (35)

where |ε〉 is a vector such that ‖|ε〉‖ ≤ O
(√

1
2n

)
.

Now, set

|ψgood,1
i 〉 := Πgood

(
ΠvalidRstOEf0 |ψ

good
i 〉 − |ε〉

)
, |ψbad,1

i 〉 := RstOEf0 |ψi〉 − |ψ
good,1
i 〉 ,

(36)
and

|ψ
′good,1
i 〉 := Πgood

(
ΠvalidRstOEf0 |ψ

′good
i 〉 − |ε′〉

)
, |ψ

′bad,1
i 〉 := RstOEf0 |ψ′i〉 − |ψ

′good,1
i 〉 ,

(37)
where Πgood denotes the projection onto the space spanned by the vectors that correspond
to good databases. Then the first, second, and third properties of Lemma 2 immediately
follow from the corresponding properties in Proposition 7 and the definitions of |ψgood,1

i 〉
and |ψ

′good,1
i 〉.

Below, we show the fourth property. Let us denote the terms (28), (29), and (30) by
|(28)〉, |(29)〉, and |(30)〉, respectively. In addition, let Πbad denote the projection onto the
space spanned by the vectors that correspond to bad databases. Then,

Πbad |(28)〉 = 0 (38)
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holds since all the databases in |(28)〉 are good.
On the term (29), we have that

Πbad |(29)〉

= −
∑

M,T,Y,Z,α,γ,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good
(D0∪(M,γ),D1,Dbig):bad

1
2n a

(i)
MTY ZD0∪(M,α)D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0 ∪ (M,γ), D1, Dbig〉 ⊗ |γ〉

= −
∑

M,T,Y,Z,α,γ,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

∃T ′s.t.D1(T ′) 6=⊥∧[Dbig]small(D1(T ′)⊕α)6=⊥

(D0∪(M,γ),D1,Dbig):bad

1
2n a

(i)
MTY ZD0∪(M,α)D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0 ∪ (M,γ), D1, Dbig〉 ⊗ |γ〉

(39)

−
∑

M,T,Y,Z,α,γ,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

6∃T ′s.t.D1(T ′)6=⊥∧[Dbig]small(D1(T ′)⊕α)6=⊥
(D0∪(M,γ),D1,Dbig):bad

1
2n a

(i)
MTY ZD0∪(M,α)D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0 ∪ (M,γ), D1, Dbig〉 ⊗ |γ〉

(40)

holds.
Here we give an upper bound of the norm of the term (39). If a tuple (M, (D0 ∪

(M,γ), D1, Dbig)) satisfies
1. D0(M) = ⊥, and

2. (D0 ∪ (M,γ), D1, Dbig) is bad,
then the number of α that satisfies

1. (D0 ∪ (M,α), D1, Dbig) becomes good, and

2. there exists T ′ such that D1(T ′) 6= ⊥ and [Dbig]small(D1(T ′)⊕ α) 6= ⊥
is at most |D1| · |Dbig| ≤ 2(i− 1)2. Hence∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∑
M,T,Y,Z,α,γ,(D0,D1,Dbig);

(D0,D1,Dbig):valid
D0(M)=⊥

(D0∪(M,α),D1,Dbig):good
∃T ′s.t.D1(T ′)6=⊥∧[Dbig]small(D1(T ′)⊕α)6=⊥

(D0∪(M,γ),D1,Dbig):bad

1
2n a

(i)
MTY ZD0∪(M,α)D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0 ∪ (M,γ), D1, Dbig〉 ⊗ |γ〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=
∑

M,T,Y,Z,γ,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,γ),D1,Dbig):bad

1
22n

∣∣∣∣∣∣∣∣∣
∑

α;(D0∪(M,α),D1,Dbig)is good, and
∃T ′s.t.D1(T ′) 6=⊥∧[Dbig]small(D1(T ′)⊕α)6=⊥

a
(i)
MTY ZD0∪(M,α)D1Dbig

∣∣∣∣∣∣∣∣∣
2
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≤
∑

M,T,Y,Z,γ,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,γ),D1,Dbig):bad

2(i− 1)2

22n

∑
α;(D0∪(M,α),D1,Dbig)is good, and

∃T ′s.t.D1(T ′)6=⊥∧[Dbig]small(D1(T ′)⊕α)6=⊥

∣∣∣a(i)
MTY ZD0∪(M,α)D1Dbig

∣∣∣2

=
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

∃T ′s.t.D1(T ′)6=⊥∧[Dbig]small(D1(T ′)⊕α) 6=⊥

∣∣∣a(i)
MTY ZD0∪(M,α)D1Dbig

∣∣∣2 · ∑
γ;

(D0∪(M,γ),D1,Dbig)is bad

2(i− 1)2

22n

≤
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

∃T ′s.t.D1(T ′)6=⊥∧[Dbig]small(D1(T ′)⊕α)6=⊥

∣∣∣a(i)
MTY ZD0∪(M,α)D1Dbig

∣∣∣2 · 2(i− 1)2

2n

≤ O
(
i2

2n

)
(41)

holds, where we used the convexity of the function X 7→ X2 for the first inequality.
Next, we give an upper bound of the norm of the term (40). If a tuple (M, (D0 ∪

(M,α), D1, Dbig)) satisfies

1. D0(M) = ⊥,

2. (D0 ∪ (M,α), D1, Dbig) is good, and

3. there does not exist T ′ such that D1(T ′) 6= ⊥ and [Dbig]small(D1(T ′)⊕ α) 6= ⊥,

then the number of γ such that (D0∪(M,γ), D1, Dbig) becomes bad is at most |D1|·|Dbig| ≤
2(i− 1)2. Hence∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∑
M,T,Y,Z,α,γ,(D0,D1,Dbig);

