
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2021, No. 1, pp. 316–336. DOI:10.46586/tosc.v2021.i1.316-336

Quantum Free-Start Collision Attacks on Double
Block Length Hashing with Round-Reduced

AES-256
Amit Kumar Chauhan1�, Abhishek Kumar1 and Somitra Kumar Sanadhya2

1 Indian Institute of Technology, Ropar, India
{2017csz0008,2017csz0009}@iitrpr.ac.in

2 Indian Institute of Technology, Jodhpur, India
somitra@iitj.ac.in

Abstract. Recently, Hosoyamada and Sasaki (EUROCRYPT 2020), and Xiaoyang
Dong et al. (ASIACRYPT 2020) proposed quantum collision attacks against AES-like
hashing modes AES-MMO and AES-MP. Their collision attacks are based on the
quantum version of the rebound attack technique exploiting the differential trails
whose probabilities are too low to be useful in the classical setting but large enough
in the quantum setting. In this work, we present dedicated quantum free-start
collision attacks on Hirose’s double block length compression function instantiated
with AES-256, namely HCF-AES-256. The best publicly known classical attack against
HCF-AES-256 covers up to 9 out of 14 rounds. We present a new 10-round differential
trail for HCF-AES-256 with probability 2−160, and use it to find collisions with a
quantum version of the rebound attack. Our attack succeeds with a time complexity
of 285.11 and requires 216 qRAM in the quantum-attack setting, where an attacker can
make only classical queries to the oracle and perform offline computations. We also
present a quantum free-start collision attack on HCF-AES-256 with a time complexity
of 286.07 which outperforms Chailloux, Naya-Plasencia, and Schrottenloher’s generic
quantum collision attack (ASIACRYPT 2017) in a model when large qRAM is not
available.
Keywords: Quantum collision attacks · Rebound attacks · qRAM · AES-256 ·
Double block length compression function.

1 Introduction
The prospect of large scale quantum computers have prompted scrutiny towards the
post-quantum security analysis of cryptographic primitives. In public-key setting, Shor’s
seminal work [Sho94] for factoring integers and computing discrete logarithms will break
public-key schemes such as RSA, ECDSA, and ECDH in polynomial time. In symmetric-key
setting, it was generally believed that Grover’s algorithm [Gro96] would provide the
quadratic speedup in exhaustive search attack against the symmetric-key schemes such
as block ciphers and hash functions, and thus doubling the key length addresses the
concern. Interestingly, this belief has now been challenged due to several dedicated
quantum attacks, such as on block ciphers [BNS19b], hash functions [HS20, DSS+20],
message authentication codes, authenticated encryption schemes [KM10,KLLN16,Bon17,
LM17,HS18, BNS19a, IHM+19,DDW20] etc. These attacks primarily rely on Simon’s
algorithm [Sim97] requiring online quantum superposition queries, except in [BHN+19]
where offline queries are performed. However, the practical relevance of making online
quantum superposition queries to the keyed primitives is controversial.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-11-23 Accepted: 2021-01-23 Published: 2021-03-19

https://doi.org/10.46586/tosc.v2021.i1.316-336
mailto:{2017csz0008, 2017csz0009}@iitrpr.ac.in
mailto:somitra@iitj.ac.in
http://creativecommons.org/licenses/by/4.0/

Amit Kumar Chauhan, Abhishek Kumar and Somitra Kumar Sanadhya 317

In contrast, finding collisions for hash functions does not require any online quantum
superposition queries since all computations are public and can be performed offline. In
the classical setting, the generic attack complexity to find collisions against an n-bit
hash function is O(2n/2) using the birthday paradox. In the quantum setting, BHT
algorithm [BHT98] finds collisions with a query complexity of O(2n/3) provided that
O(2n/3)-qubit quantum random access memory (qRAM) is available. Therefore, any
dedicated attack with less than O(2n/3) quantum complexity will be regarded as a
meaningful attack. However, given the current state of development of quantum computers,
it is generally admitted that large qRAMs are not feasible in the near future. Therefore
quantum algorithms using small or no qRAMs are preferable. Chailloux, Naya-Plasencia,
and Schrottenloher [CNS17] present a collision finding algorithm with a query complexity
of O(22n/5), a classical memory of O(2n/5), and only O(n) quantum memory. This is the
only algorithm in the literature that beats the classical birthday bound without using a
large qRAM.

In this work, we target to attack double block-length hash functions in the quantum
setting. The double block length (DBL) hashing is a well-established method of constructing
a compression function with 2n-bit output based only on an n-bit block cipher. DBL hash
functions have an obvious advantage over classical block cipher based functions such as
the PGV hash modes [PGV93,BRSS10] in that the same type of underlying primitive
allows for a larger compression function. The original idea dates back to the designs of
MDC-2 and MDC-4 in 1988 by Meyer and Schilling [MS88]. Since then, many schemes
have been presented following this approach [Mer89,LM92,HLMW93,Hir04,Hir06,Sta08,
Sta09, FGL09,AFK+11,Men17]. In particular, Hirose suggested a more efficient DBL
construction by using two different provably secure block ciphers inside the compression
function. Armknecht et al. [AFK+11] showed preimage resistance and collision resistance
of Hirose [Hir06], Abreast-DM [LM92] and Tandem-DM [FGL09] compression functions.

In 2009, Mendel et al. [MRST09] introduced the rebound attack as a variant of
differential cryptanalysis and applied it to the hash function Whirlpool, standardized by
ISO/IEC. Lambereger et al. [LMS+15] further improved the rebound attacks by introducing
multiple inbound phases. Following rebound attack techniques, Chen et al. [CHKM14]
proposed the first free-start collision attack on DBL compression function when the
underlying block cipher is instantiated with AES-256. Their attacks work for 6, 8, and 9
rounds of the construction with time complexity of 28, 296, and 2120, respectively in the
classical setting. Recently, Hosoyamada and Sasaki [HS20] presented a dedicated quantum
collision attack on 7-round AES-MMO and 6-round Whirlpool when a large qRAM is
available. Later, Xiaoyang Dong et al. [DSS+20] presented an improved quantum version
of rebound attacks on 7-round AES-MMO and 5-round Grøstel-512 in the setting where
a small qRAM is available. Their collision attacks use the rebound attack technique to
exploit the differential trails, which have probabilities too low to be useful in the classical
setting but large enough in the quantum setting. Motivated by their works, we apply a
quantum version of rebound attacks with multiple inbound phases to find collisions on
Hirose’s DBL compression function when we instantiate the underlying block cipher with
AES-256.

1.1 Our Contribution
This paper describes the first dedicated quantum collision attacks against double block
length hash functions. We apply a quantum version of rebound attack that finds free-start
collisions on Hirose’s DBL compression function instantiated with AES-256 (in short, we
call it HCF-AES-256). The proposed attack covers up to 10-rounds of HCF-AES-256 in
the quantum setting. Our rebound attack uses two inbound phases that help us to mount
dedicated quantum collision attacks against 10-round HCF-AES-256 that are faster than
the generic quantum collision attacks even when small qRAM or no qRAM is available.

318 Quantum Free-Start Collision Attacks on Double Block Length Hashing

Table 1: Classical and quantum free-start collision attacks on HCF-AES-256. Q-Model-I and
Q-Model-II denote quantum-attack settings with qRAM and without qRAM, respectively.
P denotes the number of classical processors. S denotes the size of quantum computer in
qubits. TSTO denotes the time-space trade-off setting.

Settings Attack Rounds Time Space qRAM Reference

Classical Dedicated 8 296 28 0 [CHKM16]

Classical Dedicated 9 2120 28 0 [CHKM16]

Classical Generic all 2128 0 0 Birthday paradox

Classical
(parallel-rho)

Generic all 2128

P
P 0 § 2.4

Quantum
(Q-Model-I)

Dedicated 10 285.11 0 216 § 3

Quantum
(Q-Model-I)

Generic all 2120 0 216 [BHT98]

Quantum
(Q-Model-I)

Generic all 285.33 0 285.33 [BHT98]

Quantum
(Q-Model-II)

Dedicated 10 288.61 0 0 § 4.1

Quantum
(Q-Model-II)

Dedicated 10 286.07 0 0 § 4.2

Quantum
(Q-Model-II)

Dedicated
(TSTO)

10 288.61√
S/24

24 ≤ S < 276 0 § 4.3

Quantum
(Q-Model-II)

Generic all 2102.4 251.2 0 [CNS17]

However, the success of our attack largely depends on the configuration of the 16-byte
constant (used in the design of HCF-AES-256, cf. § 2.2): the number of its non-zero bytes
and their positions. On the other hand, the best publicly known classical attack exists
up to 9-rounds of HCF-AES-256 if 4-bytes of the constant c are non-zero. Moreover, our
attack improves the flexibility of the previously known best attack by allowing 8-bytes of
constant c to be non-zero at some specific positions.

