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Abstract. The introduction of the automatic search boosts the cryptanalysis of
symmetric-key primitives to some degree. However, the performance of the automatic
search is not always satisfactory for the search of long trails or ciphers with large
state sizes. Compared with the extensive attention on the enhancement for the search
with the mixed integer linear programming (MILP) method, few works care for the
acceleration of the automatic search with the Boolean satisfiability problem (SAT) or
satisfiability modulo theories (SMT) method. This paper intends to fill this vacancy.
Firstly, with the additional encoding variables of the sequential counter circuit for
the original objective function in the standard SAT method, we put forward a new
encoding method to convert the Matsui’s bounding conditions into Boolean formulas.
This approach does not rely on new auxiliary variables and significantly reduces the
consumption of clauses for integrating multiple bounding conditions into one SAT
problem. Then, we evaluate the accelerating effect of the novel encoding method
under different sets of bounding conditions. With the observations and experience in
the tests, a strategy on how to create the sets of bounding conditions that probably
achieve extraordinary advances is proposed. The new idea is applied to search for
optimal differential and linear characteristics for multiple ciphers. For PRESENT,
GIFT-64, RECTANGLE, LBlock, TWINE, and some versions in SIMON and SPECK families
of block ciphers, we obtain the complete bounds (full rounds) on the number of
active S-boxes, the differential probability, as well as the linear bias. The acceleration
method is also employed to speed up the search of related-key differential trails
for GIFT-64. Based on the newly identified 18-round distinguisher with probability
2−58, we launch a 26-round key-recovery attack with 260.96 chosen plaintexts. To our
knowledge, this is the longest attack on GIFT-64. Lastly, we note that the attack
result is far from threatening the security of GIFT-64 since the designers recommended
users to double the number of rounds under the related-key attack setting.
Keywords: Automatic search · SAT method · Differential cryptanalysis · Linear
cryptanalysis · Matsui’s bounding condition

1 Introduction
Differential [BS90] and linear [Mat93] cryptanalyses can be seen as the cornerstone of
modern cryptanalysis techniques for symmetric-key ciphers. Resistance against these two
attacks is regarded as the baseline in the design of new primitives. The first step for the
evaluation of the security against these attack is to find differential and linear trails with
non-random behaviours. Shortly after the introduction of linear cryptanalysis, Matsui
[Mat94] proposed a branch-and-bound depth-first searching algorithm that can be used to
identify the optimal differentials with the maximum probability of symmetric-key primitives.
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The advantage of this algorithm is enhanced by taking in the customised optimisation for
the specific cipher, which puts a high demand for sophisticated programming skills.

At the beginning of the last decade, the automatic method came on the stage and
showed incredible performances in search of various distinguishers in cryptanalysis. The
first category of the automatic search is based on the mixed integer linear programming
(MILP) method, which was firstly introduced by Mouha et al. [MWGP11] to estimate the
lower bound on the number of differential and linear active S-boxes. Later, this method
was refined by Sun et al. [SHW+14] to search for (related-key) differential characteristics
concerning bit-oriented block ciphers. Following that, the MILP method is further applied
to accomplish tasks in search of multiple sorts of distinguishers, such as differential and
linear characteristics for ARX ciphers [FWG+16], integral distinguishers [XZBL16], zero-
correlation distinguishers [CJF+16], impossible differential distinguishers [ST17b], and
non-blackbox polynomials manipulated in the cube attack [TIHM17].

Another important branch of the automatic search is based on the Boolean satisfiability
problem (SAT) or the more general extension called satisfiability modulo theories (SMT)
method. The initial work considering the usage of the SAT/SMT method in search of
differential characteristics for ARX ciphers was proposed by Mouha and Preneel [MP13].
Also, this method is generalised to find various cryptanalytic distinguishers, including
differential and linear characteristics for the SIMON-like round function [KLT15], linear
trails for ARX ciphers [LWR16], and division properties for ARX ciphers [SWW17].

The automatic method enables users to write relatively simple codes to convert the
distinguisher searching problem into the underlying mathematical problem, which can be
handled by some openly available solvers. However, since the performance of the automatic
search is tied to the power of the mathematical problem solver, the efficiency is not always
satisfactory for the search of long trails or ciphers with large state sizes.

Many works aimed at an improvement in the efficiency of the MILP method, and we
only name a few. Sasaki and Todo [ST17a] put forward a new algorithm that ensures the
minimum number of inequalities for modelling S-boxes in search of differential characteris-
tics. Furthermore, the relation between the number of inequalities and the runtime was
studied, and they experimentally showed that minimising the number of inequalities does
not always minimise the runtime. At ISC 2018, Zhang et al. [ZSCH18] incorporated the
Matsui’s bounding conditions into the MILP model and observed acceleration in search of
differential trails for PRESENT [BKL+07] and SIMON [BSS+13]. Later, Li et al. [LWZZ19]
investigated the relationship between the construction of the MILP model and the run-
time. The results for PRESENT and GIFT [BPP+17] were updated by carefully elaborating
the MILP model. With the central observation that high-probability differential/linear
characteristics are likely to have a lower number of active S-boxes at a certain round, Zhou
et al. [ZZDX19] came up with a divide-and-conquer approach to optimise the search with
MILP. The whole searching space was split into several subspaces, and the MILP model
was separately implemented on every subspace. At the same conference, Boura and Coggia
[BC20] created efficient MILP models for S-boxes and linear layers of SPN ciphers and
showed an impact on AES [DR02] and SKINNY-128 [BJK+16].

Compared with the extensive attention regarding the improvement of the MILP method,
few works consider the acceleration of the automatic search with the SAT/SMT method.
As far as we know, the unique work related to this topic is proposed by Song et al. [SHY16].
They practised a splicing heuristic method to find better differential trails for ARX ciphers.
Consequently, this paper is motivated by this vacancy and endeavours to speed up the
search with the SAT method.

1.1 Our Contributions
In this paper, we study how to accelerate the search of differential and linear characteristics
with the SAT method. In light of the enhanced performance of the MILP method [ZSCH18]
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with Matsui’s bounding conditions, we wonder the feasibility of integrating the bounding
condition into the SAT method. Centred with this issue, the contributions of this paper
can be classified into four parts.

Novel method to encode Matsui’s bounding conditions. The standard SAT method
applies the sequential encoding method to realise the transformation of the Boolean

cardinality constraint
n−1∑
j=0

xj 6 k withO(n·k) variables and clauses. Thus, for the constraint
e2∑

j=e1

xj 6 m corresponding to Matsui’s bounding condition, the direct conversion by reusing

the previous method consumes O((e2 − e1) ·m) variables and clauses. Nevertheless, when
multiple bounding conditions are considered, this direct approach will notably raise the
number of variables and clauses in the SAT problem, which may result in a negative
influence on the efficiency of the searching phase. To overcome this shortcoming, we put
forward a new method that manipulates the additional encoding variables of the sequential
counter circuit for the original objective function. Without introducing any new variables,
the number of clauses is reduced from O((e2 − e1) ·m) to e2 − e1 or k −m depending on
the concrete values of e1 and e2.

Direction for the selection of the bounding condition. With the novel encoding method,
multiple bounding conditions can be integrated into the standard SAT method, conveniently.
However, whether the searching phase regarding the modified SAT problem can be
accelerated is the actual problem. We take the distinguisher searching problem of GIFT-64
as an illustration and compare the runtime for solving SAT problems involving different
sets of bound conditions. With the observations in the tests, we experimentally show the
accelerating effect of the encoding method. Further, a strategy on how to select the sets
of bounding conditions that potentially achieve extraordinary advances is proposed. We
hope it may be helpful for both designers and attackers in search of differential and linear
characteristics.

Complete bounds about differential and linear characteristics of multiple ciphers. The
new idea is exploited to search for various trails of multiple primitives. For PRESENT,
GIFT-64, RECTANGLE [ZBL+15], LBlock [WZ11], TWINE [SMMK12], and some versions in
SIMON and SPECK [BSS+13] families of block ciphers, we obtain the complete bounds (full
rounds) on the number of active S-boxes, the differential probability, as well as the linear
bias. To our knowledge, we are the first one to offer complete information about the optimal
differential and linear characteristics. For GIFT-128, we obtain the full picture regarding
the number of differential and linear active S-boxes. Beyond that, the optimal differential
trails with the maximum probability of GIFT-128 for up to 29 rounds and the optimal
linear characteristics with the maximum correlation for up to 25 rounds are discovered.
Although Li et al. [LWZZ19] also found a 20-round differential trail with probability
2−121.415, their searching method did not ensure the optimality. All the searches in this
paper guarantee the optimality. A comparison of the maximum length of differential and
linear trails with different approaches for SPECK is provided in Table 1. For all versions in
the SPECK family of block ciphers, our results reach the maximum length of differential
and linear trails among all methods targeting the optimal trail.

Related-key differential attack on 26-round GIFT-64. The acceleration method also can
be employed to speed up the search of related-key differential characteristics. In this way,
for GIFT-64, we get an 18-round related-key differential distinguisher with probability 2−58.
This distinguisher is utilised to launch a 26-round key-recovery attack. The data complexity
is 260.96 chosen plaintexts, the time complexity is 2123.23 26-round of encryptions, and
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Table 1: The maximum length of trails with different approaches for SPECK.

Trail Ref. Optimal SPECK32 SPECK48 SPECK64 SPECK96 SPECK128

Differential

[BVC16] X 10 9 8 7 6
[FWG+16] - 9 11 15 16 19
[LLJW19] X 10 12 16 8 8
Sect. 5.3 X 22 18 27 10 9

Linear

[BVC16] X 6 - - - -
[FWG+16] - 9 10 13 15 16
[LWR16] X 22 11 13 9 9
[LLJW19] X 22 13 15 9 9
Sect. 5.3 X 22 23 27 14 10

the memory complexity is about 2102.86. As far as we know, this is the longest attack on
GIFT-64. A summary of cryptanalytic results on GIFT-64 to date is provided in Table 2.
We note that our result is far from threatening the security of GIFT-64 since the authors
recommended users to double the number of rounds under the related-key attack setting.

Outline. The relevant contents on the automatic search with the SAT method are
introduced in Sect. 2. In Sect. 3, we propose a method to encode Matsui’s bounding
conditions into Boolean formulas with a minor increment on the number of clauses. To
figure out the accelerating effect of the bounding condition, we investigate the performances
regarding different sets of bounding conditions in Sect. 4. Also, a strategy for the selection
of the bounding condition is presented. The novel searching method is applied to several
block ciphers and derives many new findings in Sect. 5. We conclude the paper in
Sect. 6. The source codes are publicly available at https://github.com/SunLing134340/
Accelerating_Automatic_Search.

2 Automatic Searches with the SAT Method
2.1 Preliminaries about SAT and SMT Problems
A formula is named as a Boolean formula if it is formulated with Boolean variables, operators
AND (∧), OR (∨), NOT (·), and parentheses. Every Boolean formula can be converted
into an equivalent formula that is in conjunctive normal form (CNF) [RN10, Sob10], which

Table 2: Symmary of cryptanalytic results on GIFT-64.

Round Method Setting Time Data Memory Ref.

20 Differential SK 2112.68 262.00 2112.00 [CZD19]
21 Differential SK 2107.61 264.00 296.00 [CZD19]
23 Boomerang RK 2126.60 263.30 - [LS19]
24 Rectangle RK 2106.00 263.78 264.10 [JZZD20]
25 Rectangle RK 2120.92 263.78 264.10 [JZZD20]
26 Differential RK 2123.23 260.96 2102.86 Sect. 5.4

https://github.com/SunLing134340/Accelerating_Automatic_Search
https://github.com/SunLing134340/Accelerating_Automatic_Search
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is a propositional formula of the form
n∧

i=0

mi∨
j=0

Cij , where each Cij (0 6 i 6 n, 0 6 j 6 mi)

is either an atomic formula, i.e., a variable or constant, or the negation of an atomic
formula, and each disjunction

mi∨
j=0

Cij is called a clause.

The Boolean satisfiability problem (SAT) is the problem of determining whether there
exists an evaluation for the binary variables such that the value of the given Boolean
formula equals one. Although the SAT problem is the first problem that was proven to be
NP-complete [Coo71], modern SAT solvers can solve problem instances comprising tens of
thousands of variables and millions of clauses.

An extension of the SAT problem is satisfiability modulo theories (SMT) problem,
in which some of the Boolean variables are replaced by predicates over a suitable set of
binary and (or) non-binary variables. The predicates are binary-valued functions, such as
linear inequalities, arrays, and all-different constraints. This kind of extension typically
remains NP-complete, and a great deal of SMT solvers available to date follow the eager
approach, which interprets SMT instances into SAT instances first and then transfers the
CNF formulas to a SAT solver.

2.2 Related Works about the Search with the SAT/SMT Method

We investigate all literature involving the search of differential and (or) linear characteristics
in cryptanalysis with the SAT/SMT method and find that most of these works [MP13,
AJN14, Ste, KLT15, SHY16, AK18, LLL+19, RLA20, ARS+20] rely on the SMT method
and utilise the SMT solver STP [GD07]. The remaining two works [LWR16, SWW18] that
claim to be SAT-based methods tie to the generalised SAT problem with XOR clauses in
the CNF formula since the employed SAT solver, which is called Cryptominisat [SNC09],
is specially designed to be compatible with XOR operations. Thus, none of the existing
automatic tools is realised with the real SAT problem that only admits AND, OR, and
NOT operations.

In this work, we aim at accelerating the search for optimal differential and linear
characteristics with the real SAT method. The SAT solver we use is CaDiCaL [Bie19],
which is based on the conflict-driven clause learning (CDCL) algorithm [SS96, JS97]. The
internal functioning of the CDCL algorithm is inspired by the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [DP60, DLL62], which is the kernel of some frequently-used
SAT solvers, including Cryptominisat as mentioned above. Nevertheless, the CDCL
algorithm can learn new clauses with conflict analysis. Another notable distinction
between the CDCL and DPLL algorithms is that the back jumping in the CDCL algorithm
is non-chronological. Both the clause learning and the modified backtracking phases do
not alter the soundness and completeness of the algorithm. We observe that CaDiCaL is
faster than Cryptominisat regarding differential and linear trails searching problems, and
this is the main reason that we choose this SAT solver.

To discover useful distinguishers with the off-the-shelf SAT solver, we should specify
the distinguisher searching problem with CNF formulas. The clauses in a CNF formula
regarding the search of the optimal differential or linear trail are classified into two groups.
The first group represents the propagations of differences or linear masks inside the cipher,
and the second one measures the non-random feature of the trail, which can be set as the
number of active S-boxes, the differential probability, or the linear bias, optionally. In
the remaining of this section, we first recall SAT models demonstrating the differential
and linear propagations of some necessary operations, which act as components of the
primitives analysed in this paper. Then, the second group of clauses constructed with the
sequential encoding method is introduced.
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2.3 SAT Models of Some Necessary Operations
We start with the non-probabilistic models of two linear operations, which are branching
and XOR operations. The differential and linear propagations of these operations are
deterministic. After that, probabilistic models of some non-linear operations are presented.

2.3.1 Non-probabilistic Models

In the following, αi (0 6 i 6 n− 1) denotes the i-th bit of the n-bit vector α. We always
use α0 to stand for the most-significant bit.

Differential Model 1 (Branching). For the n-bit branching operation shown in Fig-
ure 1 (a), denote α the input difference, β and γ the two output differences. The differential
holds if and only if the values of α, β, and γ validate all the assertions in the following.

αi ∨ βi = 1
αi ∨ βi = 1
αi ∨ γi = 1
αi ∨ γi = 1

 0 6 i 6 n− 1

Differential Model 2 (XOR). For the n-bit XOR operation illustrated in Figure 1 (b),
we use α and β to represent the two input differences and denote the output difference as
γ. The differential holds if and only if the values of α, β, and γ validate all the assertions
in the following.

αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1


0 6 i 6 n− 1

Generally, for the n-bit XOR operation with k inputs as in Figure 1 (c), we denote
the k input differences as α0, α1, . . ., αk−1 and the output difference as γ. There is a
trade-off between the number of variables and the number of clauses when we construct the
differential model of this operation. On the one hand, we can decompose the k-input XOR
operation into (k − 1) 2-input XOR operations as in Figure 1 (d) and introduce (k − 2) · n
auxiliary Boolean variables to keep track of the differences of the k − 2 intermediate
states. After sequentially applying Differential Model 1 to the (k − 1) 2-input XOR
operations, the differential propagation of the k-input XOR operation can be expressed
with 4 · (k − 1) · n clauses. On the other hand, the propagation can be established with
n · 2k clauses without using any auxiliary variables. To be explicit, for each of the 2k

(k + 1)-tuple (a0, a1, . . . , ak) of Boolean variables with a0 ⊕ a1 ⊕ · · · ⊕ ak = 1, we generate
n equations as follows

(α0
i ⊕ a0) ∨ (α1

i ⊕ a1) ∨ · · · ∨ (αk−1
i ⊕ ak−1) ∨ (γi ⊕ ak) = 1, 0 6 i 6 n− 1.

Note that these equations are clauses in CNF formulas since αj
i ⊕ aj equals αj

i if aj

is zero and equals αj
i otherwise. At the same time, the valid differential propagation

(α0, α1, . . . , αk−1) → (γ) fulfils these clauses, simultaneously. As the values of k for the
XOR operations with more than two inputs in the subsequent probabilistic models are
relatively small, we always pick the second option, which maintains the minimum number
of variables.
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Besides, to create the differential model of the matrix multiplication operation, which is
exploited in multiple ciphers to provide the diffusion property, we note that this operation
can be written as a sequence of branching and XOR operations [SLR+15]. Hence, the
model can be generated with Differential Model 1 and 2.

Since the propagations of differences and linear masks concerning the branching and
XOR operations are dual [SLR+15], the linear model of the branching (resp. XOR)
operation is the same as the differential model of the XOR (resp. branching) operation.
Thus, we do not restate the non-probabilistic linear models.

α

β

γ

(a) Branching.

α

β

γ

(b) XOR.

α0 α1 αk−1αk−2

γ

(c) k-input XOR.

α0

α1

α2 αk−2

αk−1

γ

(d) Sequential k-input XOR.

Figure 1: Linear operations.

2.3.2 Probabilistic Models

The propagations of differences and linear masks for non-linear operations are probabilistic.
Here, we consider three non-linear operations, which are S-box, modular addition operation,
and SIMON-like round function.

S-box. We implement the method in [SWW18] to create differential and linear models
of S-boxes. For primitives with S-boxes as building blocks, the automatic searches of
distinguishers in the field of differential and linear cryptanalyses accomplish two goals. One
is finding optimal trails with the minimum number of active S-boxes, and the other one is
discovering optimal trails with the maximum differential probability or linear correlation.
We take the construction of the differential model concerning the number of active S-boxes
as an instance. Likewise, we can generate remaining differential and linear models of
S-boxes regarding different searching purposes.

Denote (α0, α1, . . . , αs−1) and (β0, β1, . . . , βs−1) the input and output differences of
the s-bit S-box as in Figure 2 (a). An extra binary variable w is required to char-
acterise whether the S-box is active or not. With the differential distribution table
(DDT), if (a0, a1, . . . , as−1)→ (b0, b1, . . . , bs−1) is a possible differential propagation with
a nonzero probability, w is set as one. w equals zero if the differential propagation
(a0, a1, . . . , as−1)→ (b0, b1, . . . , bs−1) is deterministic. Then, we enumerate all η (2 · s+ 1)-
bit negative combinations (a(i)

0 , . . . , a
(i)
s−1, b

(i)
0 , . . . , b

(i)
s−1, w

(i)) (0 6 i 6 η − 1) such that
neither of the two assignment rules is satisfied. The following η clauses constitute a primary
differential model of the given S-box,

s−1∨
j=0

(
αj ⊕ a(i)

j

)
∨

s−1∨
j=0

(
βj ⊕ b(i)

j

)
∨
(
w ⊕ w(i)

)
= 1, 0 6 i 6 η − 1.

To generate a model with fewer clauses, we first define a function f over the (2 · s+ 1)-bit
vector x = (x0, x1, . . . , x2·s) as

f(x) =
{

0, if x is a negative combination
1, otherwise

.
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Equivalently, f can be reformulated as the product-of-sum representation

f(x) =
∧

c∈F2·s+1
2

f(c) ∨
2·s∨
i=0

(xi ⊕ ci)

 ,

where c = (c0, c1, . . . , c2·s). After simplifying this representation with some openly available
programs such as Logic Friday1 and Espresso2, a smaller set of clauses is yielded, which is
the differential model we adopt in the implementation.

S

α

β

(a) S-box.

α

β

γ

(b) Modular addition operation.

≪ a

≪ b

≪ c

∧
α β

(c) SIMON-like round function.

Figure 2: Non-linear operations.

Modular addition operation. The modular addition operation is a crucial ingredient for
ARX ciphers. The differential and linear models of the modular addition operation with
CNF formulas are accommodated from the models in [MP13] and [LWR16], respectively.
Note that the XOR operations signified by ‘⊕’ in the following models are symbolic
representations, which ensure compact descriptions of the models. In the implementation,
these XOR operations are converted into CNF formulas with the method in Sect. 2.3.1.