(D0,D1,Dbig):valid
D0(M)=⊥

(D0∪(M,α),D1,Dbig):good
6∃T ′s.t.D1(T ′)6=⊥∧[Dbig]small(D1(T ′)⊕α) 6=⊥

(D0∪(M,γ),D1,Dbig):bad

1
2n a

(i)
MTY ZD0∪(M,α)D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0 ∪ (M,γ), D1, Dbig〉 ⊗ |γ〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=
∑

M,T,Y,Z,γ,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
6∃T ′s.t.D1(T ′) 6=⊥∧[Dbig]small(D1(T ′)⊕α)6=⊥

(D0∪(M,γ),D1,Dbig):bad

∣∣∣∣∣∣∣∣
∑
α;

(D0∪(M,α),D1,Dbig):good

a
(i)
MTY ZD0∪(M,α)D1Dbig

2n

∣∣∣∣∣∣∣∣
2

≤
∑

M,T,Y,Z,γ,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
6∃T ′s.t.D1(T ′)6=⊥∧[Dbig]small(D1(T ′)⊕α) 6=⊥

(D0∪(M,γ),D1,Dbig):bad

∑
α;

(D0∪(M,α),D1,Dbig):good

∣∣∣a(i)
MTY ZD0∪(M,α)D1Dbig

∣∣∣2
2n



Hosoyamada and Iwata 363

=
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1,Dbig):valid

D0(M)=⊥
(D0∪(M,α),D1,Dbig):good

6∃T ′s.t.D1(T ′) 6=⊥∧[Dbig]small(D1(T ′)⊕α)6=⊥

∣∣∣a(i)
MTY ZD0∪(M,α)D1Dbig

∣∣∣2
· |{γ|(D0 ∪ (M,γ), D1, Dbig) : bad}|

2n

≤ O
(
i2

2n

)
(42)

holds, where we used the convexity of the function X 7→ X2 for the first inequality.
From (39)–(42),

‖Πbad |(29)〉‖ ≤ O
(√

i2

2n

)
(43)

follows.
Moreover,

‖Πbad |(30)〉‖2

=
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1,Dbig):valid and good

D0(M)=⊥
(D0∪(M,α),D1,Dbig):bad

∣∣∣a(i)
MTY ZD0D1Dbig

∣∣∣2
2n

=
∑

M,T,Y,Z,(D0,D1,Dbig);
(D0,D1,Dbig):valid and good

D0(M)=⊥
(D0∪(M,α),D1,Dbig):bad

∣∣∣a(i)
MTY ZD0D1Dbig

∣∣∣2 · |{α|(D0 ∪ (M,α), D1, Dbig) is bad}|
2n

≤ O

(√
i2

2n

)
(44)

can be shown in a similar way as we showed (42).
From (38), (43), and (44),∥∥∥Πbad

(
ΠvalidRstOEf0 |ψ

′good
i 〉 − |ε′〉

)∥∥∥ ≤ O(√ i2

2n

)
(45)

follows. Since this inequality and (34) hold,∥∥∥|ψ′bad,1
i 〉

∥∥∥ =
∥∥∥RstOEf0 |ψ′i〉 − |ψ

′good,1
i 〉

∥∥∥
=
∥∥∥ΠvalidRstOEf0 |ψ′i〉 −Πgood

(
ΠvalidRstOEf0 |ψ

good
i 〉 − |ε′〉

)∥∥∥
=
∥∥∥Πbad

(
ΠvalidRstOEf0 |ψ

′good
i 〉 − |ε′〉

)
+ ΠvalidRstOEf0 |ψ

′bad
i 〉+ |ε′〉

∥∥∥
≤
∥∥∥Πbad

(
ΠvalidRstOEf0 |ψ

′good
i 〉 − |ε′〉

)∥∥∥+
∥∥∥|ψ′bad

i 〉
∥∥∥+ ‖|ε′〉‖

≤
∥∥∥|ψ′bad

i 〉
∥∥∥+O

(√
i2

2n

)
(46)

holds, which implies that the fourth property holds for |ψ
′bad,1
i 〉13. We can prove the fourth

property for |ψbad,1
i 〉 in the same way.

13Note that all the databases of RstOEf0 |ψ
′good
i 〉 are valid, and thus ΠvalidRstOEf0 |ψ

′good
i 〉 =

RstOEf0 |ψ
′good
i 〉 holds.
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The following lemma shows how the states RstOEf0 |ψ′i〉 and RstOEf0 |ψi〉 change when
XOR · RstOEf1 act on them.

Lemma 3 (Action of XOR · RstOEf1). Suppose that there exist i and vectors |ψ
′good
j 〉,

|ψ′bad
j 〉, |ψgood

j 〉, and |ψbad
j 〉 that satisfy the four properties in Proposition 7 for j = 1, . . . , i.

Then, there exist vectors |ψ
′good,2
i 〉, |ψ

′bad,2
i 〉, |ψgood,2

i 〉, and |ψbad,2
i 〉 that satisfy the following

properties.

1. XOR ·RstOEf1 ·RstOEf0 |ψ′i〉 = |ψ
′good,2
i 〉+ |ψ

′bad,2
i 〉 and XOR ·RstOEf1 ·RstOEf0 |ψ〉 =

|ψgood,2
i 〉+ |ψbad,2

i 〉.