In addition, we propose a MILP-based method to systematically explore the search
space of useful differential trails for the rebound attack with multiple inbound phases.
Using this method, we find a differential trail for 10-round AES-256 with differential
probability 2−160. We demonstrate that this trail can be used to mount free-start collision
attacks on 10-round HCF-AES-256 in the quantum setting when a small qRAM is available
and the 16-byte constant has eight non-zero bytes at some specific positions. We also
present quantum collision attacks on 10-round HCF-AES-256 when no qRAM is available.

In time-space trade-off (TSTO) setting, if a quantum computer of size S qubits is
available, then we can find collisions with time complexity 288.61/

√
S/24, where 24 ≤ S <

276. A summary of free-start collision attacks against HCF-AES-256 is given in Table 1.

Amit Kumar Chauhan, Abhishek Kumar and Somitra Kumar Sanadhya 319

1.2 Organization of the Paper
In § 2, we give preliminaries on Hirose’s DBL compression function, AES, quantum
computations, generic quantum collision attack settings and rebound attack. In § 3,
following the rebound attack procedure, we present a quantum free-start collision attack on
10-round HCF-AES-256 when the qRAM available is small. In § 4, we show that the attack
described earlier can be slightly modified, yet still remaining valid, in the setting when we
do not have any qRAM. In § 4.4, we briefly discuss the quantum free-start collision attack
on HCF-AES-192. In § 5, we describe how to search for useful truncated differential trails
by MILP methods with multiple inbound phases. Finally, in § 6, we conclude and outline
some directions for future work in this line of work.

2 Preliminaries
This section gives a brief introduction of AES-256, Hirose’s double block length compression
function, basic quantum computation and quantum random access memories (qRAMs),
the frameworks for generic quantum collision-finding attacks, and the quantum version of
rebound attacks.

2.1 Description of AES-256
AES-256 is a NIST/ISO standardized iterated block cipher which encrypts 128-bit plaintexts
with 256-bit keys. The 128-bit block is arranged into a 4× 4 byte matrix, whose bytes are
numbered as described in Figure 1. AES-256 has 14 rounds, where each round function,
except the last, consists of four subroutines in the following order:

• SubBytes (SB) is a non-linear byte-wise substitution that applies the same 8 × 8
Sbox S to every byte.

• ShiftRows (SR) is a cyclic shift of the ith row by i bytes to the left.

• MixColumns (MC) is a matrix multiplication over a finite field applied to each
column.

• AddRoundKey (ARK) is an exclusive-or with the round subkey.
Before the first round, an additional whitening ARK operation is performed, and the

last round executes without MC operation.

S S S S

S S S S

S S S S

S S S S

SB SR MC
ARK

0, 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2, 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3
Ki

Figure 1: The round function of AES

Next, we describe the key schedule of AES-256. The 256-bit master key is divided into
8 words of 32 bits each (W [0],W [1], . . . ,W [7]). To generate the 15 subkeys of 128 bits
(which consists of 60 words of 32 bits), the following key-expansion algorithm is used:

• For i = 0, 1, . . . , 59 do the following:

– If i ≡ 0 mod 8, then W [i] = W [i− 8]⊕ SB(RotByte(W [i− 1]))⊕ Rcon[i/8],
– If i ≡ 4 mod 8, then W [i] = W [i− 8]⊕ SB(W [i− 1]),
– Else W [i] = W [i− 8]⊕W [i− 1],

where RotByte represents 1 byte rotation (i.e., (a0, a1, a2, a3)→ (a1, a2, a3, a0)), and Rcon
denotes an array of fixed constants.

320 Quantum Free-Start Collision Attacks on Double Block Length Hashing

2.2 Hirose’s Double Block Length Compression Function
Hirose’s DBL compression function [Hir04,Hir06] internally evaluates a 2n-bit keyed block
cipher E : {0, 1}2n×{0, 1}n → {0, 1}n by calling it two times. The first cipher call already
compresses the entire input to the compression function, but the second cipher call also
compresses the input independently of the first cipher call to produce a 2n-bit output.
Formally, Hirose’s compression function can be defined as follows.

Definition 1. Let F : {0, 1}2n × {0, 1}n → {0, 1}n be a compression function such that
(v0, v1) = F (h0, h1,M), where h0, h1,M ∈ {0, 1}n. The function F consists of a (2n, n)-bit
block cipher E : {0, 1}2n × {0, 1}n → {0, 1}n that produces the outputs as follows:

F (h0, h1,M) = (f0(h0, h1,M), f1(h0, h1,M)) = (v0, v1) (1)

and the functions f0 and f1 are defined by

f0(h0, h1,M) = Eh1||M (h0)⊕ h0

f1(h0, h1,M) = Eh1||M (h0 ⊕ c)⊕ h0 ⊕ c,

where || represents the concatenation and c ∈ {0, 1}n\{0}n is a non-zero constant.

The DBL compression function given in Definition 1 is also shown in Figure 2.

E

E

M

h0

h1

v0

v1c

Figure 2: Hirose’s double block length compression function CF.

2.3 Quantum Computation and Quantum RAM
A quantum computer applies quantum gates on inputs available in qubits to obtain
new quantum states. A qubit (|0〉 or |1〉) is a quantum system defined over a finite set
B = {0, 1}. The state of a 2-qubit quantum system |ψ〉 is the superposition defined as
|ψ〉 = α |0〉 + β |1〉, where α, β ∈ C and |α|2 + |β|2 = 1. In general, the states of an
n-qubit quantum system can be described as unit vectors in C2n under the orthonormal
basis {|0 . . . 00〉 , |0 . . . 01〉 , . . . |1 . . . 11〉}, alternatively written as {|i〉 : 0 ≤ i < 2n}. Any
quantum algorithm is described by a sequence of gates in the form of a quantum circuit,
and all quantum computations are reversible. We use the standard quantum circuit model
and adopt the Clifford group {H,CNOT, S = T 2} plus T gates. Here, H is the single-qubit
Hadamard gate H : |b〉 7→ 1√

2 (|0〉 + (−1)b |1〉), CNOT is the two-qubit controlled-NOT
gate CNOT : |a〉 |b〉 7→ |a〉 |b⊕ a〉), and T is the π/8 gate defined as T : |0〉 7→ |0〉 and
T : |1〉 7→ eiπ/4 |1〉. The identity operator on n-qubit states is denoted by In.

When we estimate time complexity of an attack on a primitive, we assume unit of time
to be the time required to run the primitive once (e.g., the time required for one encryption
if the primitive is a block cipher). In addition, when we estimate space complexity of a
quantum attack on a primitive, we regard the number of qubits to implement the target
primitive as the unit of space size.

Amit Kumar Chauhan, Abhishek Kumar and Somitra Kumar Sanadhya 321

Superposition Oracles for Classical Circuit. Considering a Boolean function f :
{0, 1}n → {0, 1}, the quantum oracle for f is the unitary transformation Uf acting on
the (n+ 1)-qubit system that transforms a standard basis vector |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉,
where x ∈ {0, 1}n and y ∈ {0, 1}. The linear operator Uf acts on the superposition states
as

Uf

 ∑
x∈{0,1}n

ai |x〉 |0〉

 =
∑

x∈{0,1}n

ai |x〉 |f(x)〉 . (2)

Note that Uf can be implemented efficiently in the standard quantum circuit model as long
as there is an efficient reversible classical circuit that computes f . To build the quantum
circuit for unitary operator Uf , we first construct an efficient reversible circuit for f and
substitute quantum gates for each of the reversible gates involved.

Grover’s Search Algorithm. Given a search space of 2n elements, say {x : x ∈ {0, 1}n}
and a Boolean function or predicate f : {0, 1}n → {0, 1}, the best classical algorithm
with a black-box access to f requires about 2n evaluations of the black-box oracle to
identify x such that f(x) = 1 with probability one. In the quantum setting, Grover’s
search algorithm [Gro96] solves this problem with about O(

√
2n) calls to a quantum oracle

Uf that outputs
∑
x ax |x〉 |y ⊕ f(x)〉 upon input of

∑
x ax |x〉 |y〉. Firstly, we construct a

uniform superposition of states

|ψ〉 = 1√
2n

∑
x∈{0,1}n

|x〉 ,

by applying the Hadamard transformation H⊗n to |0〉⊗n. We then iteratively apply the
Grover operator (2 |ψ〉 〈ψ| − I)Uf to |ψ〉 such that the amplitudes of those values x with
f(x) = 1 are amplified. We then measure the resulting state which gives x such that
f(x) = 1 with an overwhelming probability.