Differential Model 3 (Modular Addition, [MP13]). For the n-bit modular addition
operation as in Figure 2 (b), we use α and β to stand for the two input differences and
denote the output difference as γ. The differential is valid if and only if the values of α, β,
and γ validate all the assertions listed below.

αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1
αi ∨ βi ∨ γi ∨ αi+1 ∨ βi+1 ∨ γi+1 = 1



0 6 i 6 n− 2

αn−1 ⊕ βn−1 ⊕ γn−1 = 0

The weight, which is the negative value of the binary logarithm of the differential

probability, of the valid differential is
n−2∑
i=0

wi, where wi’s are binary values satisfying the

following equations.

1https://web.archive.org/web/20131022021257/http://www.sontrak.com/
2https://code.google.com/archive/p/eqntott/

https://web.archive.org/web/20131022021257/http://www.sontrak.com/
https://code.google.com/archive/p/eqntott/
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αi+1 ∨ γi+1 ∨ wi = 1
βi+1 ∨ γi+1 ∨ wi = 1
αi+1 ∨ βi+1 ∨ wi = 1
αi+1 ∨ βi+1 ∨ γi+1 ∨ wi = 1
αi+1 ∨ βi+1 ∨ γi+1 ∨ wi = 1


0 6 i 6 n− 2

Linear Model 1 (Modular Addition, [LWR16]). For the n-bit modular addition operation
as in Figure 2 (b), we use α and β to represent the two input linear masks and denote the
output mask as γ. Additionally, we introduce an n-bit vector z to assist us in evaluating
the correlation. The correlation of the linear approximation is nonzero if the values of α,
β, γ, and z fulfil all the constraints in the following.

z0 = 1
α0 ⊕ β0 ⊕ γ0 ⊕ z1 = 0
αj+1 ⊕ βj+1 ⊕ γj+1 ⊕ zj+1 ⊕ zj+2 = 0, 0 6 j 6 n− 3
αi ∨ γi ∨ zi = 1
αi ∨ γi ∨ zi = 1
βi ∨ γi ∨ zi = 1
βi ∨ γi ∨ zi = 1

 0 6 i 6 n− 1

Similarly, the binary logarithm of the absolute value of the correlation reflects the
performance of the linear approximation in the attack. The opposite number of this feature

is calculated as
n−1∑
i=0

zi.

SIMON-like round function. As in Figure 2 (c), the n-bit SIMON-like round function is
defined as f(x) = (x≪ a)∧(x≪ b)⊕(x≪ c), where a > b, n is even and gcd(n, a−b) = 1.
This function serves as the round function of the SIMON block cipher family [BSS+13]. The
differential model originates from [KLT15].

Differential Model 4 (SIMON-like Round Function, [KLT15]). For the n-bit SIMON-
like round function, we denote α and β the input and output differences, respectively.
Additionally, three n-bit variables varibits, doublebits, and z are incorporated so that
we can evaluate the differential probability. If α is not an all-ones vector, the differential
is valid if and only if the values of α, β, varibits, doublebits, and z validate all the
constraints listed below.

α(i+a) mod n ∨ varibitsi = 1
α(i+b) mod n ∨ varibitsi = 1
α(i+a) mod n ∨ α(i+b) mod n ∨ varibitsi = 1
α(i+b) mod n ∨ doublebitsi = 1
α(i+b) mod n ∨ α(i+2·a−b) mod n ∨ doublebitsi = 1
α(i+a) mod n ∨ α(i+b) mod n ∨ doublebitsi = 1
α(i+a) mod n ∨ α(i+b) mod n ∨ α(i+2·a−b) mod n ∨ doublebitsi = 1
α(i+c) mod n ⊕ βi ⊕ zi = 0
varibitsi ∨ zi = 1
doublebitsi ∨ zi ∨ z(i+a−b) mod n = 1
doublebitsi ∨ zi ∨ z(i+a−b) mod n = 1



0 6 i 6 n− 1
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The weight of the possible differential is
n−1∑
i=0

(varibitsi ⊕ doublebitsi).

The linear model (cf. Theorem 5) in [KLT15] is an elegant model that perfectly
handles the dependency and thus results in a precise evaluation for the linear property
of SIMON. However, for the difficulty of encoding this model with Boolean equations,
we do not apply it. Instead, we regard the AND operations in the round function as
independent S-boxes and claim the linear approximations of SIMON found in this paper
are heuristic. Specifically, for the linear model, we consider the AND operation with
two input bits as (x(i+a) mod n, x(i+b) mod n) and view it as an S-box. After computing its
linear approximation table (LAT), we exploit the model generating method for S-boxes to
complete the formation of the linear model.

Linear Model 2 (SIMON-like Round Function). For the n-bit SIMON-like round function,
we denote the input and output linear masks as α and β, respectively. Two auxiliary n-bit
variables γ0 and γ1 are employed to record the two input masks of the AND operation.
To estimate the linear correlation, we also import an n-bit variable z. The correlation of
the linear approximation is nonzero if the values of α, β, γ0, γ1, and z validate all the
constraints listed in the following.

βi ∨ zi = 1
βi ∨ zi = 1
γ0

i ∨ zi = 1
γ1

i ∨ zi = 1
αi ⊕ β(i−c) mod n ⊕ γ0

(i−a) mod n ⊕ γ
1
(i−b) mod n = 0


0 6 i 6 n− 1

The value of
n−1∑
i=0

zi equals the opposite number of the binary logarithm of the absolute

value of the correlation.

In the application, to characterise the differential or linear propagation inside the cipher,
we first decompose the round function into a sequence of basic operations and generate
SAT models for these operations. Then, the basic models are interlinked with each other
by using some common variables expressing the differences or linear masks of the internal
states.

2.4 Sequential Encoding Method
Since we always aim at trails with significant non-trivial features, according to the specific
goal, we should restrict the number of active S-boxes, the differential probability, or the
linear correlation in the distinguisher searching problem. All of these kinds of constraints

can be abstracted as the Boolean cardinality constraint
n−1∑
j=0

xj 6 k, where xj ’s are Boolean

variables, and k is a non-negative integer. Following the approaches in [LWR16, SWW18],
we take the sequential encoding method [Sin05] to convert this constraint into CNF formulas.

The sequential encoding method is based on the sequential counter circuit as shown in

Figure 3. The circuit computes the partial sum si =
i∑

j=0
xj for increasing the value of i

from 0 to n− 2. To express this circuit with CNF formulas, we first introduce (n− 1) · k
auxiliary variables si,j (0 6 i 6 n− 2, 0 6 j 6 k− 1). The partial sum si is represented as
si,k−1‖si,k−2‖ · · · ‖si,1‖si,0 under the unary numeral system. That is, si = m (0 6 m 6 k)
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Figure 3: Sequential counter circuit.

is equivalent to the following equations,

si,k−1 = · · · = si,m+1 = si,m = 0, si,m−1 = · · · = si,1 = si,0 = 1.

Thus, the equality
i∑

j=0
xj = si =

k−1∑
j=0

si,j holds. Accompanied by the notification that the

sequence of the partial sum
{
si =

k−1∑
j=0

si,j

∣∣∣∣ 0 6 i 6 n−2
}

is non-decreasing, the constraint
n−1∑
j=0

xj 6 k is satisfied if the following implication predicates hold, simultaneously.

if x0 = 1 then s0,0 = 1 endif

s0,j = 0, 1 6 j 6 k − 1
if xi = 1 then si,0 = 1 endif

if si−1,0 = 1 then si,0 = 1 endif

if xi = 1 and si−1,j−1 = 1 then si,j = 1 endif

if si−1,j = 1 then si,j = 1 endif

}
1 6 j 6 k − 1

if xi = 1 then si−1,k−1 = 0 endif


1 6 i 6 n− 2

if xn−1 = 1 then sn−2,k−1 = 0 endif

These predicates are interpreted as the following 2 · k · n+ n− 3 · k − 1 clauses, which

formulate the SAT model of the Boolean cardinality constraint
n−1∑
j=0

xj 6 k.

x0 ∨ s0,0 = 1
s0,j = 1, 1 6 j 6 k − 1
xi ∨ si,0 = 1
si−1,0 ∨ si,0 = 1
xi ∨ si−1,j−1 ∨ si,j = 1
si−1,j ∨ si,j = 1

}
1 6 j 6 k − 1

xi ∨ si−1,k−1 = 1


1 6 i 6 n− 2

xn−1 ∨ sn−2,k−1 = 1

(1)
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3 Integrating Bounding Conditions into the SAT Method
At EUROCRYPT 1994, Matsui [Mat94] proposed a branch-and-bound depth-first searching
algorithm that can be used to identify the optimal differential trails with the maximum
probability of a symmetric-key primitive. The efficiency of Matsui’s algorithm comes from
the manipulation of the known upper bounds on probabilities of short trails. Denote
PrOpt(i) the maximum probability achieved by i-round differential trails for 1 6 i 6 R− 1.
With these messages, we aim at searching for R-round optimal trails. Let PrIni(R) be the
initial estimation for the probability bound achieved by R-round trails. Now, suppose that
we obtain a partial trail (α0, α1, . . . , αr) covering the first r rounds (1 6 r < R), which is a
child node located at the r-th level of the search tree created with Matsui’s algorithm. The
subtree originating from this node will not be explored if the following bounding condition
is violated

r−1∏
i=0

Pr
(
αi → αi+1

)
· PrOpt (R− r) > PrIni(R), (2)

where Pr(αi → αi+1) is the probability of the differential propagation in the i-th round.
Note that the bounding condition has been incorporated in the automatic search of

differential characteristics with the MILP method by Zhang et al. [ZSCH18]. In this
section, we show how to integrate the bounding condition into the SAT method without
introducing new auxiliary variables so that the search for optimal differential and linear
trails can be accelerated. Although the description in this section proceeds with the
optimal differential trail possessing the maximum probability, we remind the readers that
the method can be applied to the search of optimal linear characteristics as well.

3.1 Extracting the Essential of the Problem
Typically, to check the existence of R-round differential trail (α0, α1, . . . , αR) with the
probability being PrIni(R), the SAT method tries to find instantiations for αi’s such that

R−1∑
i=0

(
− log2

(
Pr
(
αi → αi+1

)))
6 − log2

(
PrIni(R)

)
. (3)

We import Boolean variables w(i)
j (0 6 j 6 $) to calculate the weight of the differential

propagation αi → αi+1 in the i-th round, i.e., − log2
(
Pr(αi → αi+1)

)
=

$−1∑
j=0

w
(i)
j . For

simplicity, we define the symbols n , R · $, k , − log2
(
PrIni(R)

)
, and x$·i+j , w

(i)
j .

Then, Eq. (3) is rewritten as follows

n−1∑
i=0

xi =
R−1∑
i=0

$−1∑
j=0

w
(i)
j 6 k. (4)

On the other hand, the bounding condition in Eq. (2) is equivalent to

r−1∑
i=0

(
− log2

(
Pr
(
αi → αi+1

)))
6 log2

(
PrOpt(R− r)

)
− log2

(
PrIni(R)

)
. (5)

Note that the right-hand side of Eq. (5) is a constant no more than k, and the left-hand
side of Eq. (5) matches the weight of the trail covering the first r rounds. Generally, with
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the previously defined symbols, all bounding conditions can be replaced with an inequality
constraint of the following form

e2∑
i=e1

xi 6 m, (6)

where e1 > 0, e2 6 n− 1, and m 6 k.
Of course, we can reapply the sequential encoding method to Eq. (6) by introducing a

new group of (e2 − e1 + 1) ·m auxiliary variables and generating (2 ·m+ 1) · (e2 − e1)−m
clauses. However, when multiple bounding conditions are considered, this direct approach
will significantly expand the number of variables and clauses in the SAT problem. Since
increasing the number of variables and clauses in the SAT problem may result in a negative
impact on the efficiency of the SAT solver, which is a conjecture resulting from the
experience and observations in the numerous tests, we attempt to find another way to
encode the bounding condition. The new approach is motivated by the circuit of the
sequential encoding method and reuses variables in the sequential counter circuit of the
original objective function in Eq. (4). Without claiming any new variables, the number of
clauses is reduced from O((e2 − e1) ·m) to e2 − e1 or k −m depending on the concrete
values of e1 and e2.

3.2 Clausal Encoding of the Bounding Condition
Formally, we target a clausal encoding, whose definition is supplied in the following, of the

two Boolean cardinality constraints
n−1∑
i=0

xi 6 k and
e2∑

j=e1

xj 6 m. Note that the following

definition is adjusted from the one in [Sin05].

Definition 1 (Clausal Encoding of Two Boolean Cardinality Constraints). Denote
X = {x0, x1, . . . , xn−1} the set of variables in the constraints and {ς0, ς1, . . . , ς`−1} the
set of additional encoding variables. A set C of clauses over the set of variables V =
{x0, . . . , xn−1, ς0 . . . ς`−1} is a clausal encoding of the two Boolean cardinality constraints
n−1∑
i=0

xi 6 k and
e2∑

j=e1

xj 6 m if for all assignments ΨX ∈ Fn
2 of the variables in X that

validate the two constraints the following holds: ΨX validates the two constraints if and
only if there is an extended assignment ΨV of all variables in V such that the restricted
value of ΨV on X coincides with the value of ΨX.

For the first constraint, we apply the normal sequential encoding method in Sect. 2.4
with additional encoding variables si,j (0 6 i 6 n− 2, 0 6 j 6 k − 1). The corresponding

sequential counter circuit accomplishes the computation of the partial sum
i∑

j=0
xj with

k−1∑
j=0

si,j for 0 6 i 6 n − 2. Note that the second constraint focuses on the value of a

consecutive partial sum of variables belonging to the first constraint, and it can be inferred

from the values of
e1−1∑
j=0

xj and
e2∑

j=0
xj , which have been evaluated in the encoding of the

first constraint. This observation reminds us to explore the possibility of reusing variables
in the sequential counter circuit to realise the encoding of the second constraint. According
to the values of e1 and e2, we split the encoding problem regarding the second constraint
into three different cases and construct SAT models, separately.

Case 1.
e2∑

j=e1

xj 6 m with e1 = 0 and e2 < n− 1



282 Accelerating the Search with the SAT Method

The bounding condition is rewritten as
e2∑

i=0
xi 6 m. Apart from the equivalence relation

between the values of
i∑

j=0
xj and

k−1∑
j=0

si,j , we also find that si,j = 0 automatically implies

si,j′ = 0 for all j < j′ 6 k − 1 by the intrinsic property of the unary numeral system.
With these properties, we derive the following e2 − e1 predicates, which guarantee the
satisfiability of the second constraint.

if xi = 1 then si−1,m−1 = 0 endif for 1 6 i 6 e2

These predicates are converted into the following Boolean expressions.

xi ∨ si−1,m−1 = 1, 1 6 i 6 e2 (7)
Thus, the combination of clauses in Eq. (1) and (7) constitutes a clausal encoding of

the two Boolean cardinality constraints in this case.

Case 2.
e2∑

j=e1

xj 6 m with e1 > 0 and e2 < n− 1

With a similar consideration as in Case 1, we create the following k −m predicates so
that the least upper bound for the value of

e2∑
j=e1

xj is fixed as m.

if se1−1,j = 0 then se2,j+m = 0 endif for 0 6 j 6 k −m− 1
These predicates are substituted with clauses listed below.

se1−1,j ∨ se2,j+m = 1, 0 6 j 6 k −m− 1 (8)
The combination of clauses in Eq. (1) and (8) can operate as a clausal encoding of the

two Boolean cardinality constraints with e1 > 0 and e2 < n− 1.

Case 3.
e2∑

j=e1

xj 6 m with e1 > 0 and e2 = n− 1

The constraint is adjusted as
n−1∑
j=e1

xj 6 m. By incorporating the property of the

sequential counter circuit, we come up with the following predicates, which enable us to

restrict the value of the summation
n−1∑
j=e1

xj in this case.

if se1−1,j = 0 then sn−2,j+m = 0 endif for 0 6 j 6 k −m− 1
if se1−1,j = 0 and xn−1 = 1 then sn−2,j+m−1 = 0 endif for 0 6 j 6 k −m

The corresponding clauses regarding these implication predicates are listed as follows.

se1−1,j ∨ sn−2,j+m = 1, 0 6 j 6 k −m− 1
se1−1,j ∨ xn−1 ∨ sn−2,j+m−1, 0 6 j 6 k −m

(9)

The clauses in Eq. (1) and (9) make up a clausal encoding of the two Boolean cardinality
constraints.

Now, we finish the construction of SAT model for the bounding condition. This new
process allows us to intermix multiple Matsui’s bounding conditions into one SAT problem
with a minor increment on the number of clauses. At the same time, the number of
variables remains the same as the standard SAT method. Note that numerous bounding
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conditions are available. In the next section, we discuss which sets of bounding conditions
produce better accelerating effect.

4 Accelerating Effect of the Bounding Condition
Suppose that we aim at the R-round differential trail with the weight being no more than k,

the global constraint should be
R−1∑
i=0

$−1∑
j=0

w
(i)
j 6 k, where we reuse the symbols in Sect. 3.1.

Given the probability bounds PrOpt(i) for 1 6 i 6 R− 1, in theory, we can generate C2
R− 1

bounding conditions of the following form

r2∑
i=r1

$−1∑
j=0

w
(i)
j 6 k + log2

(
PrOpt(r1)

)
+ log2

(
PrOpt(R− r2 − 1)

)
,

where 0 6 r1 6 r2 6 R− 1, and r1 and r2 cannot reach the two endpoints, simultaneously.
For simplicity, we denote the bounding condition starting from the r1-th round and
terminating with the r2-th round as C(r1,r2). Many queries should be answered.

• Whether the automatic search with the SAT method can be accelerated after
integrating some of these bounding conditions?

• If we add all the bounding conditions into the SAT problem, does it result in the
best performance of the search with the SAT solver?

• If this is not the case, which sets of bounding conditions potentially result in
extraordinary advances?

In this section, we take the distinguisher searching problem of GIFT-64 [BPP+17],
which is a 28-round SPN cipher with the 64-bit block size, as an illustration, and compare
the runtime for solving SAT problems with different sets of bounding conditions. By taking
into account the observations in the test as well as our experience, we try to find answers
for the above problems. At the end of this section, we provide a strategy concerning
the selection of the sets of bounding conditions, which may be helpful for designers and
attackers in search of differential and linear characteristics. All the tests in this section are
implemented on a PC with Intelr Core™ i5-9400F CPU @ 2.90GHz × 6, and we only use
one core.

We set the goal as searching for the optimal differential trails with the minimum number
of active S-boxes for GIFT-64 from 1-round to 28-round. After initialising both the number
of rounds R and the number of active S-boxes τ as one, we invoke the SAT solver to
determine the existence of the R-round trail with no more than τ active S-boxes. If this
prediction is satisfiable, we obtain an R-round trail with τ active S-boxes, and the searching
phase proceeds after respectively increasing the values of R and τ3 by one. Otherwise,
we update the value of τ with τ + 1 and ask the SAT solver to verify the satisfiability.
This procedure is terminated until we get the 28-round trail with the minimum number of
active S-boxes. Denote #SD(i) the minimum number of active S-boxes achieved by i-round
differential trails. Thus, in this procedure, we solve #SD(28) SAT problems in total. In the
following, we view the runtime for solving the #SD(28) problems as a criterion and compare
the runtime under different settings that integrate different sets of bounding conditions.
The runtime for the standard SAT method with no bounding condition is 4306.9s, which
is a benchmark for the accelerating effect.

3For SPN ciphers with nonlinear layers composed of parallel S-boxes, the minimum number of active
S-boxes strictly rises with the increment of the number of rounds.
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Figure 4: Runtime regarding the sets C(r1,∗) and C(∗,r2) for GIFT-64.

4.1 Sets of Bounding Conditions with the Same Initial/Terminal Round

In [ZSCH18], by incorporating the Matsui’s bounding conditions originating from the first
round and (or) terminating with the last round, Zhang et al. realised a speedup on the
search with the MILP method. Inspired by this work, we wonder the accelerating outcome
of the set comprising bounding conditions with the same initial or terminal round on the
SAT method. Denote C(r1,∗) the set of 28 − r1 bounding conditions starting from the
r1-th round and C(∗,r2) the set of r2 bounding conditions terminating with the r2-th round,
0 6 r1, r2 6 27. After encoding the 56 sets of conditions into SAT problems, we conduct
the test, separately, and present an intuitive comparison of the runtime in Figure 4.

From the results illustrated in Figure 4, we note that all the 56 sets C(r1,∗) and C(∗,r2)
indeed shorten the runtime. This observation allows us to provide a positive answer for
the first issue, that is, the automatic search with the SAT method can be accelerated
after integrating some of these bounding conditions. Besides, it also can be notified that
the degrees of improvements for different sets exhibit apparent variation. The set C(∗,27)
results in the best performance in the test, and it only takes about 34.7/4306.9 ≈ 0.8%
of the runtime for the standard SAT method to get precisely the same result. Also, the
performance regarding the set C(0,∗) is good, although the corresponding runtime is slightly
longer than that of C(∗,27). Lastly, the runtime has a sharp decline at the two points C(8,∗)
and C(∗,19) in Figure 4. In the same test regarding PRESENT, a similar decline occurs at the
two points C(5,∗) and C(∗,25), which is shown in Figure 5. We conjecture this circumstance
relates to the structure of the cipher as well as the optimising technique in the SAT solver
and leave this issue as future work.