2. There exists complex number a(i),2
MTY ZD0D1Dbig

such that

|ψ
′good,2
i 〉 =

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0(M)6=⊥∧D1(T ) 6=⊥

a
(i),2
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉 ⊗ |D0, D1, Dbig〉
⊗ |D0(M)〉 |D1(T )〉 |D0(M)⊕D1(T )〉 ,

and

|ψgood,2
i 〉 =

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0(M)6=⊥∧D1(T )6=⊥

a
(i),2
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉 ⊗ |[D0, D1, Dbig]small〉
⊗ |D0(M)〉 |D1(T )〉 |D0(M)⊕D1(T )〉

hold, where (M,T ), Y , and Z correspond to A’s register to send queries to ora-
cles, register to receive answers from oracles, and register for offline computation,
respectively.

3. For each database (D0, D1, Dbig) in |ψ
′good,2
i 〉 (resp., (D0, D1, Dsmall) in |ψgood,2

i 〉)
with non-zero quantum amplitude, |D0| ≤ 2(i − 1) + 1, |D1| ≤ 2(i − 1) + 1, and
|Dbig| ≤ i− 1 (resp., |Dsmall| ≤ i− 1).

4.
∥∥∥|ψ′bad,2

i 〉
∥∥∥ ≤ ∥∥∥|ψ′bad

i 〉
∥∥∥+O

(√
i2

2n

)
and

∥∥∥|ψbad,2
i 〉

∥∥∥ ≤ ∥∥|ψbad
i 〉

∥∥+O

(√
i2

2n

)
hold.

This lemma can be shown in the same way as we showed Lemma 2. Thus we omit to
write the proof.

The next lemma shows how the state changes when RstOEfbig and RstOEfsmall act on
the states XOR · RstOEf1 · RstOEf0 |ψ′i〉 and XOR · RstOEf1 · RstOEf0 |ψi〉, respectively.

Lemma 4 (Action of RstOEfsmall and RstOEfbig). Suppose that there exist i and vectors
|ψ

′good
j 〉, |ψ′bad

j 〉, |ψgood
j 〉, and |ψbad

j 〉 that satisfy the four properties in Proposition 7 for
j = 1, . . . , i. Then, there exist vectors |ψ

′good,3
i 〉, |ψ

′bad,3
i 〉, |ψgood,3

i 〉, and |ψbad,3
i 〉 that satisfy

the following properties.

1. RstOEfbig ·XOR · RstOEf1 · RstOEf0 |ψ′i〉 = |ψ
′good,3
i 〉+ |ψ

′bad,3
i 〉 and RstOEfsmall ·XOR ·

RstOEf1 · RstOEf0 |ψi〉 = |ψgood,3
i 〉+ |ψbad,3

i 〉.

2. There exists complex number a(i),3
MTY ZD0D1Dbig

such that

|ψ
′good,3
i 〉 =

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0(M)6=⊥∧D1(T ) 6=⊥

a
(i),3
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉 ⊗ |D0, D1, Dbig〉
⊗ |D0(M)〉 |D1(T )〉 |D0(M)⊕D1(T )〉 ,
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and

|ψgood,3
i 〉 =

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0(M)6=⊥∧D1(T )6=⊥

a
(i),3
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉 ⊗ |[D0, D1, Dbig]small〉
⊗ |D0(M)〉 |D1(T )〉 |D0(M)⊕D1(T )〉

hold, where (M,T ), Y , and Z correspond to A’s register to send queries to ora-
cles, register to receive answers from oracles, and register for offline computation,
respectively.

3. For each database (D0, D1, Dbig) in |ψ
′good,3
i 〉 (resp., (D0, D1, Dsmall) in |ψgood,3

i 〉)
with non-zero quantum amplitude, |D0| ≤ 2(i − 1) + 1, |D1| ≤ 2(i − 1) + 1, and
|Dbig| ≤ i (resp., |Dsmall| ≤ i).

4.
∥∥∥|ψ′bad,3

i 〉
∥∥∥ ≤ ∥∥∥|ψ′bad

i 〉
∥∥∥+O

(√
i2

2n

)
and

∥∥∥|ψbad,3
i 〉

∥∥∥ ≤ ∥∥|ψbad
i 〉

∥∥+O

(√
i2

2n

)
hold.

Proof. From Lemma 3, it follows that there exist vectors |ψ
′good,2
i 〉, |ψ

′bad,2
i 〉, |ψgood,2

i 〉, and
|ψbad,2
i 〉 that satisfy the four properties in Lemma 3.
Define |ψ

′good,3
i 〉 := ΠvalidRstOEfbig |ψ

′good,2
i 〉, |ψ

′bad,3
i 〉 := RstOEfbig · XOR · RstOEf1 ·

RstOEf0 |ψ′i〉 − |ψ
′good,3
i 〉, |ψgood,3

i 〉 := ΠvalidRstOEfsmall |ψ
good,2
i 〉, and |ψbad,3

i 〉 := RstOEfsmall ·
XOR · RstOEf1 · RstOEf0 |ψi〉 − |ψ

good,3
i 〉. Then the first property obviously holds. The

second property immediately follows from Lemma 1 and the second property in Lemma 314.
The third property follows from the third property in Lemma 3. On the fourth property,
we have∥∥∥|ψbad,3

i 〉
∥∥∥ =

∥∥∥RstOEfsmall · XOR · RstOEf1 · RstOEf0 |ψi〉 −ΠvalidRstOEfsmall |ψ
good,2
i 〉

∥∥∥
=
∥∥∥ΠvalidRstOEfsmall

(
|ψgood,2
i 〉+ |ψbad,2

i 〉
)
−ΠvalidRstOEfsmall |ψ

good,2
i 〉

∥∥∥
≤
∥∥∥|ψbad,2

i 〉
∥∥∥ ≤ ∥∥|ψbad

i 〉
∥∥+O

(√
i2

2n

)
.

Thus the fourth property holds for |ψbad,3
i 〉. The fourth property for |ψ

′bad,3
i 〉 can be shown

in the same way.