The exact complexity of the Grover search can be estimated by implementing the oracle
circuit efficiently. It is thus essential to have a precise estimate of the quantum resources
needed to implement the oracle. For example, the oracle circuit might require a large or
small qRAM for its implementation.

Quantum Random Access Memories (qRAMs). The quantum random access memory
(qRAM) is the quantum analogue of the classical random access memory (RAM), which
uses n qubits to address a quantum superposition of 2n memory cells. Given a list of
classical data L = {x0, . . . , x2n−1} with xi ∈ {0, 1}m, the qRAM for L is modeled as an
unitary operator ULqRAM defined by

ULqRAM : |i〉Address ⊗ |y〉Output 7→ |i〉Address ⊗ |y ⊕ xi〉Output , (3)

where i ∈ {0, 1}n, y ∈ {0, 1}m, and |·〉Address and |·〉Output may be regarded as the address
and output registers respectively. Therefore, we can access any quantum superposition of
the data cells by using the corresponding superposition of address:

ULqRAM

(∑
i

ai |i〉 ⊗ |y〉

)
=
∑
i

ai |i〉 |y ⊕ xi〉 . (4)

When we say that qRAM is available, we assume that a quantum gate that realizes the
unitary operation (3) (for a list of classical data) is available in addition to basic quantum
gates.

322 Quantum Free-Start Collision Attacks on Double Block Length Hashing

2.4 Frameworks for Quantum Collision-Finding Attacks
This section reviews the various frameworks depending upon the generic quantum
collision-finding algorithms in the quantum settings. Suppose that we have a differential
trail with probability p. In the classical setting, we can mount a collision attack requiring
at least 1/p operations, and such a collision attack is faster than a generic attack (birthday
paradox) only if 1/p < 2n/2 or p > 2−n/2 holds. In the quantum setting, similar to the
work [HS20], we consider the following scenarios:

1. BHT Algorithm (the setting with qRAM). Brassard, Høyer, and Tapp [BHT98]
developed the generic quantum collision-finding algorithm. It finds collisions in time
O(2n/3) by making O(2n/3) quantum queries when exponentially large qRAM is
available. Let f : {0, 1}n → {0, 1}n be a random function. BHT consists of two
steps. The first step performs a classical precomputation that chooses a subset
X ⊂ Fn2 of size |X| = 2n/3 and computes the value f(x) for all x ∈ X (which requires
O(2n/3) queries and O(2n/3) time). The 2n/3 pairs L = {x, f(x)}x∈X are stored into
qRAM so that they can be accessed in quantum superpositions. Then the second
step performs Grover search to find x′ ∈ {0, 1}n\X such that (x, f(x)) ∈ L and
f(x) = f(x′) for some x ∈ X, which runs in time O(

√
2n/|L|) = O(2n/3) on average.

If we find such an x′ ∈ {0, 1}n\X (and x ∈ X), it implies that we find a collision for
f since f(x′) = f(x).
Hence, if we have a differential trail with probability p, then we can mount a collision
attack in time ≈

√
1/p. Such an attack is faster than the generic attack (BHT

algorithm) if
√

1/p < 2n/3. In other words, the attack is better than generic if
p > 2−2n/3 and a large qRAM is available.

2. Tradeoffs between Time and Space. From the viewpoint of time-space
complexity, BHT [BHT98] is worse than the classical parallel rho method by Oorschot
and Wiener [vOW94]. Roughly speaking, when P classical processors are available,
the parallel rho method finds a collision in time O(2n/2/P). If a quantum computer
of size 2n/3 without qRAM is available then we can run the parallel rho method
on such a quantum computer and find a collision in time 2n/6. This is faster than
using BHT. Let S denote the size of computational resources required for a quantum
algorithm (i.e., S is the maximum size of quantum computers and classical memory),
and T denote its time complexity. The tradeoff T · S = 2n/2 given by the parallel
rho method is the best one even in the quantum setting.
Thus, if we have a differential trail with probability p, then we can mount a collision
attack using the rebound technique in time T ≈ Tin.

√
1/p, where Tin is the time to

perform the inbound phase of size S0. Such an attack is faster than generic attack
(parallel rho method) if p > T 2

inS02−n holds. In addition, if a quantum computer
of size S ≥ S0 is available, by parallelizing the Grover search for outbound phase,
we obtain the tradeoff T = Tin.

√
1/p
√
S0/S, which is better than generic tradeoff

T = 2n/2/S as long as S < 2n.p/(T 2
in.S0).

3. Small Quantum Computer with Large Classical Memory. Suppose that
only a small quantum computer of polynomial-size in terms of the number of qubits
required for designing the circuit is available, but we can use an exponentially large
classical memory. In this scenario, Chailloux et al. [CNS17] showed that we could
find a collision in time O(22n/5) with a quantum computer of size O(1) and O(2n/5)
classical memory. The product of T and S becomes around 23n/5, which is larger
than 2n/2, but it is quite usual to consider a classical memory of size O(2n/5), which
is usually available. The algorithm by Chailloux et al. [CNS17] shows that we can
obtain another better tradeoff between time and space if we treat the sizes of quantum
hardware and classical hardware separately.

Amit Kumar Chauhan, Abhishek Kumar and Somitra Kumar Sanadhya 323

Therefore, if we have a differential trail with probability p, then we can mount a
collision attack in time ≈

√
1/p. Such an attack is faster than the generic attack

(BHT algorithm) if
√

1/p < 22n/5 (or p > 2−4n/5) even when no qRAM is available.

2.5 Rebound Attacks with Quantum Computers
The rebound attack consists of two phases, called inbound and outbound phases. The
inbound phase is an efficient meet-in-the-middle phase, which exploits the truncated
differences and the available degrees of freedom in the internal state to fulfill the low
probability parts in the middle of a differential characteristic. In the probabilistic outbound
phase, the matches of the inbound phase are computed backward and forward to obtain an
attack on the hash or compression function. Usually, the inbound phase is repeated many
times to generate enough starting points (data pairs) respecting the inbound differential,
which then propagates to the outbound differential to satisfy the full truncated differential
trail.

To mount a rebound attack in quantum setting, we use Grover’s algorithm to a
search space by defining a Boolean function F which marks the elements of interest. Let
(∆in,∆out) be the input-output difference with regard to the inbound differential. Let
F : {0, 1}n1 × {0, 1}n2 → {0, 1} be a Boolean function such that F (∆in,∆out) = 1 if and
only if the following conditions holds:

1. (Inbound phase.) Given an input-output difference (∆in,∆out), obtain the
corresponding starting points (pairs of messages (M,M ′) and (M̃, M̃ ′) that satisfy
the differential trail ∆in → ∆out).

2. (Outbound phase.) Propagate (M,M ′) and (M̃, M̃ ′) to the beginning and end of the
cipher to check whether the differential transformations are satisfied; and compute
the value of F (∆in,∆out).

3. Uncompute steps 1 and 2.

Extended Inbound Phases. The idea is to use all available degrees of freedom (from both
states and subkeys) to extend the rebound attack for more rounds. Extended inbound
phases consist of more than one independent inbound phase, which can be connected by
choosing subkeys accordingly. In the outbound phase, we further extend the differential
trail backward and forward by propagating the matching differences in the inbound phases
to get a truncated differential path in each direction. The rebound attack’s quantum
setting remains the same as described above, except in the case of connecting inbound
phases through the subkeys generated from the master key.

3 Quantum Collision Attacks on 10-Round HCF-AES-256
with Small qRAM

This section gives the proposed free-start collision attack against HCF-AES-256. To find a
collision for the compression function CF, the attack uses the following fact from [CHKM14,
CHKM16]:
Fact 1. Suppose that a collision for f0 is caused by the pair (h0, (h1,M)) and (h0 ⊕
∆h0, (h1,M)), that is, f0(h0, (h1,M)) = f1(h0 ⊕∆h0, (h1,M)) and assume that ∆h0 = c.
Then a collision for f1 is also caused by the same pair (h0, (h1,M)) and (h0⊕∆h0, (h1,M)).