4.2 Unions of Multiple Sets Defined in Sect. 4.1

Now, we study whether the performance of the automatic search can be further improved
by taking multiple sets defined in Sect. 4.1 into account. Since the two sets C(0,∗) and
C(∗,27) obtain overwhelming advantages over the remaining ones, we generate the union
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Figure 5: Runtime regarding the sets C(r,∗) and C(∗,r) for PRESENT.

sets U(r,∗) =
r−1⋃
r1=0
C(r1,∗) and U(∗,r) =

27⋃
r2=28−r

C(∗,r2) (2 6 r 6 28) by accumulating multiple

sets based on C(0,∗) and C(∗,27), respectively. Both U(r,∗) and U(∗,r) are composed of r
sets defined in Sect. 4.1. A comparison on the runtimes under the 54 union sets can be
found in Figure 6. All the 54 sets achieve improvements on the runtime in almost equal
measure. Thus, probably, we cannot significantly improve the runtime with C(0,∗) and
C(∗,27) by combining multiple sets like C(r1,∗) or C(∗,r2) into the SAT problem. For the two
sets U(28,∗) and U(∗,28) containing all the bounding conditions, the runtime does not attain
the minimum value. This observation indicates that adding all the bounding conditions
into the SAT problem does not always give the best performance. Furthermore, at the two
points U(∗,2) and U(∗,4) in Figure 6, the tests get minor acceleration over the result with
C(∗,27), which is the origin of the following conjecture. When the tests with C(0,∗) and
C(∗,R−1) do not meet the requirement in the application for a primitive with R rounds of
encryption, the union sets U(r,∗) and U(∗,r) with r being a small integer might be the last
hope for better returns under the searching framework in this paper.

4.3 Sets of Conditions Covering the Same Number of Rounds

We also analyse the accelerating effect of the set of bounding conditions covering the same
number of rounds. Denote C|r| the set of 28 − r bounding conditions covering r-round
of encryption, i.e., C|r| = {C(x,x+r−1) | 0 6 x 6 28 − r}, 1 6 r 6 27. The runtime is
illustrated in Figure 7. It can be notified that this kind of set speeds up the search when
the value of r is relatively small. Nevertheless, the performance is getting worse with
the increasing value of r, since r-round bounding conditions cannot be united into the
R-round optimal trail searching problem with R < r. Moreover, we should remind that the
automatic search with all the sets C|r| cannot get better performance than those achieved
by C(0,∗) and C(∗,27).
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Figure 6: Runtime regarding the sets U(r,∗) and U(∗,r) for GIFT-64.

4.4 How to Select the Sets of Bounding Conditions
Now, we sum up strategies concerning the selection of the sets of bounding conditions
in the automatic search for R-round primitives with the SAT method. According to a
considerable amount of experiments for different primitives and our experience, these
strategies can be generally applied to various block ciphers, even though these ideas are
explained with the tests on GIFT-64.

First of all, we think the two sets C(0,∗) and C(∗,R−1) are the first choice and are more
likely to show remarkable improvements in the runtime over the standard method with no
bounding condition. Secondly, if the performances with C(0,∗) and C(∗,R−1) do not meet
the requirement, the union sets U(r,∗) and U(∗,r) with r being a small integer worth a shot.

The last thing we want to mention is that we also study the efficiency of sets with
randomly drawn bounding conditions and evaluate the outcome, correspondingly. The
accelerating effect is not visible when the number of conditions in the set is not adequate.
Also, the improvements cannot outperform those of C(0,∗) and C(∗,R−1). Therefore, we do
not recommend using random sets.
Remark 1. Since we adopt CaDiCaL instead of Cryptominisat as the SAT solver, it is
natural to question whether the acceleration is just achieved by using a different solver.
To clearly illustrate the gain by the new encoding approach, we provide a comprehensive
comparison of the runtime for various primitives regarding distinct searching targets.
The comparison takes the two solvers as mentioned above and different sets of bounding
conditions into account. It can be notified from the results that altering the solver is not
the essential reason for the acceleration, and the significant improvement mainly benefits
from the new encoding approach. Please refer to Appendix E for more details.

5 Applications to Several Block Ciphers
In this section, we apply the ideas in Sect. 3 and Sect. 4 to several block ciphers and
gain many new results. All the tests in this section are performed by integrating the



Ling Sun, Wei Wang and Meiqin Wang 287

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

R
u
n
ti
m
e
(s
)

C |1
|

32
4
.8
s

C |2
|

18
4
.1
s

C |3
|

19
0
.3
s

C |4
|

22
4
.9
s

C |5
|

21
8
.0
s

C |6
|

2
23

.6
s

C |7
|

27
9.
9s

C |8
|

3
79

.3
s

C |9
|

5
83

.9
s

C |1
0
|

80
3.
9s

C |1
1
|

85
3
.9
s

C |1
2
|

99
6
.2
s

C |1
3
|

14
31

.4
s

C |1
4
|

15
49

.8
s

C |1
5
|

18
49

.5
s

C |1
6
|

22
34

.3
s

C |1
7
|

26
09

.2
s

C |1
8
|

30
08

.4
s

C |1
9
|

35
24

.5
s

C |2
0
|

36
58

.7
s

C |2
1
|

4
0
14

.6
s

C |2
2
|

4
1
54

.9
s

C |2
3
|

3
7
9
1.
7
s

C |2
4
|

4
0
9
2.
7
s

C |2
5
|

4
35

3.
5
s

C |2
6
|

4
2
5
8.
7
s

C |2
7
|

4
8
3
1.
8
s

Runtime without any bounding conditions (4306.9s)

Figure 7: Runtime regarding the sets C|r| for GIFT-64.

set C(∗,R−1), which is composed of bounding conditions terminating with the last round,
into the SAT method. For the primitives studied in [ZZDX19] with the MILP method,
we give a comparison on the runtime. The comparisons are not fair since the tests are
implemented on different platforms. However, in all comparisons, our tests with the SAT
method operate much faster than those with the MILP method. The source codes are
publicly available at https://github.com/SunLing134340/Accelerating_Automatic_
Search. For simplicity, we introduce the following notations.

• #SD: the minimum number of differential active S-boxes.

• #SL: the minimum number of linear active S-boxes.

• PrOpt: the maximum probability of differential trails.

• CorOpt: the maximum correlation of linear trails.

• TSAT: runtime in our tests on a PC with Intelr Core™ i5-9400F CPU @ 2.90GHz.

• TMILP: runtime in [ZZDX19] on a PC with Intelr Core™ i7-4790 CPU @ 3.60GHz.

5.1 Applications to Three SPN Ciphers
Applications to PRESENT. PRESENT [BKL+07] is a lightweight SPN cipher proposed by
Bogdanov et al. at CHES 2007. It consists of 31 rounds, and the block size is 64-
bit. PRESENT is probably one of the first candidates that take lightweight hardware
implementations into account and has a profound effect on the design of lightweight block
ciphers. For PRESENT, we obtain full information about #SD, PrOpt, #SL and CorOpt from
1-round to 31-round. As far as we know, we are the first one to provide all these results.
The experimental results are covered in Table 3.

Applications to GIFT. As an improved version of PRESENT, GIFT [BPP+17] attains a
much-increased efficiency in all domains. Meanwhile, it corrects the well-known weakness
of PRESENT with regards to linear hulls. GIFT is composed of two versions. GIFT-64 is a
28-round SPN cipher with the 64-bit block size, and GIFT-128 is a 40-round SPN cipher
with the 128-bit block size.

• For GIFT-64, full information about #SD, PrOpt, #SL and CorOpt is known, and the
test results can be found in Table 4.

• For GIFT-128, we get complete knowledge of #SD and #SL from 1-round to 40-round.
Moreover, we discover the optimal differential trails for up to 29 rounds and the
optimal linear characteristics for up to 25 rounds. Please check Table 5 for more
details.

https://github.com/SunLing134340/Accelerating_Automatic_Search
https://github.com/SunLing134340/Accelerating_Automatic_Search
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Applications to RECTANGLE. RECTANGLE [ZBL+15] is a 25-round SPN cipher with the
64-bit block size. It facilitates fast implementations for multiple platforms by using bit-
slice techniques. Full knowledge about #SD, PrOpt, #SL and CorOpt is explicit with the
acceleration method. The test results are provided in Table 6.

5.2 Applications to Two Feistel Ciphers
For the two ciphers LBlock [WZ11] and TWINE [SMMK12] with Feistel structures, the
entire messages about #SD, PrOpt, #SL and CorOpt are clear. Please find in Table 7 and
Table 8 the results of LBlock and TWINE, respectively.

5.3 Applications to SIMON and SPECK Families of Block Ciphers
Applications to SIMON family of block ciphers. We obtain the full learning of PrOpt and
CorOpt for all versions in the SIMON family of block ciphers [BSS+13]. As mentioned in
Sect. 2.3.2, we claim that the result of the value CorOpt for SIMON is heuristic. Please find
the test results about SIMON in Table 9.

Applications to SPECK family of block ciphers. The acceleration method is also practised
on all versions of SPECK family of block ciphers. Especially for the two versions SPECK32
and SPECK64, we get complete pictures of PrOpt and CorOpt. In the test for SPECK, we
notice that adding bound conditions cannot significantly improve the automatic search
with the SAT method. This circumstance coincides with the observation raised by Zhang
et al. [ZSCH18]. That is, adding Matsui’s bounding conditions into MILP models of ARX
ciphers is not a good choice.

5.4 Related-Key Differential Attack on 26-Round GIFT-64

Note that the acceleration method also can be utilised to speed up the search of related-key
differential characteristics if we view the n-bit cipher with k-bit master key as a function
with an (n+k)-bit input and an n-bit output. With this method, for GIFT-64, we discover
an 18-round related-key differential trail with probability 2−58, which is presented in
Figure 8. The 128-bit master key of this trail is 0x0000 0x0000 0x0000 0x0000 0x0000
0x0000 0x0028 0x0000. Since it is decoded from the experimental result of the search
concerning the minimum number of active S-boxes, we do not claim it is an optimal
18-round related-key differential characteristic.

With the 18-round distinguisher, we launch a related-key differential attack on 26-round
GIFT-64 by appending three and five rounds before and after the distinguisher, respectively.
Please find in Appendix D.2 for a brief description of GIFT-64. The key-recovery attack is
demonstrated in Figure 9, where Xi and Y i denote the 64-bit input and output of the
SubCells operation in the i-th round (0 6 i 6 25), and RKi stands for the i-th round
key. We employ Xi[j] to represent the j-th bit of Xi.

Since there is no whitening key at the input of GIFT-64, we can construct struc-
tures at the position of Y 0. In each structure, we fix the value of the eight bits
Y 0[16, 20, 21, 25, 33, 40, 44, 45] marked with ‘∆’ in Figure 9 and traverse all the values of
the remaining 56 bits. Then, one pair is generated by respectively drawing one element
from two structures with the fixed 8-bit value being opposite with each other. Thus, 2112

pairs can be created with two structures composed of 257 elements.
In the attack, we prepare S twin structures and obtain N1 = S ·2112 pairs. So, the data

complexity is S · 257. For each pair (Y 0, Y ′0), we compute the pair of plaintexts (P, P ′)
by applying GS−1 to every nibble of the two states (Y 0, Y ′0). By querying the oracle, we
obtain the corresponding pair of ciphertexts (C,C ′). To reduce the time complexity in the
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subsequent round key recovery phase, we apply the partial sum technique and take the
property of the key schedule into account.

The 32-bit state of RK0 is partitioned into 16 parts. We guess the value of RK0[0, 1]
and check whether the 4-bit difference ∆Y 1[0− 3] fills the condition ∆Y 1[0] = ∆Y 1[1] =
∆Y 1[2] = 0. The remaining N1 · 2−3 pairs will participate in the following processes. This
guess-and-check procedure is repeated for all the 16 parts until all the 32-bit value of RK0 is
traversed. The time complexity and the number of remaining pairs in each step are detailed
in Table 11. After the enumeration of RK0, about N1 ·2−46 pairs are left. Then, we proceed
with the enumeration of the 8-bit value RK1[16− 19, 28− 31]. Similarly, this procedure
is split into four parts. For the first part regarding RK1[16, 17], we guess the 2-bit value
and check the validity of the condition ∆Y 2[32] = ∆Y 2[33] = ∆Y 2[34] = ∆Y 2[35] = 0.
According to the DDT of the S-box GS, if the input difference is ‘11 ∗ ∗’, the prediction
that the output difference equals 0x4 holds with probability 2−2. Thus, N1 ·2−46 ·2−2 pairs
fulfiling this constraint will receive further consideration. We repeat this procedure for the
remaining three parts of RK1. The detailed analysis can be found in Table 11. After the
enumeration of RK1, we obtain N , N1 · 2−56 pairs that match the input difference of
the 18-round distinguisher.

Now, we turn to the tail of the distinguisher. With the property of the key schedule, we
find that the 8-bit value of RK25[1, 3, 8, 10, 13, 15, 20, 22] is known since it corresponds to
the guessed 8-bit value of RK1. Also, the 32-bit value of RK24 is known as it is the output
of a bit permutation on RK0. Hence, to calculate the values of the pairs (X24, X ′24), we
only need to guess the 24-bit unknown value of RK25. The time complexity of this step
is 2 · N1 · 2−56 · 240 · 224 · 2

26 ≈ N1 · 25.30 26-round of encryptions. The following steps
concerning the enumerations of RK23 and RK22 are similar to those performed on RK0

and RK1. The evaluation for the complexity is listed in Table 11.
We set a counter to record the number of right pairs that validate the input and output

differences of the 18-round distinguisher. At last, for random key guesses, the number
of right pairs is about N1 · 2−120. For the right key guess, the number of right pairs is
expected to be N1 · 2−56 · 2−58 = N1 · 2−114. Thus, the number of right pairs follows a
binomial distribution with parameters (N, p0 = 2−58) in the case of the good key and
(N, p1 = 2−64) otherwise. We fix the threshold as Θ, and the key guess will be accepted as
a candidate if the counter of right pairs is no less than Θ. Note that we already guess the
value of the 112-bit in the master key. For all surviving key candidates, we exhaustively
search for the value of the remaining 16-bit with at most two plaintext-ciphertext pairs.

Complexity Analysis We apply the method in [BGT11] to estimate the complexity. Let
α stand for the non-detection error probability and β be the false alarm error probability.
Then, we have the following approximations for the values of α and β,

β
N→∞∼

(1− p1)
√

Θ/N
(Θ/N − p1)

√
2πN(1−Θ/N)

exp

−N ·D(Θ
N

∥∥∥∥p1

),
α

N→∞∼
p0
√

1− (Θ− 1)/N
(p0 − (Θ− 1)/N)

√
2π(Θ− 1)

exp

−N ·D(Θ− 1
N

∥∥∥∥p0

),
(10)

where D(p‖q) , p · ln
(

p
q

)
+ (1− p) · ln

(
1−p
1−q

)
is the Kullback-Leibler divergence between

two Bernoulli probability distributions with parameters being p and q, respectively.
The time complexity T1 in the subkey enumeration phase is about N1 · 215.90 · 1

16·26 ≈
N1 · 27.20 26-round of encryptions. The time complexity T2 to exhaustively check the
remaining 16-bit value in the master key is 2128 · β · (1− 2−64) 26-round of encryptions.
We set the threshold Θ as Θ = 2 and try to find the minimum value of N = N1 · 2−56 such
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that the success probability PS = 1− α of the attack is not less than 90%. With Eq. (10),
we compute the values N ≈ 259.96 and PS ≈ 90%. Accordingly, we have β ≈ 2−9.14,
and the time complexity of this attack is T1 + T2 ≈ 2123.23. The data complexity is
S · 257 = N · 2 = 260.96 chosen plaintexts. The memory complexity is 2112 · β ≈ 2102.86 for
memorising the right key candidates with Θ > 2.

6 Conclusion
In this paper, we try to accelerate the search of differential and linear characteristics with
the SAT method. The main idea is to encode Matsui’s bounding conditions by reusing
the sequential counter circuit for the objective function in the standard SAT method.
The novel encoding method does not rely on new auxiliary variables. It enables us to
incorporate multiple bounding conditions into one SAT problem with a minor increment
on the number of clauses. With the observations and experience in a considerable amount
of experiments, we come up with a strategy on how to organise the sets of bounding
conditions that potentially achieve better performance. This new idea is applied to various
primitives and obtains many updated cryptanalytic results.

As we mentioned in the paper, we observe a striking drop in the runtime regarding the
tests with the sets C(r1,∗) and C(∗,r2) for GIFT-64 and PRESENT. We think that figuring out
the reason for this circumstance is an interesting future work. Probably, the reason may
result in new ideas to further accelerate the automatic search with the SAT method.
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A Experimental Results of Three SPN Ciphers
PRESENT. Please find in Table 3 for the experimental results of PRESENT.

Table 3: Experimental results of PRESENT.

Round Differential property Linear property
#SD TSAT TMILP PrOpt TSAT TMILP #SL TSAT TMILP CorOpt TSAT TMILP

1 1 0.0s 0s 2−2 0.0s 1s 1 0.0s 0s 2−1 0.0s 0s
2 2 0.0s 1s 2−4 0.0s 2s 2 0.0s 2s 2−2 0.0s 2s
3 4 0.1s 2s 2−8 0.2s 3s 3 0.0s 3s 2−4 0.1s 71s
4 6 0.1s 4s 2−12 0.4s 4s 4 0.0s 6s 2−6 0.1s 88s
5 10 0.8s 5s 2−20 4.3s 5s 5 0.0s 9s 2−8 0.4s 152s
6 12 0.5s 8s 2−24 2.6s 249s 6 0.0s 8s 2−10 0.6s 128s
7 14 0.4s 10s 2−28 3.2s 9s 7 0.0s 7s 2−12 0.9s 18s
8 16 0.5s 11s 2−32 2.5s 11s 8 0.0s 8s 2−14 1.4s 98s
9 18 0.4s 15s 2−36 2.7s 14s 9 0.0s 10s 2−16 1.4s 15s
10 20 0.3s 16s 2−41 4.7s 1298s 10 0.1s 11s 2−18 1.7s 300s
11 22 0.3s 18s 2−46 9.5s 438s 11 0.1s 12s 2−20 1.8s 11s
12 24 0.4s 22s 2−52 14.8s 311s 12 0.1s 14s 2−22 1.7s 978s
13 26 0.4s 24s 2−56 6.8s 22s 13 0.1s 15s 2−24 2.1s 14s
14 28 0.4s 31s 2−62 23.9s 18859s 14 0.1s 17s 2−26 2.7s 3507s
15 30 0.5s 32s 2−66 7.2s 2594s 15 0.1s 19s 2−28 4.9s 16s
16 32 0.7s 19s 2−70 6.3s 370s 16 0.1s 21s 2−30 7.8s 3080s
17 34 0.6s 20s 2−74 9.7s 20s 17 0.1s 23s 2−32 5.5s 16302s
18 36 0.8s 22s 2−78 7.6s 629s 18 0.1s 24s 2−34 6.6s 14105s
19 38 0.6s 34s 2−82 7.3s - 19 0.1s 26s 2−36 3.7s -
20 40 0.9s 29s 2−86 6.7s - 20 0.1s 28s 2−38 11.8s -
21 42 0.9s 28s 2−90 7.3s - 21 0.1s 30s 2−40 6.5s -
22 44 1.1s 29s 2−96 21.4s - 22 0.1s 34s 2−42 7.8s -
23 46 1.2s 37s 2−100 9.7s - 23 0.1s 35s 2−44 9.3s -
24 48 1.8s 34s 2−106 35.8s - 24 0.1s 37s 2−46 9.5s -
25 50 1.7s 36s 2−110 17.1s - 25 0.1s 40s 2−48 10.0s -
26 52 1.2s 38s 2−116 45.6s - 26 0.2s 42s 2−50 10.9s -
27 54 1.3s 40s 2−120 16.3s - 27 0.2s 44s 2−52 10.6s -
28 56 1.3s 42s 2−124 17.5s - 28 0.2s 46s 2−54 11.8s -
29 58 1.3s 42s 2−128 13.9s - 29 0.2s 49s 2−56 18.8s -
30 60 2.0s 44s 2−132 15.1s - 30 0.2s 49s 2−58 18.1s -
31 62 1.8s 47s 2−136 15.1s - 31 0.2s 51s 2−60 14.5s -

Total 24.4s 740s 335.2s 6.9h 2.9s 720s 182.9s 10.8h
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GIFT-64. Please find in Table 4 for the experimental results of GIFT-64.

Table 4: Experimental results of GIFT-64.