The next lemma shows how the states RstOEfbig · XOR · RstOEf1 · RstOEf0 |ψ′i〉 and
RstOEfsmall · XOR · RstOEf1 · RstOEf0 |ψi〉 change when RstOE∗f1

· XOR∗ acts on them.

Lemma 5 (Action of RstOE∗f1
· XOR∗). Suppose that there exist i and vectors |ψ

′good
j 〉,

|ψ′bad
j 〉, |ψgood

j 〉, and |ψbad
j 〉 that satisfy the four properties in Proposition 7 for j = 1, . . . , i.

Then, there exist vectors |ψ
′good,4
i 〉, |ψ

′bad,4
i 〉, |ψgood,4

i 〉, and |ψbad,4
i 〉 that satisfy the following

properties.

1. RstOE∗f1
· XOR∗ · RstOEfbig · XOR · RstOEf1 · RstOEf0 |ψ′i〉 = |ψ

′good,4
i 〉+ |ψ

′bad,4
i 〉 and

RstOE∗f1
· XOR∗ · RstOEfsmall · XOR · RstOEf1 · RstOEf0 |ψi〉 = |ψgood,4

i 〉+ |ψbad,4
i 〉.

2. There exists complex number a(i),4
MTY ZD0D1Dbig

such that

|ψ
′good,4
i 〉 =

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0(M)6=⊥

a
(i),4
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0, D1, Dbig〉 ⊗ |D0(M)〉 ,

14Note that all the databases in |ψ
′good,3
i 〉 and |ψgood,3

i 〉 with non-zero quantum amplitude are good, by
definition of good database and the first property of Proposition 2 (the equations (2)–(5))
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and

|ψgood,4
i 〉 =

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0(M) 6=⊥

a
(i),4
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |[D0, D1, Dbig]small〉 ⊗ |D0(M)〉

hold, where (M,T ), Y , and Z correspond to A’s register to send queries to ora-
cles, register to receive answers from oracles, and register for offline computation,
respectively.

3. For each database (D0, D1, Dbig) in |ψ
′good,4
i 〉 (resp., (D0, D1, Dsmall) in |ψgood,4

i 〉)
with non-zero quantum amplitude, |D0| ≤ 2(i − 1) + 1, |D1| ≤ 2i, and |Dbig| ≤ i
(resp., |Dsmall| ≤ i).

4.
∥∥∥|ψ′bad,4

i 〉
∥∥∥ ≤ ∥∥∥|ψ′bad

i 〉
∥∥∥+O

(√
i2

2n

)
and

∥∥∥|ψbad,4
i 〉

∥∥∥ ≤ ∥∥|ψbad
i 〉

∥∥+O

(√
i2

2n

)
hold.

Proof. From Lemma 4, it follows that there exist vectors |ψ
′good,3
i 〉, |ψ

′bad,3
i 〉, |ψgood,3

i 〉, and
|ψbad,3
i 〉 that satisfy the four properties in Lemma 4.
Let Πprereg denote the projection onto the space that is spanned by the vectors corre-

sponding to preregular states. Note that, when we measure the states RstOE∗f1
· XOR∗ ·

RstOEfbig · XOR · RstOEf1 · RstOEf0 |ψ′i〉 and RstOE∗f1
· XOR∗ · RstOEfsmall · XOR · RstOEf1 ·

RstOEf0 |ψi〉, we always obtain preregular states (see (19)–(22)).
Define |ψ

′good,4
i 〉 := ΠgoodΠpreregRstOE∗f1

· XOR∗ |ψ
′good,3
i 〉, |ψ

′bad,4
i 〉 := RstOE∗f1

· XOR∗ ·
RstOEfbig · XOR · RstOEf1 · RstOEf0 |ψ′i〉 − |ψ

′good,4
i 〉, |ψgood,4

i 〉 := ΠgoodΠpreregRstOE∗f1
·

XOR∗ |ψgood,3
i 〉, and |ψbad,4

i 〉 := RstOE∗f1
·XOR∗ ·RstOEfsmall ·XOR ·RstOEf1 ·RstOEf0 |ψi〉−

|ψgood,4
i 〉. Then the first property obviously holds.
Since XOR∗ = XOR, by applying the first property of Proposition 2 ((2)–(5)), we have

ΠpreregRstOE∗f1
XOR∗ |ψ

′good,3
i 〉

= ΠpreregRstOE∗f1

∑
M,T,Y,Z,(D0,D1,Dbig);

(D0,D1,Dbig):valid and good
D0(M)6=⊥∧D1(T )6=⊥

a
(i),3
MTY ZD0D1Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0, D1, Dbig〉 ⊗ |D0(M)〉 |D1(T )〉

= ΠpreregRstOE∗f1

∑
M,T,Y,Z,α,(D0,D1,Dbig);

(D0,D1∪(T,α),Dbig):valid and good
D0(M) 6=⊥∧D1(T )=⊥

a
(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0, D1 ∪ (T, α), Dbig〉 ⊗ |D0(M)〉 |α〉

=
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0(M)6=⊥∧D1(T )=⊥

a
(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0, D1 ∪ (T, α), Dbig〉 ⊗ |D0(M)〉

+
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0(M) 6=⊥∧D1(T )=⊥

1√
2n
a

(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉

⊗ |D0〉

(
|D1〉 −

∑
γ

1√
2n
|D1 ∪ (T, γ)〉

)
|Dbig〉

⊗ |D0(M)〉

−
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0(M) 6=⊥∧D1(T )=⊥

1
2n a

(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0, D1 ∪ (T, α), Dbig〉 ⊗ |D0(M)〉
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+ 1
23n/2

∑
M,T,Y,Z,α,(D0,D1,Dbig);