Using the above fact, the goal of finding collisions on CF reduces to finding collisions on
f0, for which we can proceed as follows:

324 Quantum Free-Start Collision Attacks on Double Block Length Hashing

1. Find a colliding pair of inputs (h0, (h1,M)) and (h0 ⊕∆h0, (h1,M)).

2. Output the pair (h0, (h1,M)) and (h0 ⊕∆h0, (h1,M)) if ∆h0 = c. Otherwise return
to Step 1 and repeat the process.

Chen et al. [CHKM14,CHKM16] instantiate CF with AES-256, and find collisions for f0
using the rebound attack procedure. The attack technique returns a pair of colliding inputs
(h0, h1,M) and (h′0, h1,M) with difference ∆h0 = h0 ⊕ h′0 = c whose bytes are non-zero
at the same position as the non-zero bytes of the constant c.

In this section, we present a new differential trail for 10-round AES-256 and demonstrate
how to use the differential trail to mount rebound attacks on HCF-AES-256 in the
small-qRAM quantum setting. Our attack finds a colliding pair of inputs if the constant c
has eight non-zero bytes at some specific positions.

3.1 A New Differential Trail for 10-Round AES-256
Here, we give a new differential trail with the differential probability pout = 2−96 for
10-round AES-256 that can be used to find collisions against 10-round HCF-AES-256. With
some effort, we can come up with a 10-round differential trail as shown in Figure 3. Here,
each 4× 4 square matrix shows the active byte pattern of the AES state. This trail gives
pout = 2−96 since the probability of an 8-byte cancellation for the feed-forward operation
is 2−64. We then use this trail to mount rebound attacks on 10-round HCF-AES-256 in the
quantum settings, that returns a pair of colliding inputs (h0, h1,M) and (h0⊕∆h0, h1,M).
Further, we need the condition ∆h0 = c, where c has 8 non-zero bytes at some specific
positions, and this can be achieved with probability 2−64. Therefore, the overall time
complexity of the attack is 296 × 264 = 2160.

3.2 Differential Distribution Table of S-box
We precompute the differential distribution table (DDT) of the S-box in Table T using
Algorithm 1, and load it into RAM. We can compute an input-output data pair through
1 DDT access on given an input-output difference to a cell. Since the S-box can be
implemented with RAM, we regard that one random access to a classical memory or
qRAM is equivalent to one S-box application.

Algorithm 1: The differential distribution table of S with data pairs
1 Let T be an empty dictionary.
2 for δin ∈ F8

2 do
3 for x ∈ F8

2 do
4 x′ ← x⊕ δin, y ← S(x), y′ ← S(x′), δout ← y ⊕ y′
5 if x ≤ x′ then
6 Insert (x, x′, y, y′) into T[δin, δout]

7 return T

3.3 A Small-qRAM Collision Attack on 10-Round HCF-AES-256
At the core of the attack, we apply Grover’s algorithm to a search space where an efficiently
computable Boolean function marks the elements of interest to be possible solutions. Next,
we proceed to define our Boolean function F .

We assume that the instantiated input-output difference pair is represented as
(∆in,∆out) for the inbound differential with regard to Figure 3. The goal of the

Amit Kumar Chauhan, Abhishek Kumar and Somitra Kumar Sanadhya 325

ARK SB SR MC ARK

SB SR MC ARK

SB SR MC ARK

SB SR MC ARK

SB SR MC ARK

SB SR MC ARK

SB SR MC ARK

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Round 9

Round 10

2−16

Inbound 1

Inbound 2

#Starting Points
= (28)4 · (28)8 = 296

#Starting Points
= (28)8 · (28)4 = 296

X X1 Y1 Z1 W1

X2 Y2 Z2 W2

X3 Y3 Z3 W3

X4 Y4 Z4 W4

X6 Y6 Z6 W6

Y7 Z7 W7X7

X5 Y5 Z5 W5

X8 Y8 Z8 W8

X9 Y9 Z9 W9

Backward
Outbound

Inbounds 1 & 2
Connecting

SB SR MC ARK

SB SR ARKMC

SB SR

X12 Y12 W12

ARK

Forward
Outbound

2−16

Figure 3: A Differential Trail for 10-Round AES-256

inbound phase of a rebound attack is to generate data pairs respecting the multiple
inbound differentials. For two inbound phases, we define the input-output difference pair
(∆in,∆out) = (∆1

in,∆2
in,∆1

out,∆2
out), where (∆1

in,∆1
out) be the input-output difference pair

for the first inbound differential, and (∆2
in,∆2

out) be the input-output difference pair for
the second inbound differential. For the complete inbound differential, we define a Boolean
function

F : F32
2 × F48

2 × F48
2 × F32

2 → F (5)

in a way such that F (∆1
in,∆2

in,∆1
out,∆2

out) = 1 if and only if the starting point computed
with (∆1

in,∆2
in,∆1

out,∆2
out) fulfils the backward and forward outbound differentials.

Therefore, if F (∆1
in,∆2

in,∆1
out,∆2

out) = 1, we can produce two different colliding inputs h0
and h′0 such that

CF(h0, (h1,M)) = CF(h′0, (h1,M)),

326 Quantum Free-Start Collision Attacks on Double Block Length Hashing

where h0 and h′0 are obtained from the starting point, and (h1,M) is obtained from the
keys derived from connecting rounds in inbound phases 1 and 2.

On given (∆in,∆out) = (∆1
in,∆2

in,∆1
out,∆2

out), the function F (∆in,∆out) =
F (∆1

in,∆2
in,∆1

out,∆2
out) can be computed with a classical computer by the following

approach:

1. Compute the differential (∆X(i)
4 ,∆Y (i)

4) for each S-box S
(i)
4 (0 ≤ i < 16) from

(∆Z3,∆W4) in the fourth round, where ∆Z3 = ∆1
in and ∆W4 = ∆1

out.

2. Solve the active S-box S(i)
4 to obtain X(i)

4 for i ≤ 0 < 16, such that

S
(i)
4 (X(i)

4)⊕ S(i)
4 (X(i)

4 ⊕∆X(i)
4) = ∆Y (i)

4 .

Pick min{X(0)
4 , X

(0)
4 ⊕ ∆X(0)

4 } as the new value for X(0)
4 . Similarly, we obtain

X
(1)
4 , X

(2)
4 , . . . , X

(15)
4 . We can build the starting point as

X4 = (X(0)
4 , X

(1)
4 , . . . , X

(15)
4).

If there are no admissible inputs for the pair (∆X4,∆Y4), then return to Step 1.

3. Compute the differential (∆X(i)
7 ,∆Y (i)

7) for each S-box S
(i)
7 (0 ≤ i < 16) from

(∆Z6,∆W7) in the seventh round, where ∆Z6 = ∆2
in and ∆W7 = ∆2

out.

4. Solve the active S-box S(0)
7 to obtain X(0)

7 such that

S
(0)
7 (X(0)

7)⊕ S(0)
7 (X(0)

7 ⊕∆X(0)
7) = ∆Y (0)

7 .

Pick min{X(0)
7 , X

(0)
7 ⊕ ∆X(0)

7 } as the new value for X(0)
7 . Similarly, we obtain

X
(1)
7 , X

(2)
7 , . . . , X

(15)
7 . We can build the starting point as

X7 = (X(0)
7 , X

(1)
7 , . . . , X

(15)
7).

If there are no admissible inputs for the pair (∆X7,∆Y7), then return to Step 3.

5. Select ∆Y5 compatible with ∆X5 with the help of precomputed DDT lookup table.
Calculate ∆X6 form ∆Y5 and check whether ∆X6 and ∆Y6 are compatible for each
eight active bytes. If there are no admissible inputs for the pair (∆X5,∆Y5) and
(∆X6,∆Y6), then repeat the process in Step 5.

6. Connect the results of two inbound phases to ensure that the differences in the eight
active bytes of round 5 and the actual values of Y5 and X6 match by choosing the
subkeys K4, K5 and K6 accordingly.

7. Using the key schedule of AES-256, we compute the round key K3 from K4 and K5,
K2 from K3 and K4, K1 from K2 and K3, and K0 from K1 and K2. Similarly, we
can compute the round key K7 from K5 and K6, K8 from K6 and K7, K9 from K7
and K8, and K10 from K8 and K9.

8. Compute starting points X5 and X6 from key K4 with state W4 and from key K6
with state W5 respectively. Note that we now have a corrected path for the starting
points X4 → X5 → X6 → X7.

9. If the starting point (X4, X4 ⊕ ∆X4) obtained in Step 2 respects the backward
outbound differential, and the starting point (X7, X7 ⊕∆X7) obtained in Step 4
respects the backward outbound differential, then F (∆in,∆out) returns 1; otherwise
it returns 0.