Round Differential property Linear property
#SD TSAT TMILP PrOpt TSAT TMILP #SL TSAT TMILP CorOpt TSAT TMILP

1 1 0.0s 1s 2−1.415 0.0s 1s 1 0.0s 0s 2−1 0.0s 0s
2 2 0.0s 2s 2−3.415 0.0s 47s 2 0.0s 1s 2−2 0.0s 2s
3 3 0.0s 3s 2−7 0.2s 108s 3 0.0s 3s 2−3 0.0s 3s
4 5 0.1s 69s 2−11.415 0.5s 291s 5 0.1s 61s 2−5 0.1s 77s
5 7 0.1s 61s 2−17 3.9s 849s 7 0.2s 60s 2−7 0.2s 99s
6 10 0.6s 144s 2−22.415 5.6s 181s 9 0.4s 65s 2−10 0.7s 160s
7 13 1.9s 115s 2−28.415 25.7s 385s 12 1.1s 177s 2−13 1.9s 225s
8 16 3.3s 271s 2−38 533.8s 19934s 15 2.6s 243s 2−16 5.0s 263s
9 18 2.3s 28s 2−42 23.1s 32s 18 8.7s 493s 2−20 46.4s 8713s
10 20 1.0s 124s 2−48 92.2s 7569s 20 3.0s 681s 2−25 331.0s 11615s
11 22 1.6s 77s 2−52 34.5s 121s 22 2.4s 392s 2−29 1181.1s 34019s
12 24 1.5s 19s 2−58 64.1s 61001s 24 3.4s 3206s 2−31 298.4s 14644s
13 26 1.4s 75s 2−62 32.7s 604s 26 4.5s 11229s 2−34 1185.1s 121716s
14 28 1.0s 15s 2−68 63.3s 9121s 28 4.2s 7982s 2−37 891.9s -
15 30 0.9s 17s 2−72 45.3s 1595s 30 1.4s 18410s 2−40 2106.1s -
16 32 1.3s 18s 2−78 74.2s - 32 1.1s - 2−43 2451.7s -
17 34 1.1s - 2−82 31.1s - 34 1.3s - 2−46 2973.2s -
18 36 1.2s - 2−88 99.3s - 36 1.2s - 2−49 2261.3s -
19 38 1.1s - 2−92 56.8s - 38 1.5s - 2−52 1675.2s -
20 40 1.9s - 2−98 120.7s - 40 1.4s - 2−55 1773.6s -
21 42 1.2s - 2−102 67.5s - 42 2.5s - 2−58 1550.9s -
22 44 1.3s - 2−108 209.6s - 44 1.4s - 2−61 639.3s -
23 46 2.0s - 2−112 50.8s - 46 4.3s - 2−64 461.9s -
24 48 1.4s - 2−118 124.4s - 48 2.8s - 2−67 1279.2s -
25 50 1.3s - 2−122 81.1s - 50 2.6s - 2−70 1479.2s -
26 52 1.4s - 2−128 123.5s - 52 1.7s - 2−73 623.4s -
27 54 1.4s - 2−132 104.2s - 54 1.9s - 2−76 1079.4s -
28 56 2.1s - 2−138 142.3s - 56 3.2s - 2−79 1125.2s -

Total 34.7s 1039s 2210.6s 28.3h 59.1s 11.9h 7.1h 53.2h
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GIFT-128. Please find in Table 5 for the experimental results of GIFT-128.

Table 5: Experimental results of GIFT-128.

Round Differential property Linear property Round Differential property Linear property
#SD PrOpt #SL CorOpt #SD PrOpt #SL CorOpt

1 1 2−1.415 1 2−1 21 51 2−126.415 54 2−68

2 2 2−3.415 2 2−2 22 54 2−132.415 57 2−74

3 3 2−7 3 2−3 23 57 2−139.415 61 2−79

4 5 2−11.415 5 2−5 24 60 2−146.83 65 2−82

5 7 2−17 7 2−7 25 63 2−157.415 69 2−86

6 10 2−22.415 9 2−10 26 65 2−162.415 72 -
7 13 2−28.415 12 2−13 27 68 2−168.415 74 -
8 17 2−39 14 2−17 28 71 2−174.415 77 -
9 19 2−45.415 18 2−22 29 74 2−181.83 79 -
10 21 2−49.415 22 2−26 30 77 - 82 -
11 23 2−54.415 26 2−31 31 79 - 86 -
12 26 2−60.415 29 2−36 32 82 - 89 -
13 29 2−67.83 31 2−38 33 85 - 91 -
14 33 2−79 33 2−41 34 88 - 95 -
15 35 2−85.415 36 2−45 35 91 - 99 -
16 37 2−90.415 39 2−48 36 93 - 102 -
17 40 2−96.415 42 2−51 37 96 - 105 -
18 43 2−103.415 46 2−56 38 99 - 109 -
19 46 2−110.83 49 2−59 39 102 - 113 -
20 49 2−121.415 52 2−64 40 105 - 116 -
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RECTANGLE. Please find in Table 6 for the experimental results of RECTANGLE.

Table 6: Experimental results of RECTANGLE.

Round Differential property Linear property
#SD TSAT TMILP PrOpt TSAT TMILP #SL TSAT TMILP CorOpt TSAT TMILP

1 1 0.0s 1s 2−2 0.0s 1s 1 0.0s 1s 2−1 0.0s 0s
2 2 0.0s 1s 2−4 0.0s 1s 2 0.0s 1s 2−2 0.0s 1s
3 3 0.0s 1s 2−7 0.1s 8s 3 0.0s 1s 2−4 0.1s 5s
4 4 0.0s 2s 2−10 0.1s 27s 4 0.0s 2s 2−6 0.1s 9s
5 6 0.1s 11s 2−14 0.3s 128s 6 0.1s 6s 2−8 0.2s 41s
6 8 0.2s 13s 2−18 1.0s 6s 8 0.2s 8s 2−10 0.4s 6s
7 11 0.9s 11s 2−25 6.5s 17s 10 0.4s 5s 2−13 1.9s 15s
8 13 0.6s 11s 2−31 19.2s 28s 12 0.7s 9s 2−16 6.0s 24s
9 15 1.0s 11s 2−36 18.4s 41s 14 1.5s 11s 2−19 18.4s 78s
10 17 1.2s 25s 2−41 22.7s 96s 16 2.5s 25s 2−22 75.6s 260s
11 19 1.5s 47s 2−46 52.7s 297s 18 4.4s 38s 2−25 242.3s 1772s
12 21 1.7s 120s 2−51 99.2s 669s 20 6.5s 131s 2−28 411.4s 5927s
13 23 3.2s 597s 2−56 68.0s 2798s 22 10.1s 428s 2−31 835.1s 31491s
14 25 1.7s 2218s 2−61 90.2s 12410s 24 14.0s 1615s 2−34 1411.4s 177473s
15 27 2.0s 12753s 2−66 91.4s 40989s 26 23.1s 5588s 2−37 2771.5s -
16 29 2.4s 36891s 2−71 94.4s - 28 36.2s 21352s 2−40 5037.8s -
17 31 4.4s - 2−76 86.5s - 30 39.1s - 2−42 1684.5s -
18 33 4.6s - 2−81 97.7s - 32 57.9s - 2−45 4785.4s -
19 35 12.4s - 2−86 120.1s - 34 58.3s - 2−48 6503.3s -
20 37 8.9s - 2−91 131.4s - 36 107.2s - 2−51 2.8h -
21 39 5.0s - 2−96 233.9s - 38 118.6s - 2−54 3.2h -
22 41 12.0s - 2−101 225.3s - 40 178.7s - 2−57 4.3h -
23 43 11.7s - 2−106 254.5s - 42 175.2s - 2−60 5.0 -
24 45 8.4s - 2−111 352.5s - 44 176.8s - 2−63 8.7h -
25 47 12.7s - 2−116 354.1s - 46 239.9s - 2−66 12.0h -

Total 96.6s 14.6h 2420.2s 15.9h 1251.5s 8.1h 42.7h 60.3h
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B Experimental Results of Two Feistel Ciphers
LBlock. Please find in Table 7 for the experimental results of LBlock.

Table 7: Experimental results of LBlock.

Round Differential property Linear property
#SD TSAT TMILP PrOpt TSAT TMILP #SL TSAT TMILP CorOpt TSAT TMILP

1 0 0.2s 0s 1 0.0s 0s 0 0.0s 0s 1 0.0s 0s
2 1 0.4s 0s 2−2 0.1s 1s 1 0.0s 0s 2−1 0.0s 0s
3 2 0.4s 0s 2−4 0.1s 0s 2 0.0s 0s 2−2 0.1s 0s
4 3 0.3s 1s 2−6 0.1s 1s 3 0.0s 0s 2−3 0.1s 0s
5 4 0.3s 1s 2−8 0.1s 1s 4 0.0s 1s 2−4 0.1s 1s
6 6 0.6s 1s 2−12 0.4s 1s 6 0.1s 1s 2−6 0.2s 1s
7 8 0.8s 1s 2−16 0.8s 1s 8 0.2s 1s 2−8 0.3s 2s
8 11 1.2s 2s 2−22 2.7s 2s 11 0.5s 2s 2−11 0.9s 2s
9 14 1.4s 2s 2−28 3.5s 2s 14 0.8s 2s 2−14 1.1s 2s
10 18 2.8s 6s 2−36 7.1s 6s 18 1.3s 6s 2−18 2.0s 8s
11 22 3.6s 4s 2−44 14.8s 4s 22 2.1s 4s 2−22 3.6s 4s
12 24 2.1s 5s 2−48 7.8s 5s 24 1.2s 6s 2−24 2.0s 5s
13 27 3.1s 25s 2−56 30.4s 812s 27 1.8s 38s 2−27 6.1s 2103s
14 30 4.9s 8s 2−62 23.5s 848s 30 2.7s 10s 2−30 4.2s 15s
15 32 4.3s 19s 2−66 17.6s 820s 32 1.4s 28s 2−33 8.7s 5669s
16 35 6.6s 30s 2−72 37.0s 6002s 35 3.5s 55s 2−36 8.3s -
17 36 1.5s 29s 2−76 23.5s - 36 1.5s 31s 2−37 4.0s -
18 39 3.3s 10s 2−82 52.0s - 39 3.0s 11s 2−40 7.0s -
19 41 2.3s 190s 2−86 49.1s - 41 2.0s 6s 2−42 4.9s -
20 44 4.1s 1828s 2−92 74.9s - 44 2.6s 40s 2−45 17.4s -
21 45 1.9s - 2−96 29.6s - 45 0.8s - 2−47 7.5s -
22 48 3.4s - 2−102 64.9s - 48 1.9s - 2−50 17.5s -
23 50 2.2s - 2−106 48.5s - 50 1.4s - 2−52 6.5s -
24 53 3.8s - 2−112 68.4s - 53 2.6s - 2−55 19.7s -
25 54 2.1s - 2−115 22.5s - 54 1.3s - 2−56 4.6s -
26 57 3.4s - 2−121 69.9s - 57 2.6s - 2−59 7.1s -
27 59 2.7s - 2−126 84.3s - 59 2.0s - 2−62 12.4s -
28 62 4.0s - 2−131 57.7s - 62 3.7s - 2−65 29.3s -
29 63 2.4s - 2−135 50.4s - 63 2.1s - 2−66 7.2s -
30 66 5.4s - 2−141 70.6s - 66 2.6s - 2−69 22.0s -
31 68 4.5s - 2−146 111.9s - 68 2.4s - 2−72 31.3s -
32 71 6.1s - 2−151 89.6s - 71 3.1s - 2−74 21.4s -

Total 86.1s 352s 1113.7s 2.4h 51.4s 242s 257.3s 2.2h
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TWINE. Please find in Table 8 for the experimental results of TWINE.

Table 8: Experimental results of TWINE.

Round Differential property Linear property
#SD TSAT TMILP PrOpt TSAT TMILP #SL TSAT TMILP CorOpt TSAT TMILP

1 0 0.0s 0s 1 0.0s 0s 0 0.0s 0s 1 0.0s 0s
2 1 0.0s 0s 2−2 0.0s 0s 1 0.0s 0s 2−1 0.0s 0s
3 2 0.0s 0s 2−4 0.1s 0s 2 0.0s 0s 2−2 0.0s 1s
4 3 0.0s 0s 2−6 0.1s 1s 3 0.0s 1s 2−3 0.0s 1s
5 4 0.1s 1s 2−8 0.1s 1s 4 0.0s 1s 2−4 0.1s 1s
6 6 0.1s 1s 2−12 0.3s 1s 6 0.1s 1s 2−6 0.1s 2s
7 8 0.1s 1s 2−16 0.6s 1s 8 0.1s 2s 2−8 0.2s 2s
8 11 0.3s 1s 2−22 2.0s 2s 11 0.2s 3s 2−11 0.4s 3s
9 14 0.5s 2s 2−28 2.9s 2s 14 0.5s 3s 2−14 0.8s 4s
10 18 1.4s 6s 2−38 8.2s 52s 18 1.4s 10s 2−18 2.1s 17s
11 22 2.0s 4s 2−46 15.3s 49s 22 1.9s 4s 2−22 3.3s 12s
12 24 1.0s 4s 2−51 13.4s 63s 24 1.2s 6s 2−24 1.9s 8s
13 27 2.0s 24s 2−58 33.2s 7905s 27 1.4s 53s 2−27 2.4s 364s
14 30 1.9s 14s 2−64 46.0s 17153s 30 2.2s 12s 2−30 3.5s 16s
15 32 1.4s 14s 2−68 17.1s 28840s 32 1.2s 37s 2−32 2.4s 261s
16 35 3.0s 19s 2−74 37.1s - 35 2.6s 49s 2−35 4.2s 66s
17 36 0.6s 17s 2−77 11.7s - 36 0.8s 57s 2−36 1.4s -
18 39 1.9s 9s 2−83 30.9s - 39 2.1s 11s 2−39 3.5s -
19 41 1.1s 5s 2−88 41.7s - 41 1.3s 7s 2−41 2.5s -
20 44 2.0s 17s 2−94 71.3s - 44 2.1s 42s 2−44 3.7s -
21 45 0.9s - 2−97 14.7s - 45 0.8s - 2−45 1.2s -
22 48 1.5s - 2−103 25.4s - 48 1.4s - 2−48 3.5s -
23 50 1.3s - 2−107 11.9s - 50 1.1s - 2−50 2.3s -
24 53 2.3s - 2−113 29.8s - 53 2.0s - 2−53 4.6s -
25 54 0.7s - 2−116 11.3s - 54 0.9s - 2−54 1.6s -
26 57 1.8s - 2−122 17.5s - 57 1.7s - 2−57 2.9s -
27 59 1.4s - 2−126 19.8s - 59 1.7s - 2−59 3.4s -
28 62 2.4s - 2−132 22.5s - 62 2.4s - 2−62 4.4s -
29 63 1.4s - 2−136 23.1s - 63 1.1s - 2−63 1.7s -
30 66 2.2s - 2−142 43.1s - 66 2.2s - 2−66 4.6s -
31 68 1.9s - 2−146 26.2s - 68 1.8s - 2−68 3.2s -
32 71 2.6s - 2−152 45.2s - 71 2.2s - 2−71 5.4s -
33 72 1.2s - 2−155 24.2s - 72 1.2s - 2−72 2.7s -
34 75 2.3s - 2−161 34.9s - 75 2.6s - 2−75 5.7s -
35 77 2.5s - 2−166 64.5s - 77 2.1s - 2−77 4.7s -
36 80 2.9s - 2−172 90.5s - 80 2.9s - 2−80 7.0s -

Total 48.9s 139s 836.7s 15.0h 47.3s 299s 91.6s 758s
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C Experimental Results of SIMON and SPECK

SIMON family of block ciphers. Please find in Table 9 for the experimental results.

Table 9: Experimental results of SIMON Family of Block Ciphers.

SIMON32

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
PrOpt 1 2−2 2−4 2−6 2−8 2−12 2−14 2−18 2−20 2−25 2−30 2−34 2−36 2−38 2−40 2−42 2−44 2−48

CorOpt 1 2−1 2−2 2−3 2−4 2−6 2−7 2−9 2−10 2−13 2−15 2−17 2−18 2−19 2−20 2−21 2−22 2−24

Round 19 20 21 22 23 24 25 26 27 28 29 30 31 32
PrOpt 2−50 2−54 2−56 2−61 2−66 2−70 2−72 2−74 2−76 2−78 2−80 2−84 2−86 2−90

CorOpt 2−25 2−27 2−28 2−31 2−33 2−35 2−36 2−37 2−38 2−39 2−40 2−42 2−43 2−45

SIMON48

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
PrOpt 1 2−2 2−4 2−6 2−8 2−12 2−14 2−18 2−20 2−26 2−30 2−35 2−38 2−44 2−46 2−50 2−52 2−57

CorOpt 1 2−1 2−2 2−3 2−4 2−6 2−7 2−9 2−10 2−13 2−15 2−18 2−19 2−22 2−23 2−25 2−26 2−29

Round 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
PrOpt 2−59 2−63 2−65 2−70 2−72 2−76 2−78 2−84 2−88 2−93 2−96 2−102 2−104 2−108 2−110 2−115 2−117 2−121

CorOpt 2−31 2−33 2−34 2−36 2−37 2−39 2−40 2−43 2−45 2−48 2−49 2−52 2−53 2−55 2−56 2−59 2−61 2−63

SIMON64

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
PrOpt 1 2−2 2−4 2−6 2−8 2−12 2−14 2−18 2−20 2−26 2−30 2−36 2−38 2−44 2−48 2−54 2−56 2−62

CorOpt 1 2−1 2−2 2−3 2−4 2−6 2−7 2−9 2−10 2−13 2−15 2−18 2−19 2−22 2−24 2−27 2−28 2−31

Round 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
PrOpt 2−64 2−66 2−68 2−72 2−74 2−78 2−80 2−86 2−90 2−96 2−98 2−104 2−108 2−114 2−116 2−122 2−124 2−126

CorOpt 2−32 2−33 2−34 2−36 2−37 2−39 2−40 2−43 2−45 2−48 2−49 2−52 2−54 2−57 2−58 2−61 2−62 2−63

Round 37 38 39 40 41 42 43 44
PrOpt 2−128 2−132 2−134 2−138 2−140 2−146 2−150 2−156

CorOpt 2−64 2−66 2−67 2−69 2−70 2−73 2−75 2−78

SIMON96

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
PrOpt 1 2−2 2−4 2−6 2−8 2−12 2−14 2−18 2−20 2−26 2−30 2−36 2−38 2−44 2−48 2−54 2−56 2−62

CorOpt 1 2−1 2−2 2−3 2−4 2−6 2−7 2−9 2−10 2−13 2−15 2−18 2−19 2−22 2−24 2−27 2−28 2−31

Round 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
PrOpt 2−64 2−66 2−68 2−72 2−74 2−78 2−80 2−86 2−90 2−96 2−98 2−104 2−108 2−114 2−116 2−122 2−124 2−126

CorOpt 2−32 2−33 2−34 2−36 2−37 2−39 2−40 2−43 2−45 2−48 2−49 2−52 2−54 2−57 2−58 2−61 2−62 2−63

Round 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
PrOpt 2−128 2−132 2−134 2−138 2−140 2−146 2−150 2−156 2−158 2−164 2−168 2−174 2−176 2−182 2−184 2−186 2−188 2−192

CorOpt 2−64 2−66 2−67 2−69 2−70 2−73 2−75 2−78 2−79 2−82 2−84 2−87 2−88 2−91 2−92 2−93 2−94 2−96

SIMON128

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
PrOpt 1 2−2 2−4 2−6 2−8 2−12 2−14 2−18 2−20 2−26 2−30 2−36 2−38 2−44 2−48 2−54 2−56 2−62

CorOpt 1 2−1 2−2 2−3 2−4 2−6 2−7 2−9 2−10 2−13 2−15 2−18 2−19 2−22 2−24 2−27 2−28 2−31

Round 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
PrOpt 2−64 2−66 2−68 2−72 2−74 2−78 2−80 2−86 2−90 2−96 2−98 2−104 2−108 2−114 2−116 2−122 2−124 2−126

CorOpt 2−32 2−33 2−34 2−36 2−37 2−39 2−40 2−43 2−45 2−48 2−49 2−52 2−54 2−57 2−58 2−61 2−62 2−63

Round 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
PrOpt 2−128 2−132 2−134 2−138 2−140 2−146 2−150 2−156 2−158 2−164 2−168 2−174 2−176 2−182 2−184 2−186 2−188 2−192

CorOpt 2−64 2−66 2−67 2−69 2−70 2−73 2−75 2−78 2−79 2−82 2−84 2−87 2−88 2−91 2−92 2−93 2−94 2−96

Round 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
PrOpt 2−194 2−198 2−200 2−206 2−210 2−216 2−218 2−224 2−228 2−234 2−236 2−242 2−244 2−246 2−248 2−252 2−254 2−258

CorOpt 2−97 2−99 2−100 2−103 2−105 2−108 2−109 2−112 2−114 2−117 2−118 2−121 2−122 2−123 2−124 2−126 2−127 2−129



Ling Sun, Wei Wang and Meiqin Wang 303

SPECK family of block ciphers. Please find in Table 10 for the experimental results.