(D0,D1∪(T,α),Dbig):valid and good
D0(M)6=⊥∧D1(T )=⊥

a
(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉

⊗ |D0〉

(
2
∑
δ

1√
2n
|D1 ∪ (T, δ)〉 − |D1〉

)
|Dbig〉

⊗ |D0(M)〉 .
(47)

Similarly,

ΠpreregRstOE∗f1
XOR∗ |ψgood,3

i 〉

=
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0(M)6=⊥∧D1(T )=⊥

a
(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0, D1 ∪ (T, α), [Dbig]small〉 ⊗ |D0(M)〉

(48)

+
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0(M) 6=⊥∧D1(T )=⊥

1√
2n
a

(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉

⊗ |D0〉

(
|D1〉 −

∑
γ

1√
2n
|D1 ∪ (T, γ)〉

)
|[Dbig]small〉

⊗ |D0(M)〉
(49)

−
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0(M) 6=⊥∧D1(T )=⊥

1
2n a

(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0, D1 ∪ (T, α), [Dbig]small〉 ⊗ |D0(M)〉

(50)

+ 1
23n/2

∑
M,T,Y,Z,α,(D0,D1,Dbig);

(D0,D1∪(T,α),Dbig):valid and good
D0(M) 6=⊥∧D1(T )=⊥

a
(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉

⊗ |D0〉

(
2
∑
δ

1√
2n
|D1 ∪ (T, δ)〉 − |D1〉

)
|[Dbig]small〉

⊗ |D0(M)〉
(51)

holds. Now, the second and third properties follows from the second and third properties
of Lemma 4 and the equations (47)–(51).

Let |(48)〉 , . . . , |(51)〉 denote the terms (48)–(51), respectively. Then

Πbad |(48)〉 = Πbad |(50)〉 = 0 (52)

since all the databases in (48) and (50) are good.
If a tuple (T, (D0, D1, Dbig)) satisfies that D1(T ) = ⊥ and (D0, D1, Dbig) is bad, then

the number of α such that

1. (D0, D1 ∪ (T, α), Dbig) is good, and

2. there exists M ′ such that D0(M ′) 6= ⊥ and [Dbig]small(D0(M ′)⊕ α) 6= ⊥

is at most |D0| · |Dbig| ≤ 2i2. In addition, if a tuple (T, (D0, D1, Dbig)) satisfies that
D1(T ) = ⊥ and (D0, D1, Dbig) is bad, then there does not exist α such that

1. (D0, D1 ∪ (T, α), Dbig) is good, and

2. there does not exist M ′ such that D0(M ′) 6= ⊥ and [Dbig]small(D0(M ′)⊕ α) 6= ⊥.
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Therefore,

∥∥∥∥∥∥∥∥∥∥∥
Πbad

∑
M,T,Y,Z,α,(D0,D1,Dbig);

(D0,D1∪(T,α),Dbig):valid and good
D0(M) 6=⊥∧D1(T )=⊥

1√
2n
a

(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉

⊗ |D0, D1, [Dbig]small〉 ⊗ |D0(M)〉

∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∑
M,T,Y,Z,α,(D0,D1,Dbig);

(D0,D1,Dbig): bad
(D0,D1∪(T,α),Dbig):valid and good

D0(M) 6=⊥∧D1(T )=⊥
∃M ′s.t.D0(M ′)6=⊥∧[Dbig]small(D0(M ′)⊕α) 6=⊥

1√
2n
a

(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉

⊗ |D0, D1, [Dbig]small〉 ⊗ |D0(M)〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=
∑

M,T,Y,Z,(D0,D1,Dbig);
(D0,D1,Dbig): bad

D0(M)6=⊥∧D1(T )=⊥

1
2n

∣∣∣∣∣∣∣∣∣∣∣
∑
α;

(D0,D1∪(T,α),Dbig):good
∃M ′s.t.D0(M ′) 6=⊥∧[Dbig]small(D0(M ′)⊕α)6=⊥

a
(i),3
MTY ZD0D1∪(T,α)Dbig

∣∣∣∣∣∣∣∣∣∣∣

2

≤
∑

M,T,Y,Z,(D0,D1,Dbig);
(D0,D1,Dbig): bad

D0(M)6=⊥∧D1(T )=⊥

2i2

2n
∑
α;

(D0,D1∪(T,α),Dbig):good
∃M ′s.t.D0(M ′)6=⊥∧[Dbig]small(D0(M ′)⊕α) 6=⊥

∣∣∣a(i),3
MTY ZD0D1∪(T,α)Dbig

∣∣∣2

≤ O
(
i2

2n

)
(53)

holds.
In addition, if a tuple (T, (D0, D1, Dbig)) satisfies that D1(T ) = ⊥ and (D0, D1 ∪

(T, γ), Dbig) is bad, then the number of α such that

1. (D0, D1 ∪ (T, α), Dbig) is good, and

2. there exists M ′ such that D0(M ′) 6= ⊥ and [Dbig]small(D0(M ′)⊕ α) 6= ⊥

is at most |D0| · |Dbig| ≤ 2i2. Therefore,

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
Πbad

∑
M,T,Y,Z,α,(D0,D1,Dbig);

(D0,D1∪(T,α),Dbig):valid and good
D0(M)6=⊥∧D1(T )=⊥

∃M ′s.t.D0(M ′) 6=⊥∧[Dbig]small(D0(M ′)⊕α)6=⊥

1√
2n
a

(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉

⊗ |D0〉

(∑
γ

1√
2n
|D1 ∪ (T, γ)〉

)
|[Dbig]small〉

⊗ |D0(M)〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2
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=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∑
M,T,Y,Z,α,γ,(D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):good
D0(M)6=⊥∧D1(T )=⊥