Amit Kumar Chauhan, Abhishek Kumar and Somitra Kumar Sanadhya 327

At the end, if F (∆in,∆out) = 1, we compute the corresponding inputs (X,X ⊕∆X) from
X4 and ∆X4, and (W12,∆W12) from Y7 and ∆Y7. If ∆X = ∆W12, then output the pair
of inputs (K,X) and (K,X ⊕ ∆X), which are mapped to the same hash value by f0
instantiated with 10-round AES-256, where K = K0||K1.

Therefore, by applying Grover’s search with the quantum oracle UF which maps
|∆in,∆out, α〉 |y〉 to |∆in,∆out, α〉 |y ⊕ F (∆in,∆out, α)〉, we can find a collision with around
π
4 .
√

2160 queries. To estimate the overall complexity, we need to find the exact complexity
incurred by UF .

3.4 Implementation of the Quantum Oracle UF

To implement the quantum oracle UF , we firstly define an additional function D(i) for
0 ≤ i < 16, that computes the actual input-output data pair respecting the differential
of each S-box S for round j by accessing the precomputed DDT. For example, the
function D(i) outputs min{X(i)

4 , X
(i)
4 ⊕ ∆X(i)

4 } upon input (∆X(i)
4 ,∆Y (i)

4) such that
S(X(i)

4)⊕ S(X(i)
4 ⊕∆X(i)

4) = ∆Y (i)
4 .

Since the computation of D(i) in the classical setting uses the table T computed by
Algorithm 1, implementing a quantum oracle of D(i) requires qRAMs of 216 size. Thus,
the oracle UF can be constructed with the quantum circuit of D(i), which is presented in
Algorithm 2.

3.5 Computing Round Key K6

The following eight conditions are deduced from the AES-256 key expansion algorithm:

K6[0][0] = K4[1][0]⊕ S(K5[1][3]) (6)
K6[1][0] = K4[2][0]⊕ S(K5[2][3]) (7)

K6[0][1]⊕K6[0][2] = K4[0][2] (8)
K6[0][2]⊕K6[0][3] = K4[0][3] (9)
K6[1][2]⊕K6[1][3] = K4[1][3] (10)
K6[2][0]⊕K6[2][1] = K4[2][1] (11)
K6[3][0]⊕K6[3][1] = K4[3][1] (12)
K6[3][1]⊕K6[3][2] = K4[3][2] (13)

Notice that all the bytes of K4 and K5 on the right side are already fixed by the algorithm.
The other conditions come from the fixed bytes of Y6[2] and Y6[3]:

SR(Y6[2]) = MC−1(X7)[2]⊕MC−1(K6)[2] (14)
SR(Y6[3]) = MC−1(X7)[3]⊕MC−1(K6)[3] (15)

Now since X7 is given to the algorithm as input, the above equations (14) and (15) can be
expanded as the following linear equations:

(0d, 09, 0e, 0b)K6[0] = Z6[2][0]⊕ (0d, 09, 0e, 0b)X7[0] (16)
(09, 0e, 0b, 0d)K6[1] = Z6[1][1]⊕ (09, 0e, 0b, 0d)X7[1] (17)
(0e, 0b, 0d, 09)K6[2] = Z6[0][2]⊕ (0e, 0b, 0d, 09)X7[2] (18)
(0b, 0d, 09, 0e)K6[3] = Z6[3][3]⊕ (0b, 0d, 09, 0e)X7[3] (19)
(0b, 0d, 09, 0e)K6[0] = Z6[3][0]⊕ (0b, 0d, 09, 0e)X7[0] (20)
(0d, 09, 0e, 0b)K6[1] = Z6[2][1]⊕ (0d, 09, 0e, 0b)X7[1] (21)
(09, 0e, 0b, 0d)K6[2] = Z6[1][2]⊕ (09, 0e, 0b, 0d)X7[2] (22)
(0e, 0b, 0d, 09)K6[3] = Z6[0][3]⊕ (0e, 0b, 0d, 09)X7[3] (23)

328 Quantum Free-Start Collision Attacks on Double Block Length Hashing

Algorithm 2: Implementation of UF
Input: |∆1

in,∆2
in,∆1

out,∆2
out〉 |y〉

Output: |∆1
in,∆2

in,∆1
out,∆2

out〉 |y ⊕ F (∆1
in,∆2

in,∆1
out,∆2

out)〉
1 /* Perform inbound phase 1 */
2 for i ∈ {0, 1, . . . , 15} do
3 Compute the corresponding differential ∆X(i)

4 → ∆Y (i)
4 for each S-Box from

(∆Z3,∆W4), where ∆Z3 = ∆1
in and ∆W4 = ∆1

out.
4 Run D(i)(∆X(i)

4 ,∆Y (i)
4). Let (X(i)

4 , X
(i)
4 ⊕∆X(i)

4) be the output.
5 /* Perform inbound phase 2 */
6 for i ∈ {0, 1, . . . , 15} do
7 Compute the corresponding differential ∆X(i)

7 → ∆Y (i)
7 for each S-box from

(∆Z6,∆W7), where ∆Z6 = ∆2
in and ∆W7 = ∆2

out.
8 Run D(i)(∆X(i)

7 ,∆Y (i)
7). Let (X(i)

7 , X
(i)
7 ⊕∆X(i)

7) be the output.
9 Compute ∆X5 from ∆W4 and ∆Y6 from ∆Z6.

10 /* Connect inbound phases 1 and 2 */
11 for i ∈ {1, 2, 6, 7, 8, 11, 12, 13} do
12 Run Di for each ∆X(i)

5 to select the corresponding differential ∆Y (i)
5 .

13 Compute ∆X6 from ∆Y5.
14 for j ∈ {8, 9, 10, 11, 12, 13, 14, 15} do
15 Run D(j)(∆X(j)

6 ,∆Y (j)
6).

16 if ∆X6 and ∆Y6 are compatible then
17 return (X(i)

6 , X
(i)
6 ⊕∆X(i)

6) as the output.

18 Let (X(i)
5 , X

(i)
5 ⊕∆X(i)

5) be the output.
19 Compute X5[0][2], X5[0][3], X5[1][0], X5[1][3], X5[2][0], X5[2][1], X5[3][1] and

X5[3][2].
20 Compute K4[0][2],K4[0][3],K4[1][0],K4[1][3],K4[2][0],K4[2][1],K4[3][1] and

K4[3][2] from the corresponding bytes of W4 and X5.
21 Compute K5[2] and K5[3] from the corresponding bytes of W5 and X6.
22 Compute the round key K6 satisfying the conditions obtained so far by expanding

them into 16 linear equations as described in § 3.5.
23 Compute the remaining bytes of K4 from K5[2], K5[3] and K6.
24 Compute W5 from Y4 with K4, and X6 from X7 with K6. Then compute

K5[j] = W5[j]⊕X6[j] for 0 ≤ j ≤ 1.
25 Compute the round keys K0,K1,K2,K3,K7,K8, K9 and K10.
26 /* Create starting points derived from (∆1

in,∆2
in,∆1

out,∆2
out) */

27 Set X4 ← (X(0)
4 , . . . , X

(15)
4) and X ′4 ← (X(0)

4 ⊕∆X(0)
4 , . . . , X

(15)
4 ⊕X(15)

4)
28 Set X7 ← (X(0)

7 , . . . , X
(15)
7) and X ′7 ← (X(0)

7 ⊕∆X(0)
7 , . . . , X

(15)
7 ⊕X(15)

7)
29 if (X4, X

′
4) fulfils the backward outbound differential then

30 set 1-bit flag flag1 = 1; otherwise set flag1 = 0.
31 if (X7, X

′
7) fulfils the forward outbound differential then

32 set 1-bit flag flag2 = 1; otherwise set flag2 = 0.
33 if flag1 = 1 and flag2 = 1 then
34 return |∆1

in,∆2
in,∆1

out,∆2
out〉 |y ⊕ 1〉

35 else
36 return |∆1

in,∆2
in,∆1

out,∆2
out〉 |y〉

Amit Kumar Chauhan, Abhishek Kumar and Somitra Kumar Sanadhya 329

Observe that we can compute K6[0] from equations (6), (7), (16) and (20). Using equations
(11) and (12), we can compute K6[2][1] and K6[3][1]. Then we can compute K6[1] from
equations (17) and (21). Similarly, we can compute K6[2] and K6[3], which allows us to
compute the key K6 fully.

3.6 Complexity Analysis
First, we describe the following facts and assumptions used in our quantum collision attack
on HCF-AES-256.

• The complexity of the computation of 10-round AES is approximated by (16+4)×10 =
200 S-box computations.