Table 10: Experimental results of SPECK Family of Block Ciphers.

SPECK32

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14
PrOpt 1 2−1 2−3 2−5 2−9 2−13 2−18 2−24 2−30 2−34 2−38 2−42 2−45 2−49

CorOpt 1 1 2−1 2−3 2−5 2−7 2−9 2−12 2−14 2−17 2−19 2−20 2−22 2−24

Round 15 16 17 18 19 20 21 22
PrOpt 2−54 2−58 2−63 2−69 2−74 2−77 2−81 2−85

CorOpt 2−26 2−28 2−30 2−34 2−36 2−38 2−40 2−42

SPECK48

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14
PrOpt 1 2−1 2−3 2−6 2−10 2−14 2−19 2−26 2−33 2−40 2−45 2−49 2−54 2−58

CorOpt 1 1 2−1 2−3 2−6 2−8 2−12 2−15 2−19 2−22 2−25 2−28 2−30 2−33

Round 15 16 17 18 19 20 21 22 23
PrOpt 2−63 2−68 2−75 2−82 - - - - -
CorOpt 2−37 2−39 2−43 2−45 2−48 2−51 2−54 2−57 2−59

SPECK64

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14
PrOpt 1 2−1 2−3 2−6 2−10 2−15 2−21 2−29 2−34 2−38 2−42 2−46 2−50 2−56

CorOpt 1 1 2−1 2−3 2−6 2−9 2−13 2−17 2−19 2−21 2−24 2−27 2−30 2−33

Round 15 16 17 18 19 20 21 22 23 24 25 26 27
PrOpt 2−62 2−70 2−73 2−76 2−81 2−85 2−89 2−94 2−99 2−107 2−112 2−116 2−121

CorOpt 2−37 2−41 2−43 2−45 2−47 2−49 2−52 2−54 2−59 2−63 2−66 2−68 2−70

SPECK96

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14
PrOpt 1 2−1 2−3 2−6 2−10 2−15 2−21 2−30 2−39 2−49 - - - -
CorOpt 1 1 2−1 2−3 2−6 2−9 2−13 2−18 2−22 2−27 2−31 2−33 2−36 2−39

SPECK128

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14
PrOpt 1 2−1 2−3 2−6 2−10 2−15 2−21 2−30 2−39 - - - - -
CorOpt 1 1 2−1 2−3 2−6 2−9 2−13 2−18 2−22 2−27 - - - -
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D Auxiliary Materials for the 26-Round Attack on GIFT-64

D.1 18-Round Related-Key Differential Trail
The 18-round related-key differential trail is shown in Figure 8. The 128-bit master key of
this trail is 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0028 0x0000.

D.2 A Brief Introduction of GIFT-64

To clearly explain the key-recovery attack, we give a brief introduction of GIFT-64.

• Key schedule and round constants. Denote K = k0‖k1‖ · · · ‖k7 the 128-bit
master key. After extracting two 16-bit words of the key state as the round key
RK = U‖V = k6‖k7, the key state is updated as follows,

k0‖k1‖ · · · ‖k7 ← (k6 ≫ 2)‖(k7 ≫ 12)‖k0‖ · · · ‖k4‖k5.

Since the values of the round constants do not affect the key-recovery attack, the
generating method is not covered here. We refer readers to look up the document
[BPP+17] for more details.

Each round of GIFT-64 includes the following three steps.

• SubCells. The 4-bit S-box GS is applied to every nibble of the 64-bit cipher state
s0‖s1‖ · · · ‖s63.

• PermBits. It maps bits from bit position i4 of the cipher state to bit position P (i),

P (i) = 63−

{
4 ·
⌊

63− i

16

⌋
+ 16 ·

[
3 ·
⌊

(63− i) mod 16
4

⌋
+ (63− i) mod 16

]
+ (63− i) mod 4

}
mod 64.

• AddRoundKey. This step consists of adding the round key and round constants.
A 32-bit round key RK is extracted from the key state and is further partitioned
into two 16-bit words as RK = U‖V = u0‖ · · · ‖u15‖v0‖ · · · ‖v15. Then, U and V
are XORed to {s4·i+2 | 0 6 i 6 15} and {s4·i+3 | 0 6 i 6 15} of the cipher state,
respectively. To be specific,

s4·i+2 ← s4·i+2 ⊕ ui, s4·i+3 ← s4·i+3 ⊕ vi, 0 6 i 6 15.

D.3 An Illustration for the Key-Recovery Attack
The key-recovery attack is demonstrated in Figure 9.

D.4 Detailed Computation of Complexity
The detailed analysis of the complexity can be found in Table 11.

E Comprehensive Comparison of the Accelerating Effect
To clearly illustrate the accelerating effect of the new method, we test the runtime in
different settings with two SAT solvers CaDiCaL and Cryptominisat. All the tests in this
section are implemented on a server with AMD EPYC 7302 16-Core Processor, and each
program utilises one processor. The following notations are exploited to distinguish the
runtime in different cases.

4Note that the bit position is reversed in this paper.
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Figure 8: 18-round related-key differential trail of GIFT-64 with probability 2−58.

• T ∅CaD: runtime using CaDiCaL without bounding condition.

• TR−1
CaD : runtime using CaDiCaL with the set C(∗,R−1).

• T 0
CaD: runtime using CaDiCaL with the set C(0,∗).
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X The value of the bit should be known. ∆ The difference is known and must be nonzero. The value of the subkey bit should be known.

i The subkey bit equals the i-th bit of the master key. i The master key bit with the nonzero difference.

Figure 9: Key-recovery attack on 26-round GIFT-64.

• T ∅Cry: runtime using Cryptominisat without bounding condition.

• TR−1
Cry : runtime using Cryptominisat with the set C(∗,R−1).

• T 0
Cry: runtime using Cryptominisat with the set C(0,∗).

Please find in Table 12 - 21 for the experimental results of PRESENT, GIFT-64, RECTANGLE,
LBlock, TWINE and all versions belonging to SPECK family of block ciphers. Note that the
values of TMILP for SPECK32 and SPECK48 stem from [ZSCH18], where the authors claimed
that the tests employed 16 threads of a server with Intelr Xeonr E5-2637V3 CPU 3.50
GHz.
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Table 11: Detailed computation of complexity.

Step Guessed subkey Condition on the difference #{Remaining pairs} Time complexity
(GS operations)

1 RK0[0, 1] ∆Y 1[0] = ∆Y 1[1] = ∆Y 1[2] = 0 N1 · 2−3 2 ·N1 · 22

2 RK0[2, 3] ∆Y 1[4] = ∆Y 1[5] = ∆Y 1[6] = ∆Y 1[7] = 0 N1 · 2−3 · 2−4 2 ·N1 · 2−3 · 22 · 22

3 RK0[4, 5] ∆Y 1[8] = ∆Y 1[9] = ∆Y 1[10] = ∆Y 1[11] = 0 N1 · 2−7 · 2−2 2 ·N1 · 2−7 · 24 · 22

4 RK0[6, 7] ∆Y 1[12] = ∆Y 1[13] = ∆Y 1[15] = 0 N1 · 2−9 · 2−3 2 ·N1 · 2−9 · 26 · 22

5 RK0[8, 9] ∆Y 1[16] = ∆Y 1[17] = ∆Y 1[18] = 0 N1 · 2−12 · 2−3 2 ·N1 · 2−12 · 28 · 22

6 RK0[10, 11] ∆Y 1[21] = ∆Y 1[22] = ∆Y 1[23] = 0 N1 · 2−15 · 2−3 2 ·N1 · 2−15 · 210 · 22

7 RK0[12, 13] ∆Y 1[24] = ∆Y 1[25] = ∆Y 1[26] = ∆Y 1[27] = 0 N1 · 2−18 · 2−2 2 ·N1 · 2−18 · 212 · 22

8 RK0[14, 15] ∆Y 1[28] = ∆Y 1[29] = ∆Y 1[31] = 0 N1 · 2−20 · 2−3 2 ·N1 · 2−20 · 214 · 22

9 RK0[16, 17] ∆Y 1[32] = ∆Y 1[33] = ∆Y 1[34] = ∆Y 1[35] = 0 N1 · 2−23 · 2−4 2 ·N1 · 2−23 · 216 · 22

10 RK0[18, 19] ∆Y 1[36] = ∆Y 1[37] = ∆Y 1[38] = ∆Y 1[39] = 0 N1 · 2−27 · 2−2 2 ·N1 · 2−27 · 218 · 22

11 RK0[20, 21] ∆Y 1[40] = ∆Y 1[41] = ∆Y 1[43] = 0 N1 · 2−29 · 2−3 2 ·N1 · 2−29 · 220 · 22

12 RK0[22, 23] ∆Y 1[44] = ∆Y 1[45] = ∆Y 1[46] = 0 N1 · 2−32 · 2−3 2 ·N1 · 2−32 · 222 · 22

13 RK0[24, 25] ∆Y 1[49] = ∆Y 1[50] = ∆Y 1[51] = 0 N1 · 2−35 · 2−3 2 ·N1 · 2−35 · 224 · 22

14 RK0[26, 27] ∆Y 1[52] = ∆Y 1[53] = ∆Y 1[54] = ∆Y 1[55] = 0 N1 · 2−38 · 2−2 2 ·N1 · 2−38 · 226 · 22

15 RK0[28, 29] ∆Y 1[56] = ∆Y 1[57] = ∆Y 1[59] = 0 N1 · 2−40 · 2−3 2 ·N1 · 2−40 · 228 · 22

16 RK0[30, 31] ∆Y 1[60] = ∆Y 1[61] = ∆Y 1[62] = 0 N1 · 2−43 · 2−3 2 ·N1 · 2−43 · 230 · 22

17 RK1[16, 17] ∆Y 2[32] = ∆Y 2[33] = ∆Y 2[34] = ∆Y 2[35] = 0 N1 · 2−46 · 2−2 2 ·N1 · 2−46 · 232 · 22

18 RK1[18, 19] ∆Y 2[36] = ∆Y 2[37] = ∆Y 2[38] = ∆Y 2[39] = 0 N1 · 2−48 · 2−3 2 ·N1 · 2−48 · 234 · 22

19 RK1[28, 29] ∆Y 2[56] = ∆Y 2[57] = ∆Y 2[58] = ∆Y 2[59] = 0 N1 · 2−51 · 2−2 2 ·N1 · 2−51 · 236 · 22

20 RK1[30, 31] ∆Y 2[60] = ∆Y 2[61] = ∆Y 2[62] = ∆Y 2[63] = 0 N1 · 2−53 · 2−3 2 ·N1 · 2−53 · 238 · 22

21 24 bits of RK25 - N1 · 2−56 2 ·N1 ·2−56 ·240 ·224 ·32

22 RK23[8, 17] ∆X23[0] = ∆X23[2] = 0 N1 · 2−56 · 2−2 2 ·N1 · 2−56 · 264 · 22

23 RK23[0, 9] ∆X23[4] = ∆X23[6] = 0 N1 · 2−58 · 2−2 2 ·N1 · 2−58 · 266 · 22

24 RK23[1, 24] ∆X23[8] = ∆X23[10] = 0 N1 · 2−60 · 2−2 2 ·N1 · 2−60 · 268 · 22

25 RK23[16, 25] ∆X23[12] = ∆X23[14] = 0 N1 · 2−62 · 2−2 2 ·N1 · 2−62 · 270 · 22

26 RK23[10, 19] ∆X23[17] = ∆X23[19] = 0 N1 · 2−64 · 2−2 2 ·N1 · 2−64 · 272 · 22

27 RK23[2, 11] ∆X23[21] = ∆X23[23] = 0 N1 · 2−66 · 2−2 2 ·N1 · 2−66 · 274 · 22

28 RK23[3, 26] ∆X23[25] = ∆X23[27] = 0 N1 · 2−68 · 2−2 2 ·N1 · 2−68 · 276 · 22

29 RK23[18, 27] ∆X23[29] = ∆X23[31] = 0 N1 · 2−70 · 2−2 2 ·N1 · 2−70 · 278 · 22

30 RK23[12, 21] ∆X23[32] = ∆X23[34] = 0 N1 · 2−72 · 2−2 2 ·N1 · 2−72 · 280 · 22

31 RK23[4, 13] ∆X23[36] = ∆X23[38] = 0 N1 · 2−74 · 2−2 2 ·N1 · 2−74 · 282 · 22

32 RK23[5, 28] ∆X23[40] = ∆X23[42] = 0 N1 · 2−76 · 2−2 2 ·N1 · 2−76 · 284 · 22

33 RK23[20, 29] ∆X23[44] = ∆X23[46] = 0 N1 · 2−78 · 2−2 2 ·N1 · 2−78 · 286 · 22

34 RK23[14, 23] ∆X23[49] = ∆X23[51] = 0 N1 · 2−80 · 2−2 2 ·N1 · 2−80 · 288 · 22

35 RK23[6, 15] ∆X23[53] = ∆X23[55] = 0 N1 · 2−82 · 2−2 2 ·N1 · 2−82 · 290 · 22

36 RK23[7, 30] ∆X23[57] = ∆X23[59] = 0 N1 · 2−84 · 2−2 2 ·N1 · 2−84 · 292 · 22

37 RK23[22, 31] ∆X23[61] = ∆X23[63] = 0 N1 · 2−86 · 2−2 2 ·N1 · 2−86 · 294 · 22

38 RK22[8, 17] ∆X22[0] = ∆X22[3] = 0 N1 · 2−88 · 2−2 2 ·N1 · 2−88 · 296 · 22

39 RK22[1, 24] ∆X22[8] = ∆X22[11] = 0 N1 · 2−90 · 2−2 2 ·N1 · 2−90 · 298 · 22

40 RK22[10, 19] ∆X22[16] = ∆X22[17] = ∆X22[19] = 0 N1 · 2−92 · 2−3 2 ·N1 · 2−92 · 2100 · 22

41 RK22[3, 26] ∆X22[24] = ∆X22[25] = 0 N1 · 2−95 · 2−2 2 ·N1 · 2−95 · 2102 · 22

42 RK22[12, 21] ∆X22[33] = ∆X22[34] = 0 N1 · 2−97 · 2−2 2 ·N1 · 2−97 · 2104 · 22

43 RK22[5, 28] ∆X22[41] = ∆X22[42] = ∆X22[43] = 0 N1 · 2−99 · 2−3 2 ·N1 · 2−99 · 2106 · 22

44 RK22[14, 23] ∆X22[50] = ∆X22[51] = 0 N1 · 2−102 · 2−2 2 ·N1 · 2−102 · 2108 · 22

45 RK22[7, 30] ∆X22[58] = ∆X22[59] = 0 N1 · 2−104 · 2−2 2 ·N1 · 2−104 · 2110 · 22

46 - ∆X21[0] = ∆X21[1] = ∆X21[2] = ∆X21[3] = 0 N1 · 2−106 · 2−4 2 ·N1 · 2−106 · 2112

47 - ∆X21[4] = ∆X21[5] = ∆X21[6] = ∆X21[7] = 0 N1 · 2−110 · 2−3 2 ·N1 · 2−110 · 2112

48 - ∆X21[32] = ∆X21[33] = ∆X21[34] = ∆X21[35] = 0 N1 · 2−113 · 2−3 2 ·N1 · 2−113 · 2112

49 - ∆X21[36] = ∆X21[37] = ∆X21[38] = ∆X21[39] = 0 N1 · 2−116 · 2−4 2 ·N1 · 2−116 · 2112

Total - - - N1 · 215.90

In the following, we list some observations to assist readers in understanding the main
reason for the acceleration.
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1. Note that the difference between the values of T ∅CaD and T ∅Cry exhibits the gain
resulted from applying a different solver. It can be seen from Table 12 - 21 that
changing the solver is not the crucial reason for the acceleration.

2. The comparison between the value of T ∅CaD and the value of TR−1
CaD or T 0

CaD indicates
the gain of the new encoding method. Therefore, we confirm that the significant
improvement on the runtime mainly benefits from the new encoding approach. The
results in Table 12 - 21 evidence that the strategies proposed in Sect. 4 can be
generally applied to various block ciphers concerning different searching tasks, even
though the idea is demonstrated with the tests on GIFT-64. Also, the comparison
between the value of T ∅Cry and the value of TR−1

Cry or T 0
Cry reveals that the new

encoding method also works for the solver Cryptominisat.

3. With the experimental results for all versions of SPECK family of block ciphers in
Table 17 - 21, we note that the acceleration is not significant. As we mentioned in
Sect. 5.3, adding bounding conditions regarding the test for SPECK cannot significantly
improve the automatic search with the SAT method. This circumstance coincides
with the observation raised by Zhang et al. [ZSCH18].

4. Another interesting observation is that for problems that are not time-consuming,
e.g., targeting the minimum number of active S-boxes, CaDiCaL does not show
significant advantages. However, when it comes to more challenging tasks for the
optimal trails with the maximum differential probability and linear bias, CaDiCaL
dramatically reduces the runtime. This observation may help readers to select the
SAT solver according to their customised searching problems.
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Table 12: Experimental results of PRESENT.

Differential property

Round #SD T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP PrOpt T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP

1 1 0.1s 0.0s 0.1s 0.1s 0.1s 0.1s 0s 2−2 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s
2 2 0.0s 0.0s 0.1s 0.0s 0.0s 0.1s 1s 2−4 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 2s
3 4 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 2s 2−8 0.2s 0.2s 0.2s 0.2s 0.2s 0.3s 3s
4 6 0.1s 0.1s 0.2s 0.1s 0.1s 0.2s 4s 2−12 0.5s 0.3s 0.4s 0.4s 0.3s 0.4s 4s
5 10 0.8s 0.7s 0.9s 0.8s 0.7s 0.9s 5s 2−20 4.4s 3.4s 4.0s 4.1s 3.9s 4.3s 5s
6 12 0.7s 0.4s 0.4s 0.8s 0.2s 0.5s 8s 2−24 5.6s 2.0s 2.4s 6.5s 2.2s 1.8s 249s
7 14 1.2s 0.3s 0.5s 1.7s 0.2s 1.0s 10s 2−28 12.0s 2.6s 2.4s 13.6s 6.0s 5.7s 9s
8 16 1.9s 0.4s 0.4s 2.7s 0.2s 0.5s 11s 2−32 15.9s 2.1s 2.6s 29.5s 5.0s 2.4s 11s
9 18 3.0s 0.3s 0.2s 5.2s 0.2s 0.2s 15s 2−36 34.3s 2.1s 3.0s 40.6s 5.0s 1.4s 14s
10 20 3.9s 0.3s 0.3s 7.2s 0.2s 0.3s 16s 2−41 54.1s 3.2s 4.1s 87.5s 12.1s 4.2s 1298s
11 22 7.7s 0.2s 0.3s 11.0s 0.2s 0.3s 18s 2−46 118.8s 5.6s 8.0s 168.1s 11.8s 9.1s 438s
12 24 10.9s 0.3s 0.3s 19.7s 0.2s 0.3s 22s 2−52 275.5s 10.1s 21.7s 454.8s 27.9s 48.8s 311s
13 26 12.7s 0.3s 0.4s 21.3s 0.2s 0.3s 24s 2−56 230.2s 5.3s 6.1s 467.9s 17.0s 19.1s 22s
14 28 19.2s 0.3s 0.4s 21.3s 0.2s 0.4s 31s 2−62 520.9s 19.0s 42.4s 954.7s 45.7s 128.4s 18859s
15 30 21.7s 0.4s 0.6s 24.4s 0.2s 0.4s 32s 2−66 487.5s 9.9s 6.9s 884.3s 25.6s 10.2s 2594s
16 32 34.6s 0.5s 0.9s 49.2s 0.3s 0.4s 19s 2−70 550.9s 4.8s 12.5s 1095.7s 24.6s 12.1s 370s
17 34 25.0s 0.5s 0.5s 53.0s 0.3s 0.4s 20s 2−74 671.7s 5.1s 8.6s 1520.4s 26.3s 14.2s 20s
18 36 39.4s 0.6s 0.5s 71.4s 0.3s 0.5s 22s 2−78 880.3s 7.0s 8.4s 1901.5s 16.2s 9.6s 629s
19 38 38.7s 0.5s 0.5s 58.2s 0.4s 0.5s 34s 2−82 1027.5s 5.5s 7.6s 2358.9s 6.9s 6.7s -
20 40 45.6s 0.7s 0.6s 92.9s 0.3s 0.5s 29s 2−86 1304.6s 5.2s 10.4s 2748.6s 14.6s 12.1s -
21 42 57.1s 0.7s 0.5s 61.6s 0.4s 0.5s 28s 2−90 1308.9s 5.6s 11.1s 3576.9s 12.3s 11.2s -
22 44 89.2s 0.8s 0.6s 97.7s 0.5s 0.5s 29s 2−96 2219.2s 15.7s 33.0s 6943.5s 31.5s 81.5s -
23 46 93.5s 0.9s 0.8s 100.8s 0.4s 0.6s 37s 2−100 1501.8s 10.6s 13.5s 5530.6s 13.8s 9.6s -
24 48 95.3s 1.4s 0.7s 126.4s 0.4s 0.6s 34s 2−106 3077.1s 25.9s 52.7s 8891.3s 54.0s 104.9s -
25 50 122.3s 1.3s 0.8s 102.3s 0.4s 0.7s 36s 2−110 2421.6s 12.5s 26.7s 7672.8s 38.9s 156.8s -
26 52 97.1s 0.9s 0.8s 132.7s 0.5s 0.6s 38s 2−116 4307.1s 42.7s 74.4s 3.6h 125.1s 303.9s -
27 54 124.9s 1.0s 1.2s 163.9s 0.5s 0.7s 40s 2−120 3073.1s 15.4s 20.0s 2.2h 56.3s 27.6s -
28 56 137.2s 1.0s 0.9s 171.3s 0.8s 0.8s 42s 2−124 3499.7s 11.4s 42.5s 4.2h 46.3s 33.0s -
29 58 126.3s 1.0s 0.8s 148.3s 0.7s 0.8s 42s 2−128 3316.8s 12.2s 27.1s 4.5h 38.9s 34.3s -
30 60 136.0s 1.5s 0.9s 198.3s 0.6s 0.7s 44s 2−132 3618.3s 14.8s 22.7s 4.4h 33.0s 24.5s -
31 62 200.9s 1.4s 1.6s 171.2s 0.7s 0.8s 47s 2−136 3826.7s 12.6s 18.4s 4.9h 22.2s 24.3s -