(D0,D1∪(T,γ),Dbig): bad
∃M ′s.t.D0(M ′) 6=⊥∧[Dbig]small(D0(M ′)⊕α)6=⊥

1
2n a

(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0, D1 ∪ (T, γ), [Dbig]small〉 ⊗ |D0(M)〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=
∑

M,T,Y,Z,γ,(D0,D1,Dbig);
(D0,D1∪(T,γ),Dbig): bad
D0(M) 6=⊥∧D1(T )=⊥

1
22n

∣∣∣∣∣∣∣∣∣∣∣
∑
α;

(D0,D1∪(T,α),Dbig):good
∃M ′s.t.D0(M ′)6=⊥∧[Dbig]small(D0(M ′)⊕α) 6=⊥

a
(i),3
MTY ZD0D1∪(T,α)Dbig

∣∣∣∣∣∣∣∣∣∣∣

2

≤
∑

M,T,Y,Z,γ,(D0,D1,Dbig);
(D0,D1∪(T,γ),Dbig): bad
D0(M) 6=⊥∧D1(T )=⊥

2i2

22n

∑
α;

(D0,D1∪(T,α),Dbig):good
∃M ′s.t.D0(M ′)6=⊥∧[Dbig]small(D0(M ′)⊕α)6=⊥

∣∣∣a(i),3
MTY ZD0D1∪(T,α)Dbig

∣∣∣2

≤
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):good
D0(M) 6=⊥∧D1(T )=⊥

∃M ′s.t.D0(M ′)6=⊥∧[Dbig]small(D0(M ′)⊕α) 6=⊥

2i2

2n
∣∣∣a(i),3
MTY ZD0D1∪(T,α)Dbig

∣∣∣2

≤ O
(
i2

2n

)
(54)

holds. Moreover, if a tuple (T, (D0, D1 ∪ (T, α), Dbig)) satisfies

1. D1(T ) = ⊥ and (D0, D1 ∪ (T, α), Dbig) is good, and

2. there does not exist M ′ such that D0(M ′) 6= ⊥ and [Dbig]small(D0(M ′)⊕ α) 6= ⊥,

then the number of γ such that (D0, D1∪(T, γ), Dbig) becomes bad is at most |D0| · |Dbig| ≤
2i2. Therefore,∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Πbad
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):valid and good

D0(M)6=⊥∧D1(T )=⊥
6∃M ′s.t.D0(M ′) 6=⊥∧[Dbig]small(D0(M ′)⊕α)6=⊥

1√
2n
a

(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉

⊗ |D0〉

(∑
γ

1√
2n
|D1 ∪ (T, γ)〉

)
|[Dbig]small〉

⊗ |D0(M)〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∑
M,T,Y,Z,α,γ,(D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):good
D0(M)6=⊥∧D1(T )=⊥

(D0,D1∪(T,γ),Dbig): bad
6∃M ′s.t.D0(M ′)6=⊥∧[Dbig]small(D0(M ′)⊕α)6=⊥

1
2n a

(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉
⊗ |D0, D1 ∪ (T, γ), [Dbig]small〉 ⊗ |D0(M)〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2
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=
∑

M,T,Y,Z,γ,(D0,D1,Dbig);
(D0,D1∪(T,γ),Dbig): bad
D0(M) 6=⊥∧D1(T )=⊥

∣∣∣∣∣∣∣∣∣∣∣
∑
α;

(D0,D1∪(T,α),Dbig):good
6∃M ′s.t.D0(M ′)6=⊥∧[Dbig]small(D0(M ′)⊕α) 6=⊥

a
(i),3
MTY ZD0D1∪(T,α)Dbig

2n

∣∣∣∣∣∣∣∣∣∣∣

2

≤
∑

M,T,Y,Z,γ,(D0,D1,Dbig);
(D0,D1∪(T,γ),Dbig): bad
D0(M) 6=⊥∧D1(T )=⊥

∑
α;

(D0,D1∪(T,α),Dbig):good
6∃M ′s.t.D0(M ′)6=⊥∧[Dbig]small(D0(M ′)⊕α)6=⊥

∣∣∣a(i),3
MTY ZD0D1∪(T,α)Dbig

∣∣∣2
2n

=
∑

M,T,Y,Z,α,(D0,D1,Dbig);
(D0,D1∪(T,α),Dbig):good
D0(M)6=⊥∧D1(T )=⊥

6∃M ′s.t.D0(M ′)6=⊥∧[Dbig]small(D0(M ′)⊕α)6=⊥

∣∣∣a(i),3
MTY ZD0D1∪(T,α)Dbig

∣∣∣2
· |{γ|(D0, D1 ∪ (T, γ), Dbig) is bad}|

2n

≤ O
(
i2

2n

)
(55)

holds. From (54) and (55),∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
Πbad

∑
M,T,Y,Z,α,(D0,D1,Dbig);

(D0,D1∪(T,α),Dbig):valid and good
D0(M)6=⊥∧D1(T )=⊥

1√
2n
a

(i),3
MTY ZD0D1∪(T,α)Dbig

|M,T 〉 |Y 〉 |Z〉

⊗ |D0〉

(∑
γ

1√
2n
|D1 ∪ (T, γ)〉

)
|[Dbig]small〉

⊗ |D0(M)〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

≤ O
(
i2

2n

)
(56)

follows.
Since (53) and (56) hold, we have

‖Πbad |(49)〉‖ ≤ O
(√

i2

2n

)
, ‖Πbad |(51)〉‖ ≤ O

(√
i2

2n

)
. (57)