• The complexity of one access to the qRAM that stores a table of input-output
differences is equivalent to one S-box computation.

• The complexity of solving linear equations involved in computing K6, which are
conditioned on K4 and K5, is ignored.

• One computation of inverse S-box is about the same as computing two
S-boxes [JNRV20].

• Uncomputing is taken into account to free-up the wires after executing a task.

In our attack setting, we first precompute the differential distribution table (DDT) with
216 classical data for the S-box (see Algorithm 1) and then load this table into a qRAM in
advance. This qRAM is accessed by the quantum circuit for D(i).

Complexity of D(i). D(i) is used to compute input-output data pairs through the
precomputed DDT accesses as given in Algorithm 1. One DDT access is equivalent to one
S-box evaluation. Hence, we need only one S-box evaluation, which is about 2× 1

200 ≈ 2−6.64

10-round AES-256 computations.

Complexity of UF . In Algorithm 2, Steps 2-4 as well as Steps 6-8, make 16 calls to D(i).
Steps 11-18 make 28 × 16 calls to D(i) since there might be 28 repetitions of Steps 10-25
for connecting two inbound phases. In Step 9, we compute backwards for the S-box in
round 6, therefore, we need 2× 1× 16 = 32 S-box computations. In Step 27, according
to Figure 3, we need to compute backwards for 2 rounds and in Step 28, we need to
compute forwards for 3 rounds from the starting points. Therefore, 2× 2× 16 = 64 inverse
S-box computations, and 2 × 3 × 16 = 96 S-box computations are needed. Hence, we
need 2× (32× 2 + 64× 2 + 96)/200 = 2.88 10-round AES-256 computations. The overall
complexity of UF is 16× 2−6.64 + 16× 2−6.64 + (28 × 16× 2−6.64) + 2.88 ≈ 25.46 10-round
AES-256 computations.

Complexity to find a collision. To identify a 160-bit value (∆1
in,∆1

out,∆2
in,∆2

out) ∈ F32
2 ×

F48
2 ×F48

2 ×F32
2 with Grover search such that F (∆1

in,∆1
out,∆2

in,∆2
out) = 1 requires π4×

√
2160

queries to UF . Therefore, the complexity to find a collision is π
4 ×
√

2160 × 25.46 = 285.11

10-round AES-256 computations.

4 Quantum Collision Attacks on 10-Round HCF-AES-256
without qRAM

In this section, we introduce methods to eliminate the requirement of qRAM for
implementing DDT. This permits us to use qubits only as working memory, without

330 Quantum Free-Start Collision Attacks on Double Block Length Hashing

requiring a dedicated qRAM.
We adopt three methods to get rid of the requirement of qRAM for accessing D(i).

The first two methods are similar to the work by Dong et al. [DSS+20], while the third
method relies on time-space tradeoff. Essentially, we re-implement D(i) without using the
DDT stored in qRAMs, while keeping the functional behavior of D(i) unchanged.

4.1 Method 1: Using Grover’s Search for S-box
The idea is to generate data pairs by online search instead of table lookups when given a
specific input-output differential (δin, δout) for an 8× 8 S-box. Specifically, we just replace
the table lookups using D(i) by Grover’s search algorithm for D(i) in Algorithm 2, while
other parts of the algorithm remain the same.

Complexity of Grover Search for D(i). To apply Grover’s algorithm to D(i) on given
(∆X(i)

4 ,∆Y (i)
4), we define D(i)(∆X(i)

4 ,∆Y (i)
4 , ·) : F8

2 → F2 to find X
(i)
4 . It requires π

4 ×√
28 = 23.58 queries to the oracle UD(i) , which is equivalent to π

4 ×
√

28 × (1/200) = 2−4.05

10-round AES-256 computations. Hence, the total complexity of the Grover search on D(i)

is about 2× 2−4.05 = 2−3.05 10-round AES-256 computations.

Complexity of UF . In Algorithm 2, the implementation of UF without qRAM is obtained
by replacing D(i) with their versions without qRAM. The overall complexity of UF is
16×2−3.05 +16×2−3.05 +(28×16×2−3.05)+2.88 ≈ 28.96 10-round AES-256 computations.

Complexity to find a collision. To identify a 160-bit value (∆1
in,∆1

out,∆2
in,∆2

out) ∈ F32
2 ×

F48
2 ×F48

2 ×F32
2 with Grover search such that F (∆1

in,∆1
out,∆2

in,∆2
out) = 1 requires π4×

√
2160

queries to UF . Therefore, the complexity to find a collision is π
4 ×
√

2160 × 28.96 = 288.61

10-round AES-256 computations.

4.2 Method 2: Using a Dedicated Quantum Circuit for S-box
At FSE 2020, Bonnetain et al. [BNS19b] proposed a quantum circuit that fulfils the
functionality of DDT. The cost is equivalent to 2 S-box computations and 22 ancilla
qubits. We adopt their idea to implement UF without qRAMs. The complexity is quite
similar to Algorithm 2, because when one DDT access is needed, we just replace it by
2 S-box evaluations. The updated complexity of D(i) is 2 × (2/200) ≈ 2−5.64 10-round
AES-256 computations. Hence the complexity of UF becomes 16× 2−5.64 + 16× 2−5.64 +
28 × 16 × 2−5.64 + 2.88 ≈ 26.42 10-round AES-256 computations. Overall, we need
π
4 ×
√

2160 × 26.42 = 286.07 10-round AES-256 computations with 22 ancilla qubits.

4.3 Method 3: A Time-Space Tradeoff
Recall that the generic collision finding algorithm in this setting is the parallel-rho method,
which gives the tradeoff T.S = 2n/2, or equivalently T = 2n/2/S. We regard the size (the
number of qubits) required to implement the attack target (here, 10-round AES-256) as
the unit of space size.

We again use the same differential trail with probability 2−160 for the outbound phase,
and thus the domain size of F is 2160. Following § 4.1, the cost of UF is ≈ 28.96 encryptions.
In addition, we require some ancillary quantum registers to realize UF . In Algorithm 2,
Steps 4, 8, 12 and 15 require some ancillary quantum registers to solve the S-box differential
equation S(xi)⊕ S(xi ⊕ δin). The size of quantum register is ≈ 1/16 units (as the block
size of S-box is 1/16 of the internal state size of AES). To compute and store the values
(δ(i)
in , δ

(i)
out) for 1 ≤ i ≤ 16 in Steps 3, 7, 12 and 15, we use ancillary quantum registers of

Amit Kumar Chauhan, Abhishek Kumar and Somitra Kumar Sanadhya 331

size ≈ 4× (1/16× (2× 1/16)) = 8. We also have to use a quantum register to store xi and
another quantum register to compute D(i). Both of these are of sizes ≈ 1/16 units. Thus,
additional quantum registers of size 16× (1/16 + 1/16) = 2 is required for Steps 2-18. In
Steps 29 and 31, we use additional quantum registers of size ≈ 5. The 2 qubits required
for flag1 and flag2 are quite small and we can ignore them. In total, we use additional
quantum registers of size (8 + 2 + 5) ≈ 24. Therefore, we can implement UF on a quantum
circuit in such a way that it runs in time around 28.96 encryptions with 10-round AES, by
using ancillary quantum register of size around 24.

When a quantum computer of size S (S ≥ 24) is available and we use them to parallelize
the Grover search, our rebound attack runs in time T ≈ 288.61/

√
S/24 = 290.61/

√
S.

Therefore, our attack is better than the generic attack in the setting where the efficiency
of a quantum algorithm is measured by the tradeoff between time T and space S as long
as 24 ≤ S < 276, but it is worse than the generic attack in other settings.

4.4 Discussion on Quantum Collision Attack on HCF-AES-192
Previously, we presented Hirose’s double block length compression function instantiated
with AES-256, namely HCF-AES-256 in Figure 2. Similarly, we can define HCF-AES-192
by modifying the message length from 128-bit to 64-bit.

To mount quantum free-start collision attacks on HCF-AES-192, we can easily find
a 10-round differential trail for AES-192 with the same probability as for AES-256 by
using the MILP methods. More specifically, by modifying the differential trail for AES-256
given in Figure 3 for connecting the two inbound phases (from round 4 to round 6), we
can find a valid differential trail for AES-192. We need to select the positions of active
bytes after applying AddRoundKey operation such that we can efficiently recover the
round keys K4,K5,K6 using the key schedule of AES-192. As a result, the attack strategy
against HCF-AES-192 would not only remain the same as described in § 3, but also the
time complexity of quantum collision attacks remains the same, i.e. 285.11 in the setting of
Q-Model-I. Note that this method can attack 10 out of 12 rounds of HCF-AES-192.