Total 1546.9s 19.1s 17.9s 1915.6s 10.5s 15.5s 740s 10.7h 273.1s 494.2s 36.4h 723.4s 1102.5s 6.9h

Linear property

Round #SL T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP CorOpt T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP

1 1 0.0s 0.0s 0.1s 0.1s 0.1s 0.1s 0s 2−1 0.0s 0.0s 0.1s 0.1s 0.1s 0.1s 0s
2 2 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 2s 2−2 0.0s 0.0s 0.1s 0.0s 0.0s 0.1s 2s
3 3 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 3s 2−4 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 71s
4 4 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 6s 2−6 0.1s 0.1s 0.2s 0.1s 0.1s 0.1s 88s
5 5 0.0s 0.0s 0.1s 0.0s 0.0s 0.1s 9s 2−8 0.3s 0.3s 0.2s 0.2s 0.2s 0.2s 152s
6 6 0.0s 0.0s 0.1s 0.0s 0.0s 0.1s 8s 2−10 0.5s 0.4s 0.3s 0.4s 0.4s 0.3s 128s
7 7 0.0s 0.0s 0.1s 0.0s 0.0s 0.1s 7s 2−12 1.3s 0.7s 0.7s 1.1s 0.4s 0.4s 18s
8 8 0.0s 0.0s 0.1s 0.1s 0.1s 0.1s 8s 2−14 2.1s 1.1s 0.6s 2.1s 0.8s 0.6s 98s
9 9 0.0s 0.1s 0.1s 0.1s 0.1s 0.1s 10s 2−16 2.8s 1.1s 0.8s 2.6s 1.1s 0.8s 15s
10 10 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 11s 2−18 4.7s 1.5s 1.3s 6.1s 1.2s 1.3s 300s
11 11 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 12s 2−20 5.3s 1.2s 1.2s 7.0s 2.0s 1.9s 11s
12 12 0.1s 0.1s 0.1s 0.2s 0.1s 0.1s 14s 2−22 9.4s 1.2s 1.3s 11.4s 2.2s 1.9s 978s
13 13 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 15s 2−24 12.7s 1.7s 1.4s 15.5s 3.1s 2.9s 14s
14 14 0.1s 0.1s 0.1s 0.2s 0.1s 0.1s 17s 2−26 11.5s 2.0s 1.7s 22.9s 3.2s 4.7s 3507s
15 15 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 19s 2−28 24.1s 2.8s 2.5s 24.4s 4.7s 5.6s 16s
16 16 0.1s 0.1s 0.1s 0.2s 0.1s 0.1s 21s 2−30 28.3s 2.9s 2.5s 45.0s 4.1s 6.1s 3080s
17 17 0.1s 0.1s 0.1s 0.3s 0.1s 0.1s 23s 2−32 30.9s 3.9s 3.4s 50.6s 4.5s 6.6s 16302s
18 18 0.1s 0.1s 0.1s 0.3s 0.1s 0.1s 24s 2−34 31.1s 5.1s 4.7s 67.9s 6.8s 7.8s 14105s
19 19 0.1s 0.1s 0.1s 0.1s 0.1s 0.2s 26s 2−36 31.5s 4.4s 4.2s 94.4s 12.5s 9.0s -
20 20 0.1s 0.1s 0.1s 0.2s 0.1s 0.2s 28s 2−38 48.0s 6.0s 6.4s 106.9s 11.5s 8.3s -
21 21 0.1s 0.1s 0.1s 0.3s 0.1s 0.2s 30s 2−40 74.1s 4.7s 4.0s 148.9s 24.4s 12.3s -
22 22 0.1s 0.1s 0.1s 0.4s 0.1s 0.2s 34s 2−42 55.2s 6.2s 6.4s 153.7s 18.6s 24.7s -
23 23 0.1s 0.1s 0.2s 0.5s 0.1s 0.2s 35s 2−44 88.3s 6.7s 5.2s 213.3s 39.7s 31.5s -
24 24 0.1s 0.1s 0.2s 0.5s 0.1s 0.2s 37s 2−46 79.3s 11.3s 6.6s 236.9s 58.8s 24.9s -
25 25 0.1s 0.1s 0.2s 0.6s 0.1s 0.2s 40s 2−48 109.9s 11.6s 13.0s 273.4s 43.5s 64.2s -
26 26 0.1s 0.1s 0.2s 0.2s 0.1s 0.2s 42s 2−50 109.2s 11.9s 11.5s 182.2s 41.6s 46.0s -
27 27 0.1s 0.1s 0.2s 0.6s 0.2s 0.2s 44s 2−52 125.8s 12.4s 12.5s 267.5s 52.0s 65.5s -
28 28 0.1s 0.1s 0.2s 0.6s 0.2s 0.3s 46s 2−54 140.3s 14.1s 10.4s 278.3s 28.8s 64.1s -
29 29 0.1s 0.2s 0.2s 0.7s 0.2s 0.3s 49s 2−56 144.3s 13.8s 21.7s 363.0s 49.4s 90.8s -
30 30 0.1s 0.2s 0.2s 0.8s 0.2s 0.4s 49s 2−58 168.7s 11.8s 11.0s 511.7s 80.6s 91.5s -
31 31 0.2s 0.2s 0.2s 0.9s 0.2s 0.3s 51s 2−60 163.4s 22.0s 11.5s 459.7s 78.9s 70.8s -

Total 2.5s 2.6s 3.8s 8.5s 3.1s 4.4s 720s 1503.4s 163.0s 147.6s 3547.4s 575.5s 645.1s 10.8h
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Table 13: Experimental results of GIFT-64.

Differential property

Round #SD T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP PrOpt T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP

1 1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s 2−1.415 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s
2 2 0.0s 0.0s 0.0s 0.0s 0.0s 0.1s 2s 2−3.415 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 47s
3 3 0.0s 0.0s 0.0s 0.0s 0.0s 0.1s 3s 2−7 0.2s 0.2s 0.2s 0.3s 0.3s 0.3s 108s
4 5 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 69s 2−11.415 0.9s 0.6s 0.5s 0.7s 0.5s 0.5s 291s
5 7 0.2s 0.1s 0.1s 0.1s 0.1s 0.2s 61s 2−17 4.0s 4.3s 3.9s 3.8s 3.3s 4.4s 849s
6 10 0.7s 0.7s 0.4s 0.5s 0.4s 0.4s 144s 2−22.415 15.6s 5.2s 9.8s 19.6s 8.5s 14.1s 181s
7 13 1.8s 1.9s 1.3s 2.1s 1.3s 1.5s 115s 2−28.415 69.8s 16.6s 40.6s 77.4s 25.7s 66.9s 385s
8 16 6.0s 3.1s 4.1s 9.4s 3.3s 10.5s 271s 2−38 867.0s 591.5s 676.0s 1254.7s 577.8s 773.2s 19934s
9 18 6.5s 1.8s 2.7s 8.0s 0.5s 2.8s 28s 2−42 689.9s 30.0s 122.8s 1064.1s 77.3s 80.0s 32s
10 20 9.6s 1.1s 1.6s 19.4s 1.0s 4.1s 124s 2−48 1560.6s 172.3s 430.2s 2357.1s 200.7s 310.5s 7569s
11 22 17.7s 1.6s 1.5s 24.5s 1.0s 11.6s 77s 2−52 1582.9s 21.5s 51.2s 1634.5s 86.2s 90.3s 121s
12 24 25.8s 1.2s 2.1s 40.5s 0.4s 10.7s 19s 2−58 4189.3s 108.6s 239.1s 5058.3s 136.1s 324.6s 61001s
13 26 34.3s 1.1s 1.0s 42.6s 0.3s 1.9s 75s 2−62 3273.1s 53.3s 55.5s 6321.5s 32.7s 82.6s 604s
14 28 58.7s 0.8s 0.7s 93.8s 0.5s 1.8s 15s 2−68 6411.6s 60.6s 102.0s 4.3h 118.9s 209.5s 9121s
15 30 65.5s 1.0s 2.7s 136.5s 0.3s 1.8s 17s 2−72 4159.1s 50.9s 60.4s 4.2h 41.6s 88.5s 1595s
16 32 74.8s 1.2s 2.3s 243.9s 0.3s 0.5s 18s 2−78 3.2h 80.0s 101.4s 10.3h 85.5s 372.5s -
17 34 159.5s 1.2s 2.3s 233.7s 0.3s 1.3s - 2−82 2.3h 34.7s 29.9s 10.3h 34.2s 201.7s -
18 36 164.9s 1.3s 2.4s 201.7s 0.3s 1.0s - 2−88 4.9h 78.1s 110.0s 22.3h 281.0s 578.5s -
19 38 143.7s 1.2s 2.3s 257.1s 0.6s 1.0s - 2−92 4.5h 24.0s 96.1s - 103.1s 173.2s -
20 40 132.4s 1.6s 2.5s 226.2s 0.7s 1.0s - 2−98 8.5h 105.4s 120.6s - 158.9s 625.3s -
21 42 246.1s 1.0s 1.1s 408.3s 0.6s 2.8s - 2−102 5.3h 56.5s 69.7s - 215.8s 232.3s -
22 44 143.7s 1.4s 2.8s 591.5s 0.6s 2.2s - 2−108 8.8h 140.0s 209.0s - 244.5s 265.6s -
23 46 441.1s 2.1s 4.8s 450.2s 0.5s 1.8s - 2−112 5.7h 77.5s 92.8s - 68.0s 78.2s -
24 48 368.2s 1.5s 3.0s 833.8s 0.6s 1.2s - 2−118 9.5h 223.3s 255.2s - 444.2s 614.6s -
25 50 630.8s 1.4s 2.5s 758.4s 0.5s 1.5s - 2−122 - 47.6s 175.6s - 104.1s 150.8s -
26 52 298.6s 1.6s 3.0s 784.3s 0.6s 2.7s - 2−128 - 143.4s 208.8s - 576.3s 783.9s -
27 54 520.4s 1.6s 1.8s 799.0s 1.4s 1.9s - 2−132 - 104.2s 102.3s - 357.2s 268.1s -
28 56 309.2s 2.1s 1.8s 1114.8s 0.9s 2.6s - 2−138 - 279.2s 212.2s - 511.2s 1190.7s -

Total 3860.2s 34.0s 51.2s 7280.6s 17.5s 69.2s 1039s 58.9h 2509.5s 3575.7s 56.3h 4493.8s 7580.9s 28.3h

Linear property

Round #SL T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP CorOpt T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP

1 1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0s 2−1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0s
2 2 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 1s 2−2 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 2s
3 3 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 3s 2−3 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 3s
4 5 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 61s 2−5 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 77s
5 7 0.2s 0.2s 0.2s 0.2s 0.1s 0.1s 60s 2−7 0.2s 0.2s 0.2s 0.1s 0.2s 0.2s 99s
6 9 0.3s 0.5s 0.2s 0.3s 0.2s 0.2s 65s 2−10 1.0s 0.8s 0.7s 0.8s 0.6s 0.5s 160s
7 12 1.4s 1.2s 1.1s 1.4s 1.2s 1.2s 177s 2−13 2.4s 2.0s 1.5s 2.7s 2.8s 1.7s 225s
8 15 3.7s 3.1s 2.6s 5.7s 3.2s 4.2s 243s 2−16 6.4s 6.1s 5.0s 16.1s 10.0s 7.8s 263s
9 18 14.0s 8.8s 6.7s 26.8s 17.5s 14.2s 493s 2−20 40.5s 31.7s 23.3s 48.6s 52.9s 65.4s 8713s
10 20 14.7s 2.6s 2.8s 27.9s 5.4s 10.2s 681s 2−25 395.0s 294.5s 298.9s 454.2s 521.1s 777.6s 11615s
11 22 37.4s 2.6s 8.0s 38.6s 7.2s 12.8s 392s 2−29 1287.0s 1119.7s 1059.9s 1801.8s 1174.8s 1557.2s 34019s
12 24 41.8s 4.6s 2.4s 58.2s 8.3s 7.7s 3206s 2−31 1008.0s 244.1s 55.9s 1141.9s 124.6s 223.9s 14644s
13 26 60.4s 5.4s 2.3s 147.1s 2.2s 7.4s 11229s 2−34 2005.1s 524.7s 1403.5s 3112.7s 1405.7s 382.3s 121716s
14 28 78.7s 2.9s 2.3s 156.8s 2.4s 2.8s 7982s 2−37 4399.5s 935.5s 591.6s 5133.3s 1838.6s 1181.9s -
15 30 95.0s 1.6s 2.2s 294.9s 1.5s 1.6s 18410s 2−40 4736.3s 768.5s 712.7s 2.9h 2548.4s 1286.6s -
16 32 112.4s 1.3s 1.4s 340.1s 0.9s 5.3s - 2−43 6442.4s 2330.9s 573.0s 4.0h 2966.5s 1001.4s -
17 34 181.5s 1.4s 2.5s 261.9s 1.1s 2.9s - 2−46 9198.6s 1150.4s 368.8s 5.8h 3260.9s 2077.2s -
18 36 170.5s 2.0s 3.3s 502.3s 1.1s 34.1s - 2−49 2.8h 1948.5s 444.5s 10.7h 5711.6s 375.1s -
19 38 177.3s 1.7s 6.0s 411.2s 1.4s 2.8s - 2−52 3.4h 521.6s 549.1s 13.9h 4728.6s 532.7s -
20 40 189.7s 1.6s 2.6s 460.1s 1.7s 2.4s - 2−55 4.1h 513.8s 328.5s 20.7h 3838.8s 1148.8s -
21 42 554.7s 2.3s 2.7s 789.4s 1.4s 2.0s - 2−58 7.6h 423.1s 217.9s - 1595.1s 586.6s -
22 44 485.2s 1.7s 7.5s 503.5s 1.5s 3.0s - 2−61 7.9h 490.5s 264.0s - 3626.3s 1132.7s -
23 46 318.3s 4.3s 2.9s 802.4s 2.2s 1.6s - 2−64 8.7h 1218.2s 341.8s - 3193.6s 480.8s -
24 48 428.3s 3.1s 8.0s 538.1s 1.5s 3.5s - 2−67 10.4h 371.8s 356.6s - 1468.7s 1126.2s -
25 50 324.2s 2.3s 3.1s 360.2s 1.5s 2.8s - 2−70 8.8h 452.8s 472.1s - 6135.3s 1991.7s -
26 52 417.6s 2.0s 1.8s 771.1s 1.7s 4.6s - 2−73 - 346.1s 404.7s - 1183.7s 786.5s -
27 54 730.5s 2.1s 8.3s 1133.3s 1.3s 4.4s - 2−76 - 424.6s 421.9s - 1619.1s 1711.5s -
28 56 450.8s 3.3s 7.2s 1417.3s 1.7s 4.3s - 2−79 - 332.9s 408.4s - 6503.0s 512.4s -

Total 4889.1s 62.7s 88.3s 9049.1s 68.6s 136.3s 11.9h 62.0h 4.0h 2.6h 61.2h 14.9h 5.3h 53.2h
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Table 14: Experimental results of RECTANGLE.

Differential property

Round #SD T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP PrOpt T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP

1 1 0.0s 0.0s 0.1s 0.1s 0.1s 0.1s 1s 2−2 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s
2 2 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 1s 2−4 0.0s 0.1s 0.1s 0.1s 0.1s 0.1s 8s
3 3 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 1s 2−7 0.1s 0.1s 0.2s 0.1s 0.1s 0.2s 27s
4 4 0.0s 0.0s 0.1s 0.0s 0.0s 0.1s 2s 2−10 0.2s 0.1s 0.2s 0.2s 0.2s 0.2s 128s
5 6 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 11s 2−14 0.7s 0.3s 0.4s 0.5s 0.3s 0.4s 6s
6 8 0.3s 0.2s 0.2s 0.2s 0.1s 0.2s 13s 2−18 1.4s 0.8s 0.6s 1.0s 0.4s 0.6s 17s
7 11 0.7s 0.7s 0.7s 0.6s 0.6s 0.7s 11s 2−25 8.0s 5.1s 6.3s 7.3s 5.6s 7.5s 28s
8 13 0.9s 0.4s 0.9s 0.7s 0.5s 1.0s 11s 2−31 29.3s 15.1s 22.6s 35.8s 20.0s 44.6s 41s
9 15 1.7s 0.8s 1.6s 2.1s 0.6s 2.2s 11s 2−36 76.0s 19.1s 23.2s 71.1s 20.4s 33.1s 96s
10 17 3.0s 1.0s 2.4s 3.9s 0.9s 4.3s 25s 2−41 165.9s 20.7s 82.1s 157.1s 57.8s 92.3s 297s
11 19 5.0s 1.1s 2.9s 7.3s 0.8s 11.4s 47s 2−46 289.7s 38.4s 77.8s 325.6s 40.5s 159.8s 669s
12 21 10.3s 1.3s 11.6s 11.1s 1.6s 15.1s 120s 2−51 562.2s 40.3s 142.8s 793.1s 114.6s 205.2s 2798s
13 23 15.7s 1.3s 10.5s 17.2s 1.2s 16.4s 597s 2−56 1167.3s 49.0s 200.3s 1401.6s 114.2s 560.0s 12410s
14 25 21.2s 1.3s 12.7s 39.5s 2.5s 28.7s 2218s 2−61 1701.4s 59.7s 396.8s 2519.3s 154.6s 618.2s 40989s
15 27 35.1s 1.5s 30.0s 41.3s 1.7s 35.3s 12753s 2−66 2880.8s 60.7s 407.3s 3237.2s 271.4s 644.4s -
16 29 60.3s 1.8s 22.6s 96.8s 2.3s 51.4s 36891s 2−71 3851.9s 68.8s 606.7s 5751.6s 184.5s 1125.7s -
17 31 48.0s 2.6s 34.0s 115.0s 5.1s 145.5s - 2−76 4619.1s 95.5s 494.9s 8050.6s 320.9s 2270.6s -
18 33 91.0s 3.9s 38.8s 193.7s 3.3s 129.0s - 2−81 6793.6s 91.7s 715.2s 4.0h 354.2s 2576.7s -
19 35 120.8s 9.6s 83.3s 184.8s 3.8s 193.5s - 2−86 8283.0s 128.7s 402.2s 3.9h 444.8s 930.2s -
20 37 169.0s 6.4s 63.7s 277.8s 4.7s 102.6s - 2−91 3.2h 107.3s 304.8s 8.4h 527.5s 938.3s -
21 39 194.0s 8.2s 36.8s 311.6s 7.7s 180.6s - 2−96 4.6h 148.3s 460.4s 12.4h 624.3s 1132.1s -
22 41 223.1s 8.7s 70.6s 387.5s 7.2s 245.5s - 2−101 7.0h 219.5s 702.2s 11.6h 927.0s 3118.8s -
23 43 315.7s 9.2s 60.8s 396.7s 12.6s 402.2s - 2−106 8.7h 187.1s 391.6s 16.1h 721.4s 3243.3s -
24 45 270.6s 6.0s 117.8s 572.3s 10.0s 365.5s - 2−111 9.2h 241.0s 1106.4s - 1124.1s 2689.9s -
25 47 292.4s 10.0s 80.8s 796.7s 28.5s 370.8s - 2−116 10.4h 262.1s 806.3s - 1888.1s 3221.4s -

Total 1878.9s 76.2s 682.9s 3457.1s 96.1s 2302.3s 14.6h 51.7h 1859.4s 7351.2s 62.6h 7917.1s 6.6h 15.9h

Linear property

Round #SL T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP CorOpt T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP

1 1 0.0s 0.0s 0.1s 0.1s 0.1s 0.1s 1s 2−1 0.0s 0.0s 0.1s 0.1s 0.1s 0.1s 0s
2 2 0.0s 0.0s 0.0s 0.0s 0.0s 0.1s 1s 2−2 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 1s
3 3 0.0s 0.0s 0.0s 0.0s 0.0s 0.1s 1s 2−4 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 5s
4 4 0.0s 0.0s 0.0s 0.0s 0.0s 0.1s 2s 2−6 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 9s
5 6 0.1s 0.1s 0.1s 0.1s 0.1s 0.2s 6s 2−8 0.3s 0.1s 0.2s 0.3s 0.1s 0.2s 41s
6 8 0.2s 0.1s 0.1s 0.2s 0.1s 0.2s 8s 2−10 0.6s 0.3s 0.4s 0.5s 0.2s 0.3s 6s
7 10 0.5s 0.4s 0.2s 0.3s 0.2s 0.3s 5s 2−13 3.2s 1.4s 1.9s 2.9s 1.4s 3.1s 15s
8 12 0.6s 0.6s 0.4s 0.6s 0.4s 0.5s 9s 2−16 11.3s 4.3s 4.4s 12.9s 11.1s 14.6s 24s
9 14 1.0s 1.2s 0.8s 1.3s 1.2s 0.6s 11s 2−19 40.0s 14.6s 15.1s 31.0s 27.0s 24.8s 78s
10 16 2.3s 1.8s 0.8s 3.1s 2.8s 1.6s 25s 2−22 95.5s 46.6s 30.2s 88.6s 72.1s 47.2s 260s
11 18 4.5s 3.5s 1.4s 6.8s 6.5s 1.8s 38s 2−25 222.7s 155.0s 75.6s 314.2s 169.9s 126.7s 1772s
12 20 6.4s 5.2s 2.2s 9.3s 10.0s 3.1s 131s 2−28 483.3s 258.4s 168.7s 677.1s 283.2s 225.5s 5927s
13 22 9.8s 7.7s 2.6s 13.9s 12.8s 3.8s 428s 2−31 1340.7s 828.6s 312.4s 1250.9s 832.9s 834.5s 31491s
14 24 18.2s 9.2s 7.0s 21.7s 29.5s 7.3s 1615s 2−34 2618.2s 1545.9s 585.7s 3349.3s 1742.9s 583.8s 177473s
15 26 25.5s 17.7s 6.1s 40.7s 26.0s 12.8s 5588s 2−37 3794.3s 2588.5s 1311.7s 4285.1s 3572.2s 1109.3s -
16 28 34.6s 27.4s 6.9s 75.4s 47.8s 12.7s 21352s 2−40 7710.3s 4636.6s 1644.8s 8345.7s 7103.5s 2965.5s -
17 30 42.4s 33.0s 8.6s 97.4s 58.6s 14.3s - 2−42 4966.9s 1278.3s 294.4s 4328.0s 1192.9s 139.8s -
18 32 62.5s 42.5s 8.0s 81.4s 70.2s 26.5s - 2−45 3.0h 4152.5s 765.6s 3.9h 6637.5s 677.9s -
19 34 99.5s 44.7s 20.7s 147.6s 86.9s 23.4s - 2−48 4.0h 5819.1s 2215.6s 12.6h 9508.1s 2565.4s -
20 36 126.6s 63.1s 21.0s 260.1s 152.0s 32.7s - 2−51 5.3h 7073.1s 2853.6s 19.4h 4.0h 2214.9s -
21 38 121.8s 90.1s 18.5s 212.1s 183.7s 35.8s - 2−54 11.2h 3.1h 1498.2s - 9.0h 5496.8s -
22 40 179.6s 128.1s 18.2s 213.0s 214.0s 51.4s - 2−57 15.2h 3.4h 3556.9s - 15.9h 4551.9s -
23 42 229.7s 125.6s 30.1s 395.4s 222.6s 21.6s - 2−60 - 4.0h 2198.4s - 17.1h 5900.3s -
24 44 179.6s 115.1s 40.4s 361.9s 251.6s 27.1s - 2−63 - 10.8h 2669.2s - - 4.9h -
25 46 331.4s 149.2s 32.1s 547.5s 325.5s 66.4s - 2−66 - 12.3h 6083.9s - - 6.8h -

Total 1476.9s 866.4s 226.3s 2489.8s 1702.6s 344.2s 8.1h 44.6h 41.5h 7.3h 42.3h 54.6h 19.3h 60.3h
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Table 15: Experimental results of LBlock.

Differential property

Round #SD T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP PrOpt T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP

1 0 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0s 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0s
2 1 0.0s 0.0s 0.1s 0.1s 0.1s 0.1s 0s 2−2 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s
3 2 0.1s 0.0s 0.1s 0.1s 0.1s 0.1s 0s 2−4 0.1s 0.1s 0.2s 0.1s 0.1s 0.2s 0s
4 3 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s 2−6 0.1s 0.1s 0.2s 0.1s 0.1s 0.2s 1s
5 4 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s 2−8 0.1s 0.1s 0.2s 0.2s 0.1s 0.2s 1s
6 6 0.1s 0.1s 0.1s 0.1s 0.1s 0.2s 1s 2−12 0.4s 0.3s 0.5s 0.4s 0.3s 0.4s 1s
7 8 0.2s 0.1s 0.2s 0.2s 0.2s 0.2s 1s 2−16 1.1s 0.6s 0.9s 0.6s 0.4s 0.7s 1s
8 11 0.3s 0.3s 0.4s 0.3s 0.3s 0.3s 2s 2−22 2.1s 1.9s 2.5s 1.2s 1.0s 1.3s 2s
9 14 0.5s 0.4s 0.5s 0.4s 0.4s 0.4s 2s 2−28 2.9s 2.3s 3.4s 2.0s 1.7s 2.1s 2s
10 18 1.2s 0.9s 1.2s 1.0s 0.7s 1.1s 6s 2−36 5.8s 4.6s 6.6s 5.5s 4.2s 6.4s 6s
11 22 1.8s 1.5s 1.8s 2.9s 2.0s 2.7s 4s 2−44 11.7s 8.9s 10.7s 13.9s 10.6s 17.3s 4s
12 24 1.6s 0.8s 0.7s 2.9s 0.8s 1.0s 5s 2−48 11.5s 4.0s 3.7s 15.6s 4.4s 6.3s 5s
13 27 3.1s 1.4s 1.8s 5.8s 1.4s 2.1s 25s 2−56 33.5s 17.5s 15.6s 49.5s 28.9s 53.2s 812s
14 30 4.5s 1.7s 1.5s 10.5s 2.7s 2.8s 8s 2−62 57.2s 12.9s 25.2s 87.8s 33.7s 64.8s 848s
15 32 4.2s 1.4s 1.7s 9.0s 0.8s 2.1s 19s 2−66 69.2s 9.4s 13.2s 83.1s 14.6s 24.6s 820s
16 35 10.2s 2.2s 2.5s 23.7s 2.6s 4.1s 30s 2−72 135.2s 26.6s 27.0s 182.2s 36.8s 106.1s 6002s
17 36 5.0s 0.6s 0.4s 13.8s 0.4s 0.4s 29s 2−76 108.4s 11.9s 17.4s 167.0s 33.9s 35.7s -
18 39 19.5s 1.4s 1.9s 48.6s 1.2s 2.4s 10s 2−82 269.4s 22.6s 39.4s 518.0s 63.4s 123.4s -
19 41 19.4s 0.9s 1.1s 32.3s 0.5s 0.7s 190s 2−86 411.6s 19.3s 18.7s 515.4s 41.0s 79.0s -
20 44 28.4s 1.6s 1.7s 106.0s 1.0s 2.1s 1828s 2−92 606.8s 40.6s 42.5s 1202.6s 151.1s 265.9s -
21 45 13.1s 0.6s 0.4s 76.3s 0.3s 0.4s - 2−96 582.5s 25.2s 32.5s 1080.4s 38.8s 81.8s -
22 48 54.6s 1.1s 1.0s 112.8s 0.6s 0.9s - 2−102 1021.6s 32.4s 40.4s 2629.1s 148.4s 211.8s -
23 50 54.1s 0.8s 1.3s 146.5s 0.5s 0.8s - 2−106 710.2s 21.2s 17.5s 1490.3s 60.1s 60.1s -
24 53 81.5s 1.8s 1.3s 485.3s 0.8s 1.4s - 2−112 1432.8s 39.2s 33.8s 4623.3s 79.1s 113.9s -
25 54 36.0s 0.8s 0.8s 280.0s 0.3s 0.7s - 2−115 924.9s 18.0s 21.5s 1620.6s 42.3s 46.9s -
26 57 107.8s 1.3s 1.8s 347.2s 0.7s 1.0s - 2−121 2069.9s 35.3s 43.9s 3488.8s 65.1s 93.2s -
27 59 73.1s 1.1s 0.8s 497.5s 0.6s 1.3s - 2−126 1746.7s 37.8s 58.7s 3892.5s 99.6s 111.3s -
28 62 114.6s 1.6s 2.7s 765.8s 1.0s 1.1s - 2−131 2012.3s 27.1s 52.6s 5177.3s 73.2s 93.9s -
29 63 87.9s 0.8s 1.5s 425.1s 0.4s 0.7s - 2−135 1971.9s 23.7s 34.9s 3514.1s 78.9s 132.5s -
30 66 168.0s 1.9s 1.4s 874.6s 0.9s 1.2s - 2−141 3388.0s 32.8s 54.8s 2.5h 102.5s 152.1s -
31 68 141.3s 1.5s 1.7s 859.6s 0.7s 1.2s - 2−146 2578.6s 48.1s 60.9s 3.4h 127.1s 226.9s -
32 71 219.5s 2.2s 3.1s 1097.4s 1.2s 1.3s - 2−151 3397.1s 43.0s 69.2s 2.5h 125.8s 137.9s -

Total 1251.8s 31.1s 35.4s 6225.8s 23.5s 35.1s 352s 6.5h 567.9s 748.5s 16.9h 1467.7s 2250.2s 2.4h

Linear property

Round #SL T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP CorOpt T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP

1 0 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0s 1 0.0s 0.0s 0.1s 0.0s 0.0s 0.1s 0s
2 1 0.0s 0.0s 0.1s 0.1s 0.1s 0.1s 0s 2−1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0s
3 2 0.0s 0.1s 0.1s 0.1s 0.1s 0.1s 0s 2−2 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0s
4 3 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0s 2−3 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0s
5 4 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s 2−4 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s
6 6 0.1s 0.1s 0.1s 0.1s 0.1s 0.2s 1s 2−6 0.2s 0.2s 0.2s 0.2s 0.2s 0.2s 1s
7 8 0.2s 0.2s 0.2s 0.2s 0.2s 0.2s 1s 2−8 0.4s 0.3s 0.4s 0.3s 0.3s 0.3s 2s
8 11 0.4s 0.4s 0.4s 0.3s 0.3s 0.4s 2s 2−11 0.7s 0.7s 0.7s 0.6s 0.5s 0.6s 2s
9 14 0.7s 0.6s 0.7s 0.4s 0.4s 0.5s 2s 2−14 1.0s 0.8s 1.0s 0.8s 0.6s 0.9s 2s
10 18 1.3s 1.0s 1.2s 1.2s 0.9s 1.3s 6s 2−18 1.7s 1.6s 1.9s 2.4s 1.4s 1.9s 8s
11 22 1.9s 1.6s 2.0s 2.9s 2.5s 3.7s 4s 2−22 3.1s 2.6s 3.4s 5.2s 3.8s 5.6s 4s
12 24 1.7s 0.9s 1.1s 3.0s 1.2s 1.3s 6s 2−24 3.9s 1.5s 1.5s 6.9s 3.1s 1.8s 5s
13 27 3.9s 1.3s 1.9s 7.3s 1.6s 1.8s 38s 2−27 9.2s 4.2s 4.1s 9.6s 6.1s 6.6s 2103s
14 30 5.1s 2.1s 2.2s 13.1s 2.9s 2.8s 10s 2−30 8.4s 2.8s 3.8s 26.8s 4.8s 11.8s 15s
15 32 3.9s 1.1s 1.6s 17.5s 0.9s 1.3s 28s 2−33 18.9s 5.0s 6.9s 32.6s 15.5s 11.1s 5669s
16 35 10.2s 2.1s 2.5s 26.0s 2.7s 3.5s 55s 2−36 24.1s 6.3s 10.5s 65.8s 10.7s 16.0s -
17 36 4.5s 0.5s 0.6s 15.1s 0.4s 0.6s 31s 2−37 16.9s 1.7s 2.8s 41.5s 4.8s 3.0s -
18 39 17.1s 1.5s 1.8s 39.4s 1.6s 1.9s 11s 2−40 37.3s 4.1s 5.6s 129.6s 6.7s 7.7s -
19 41 17.0s 0.8s 1.1s 38.0s 0.5s 0.7s 6s 2−42 40.1s 3.6s 4.0s 132.5s 5.3s 16.3s -
20 44 34.4s 1.6s 1.6s 80.0s 1.6s 2.8s 40s 2−45 74.2s 6.3s 4.6s 306.1s 7.7s 12.3s -
21 45 11.7s 0.6s 0.4s 79.1s 0.3s 0.6s - 2−47 59.6s 6.2s 4.7s 240.7s 7.7s 7.6s -
22 48 58.0s 1.3s 1.8s 173.6s 0.9s 0.9s - 2−50 144.8s 6.2s 6.5s 411.0s 18.2s 12.5s -
23 50 48.5s 1.0s 1.2s 168.4s 0.6s 0.7s - 2−52 171.2s 4.1s 8.7s 604.2s 16.1s 21.7s -
24 53 89.8s 2.0s 1.9s 312.5s 0.9s 1.3s - 2−55 264.9s 12.7s 9.2s 1089.1s 15.8s 34.1s -
25 54 32.3s 0.7s 0.4s 250.3s 0.4s 0.6s - 2−56 128.4s 3.6s 3.9s 787.1s 4.9s 8.2s -
26 57 106.0s 1.5s 2.2s 587.7s 1.1s 1.5s - 2−59 311.9s 8.7s 12.3s 1531.2s 14.9s 15.6s -
27 59 87.7s 1.3s 1.6s 630.3s 0.8s 1.9s - 2−62 365.2s 9.0s 11.1s 1923.1s 19.6s 38.6s -
28 62 136.8s 2.4s 2.2s 863.4s 1.5s 2.3s - 2−65 438.5s 18.5s 22.1s 1504.3s 24.0s 51.1s -
29 63 49.5s 1.1s 1.0s 431.6s 0.5s 1.0s - 2−66 392.4s 5.2s 6.1s 598.4s 13.1s 20.0s -
30 66 168.3s 1.6s 2.8s 1093.4s 1.2s 1.7s - 2−69 632.0s 12.4s 10.0s 1619.4s 18.2s 32.0s -
31 68 124.9s 1.5s 2.1s 645.3s 1.2s 1.3s - 2−72 799.8s 19.1s 27.7s 2942.4s 35.6s 50.3s -
32 71 225.9s 2.6s 3.3s 957.0s 1.8s 1.5s - 2−74 747.4s 12.2s 16.6s 2177.9s 19.9s 21.8s -

Total 1242.0s 33.5s 39.9s 6437.4s 29.5s 38.8s 242s 4696.7s 159.9s 190.8s 4.5h 279.8s 410.2s 2.2h
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Table 16: Experimental results of TWINE.

Differential property
Round #SD T ∅CaD TR−1

CaD T 0
CaD T ∅Cry TR−1

Cry T 0
Cry TMILP PrOpt T ∅CaD TR−1

CaD T 0
CaD T ∅Cry TR−1

Cry T 0
Cry TMILP

1 0 0.0s 0.0s 0.0s 0.0s 0.0s 0.1s 0s 1 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 0s
2 1 0.0s 0.0s 0.1s 0.1s 0.1s 0.1s 0s 2−2 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0s
3 2 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0s 2−4 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0s
4 3 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0s 2−6 0.2s 0.1s 0.1s 0.2s 0.2s 0.2s 1s
5 4 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s 2−8 0.2s 0.2s 0.2s 0.2s 0.2s 0.2s 1s
6 6 0.1s 0.1s 0.2s 0.2s 0.2s 0.2s 1s 2−12 0.6s 0.4s 0.5s 0.5s 0.4s 0.5s 1s
7 8 0.2s 0.1s 0.2s 0.2s 0.2s 0.2s 1s 2−16 1.0s 0.6s 0.8s 0.7s 0.5s 0.6s 1s
8 11 0.3s 0.3s 0.4s 0.4s 0.3s 0.3s 1s 2−22 2.7s 1.9s 2.3s 1.5s 1.0s 1.4s 2s
9 14 0.5s 0.4s 0.5s 0.4s 0.3s 0.4s 2s 2−28 3.6s 2.5s 3.3s 2.6s 1.5s 2.1s 2s
10 18 1.2s 1.2s 1.3s 1.0s 1.1s 1.1s 6s 2−38 10.7s 8.2s 10.0s 10.1s 8.8s 9.8s 52s
11 22 2.2s 1.9s 1.9s 3.4s 3.0s 3.5s 4s 2−46 20.6s 14.5s 15.4s 28.0s 27.2s 29.6s 49s
12 24 2.0s 0.9s 1.0s 3.1s 0.9s 1.0s 4s 2−51 21.4s 11.7s 10.9s 43.5s 15.3s 22.1s 63s
13 27 4.7s 1.7s 1.3s 4.7s 1.8s 2.2s 24s 2−58 53.7s 30.2s 30.4s 81.7s 69.0s 82.4s 7905s
14 30 6.2s 1.6s 2.5s 15.2s 3.4s 3.4s 14s 2−64 105.1s 31.9s 51.8s 139.7s 82.3s 118.4s 17153s
15 32 4.5s 1.4s 1.0s 10.7s 0.9s 1.3s 14s 2−68 94.9s 16.6s 22.1s 163.5s 56.8s 75.5s 28840s
16 35 14.6s 2.6s 2.5s 40.1s 3.9s 3.6s 19s 2−74 207.8s 48.1s 59.7s 380.7s 97.0s 133.1s -
17 36 6.5s 0.5s 0.6s 17.2s 0.4s 0.5s 17s 2−77 138.5s 11.6s 15.9s 294.5s 46.2s 76.1s -
18 39 21.4s 1.6s 1.8s 71.1s 1.7s 1.4s 9s 2−83 395.8s 35.8s 37.2s 814.1s 116.3s 140.8s -
19 41 17.3s 1.0s 0.9s 55.4s 0.8s 0.7s 5s 2−88 564.2s 51.9s 52.9s 1153.9s 118.8s 182.6s -
20 44 37.3s 2.0s 2.0s 169.3s 1.3s 1.9s 17s 2−94 1091.2s 79.2s 94.3s 1852.2s 235.2s 223.7s -
21 45 19.7s 0.9s 0.4s 85.6s 0.3s 0.3s - 2−97 745.8s 20.5s 16.7s 1382.7s 45.4s 63.1s -
22 48 61.3s 1.8s 1.0s 392.2s 0.8s 0.9s - 2−103 1302.9s 31.0s 26.0s 2560.2s 89.6s 132.2s -
23 50 53.7s 1.2s 0.6s 260.6s 0.7s 0.7s - 2−107 1031.4s 17.0s 25.9s 3388.3s 32.5s 50.4s -
24 53 103.1s 2.5s 1.3s 472.7s 1.1s 1.3s - 2−113 2105.8s 38.1s 29.0s 4141.7s 25.5s 51.4s -
25 54 55.7s 0.7s 0.5s 249.4s 0.6s 0.4s - 2−116 1047.5s 8.7s 12.5s 4121.9s 20.5s 33.1s -
26 57 125.5s 1.6s 1.2s 526.3s 1.0s 1.0s - 2−122 2166.5s 22.2s 24.4s 7015.3s 63.0s 69.8s -
27 59 94.9s 1.4s 0.8s 481.3s 0.8s 1.2s - 2−126 1780.4s 16.5s 25.5s 5017.5s 21.0s 70.6s -
28 62 141.3s 2.6s 2.0s 872.2s 1.0s 1.3s - 2−132 3061.5s 19.8s 33.8s 7978.8s 33.5s 97.5s -
29 63 76.7s 1.0s 1.2s 472.8s 0.7s 0.6s - 2−136 2248.9s 29.9s 31.5s 6112.0s 131.5s 91.0s -
30 66 141.8s 1.9s 1.5s 878.2s 1.1s 1.5s - 2−142 3717.6s 36.2s 40.9s 3.9h 97.7s 141.6s -
31 68 99.6s 1.9s 2.4s 796.7s 0.9s 0.8s - 2−146 3306.6s 23.8s 25.8s 3.3h 64.5s 77.3s -
32 71 222.6s 2.9s 2.7s 801.9s 1.6s 1.4s - 2−152 5053.9s 44.1s 72.8s 6.7h 71.6s 89.8s -
33 72 94.0s 1.4s 0.9s 405.7s 0.6s 1.0s - 2−155 3176.0s 29.0s 20.8s 4.1h 82.2s 77.2s -
34 75 335.3s 2.3s 1.5s 1520.1s 1.3s 1.4s - 2−161 5699.4s 36.6s 49.8s 7.8h 90.5s 133.3s -
35 77 284.3s 2.3s 1.2s 785.0s 1.5s 1.2s - 2−166 5624.9s 71.2s 94.3s 7.9h 205.6s 183.2s -
36 80 404.8s 3.5s 3.2s 1530.4s 2.0s 1.5s - 2−172 7104.5s 74.4s 94.8s 8.7h 317.3s 376.0s -