Therefore, ∥∥∥ΠbadΠpreregRstOE∗f1
XOR∗ |ψgood,3

i 〉
∥∥∥ ≤ O(√ i2

2n

)
follows from (48)–(51), and (52) and (57). Thus we have∥∥∥|ψbad,4

i 〉
∥∥∥ =

∥∥∥RstOE∗f1
· XOR∗ · RstOEfbig · XOR · RstOEf1 · RstOEf0 |ψi〉 − |ψ

good,4
i 〉

∥∥∥
=
∥∥∥ΠpreregRstOE∗f1

· XOR∗
(
|ψgood,3
i 〉+ |ψbad,3

i 〉
)

− ΠgoodΠpreregRstOE∗f1
XOR∗ |ψgood,3

i 〉
∥∥∥

≤
∥∥∥ΠbadΠpreregRstOE∗f1

· XOR∗ |ψgood,3
i 〉

∥∥∥+
∥∥∥|ψbad,3

i 〉
∥∥∥

≤
∥∥∥|ψbad,3

i 〉
∥∥∥+O

(√
i2

2n

)
≤
∥∥|ψbad

i 〉
∥∥+O

(√
i2

2n

)
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which implies that the fourth property for |ψbad,4
i 〉 holds. The fourth property for |ψ

′bad,4
i 〉

can be shown in the same way.

Proof of Proposition 7. We prove the proposition by induction on i. The claim obviously
holds when i = 1 by setting |ψ′bad

1 〉 = 0 and |ψbad
1 〉 = 0.

Suppose that the claim holds for i = 1, . . . , k for some k. Then, by Lemma 2, Lemma 3,
Lemma 4, and Lemma 5, there exist vectors |ψ

′good,4
k 〉, |ψ

′bad,4
k 〉, |ψgood,4

k 〉, and |ψbad,4
k 〉 that

satisfy the first, second, and third properties in Lemma 5, and∥∥∥|ψ′bad,4
k 〉

∥∥∥ ≤ ∥∥∥|ψ′bad
k 〉

∥∥∥+O

(√
k2

2n

)
,
∥∥∥|ψbad,4

k 〉
∥∥∥ ≤ ∥∥|ψbad

k 〉
∥∥+O

(√
k2

2n

)
(58)

hold. Moreover, in the same way as we showed Lemma 5, we can show that there
exist vectors |ψ

′good
k+1 〉, |ψ

′bad
k+1〉, |ψ

good
k+1 〉, and |ψbad

k+1〉 that satisfy the first, second, and third
properties in Proposition 7, and∥∥∥|ψ′bad

k+1〉
∥∥∥ ≤ ∥∥∥|ψ′bad,4

k 〉
∥∥∥+O

(√
k2

2n

)
,
∥∥|ψbad

k+1〉
∥∥ ≤ ∥∥∥|ψbad,4

k 〉
∥∥∥+O

(√
k2

2n

)
(59)

hold15. From (58) and (59), it follows that |ψ
′good
k+1 〉, |ψ

′bad
k+1〉, |ψ

good
k+1 〉, and |ψbad

k+1〉 also satisfy
the fourth property of Proposition 7. Therefore the claim of Proposition 7 also holds for
i = k + 1, which completes the proof.

The following proposition shows qPRF security of FSFsmall.

Proposition 8. For a quantum algorithm A that makes at most q quantum queries,

AdvqPRF
FSFsmall

(A) ≤ O
(√

q4

2n

)
(60)

holds.

Proof. Since FSFbig is completely indistinguishable from a random function, we have that
AdvqPRF

FSFsmall
(A) = Advdist

FSFsmall,FSFbig
(A) holds. In addition, since Proposition 7 holds, by

applying Proposition 3, we obtain

Advdist
FSFsmall,FSFbig

(A) ≤
∑

1≤i≤q
O

(√
i2

2n

)
+
∑

1≤i≤q
O

(√
i2

2n

)
≤ O

(√
q4

2n

)
, (61)

which completes the proof.

4.3.3 Completing the Proof of Theorem 3

Theorem 3 immediately follows from Proposition 6 and Proposition 8.

5 Conclusions
We gave the first construction, called LRWQ, of quantum-secure TBCs from quantum-
secure BCs, and presented its provable security bound against qCPAs. Our proof is based
on the compressed oracle technique by Zhandry [Zha19] and the proof strategy to show
quantum oracle indistinguishability used in [HI20].

15RstOE∗
f1

XOR∗ in the proof of Lemma 5 corresponds to UkRstOE∗
f0

in this proof. Uk is the unitary
operator that corresponds to A’s offline computation after the k-th query.
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Future works. We did not consider quantum chosen ciphertext attacks (qCCAs), and
showing TBCs that are secure against qCCAs is an interesting future work.

Another important future work is to improve the security bound. Roughly speaking, we
prove that our construction LRWQ is secure up to O(2n/6) quantum queries, but we could
not find any attack that breaks LRWQ with O(2n/6) quantum queries, and this bound
does not seem to be tight.
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A Proof of Proposition 1
Proof of Proposition 1. Let IA and ID denote the identity operators on the adversary’s
states and databases, respectively (IA⊗ID becomes the identity operator on the entire state
space). Recall that Uj denotes the unitary operator for the adversary’s offline computation
after the j-th query.