5 Searching for Differential Trail with MILP Methods
We now describe a Mixed Integer Linear Programming (MILP) based tool proposed by
Mouha et al. [MWGP11] to find the optimal differential trail for AES-256.

MILP Model. In order to find the optimal differential trail for our attack, we use a tool
based on MILP. This model describes the propagation characteristics of the difference
patterns using linear inequalities and defines an objective function to minimize the
complexity of the collision attack. Specifically, for finding collisions for hash functions
using the rebound attack technique, we need to modify the MILP model by Mouha et
al. [MWGP11] by simply converting the collision search such that the active byte patterns
of the first round input and the last round output are identical.

Assume that there is a differential trail for EK of HCF-AES-256 with probability p
whose input-output differences share a common value ∆. That is, let the differential trail
be Eh1||M (h0) ⊕ Eh1||M (h0 ⊕∆) = ∆. Given around 1/p pairs of input messages with
difference ∆, we expect one pair ((h0, h1,M), (h0 ⊕∆, h1,M)) to follow this trail. Thus,
the difference of the outputs of HCF-AES-256 for the valid pair of messages becomes zero,
and leads to a collision.

Since K is known in hash functions, it is possible to generate many data pairs which
conform to one particular segment of the desired trail. Then these pairs are tested to find
the one which fulfills the remaining part of the trail. This is the basic strategy employed
by the rebound attack [MRST09].

332 Quantum Free-Start Collision Attacks on Double Block Length Hashing

For each model, we fix the positions of two inbound phases. In the first inbound phase, we
fix the round index r+ 1 for which MixColumns in rounds r+ 1 and r+ 2 are satisfied with
cost one on average. Similarly, in the second inbound phase, we fix the round index r + 4
in which MixColumns in rounds r+ 4 and r+ 5 are satisfied with cost one on average. We
connect these two inbound phases in round r + 3. Because the last round does not have
MixColumns, we only have 4 choices in the case of the 10-round attack: r ∈ {1, 2, 3, 4} by
starting the round counting from 0. For example, the 10-round trail introduced in § 3.1 is
when r = 2. The probability of the outbound phase is affected by two factors:

1. the number of difference cancellations in MixColumns,

2. the number of difference cancellations in the feed-forward.

Variables and Constraints. For an N -round primitive, we first introduce an integer
variable r, which determines two inbound phases from round r+ 1 to r+ 2, and from round
r+4 to r+5. These inbound phases are connected in round r+3. The backward outbound
phase is connected from round r to 0, and the forward outbound phase is connected from
round r + 5 to N − 1.

We introduce a set of 0-1 variables xj for all cells of the states involved, where xj = 1
if and only if the corresponding cell is differentially active. Let, xi0, xi1, xi2, xi3 denote the
input bytes and yi0, yi1, yi2, yi3 denote the output bytes of the MixColumns transformation
for each column. We also introduce a 0-1 dummy variable d to denote whether the column
is active or not; and another variable b (0 ≤ b ≤ 3) to count the number of inactive bytes
in active columns. Then, the proper relationships can be modeled in the following equality:{

−xi0 − xi1 − xi2 − xi3 + 4d = b for backward outbound phase
−yi0 − yi1 − yi2 − yi3 + 4d = b for forward outbound phase

Additionally, we use following set of the inequalities to model the behaviour of linear
transformation of AES:

xi0 + xi1 + xi2 + xi3 + yi0 + yi1 + yi2 + yi3 ≥ BD · d
d− xi0 ≥ 0
d− xi1 ≥ 0
d− xi2 ≥ 0
d− xi3 ≥ 0
d− yi0 ≥ 0
d− yi1 ≥ 0
d− yi2 ≥ 0
d− yi3 ≥ 0

where BD denotes the differential branch number of the AES MixColumns transformation.
The value of d is nonzero only if any of the xi0, xi1, xi2, xi3, yi0, yi1, yi2 and yi3 is nonzero.

Finally, we need to add the constraints such that active byte patterns of the first round
input and the last round output are identical. For example, to ensure the feed-forward
cancellation for 10-round HCF-AES-256, we add the following constraints:

X[0][0] = W12[0][0];X[0][1] = W12[0][1];X[0][2] = W12[0][2];X[0][3] = W12[0][3];
X[1][0] = W12[1][0];X[1][1] = W12[1][1];X[1][2] = W12[1][2];X[1][3] = W12[1][3];
X[2][0] = W12[2][0];X[2][1] = W12[2][1];X[2][2] = W12[2][2];X[2][3] = W12[2][3];
X[3][0] = W12[3][0];X[3][1] = W12[3][1];X[3][2] = W12[3][2];X[3][3] = W12[3][3];

where X and W12 (refer to Figure 3) denote the input and output differences of the
10-round differential trail for AES-256.

Amit Kumar Chauhan, Abhishek Kumar and Somitra Kumar Sanadhya 333

The Objective Function. To minimize the time complexity of the outbound phase, our
objective function is to minimize the sum of b’s and the variables x0 to x15.

Hence, our goal is to

Minimize
∑

Outbound
b +

∑
Round 0

xj .

6 Conclusions and Open Problems
In this work, we presented quantum free-start collision attacks on the DBL compression
function [Hir06] instantiated with 10-round AES-256, namely HCF-AES-256 when small
qRAM or no qRAM is available. This is achieved by performing a quantum version of the
rebound attack with extended inbound phases. Our attack on HCF-AES-256 outperforms
the generic attack of Chailloux, Naya-Plasencia, and Schrottenloher [CNS17] in a model
when large qRAM is not available. However, our attack has two limitations: (1) it is a
free-start collision attack, and (2) we require the constant c to have a low hamming weight.
More precisely, c should have 8 non-zero bytes at some specific positions for our attack to
be valid. Extending these attacks to more than 10 rounds will be interesting.

Another interesting future work will be to extend the quantum collision attacks on
Hirose’s double block length compression function with other variants as given in [Hir06].
One might also revisit previous differential trail search activities so that we will be able to
construct more efficient dedicated quantum collision-finding attacks against hash functions.
The extension of the collision attack with real IV’s remains an open problem.

Discussion on Related-Key Differential Cryptanalysis of Hash Functions based on AES.
In a related-key attack against a block cipher, the attacker is given access to the encryption
oracle under keys that differ from the target key by a known difference. In differential
cryptanalysis, the attacker is allowed to introduce difference ∆X = X ⊕X ′ in plaintext
pairs, whereas in related-key differential cryptanalysis, the attacker is additionally allowed
to introduce difference ∆K = K ⊕K ′ in keys such that ∆X becomes ∆Xr after r rounds
with high probability.

At present, in the classical setting, the best related-key differential attack [BKN09]
can break the full 14-round AES-256 with total complexity of 2131 time and 265 memory.
Biryukov et al. [BKN09] also discussed how the related-key differential trail of AES-256
can be used to find free-start collisions for the Davies-Meyer compression function. The
differences in the IV can be cancelled by the feed-forward operation of Davies-Meyer mode,
if the difference in the plaintexts is equal to the difference in the ciphertexts.

Note that Hirose’s double block length compression function uses the Davies-Meyer
mode. This allows us to use a related-key differential for the underlying block cipher.
The related-key differential trail for full AES-256 from [BKN09] does not have the same
difference in the plaintext and the ciphertext pairs, which is required for cancellation
by the feed-forward operation in this mode. Assuming that a related-key differential
trail with same plaintext-ciphertext difference can be constructed for full AES-256 with
probability 2−131 (same as that given in [BKN09]), we can find collisions on full 14-round
HCF-AES-256. However, to mount the collision attack on HCF-AES-256, we need to satisfy
an extra condition ∆h0 = c. If the attack requires c to have 8 non-zero bytes at some
specific positions, as in the attacks described by us earlier, it will contribute a probability
2−64 cost to the attack. Therefore, the time complexity of quantum free-start collision
attack will be ≈

√
2195 = 297.5. On the other hand, if we apply CNS algorithm [CNS17]

on full HCF-AES-256, then we can find collisions with time complexity 2102.4 and 251.2

classical memory. Quantifying the exact time/memory/data complexity of this attack,
and improving it further to reduce the cost of the attack for full HCF-AES-256 in the
related-key attack model remains an interesting research problem for future.

334 Quantum Free-Start Collision Attacks on Double Block Length Hashing

Acknowledgments
We would like to thank the anonymous reviewers of IACR Transactions on Symmetric
Cryptology 2021 for their insightful comments and suggestions, which have significantly
improved the presentation and technical quality of this work. We would also like to
thank Dr. Kai-Min Chung for initial discussions on quantum computing which led to
the initiation of this work. The third author would also like to thank MATRICS grant
2019/001514 by the Science and Engineering Research Board (SERB), Dept. of Science
and Technology, Govt. of India for supporting the research carried out in this work.

References
[AFK+11] Frederik Armknecht, Ewan Fleischmann, Matthias Krause, Jooyoung Lee,

Martijn Stam, and John P. Steinberger. The preimage security of
double-block-length compression functions. In ASIACRYPT, volume 7073,
pages 233–251. Springer, 2011.

[BHN+19] Xavier Bonnetain, Akinori Hosoyamada, María Naya-Plasencia, Yu Sasaki,
and André Schrottenloher. Quantum attacks without superposition queries:
The offline Simon’s algorithm. In ASIACRYPT, volume 11921, pages 552–583.
Springer, 2019.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash
and claw-free functions. In LATIN’98, volume 1380, pages 163–169. Springer,
1998.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and
related-key attack on the full AES-256. In CRYPTO, volume 5677, pages
231–249. Springer, 2009.

[BNS19a] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. On
quantum slide attacks. In Selected Areas in Cryptography - SAC, volume
11959, pages 492–519. Springer, 2019.

[BNS19b] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. Quantum
security analysis of AES. IACR Trans. Symmetric Cryptol., 2019(2):55–93,
2019.

[Bon17] Xavier Bonnetain. Quantum key-recovery on full AEZ. In Selected Areas in
Cryptography - SAC, volume 10719, pages 394–406. Springer, 2017.

[BRSS10] John Black, Phillip Rogaway, Thomas Shrimpton, and Martijn Stam. An
analysis of the block cipher-based hash functions from PGV. J. Cryptol.,
23(4):519–545, 2010.

[CHKM14] Jiageng Chen, Shoichi Hirose, Hidenori Kuwakado, and Atsuko Miyaji. A
collision attack on a double-block-length compression function instantiated
with round-reduced AES-256. In Information Security and Cryptology - ICISC,
volume 8949, pages 271–285. Springer, 2014.

[CHKM16] Jiageng Chen, Shoichi Hirose, Hidenori Kuwakado, and Atsuko Miyaji. A
collision attack on a double-block-length compression function instantiated
with 8-/9-round AES-256. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci., 99-A(1):14–21, 2016.

Amit Kumar Chauhan, Abhishek Kumar and Somitra Kumar Sanadhya 335

[CNS17] André Chailloux, María Naya-Plasencia, and André Schrottenloher. An
efficient quantum collision search algorithm and implications on symmetric
cryptography. In ASIACRYPT, volume 10625, pages 211–240. Springer, 2017.

[DDW20] Xiaoyang Dong, Bingyou Dong, and Xiaoyun Wang. Quantum attacks on
some Feistel block ciphers. Des. Codes Cryptogr., 88(6):1179–1203, 2020.

[DSS+20] Xiaoyang Dong, Siwei Sun, Danping Shi, Fei Gao, Xiaoyun Wang, and Lei Hu.
Quantum collision attacks on AES-like hashing with low quantum random
access memories. In ASIACRYPT, volume 12492, pages 727–757. Springer,
2020.

[FGL09] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. On the security of
Tandem-DM. In Fast Software Encryption - FSE, volume 5665, pages 84–103.
Springer, 2009.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
ACM Symposium on the Theory of Computing, pages 212–219. ACM, 1996.

[Hir04] Shoichi Hirose. Provably secure double-block-length hash functions in a
black-box model. In Information Security and Cryptology - ICISC, volume
3506, pages 330–342. Springer, 2004.

[Hir06] Shoichi Hirose. Some plausible constructions of double-block-length hash
functions. In Fast Software Encryption - FSE, volume 4047, pages 210–225.
Springer, 2006.

[HLMW93] Walter Hohl, Xuejia Lai, Thomas Meier, and Christian Waldvogel. Security
of iterated hash functions based on block ciphers. In CRYPTO, volume 773,
pages 379–390. Springer, 1993.

[HS18] Akinori Hosoyamada and Yu Sasaki. Cryptanalysis against symmetric-key
schemes with online classical queries and offline quantum computations. In
Topics in Cryptology - CT-RSA, volume 10808, pages 198–218. Springer, 2018.

[HS20] Akinori Hosoyamada and Yu Sasaki. Finding hash collisions with quantum
computers by using differential trails with smaller probability than birthday
bound. In EUROCRYPT, volume 12106, pages 249–279. Springer, 2020.

[IHM+19] Gembu Ito, Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki, and Tetsu
Iwata. Quantum chosen-ciphertext attacks against Feistel ciphers. In Topics
in Cryptology - CT-RSA, volume 11405, pages 391–411. Springer, 2019.

[JNRV20] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia.
Implementing grover oracles for quantum key search on AES and LowMC. In
EUROCRYPT, volume 12106, pages 280–310. Springer, 2020.

[KLLN16] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Breaking symmetric cryptosystems using quantum period finding. In CRYPTO,
volume 9815, pages 207–237. Springer, 2016.

[KM10] Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between the
3-round Feistel cipher and the random permutation. In IEEE International
Symposium on Information Theory, pages 2682–2685. IEEE, 2010.

[LM92] Xuejia Lai and James L. Massey. Hash function based on block ciphers. In
EUROCRYPT, volume 658, pages 55–70. Springer, 1992.

336 Quantum Free-Start Collision Attacks on Double Block Length Hashing

[LM17] Gregor Leander and Alexander May. Grover meets Simon - quantumly
attacking the FX-construction. In ASIACRYPT, volume 10625, pages 161–178.
Springer, 2017.

[LMS+15] Mario Lamberger, Florian Mendel, Martin Schläffer, Christian Rechberger, and
Vincent Rijmen. The rebound attack and subspace distinguishers: Application
to Whirlpool. J. Cryptol., 28(2):257–296, 2015.

[Men17] Bart Mennink. Optimal collision security in double block length hashing with
single length key. Des. Codes Cryptogr., 83(2):357–406, 2017.

[Mer89] Ralph C. Merkle. One way hash functions and DES. In CRYPTO, volume
435, pages 428–446. Springer, 1989.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The rebound attack: Cryptanalysis of reduced Whirlpool and Grøstl. In Fast
Software Encryption - FSE, volume 5665, pages 260–276. Springer, 2009.

[MS88] Carl H Meyer and Michael Schilling. Secure program load with manipulation
detection code. In Proc. Securicom, volume 88, pages 111–130, 1988.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Information
Security and Cryptology - Inscrypt, volume 7537, pages 57–76. Springer, 2011.

[PGV93] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on
block ciphers: A synthetic approach. In CRYPTO, volume 773, pages 368–378.
Springer, 1993.

[Sho94] Peter W. Shor. Polynominal time algorithms for discrete logarithms and
factoring on a quantum computer. In Algorithmic Number Theory, ANTS-I,
volume 877, page 289. Springer, 1994.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM J. Comput.,
26(5):1474–1483, 1997.

[Sta08] Martijn Stam. Beyond uniformity: Better security/efficiency trade-offs for
compression functions. In CRYPTO, volume 5157, pages 397–412. Springer,
2008.

[Sta09] Martijn Stam. Blockcipher-based hashing revisited. In Fast Software
Encryption - FSE, volume 5665, pages 67–83. Springer, 2009.

[vOW94] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with
application to hash functions and discrete logarithms. In CCS’94, pages
210–218. ACM, 1994.

	Introduction
	Our Contribution
	Organization of the Paper

	Preliminaries
	Description of AES-256
	Hirose's Double Block Length Compression Function
	Quantum Computation and Quantum RAM
	Frameworks for Quantum Collision-Finding Attacks
	Rebound Attacks with Quantum Computers

	Quantum Collision Attacks on 10-Round HCF-AES-256 with Small qRAM
	A New Differential Trail for 10-Round AES-256
	Differential Distribution Table of S-box
	A Small-qRAM Collision Attack on 10-Round HCF-AES-256
	Implementation of the Quantum Oracle math
	Computing Round Key math
	Complexity Analysis

	Quantum Collision Attacks on 10-Round HCF-AES-256 without qRAM
	Method 1: Using Grover's Search for S-box
	Method 2: Using a Dedicated Quantum Circuit for S-box
	Method 3: A Time-Space Tradeoff
	Discussion on Quantum Collision Attack on HCF-AES-192

	Searching for Differential Trail with MILP Methods
	Conclusions and Open Problems