First,
|ψi〉 = ((Ui−1 ⊗ ID) · RstOE) · · · ((U1 ⊗ ID) · RstOE) |ψ1〉

holds for i ≥ 2.
Second, recall that

RstOE = (IA ⊗ Uenc) · stO · (IA ⊗ Uenc)∗

https://csrc.nist.gov/Projects/block-cipher-techniques/BCM
https://csrc.nist.gov/Projects/block-cipher-techniques/BCM
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holds. Since Uenc does not act on the adversary’s registers, and “Utoggle · CH” in

(Uenc)∗ = IH · Utoggle · CH

does not change the state |ψ1〉 (because the database register of |ψ1〉 is all 0), we have

|ψi〉 = (IA ⊗ Uenc) · ((Ui−1 ⊗ ID) · stO) · · · ((U1 ⊗ ID) · stO) · IH |ψ1〉

for i ≥ 2.
Next, define

stO′ := (H⊗m ⊗ IH)stO(H⊗m ⊗ IH),
U ′j := H⊗m · Uj ·H⊗m for j = 1, . . . , i− 2, and

U ′i−1 := Ui−1 ·H⊗m,
U ′enc := (CH · Utoggle),

where H⊗m acts on the adversary’s register to receive answers from the oracle. Then

|ψi〉 = (IA ⊗ U ′enc) · ((U ′i−1 ⊗ ID) · stO′) · · · ((U ′1 ⊗ ID) · stO′) · (H⊗m ⊗ ID) |ψ1〉 (62)

follows.
Recall that

stO |x〉 |y〉 |S〉 = |x〉 |y ⊕ sx〉 |S〉

holds, where x ∈ {0, 1}m, y ∈ {0, 1}n, and S = (b0‖s0)‖(b1‖s1)‖ · · · ‖(b2m−1‖s2m−1), where
bi ∈ {0, 1} and si ∈ {0, 1}n for each i ∈ {0, 1}m. On the other hand, straightforward
calculations show that

stO′ |x〉 |y〉 |S〉 = |x〉 |y ⊕ sx〉 |S ⊕ (y)x〉

holds, where S ⊕ (y)x := (b0‖s0)‖ · · · ‖(bx‖sx ⊕ y)‖ · · · ‖(b2m−1‖s2m−1).
Since the database register of |ψ1〉 is all 0, when we measure the state

((U ′i−1 ⊗ ID) · stO′) · · · ((U ′1 ⊗ ID) · stO′) · (H⊗m ⊗ ID) |ψ1〉 ,

we always obtain a bit string S of the form

S = (0||s0)||(0||s1)||...||(0||s2m−1),

where the number of j such that sj 6= 0 is at most (i − 1). When U ′enc = CH · Utoggle
acts on such a state |S〉, we always obtain a (superposition of) valid database D with
|D| ≤ (i− 1). Since (62) holds, this means that the claim of Proposition 1 holds.

B Proof Intuition for Proposition 5
First, we give a proof intuition for (13). When E is an ideally random block cipher,
AdvP̃RP

LRW1[E](A) is upper bounded by O(q2/2n), as shown by Liskov, Rivest, and Wagner
(See Theorem 1 of [LRW02]). Let LRW1′[E] be the tweakable block cipher defined as
LRW1′[E]((K1,K3), T,M) := EK3(EK1(M)⊕T ) (i.e., LRW1′ is a two-key version of LRW1).
Then, intuitively, LRW1′[E] is harder to distinguish from R̃P (a tweakable random permuta-
tion) than to distinguish LRW1[E] from R̃P, but easier to distinguish than LRWQ[E]. Thus,
roughly speaking, AdvP̃RP

LRWQ[E](A) ≤ AdvP̃RP
LRW1′[E](A) ≤ AdvP̃RP

LRW1[E](A) ≤ O(q2/2n)
holds, which proves (13) when E is an ideally random block cipher. It follows from
standard hybrid arguments that (13) also holds for the case that E is not necessarily an
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ideally random block cipher. (See also the proof of Proposition 6. In the classical setting,
a random permutation can efficiently be simulated by lazy sampling.)

Second, we show the existence of an algorithm C in Proposition 5. Let O be the
encryption oracle, which is either LRWQ[E] or a tweakable random permutation R̃P. Let
C be a classical algorithm that runs the following procedure: First, find a pair (M,T )
and (M ′, T ′) such that M 6= M ′ ∧ T 6= T ′ and O(T,M) = O(T ′,M ′) by querying random
elements to O, and store the answers in a list. If such a pair is not found after making
about 2n/2 queries, stop and output 0. Second, check whether O(T ′,M) = O(T,M ′)
holds (which can be done in time Õ(1) by making O(1) queries). Finally, output 1 if
O(T ′,M) = O(T,M ′), and output 0 if O(T ′,M) 6= O(T,M ′). Then this algorithm C runs
in time Õ(2n/2) and makes at most O(2n/2) queries. It is easy to see that C outputs 1 with
an overwhelming probability when O = LRWQ[E] and outputs 0 with an overwhelming
probability when O = R̃P.

Third, we show that there exists an efficient classical chosen ciphertext attack on
LRWQ. The algorithm C in the previous paragraph finds a pair ((M,T ), (M ′, T ′)) such
that M 6= M ′ ∧ T 6= T ′ and O(T,M) = O(T ′,M ′) by just querying random elements to
the encryption oracle, which costs O(2n/2) queries. However, if the decryption oracle is
available, we can modify C so that it can find such a pair with only O(1) queries as follows:
First, query (T,M) to the encryption oracle for some tweak T and plaintext M to get the
answer C, and then query (T ′, C) to the decryption oracle for another tweak T ′ to obtain
the answer M ′. Then the pair ((M,T ), (M ′, T ′)) satisfies M 6= M ′ ∧ T 6= T ′ with an
overwhelming probability, and O(T,M) = O(T ′,M ′) = C holds. Let C′ be the algorithm
that is defined in the same way as C except that it finds such a pair ((M,T ), (M ′, T ′))
by only making O(1) queries as above. This modified algorithm C′ runs in time Õ(1)
and distinguishes LRWQ from R̃P by making only O(1) queries with an overwhelming
probability. Therefore, our construction LRWQ is broken (distinguished from a tweakable
random permutation) in time Õ(1) with only O(1) queries, if the decryption oracle is
available.
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