Total 2433.4s 47.5s 40.5s 3.0h 36.5s 38.8s 139s 14.4h 864.6s 1032.5s 55.3h 2269.0s 2836.9s 15.0h
Linear property

Round #SL T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP CorOpt T ∅CaD TR−1
CaD T 0

CaD T ∅Cry TR−1
Cry T 0

Cry TMILP

1 0 0.0s 0.0s 0.0s 0.0s 0.0s 0.1s 0s 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.1s 0s
2 1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0s 2−1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0s
3 2 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0s 2−2 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s
4 3 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s 2−3 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s
5 4 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s 2−4 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 1s
6 6 0.2s 0.1s 0.2s 0.2s 0.2s 0.2s 1s 2−6 0.2s 0.2s 0.3s 0.2s 0.2s 0.2s 2s
7 8 0.2s 0.1s 0.2s 0.2s 0.2s 0.2s 2s 2−8 0.4s 0.2s 0.3s 0.3s 0.2s 0.2s 2s
8 11 0.4s 0.3s 0.4s 0.3s 0.3s 0.3s 3s 2−11 0.6s 0.5s 0.6s 0.5s 0.4s 0.5s 3s
9 14 0.6s 0.5s 0.4s 0.4s 0.5s 0.4s 3s 2−14 1.5s 0.9s 0.9s 0.9s 0.5s 0.7s 4s
10 18 1.3s 1.3s 1.3s 1.1s 1.0s 1.2s 10s 2−18 2.6s 2.1s 1.8s 2.0s 1.2s 1.8s 17s
11 22 2.7s 1.6s 2.2s 4.4s 2.4s 2.8s 4s 2−22 3.7s 3.4s 2.9s 6.0s 4.3s 5.0s 12s
12 24 2.1s 1.0s 0.9s 3.4s 1.2s 1.1s 6s 2−24 4.4s 2.0s 1.2s 6.2s 2.5s 3.1s 8s
13 27 4.9s 1.3s 1.7s 9.1s 2.3s 2.1s 53s 2−27 7.6s 2.4s 2.8s 13.7s 5.0s 2.6s 364s
14 30 5.6s 1.8s 2.5s 15.2s 1.8s 5.0s 12s 2−30 12.0s 3.7s 3.5s 27.9s 4.9s 6.1s 16s
15 32 6.3s 1.0s 1.2s 17.6s 2.0s 1.1s 37s 2−32 10.8s 2.6s 2.1s 30.1s 3.5s 2.9s 261s
16 35 13.5s 2.2s 2.7s 36.8s 4.0s 4.1s 49s 2−35 22.2s 4.4s 5.3s 55.7s 5.5s 5.8s 66s
17 36 6.3s 0.8s 0.7s 33.4s 0.3s 0.5s 57s 2−36 17.6s 1.6s 1.5s 53.4s 0.7s 1.1s -
18 39 24.5s 1.7s 1.4s 82.6s 1.3s 2.4s 11s 2−39 35.1s 3.6s 3.4s 84.7s 2.6s 3.3s -
19 41 17.3s 1.4s 1.9s 45.1s 0.7s 1.1s 7s 2−41 23.0s 2.8s 1.9s 138.6s 1.5s 1.9s -
20 44 48.2s 1.8s 1.8s 140.2s 1.9s 1.7s 42s 2−44 72.5s 4.3s 3.9s 226.9s 2.8s 3.1s -
21 45 19.6s 0.8s 0.4s 90.2s 0.4s 0.4s - 2−45 24.1s 1.0s 2.1s 116.6s 0.6s 0.8s -
22 48 56.0s 1.5s 1.4s 191.6s 0.8s 0.9s - 2−48 127.5s 4.5s 3.1s 442.7s 2.0s 2.2s -
23 50 61.0s 1.2s 0.6s 197.6s 0.6s 0.6s - 2−50 81.2s 2.7s 2.1s 398.6s 1.7s 1.8s -
24 53 95.3s 2.2s 1.9s 289.1s 1.0s 1.1s - 2−53 171.5s 4.8s 3.5s 760.4s 1.9s 2.4s -
25 54 48.3s 1.0s 0.4s 285.4s 0.5s 0.5s - 2−54 94.4s 2.2s 1.9s 180.5s 0.8s 1.5s -
26 57 106.1s 1.8s 1.2s 700.0s 1.0s 1.2s - 2−57 219.0s 3.4s 2.5s 1219.8s 2.4s 2.4s -
27 59 109.3s 1.8s 0.8s 610.2s 1.1s 0.7s - 2−59 202.8s 3.8s 3.2s 754.1s 1.5s 1.2s -
28 62 128.4s 2.4s 2.8s 1025.2s 1.1s 1.3s - 2−62 378.8s 5.0s 5.8s 1025.0s 2.7s 3.1s -
29 63 59.2s 1.3s 0.5s 366.7s 0.6s 0.5s - 2−63 176.4s 1.7s 1.9s 500.0s 1.0s 1.6s -
30 66 168.0s 2.3s 2.3s 868.9s 1.2s 1.1s - 2−66 402.4s 5.2s 4.2s 1039.4s 1.5s 2.4s -
31 68 195.1s 2.1s 0.9s 709.7s 1.0s 0.9s - 2−68 327.0s 3.9s 4.6s 975.0s 2.8s 2.2s -
32 71 220.2s 2.2s 1.9s 1207.4s 1.3s 1.8s - 2−71 474.9s 6.3s 5.6s 2072.6s 3.4s 2.9s -
33 72 143.5s 1.4s 0.6s 471.4s 0.5s 1.1s - 2−72 244.7s 3.5s 2.1s 687.6s 1.7s 1.2s -
34 75 379.8s 2.7s 1.6s 927.0s 1.1s 1.4s - 2−75 605.9s 6.6s 5.0s 2083.3s 2.6s 3.1s -
35 77 370.2s 2.4s 1.4s 1060.9s 1.1s 1.1s - 2−77 445.7s 4.5s 3.9s 1276.3s 2.7s 2.2s -
36 80 407.6s 2.8s 3.8s 1422.2s 1.5s 1.9s - 2−80 843.3s 5.6s 7.4s 3231.0s 3.7s 5.1s -

Total 2702.0s 47.3s 42.1s 3.0h 35.0s 41.5s 299s 5034.2s 99.5s 91.8s 4.8h 69.3s 75.1s 758s
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Table 17: Experimental results of SPECK32.

Differential property Linear property
Round PrOpt T ∅CaD TR−1

CaD T 0
CaD T ∅Cry TR−1

Cry T 0
Cry TMILP CorOpt T ∅CaD TR−1

CaD T 0
CaD T ∅Cry TR−1

Cry T 0
Cry TMILP

1 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s - 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s -
2 2−1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s - 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s -
3 2−3 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s - 2−1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s -
4 2−5 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s - 2−3 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s -
5 2−9 0.7s 0.5s 0.4s 0.7s 0.6s 0.6s 9.8s 2−5 0.2s 0.2s 0.1s 0.2s 0.2s 0.2s -
6 2−13 1.7s 1.2s 1.9s 3.5s 3.5s 3.7s 173.7s 2−7 0.5s 0.5s 0.4s 0.5s 0.4s 0.5s -
7 2−18 12.8s 6.4s 11.3s 26.3s 25.5s 19.6s 7175.9s 2−9 1.1s 1.0s 0.8s 1.3s 1.2s 1.1s -
8 2−24 87.5s 53.1s 72.1s 170.7s 195.8s 204.4s - 2−12 6.5s 8.0s 6.7s 16.9s 24.2s 22.3s -
9 2−30 417.5s 367.0s 376.1s 1106.5s 722.1s 767.6s - 2−14 16.4s 11.3s 7.8s 85.8s 49.4s 42.3s -
10 2−34 1080.6s 515.0s 688.1s 3757.9s 1261.0s 1780.9s - 2−17 98.5s 47.2s 78.3s 173.3s 180.0s 140.0s -
11 2−38 0.7h 0.2h 0.3h 3.2h 1.5h 1.2h - 2−19 138.2s 73.6s 75.4s 195.6s 235.3s 122.8s -
12 2−42 1.2h 0.3h 0.5h 4.4h 0.9h 1.5h - 2−20 57.9s 38.3s 60.8s 157.7s 90.2s 50.9s -
13 2−45 1.5h 0.3h 0.2h 5.8h 1.1h 0.5h - 2−22 138.3s 41.3s 19.4s 362.7s 174.2s 49.2s -
14 2−49 2.3h 0.3h 0.2h 12.7h 1.8h 1.3h - 2−24 202.0s 43.5s 88.5s 590.3s 112.6s 53.0s -
15 2−54 4.5h 0.7h 0.9h 34.4h 3.6h 3.2h - 2−26 294.4s 60.1s 21.9s 1146.0s 83.0s 39.7s -
16 2−58 6.2h 0.3h 0.2h 48.6h 2.8h 1.7h - 2−28 731.3s 44.9s 79.9s 1476.3s 227.3s 156.4s -
17 2−63 13.8h 1.0h 1.3h 158.9h 5.9h 7.6h - 2−30 829.0s 112.0s 32.7s 3581.2s 87.5s 179.6s -
18 2−69 41.3h 7.3h 12.5h - 49.2h 46.5h - 2−34 1.6h 0.7h 0.2h 6.2h 1.2h 1.5h -
19 2−74 71.3h 18.3h 43.1h - 43.8h 129.4h - 2−36 1.8h 1.2h 0.7h 8.6h 2.7h 0.8h -
20 2−77 73.6h 4.7h 2.8h - 8.7h 57.0h - 2−38 1.6h 1.8h 1.1h 10.0h 3.4h 1.9h -
21 2−81 - 17.2h 11.4h - 21.9h - - 2−40 2.0h 1.0h 0.8h 9.3h 0.8h 1.7h -
22 2−85 - 15.1h 10.5h - 36.9h - - 2−42 1.7h 0.6h 0.7h 13.9h 1.6h 1.6h -

Total 216.8h 66.0h 84.2h 269.2h 178.6h 250.8h 2.0h 9.3h 5.4h 3.7h 50.2h 10.0h 7.7h -

Table 18: Experimental results of SPECK48.

Differential property Linear property
Round PrOpt T ∅CaD TR−1

CaD T 0
CaD T ∅Cry TR−1

Cry T 0
Cry TMILP CorOpt T ∅CaD TR−1

CaD T 0
CaD T ∅Cry TR−1

Cry T 0
Cry TMILP

1 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s - 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s -
2 2−1 0.0s 0.1s 0.1s 0.1s 0.1s 0.1s - 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s -
3 2−3 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s - 2−1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s -
4 2−6 0.3s 0.3s 0.3s 0.2s 0.3s 0.3s - 2−3 0.1s 0.1s 0.1s 0.2s 0.2s 0.2s -
5 2−10 1.2s 1.1s 1.2s 1.0s 1.4s 1.2s 32.9s 2−6 0.7s 0.5s 0.7s 0.5s 0.6s 1.0s -
6 2−14 5.1s 3.0s 5.9s 5.4s 5.1s 6.5s 1482.7s 2−8 1.5s 1.7s 2.0s 3.3s 2.2s 3.7s -
7 2−19 27.9s 19.0s 31.6s 40.3s 33.0s 42.0s 11.4h 2−12 21.8s 14.5s 18.8s 52.8s 44.5s 38.9s -
8 2−26 319.7s 207.8s 283.6s 1053.2s 640.0s 529.6s - 2−15 111.9s 69.8s 71.5s 276.4s 234.4s 190.9s -
9 2−33 1.0h 0.6h 0.9h 2.4h 3.2h 2.1h - 2−19 1679.3s 1030.9s 1257.3s 4362.6s 4617.3s 2902.8s -
10 2−40 7.9h 5.3h 6.1h 33.7h 22.8h 27.2h - 2−22 1.6h 1.2h 0.8h 5.5h 4.6h 2.3h -
11 2−45 18.1h 5.0h 7.2h 94.7h 18.3h 14.4h - 2−25 5.9h 3.4h 2.8h 16.1h 10.3h 11.4h -
12 2−49 24.5h 2.8h 4.2h - 9.9h 8.9h - 2−28 15.8h 5.9h 5.4h 75.9h 23.3h 32.2h -
13 2−54 45.3h 4.9h 6.3h - 16.2h 24.8h - 2−30 10.6h 1.8h 4.2h 96.4h 7.7h 12.9h -
14 2−58 59.8h 4.1h 4.0h - 12.6h 15.1h - 2−33 33.8h 8.5h 9.5h - 57.1h 163.7h -
15 2−63 107.3h 3.8h 8.2h - 8.8h 24.6h - 2−37 178.1h 39.0h 45.7h - - - -
16 2−68 - 5.5h 7.8h - 27.7h 17.0h - 2−39 - 24.8h 42.3h - - - -
17 2−75 - 42.0h 64.0h - - - - 2−43 - 146.3h 162.0h - - - -
18 2−82 - 291.2h - - - - - 2−45 - 124.3h - - - - -
19 - - - - - - - - 2−48 - 56.9h - - - - -
20 - - - - - - - - 2−51 - 101.1h - - - - -
21 - - - - - - - - 2−54 - 50.1h - - - - -
22 - - - - - - - - 2−57 - 182.4h - - - - -
23 - - - - - - - - 2−59 - 79.5h - - - - -

Total 264.0h 365.2h 108.8h 131.0h 119.6h 134.2h 11.8h 246.4h 825.7h 273.1h 195.3h 104.3h 223.4h -
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Table 19: Experimental results of SPECK64.

Differential property Linear property
Round PrOpt T ∅CaD TR−1

CaD T 0
CaD T ∅Cry TR−1

Cry T 0
Cry TMILP CorOpt T ∅CaD TR−1

CaD T 0
CaD T ∅Cry TR−1

Cry T 0
Cry TMILP

1 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s - 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s -
2 2−1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s - 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s -
3 2−3 0.1s 0.1s 0.1s 0.1s 0.1s 0.2s - 2−1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s -
4 2−6 0.5s 0.5s 0.4s 0.5s 0.5s 0.3s - 2−3 0.2s 0.2s 0.1s 0.2s 0.2s 0.2s -
5 2−10 2.3s 1.6s 1.8s 3.5s 1.9s 3.0s - 2−6 1.2s 0.8s 1.0s 1.2s 1.6s 0.9s -
6 2−15 18.0s 13.9s 19.5s 29.2s 28.7s 25.8s - 2−9 5.7s 4.2s 4.8s 10.3s 13.6s 18.1s -
7 2−21 135.8s 69.6s 111.7s 212.5s 147.0s 213.2s - 2−13 61.6s 46.7s 60.5s 79.5s 132.2s 169.6s -
8 2−29 2233.4s 1465.9s 2223.1s 4943.1s 4181.3s 4714.0s - 2−17 867.7s 484.0s 765.9s 1814.9s 1630.6s 2580.6s -
9 2−34 1.8h 0.7h 0.8h 5.1h 1.6h 1.5h - 2−19 1163.1s 436.8s 1029.8s 2334.5s 1102.1s 1548.7s -
10 2−38 3.3h 0.5h 0.3h 9.8h 1.3h 1.2h - 2−21 1505.1s 167.0s 462.9s 4210.2s 702.4s 837.4s -
11 2−42 4.9h 0.2h 0.3h 19.0h 0.4h 0.5h - 2−24 1.6h 0.5h 0.2h 3.9h 0.6h 0.3h -
12 2−46 6.8h 0.3h 0.2h 35.6h 0.3h 0.4h - 2−27 3.5h 0.3h 0.6h 13.1h 1.4h 0.6h -
13 2−50 10.3h 0.1h 0.2h 54.6h 0.4h 0.4h - 2−30 7.0h 0.5h 0.4h 26.9h 1.0h 0.7h -
14 2−56 29.1h 1.0h 0.9h - 0.7h 1.7h - 2−33 17.4h 1.4h 0.6h 113.7h 4.5h 2.4h -
15 2−62 71.3h 2.1h 3.7h - 2.3h 4.9h - 2−37 65.9h 21.7h 15.1h - 54.4h 23.0h -
16 2−70 - 57.9h 66.5h - 80.6h 176.1h - 2−41 - 110.7h 66.6h - 153.0h 109.2h -
17 2−73 - 2.0h 4.3h - 0.5h 2.2h - 2−43 - 24.9h 8.5h - 10.3h 35.3h -
18 2−76 - 0.1h 0.7h - 0.1h 0.4h - 2−45 - 2.7h 0.4h - 6.3h 2.0h -
19 2−81 - 0.7h 1.6h - 0.8h 1.6h - 2−47 - 2.1h 1.8h - 0.8h 1.5h -
20 2−85 - 0.4h 1.0h - 0.4h 0.3h - 2−49 - 0.2h 0.0h - 0.4h 0.1h -
21 2−89 - 0.2h 0.6h - 0.2h 0.5h - 2−52 - 0.1h 0.0h - 0.9h 0.1h -
22 2−94 - 0.4h 0.9h - 0.3h 0.7h - 2−54 - 0.0h 0.0h - 0.1h 0.1h -
23 2−99 - 0.4h 1.0h - 0.8h 0.8h - 2−59 - 7.8h 1.1h - 3.7h 5.6h -
24 2−107 - 10.5h 23.0h - 37.8h 27.9h - 2−63 - 35.5h 43.6h - - 70.7h -
25 2−112 - 19.3h 28.2h - 18.0h 18.8h - 2−66 - 52.4h 54.1h - - - -
26 2−116 - 6.0h 2.5h - 1.8h 2.4h - 2−68 - 72.2h 6.3h - - - -
27 2−121 - 8.7h 7.8h - 5.6h 7.5h - 2−70 - 3.5h 0.4h - - - -

Total 128.2h 112.0h 145.4h 125.6h 155.1h 251.2h - 96.5h 337.0h 200.4h 160.0h 238.4h 252.9h -

Table 20: Experimental results of SPECK96.

Differential property Linear property
Round PrOpt T ∅CaD TR−1

CaD T 0
CaD T ∅Cry TR−1

Cry T 0
Cry TMILP CorOpt T ∅CaD TR−1

CaD T 0
CaD T ∅Cry TR−1

Cry T 0
Cry TMILP

1 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s - 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s -
2 2−1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s - 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s -
3 2−3 0.1s 0.2s 0.1s 0.2s 0.2s 0.2s - 2−1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s -
4 2−6 0.8s 0.8s 0.8s 0.6s 0.6s 0.6s - 2−3 0.3s 0.2s 0.2s 0.3s 0.4s 0.3s -
5 2−10 4.4s 2.5s 2.9s 6.2s 5.7s 4.8s - 2−6 1.4s 1.5s 1.9s 3.1s 1.7s 2.7s -
6 2−15 31.6s 23.0s 36.8s 46.2s 37.9s 40.1s - 2−9 15.3s 10.2s 13.0s 18.7s 21.1s 25.3s -
7 2−21 237.3s 154.2s 280.3s 339.6s 440.4s 325.9s - 2−13 163.9s 85.7s 162.2s 255.0s 324.8s 307.9s -
8 2−30 1.9h 1.4h 3.3h 2.6h 2.8h 4.3h - 2−18 3113.1s 2200.0s 4872.5s 5336.1s 8491.6s 6364.4s -
9 2−39 38.7h 24.9h 51.9h 92.7h 94.9h 131.6h - 2−22 6.5h 4.7h 7.1h 13.9h 12.0h 20.1h -
10 2−49 - 489.1h - - - - - 2−27 141.2h 85.1h 144.2h - - - -
11 - - - - - - - - 2−31 - 327.9h - - - - -
12 - - - - - - - - 2−33 - 36.2h - - - - -
13 - - - - - - - - 2−36 - 48.5h - - - - -
14 - - - - - - - - 2−39 - 42.6h - - - - -

Total 40.6h 515.5h 55.3h 95.4h 97.8h 135.9h - 148.6h 545.6h 152.6h 15.5h 14.5h 22.0h -

Table 21: Experimental results of SPECK128.

Differential property Linear property
Round PrOpt T ∅CaD TR−1

CaD T 0
CaD T ∅Cry TR−1

Cry T 0
Cry TMILP CorOpt T ∅CaD TR−1

CaD T 0
CaD T ∅Cry TR−1

Cry T 0
Cry TMILP

1 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s - 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s -
2 2−1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s - 1 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s -
3 2−3 0.1s 0.2s 0.2s 0.2s 0.2s 0.2s - 2−1 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s -
4 2−6 0.9s 1.1s 1.0s 1.2s 0.7s 1.0s - 2−3 0.3s 0.2s 0.3s 0.4s 0.4s 0.4s -
5 2−10 7.3s 5.3s 5.5s 9.7s 5.4s 5.6s - 2−6 2.3s 1.7s 4.4s 3.5s 3.2s 4.6s -
6 2−15 65.9s 44.5s 54.0s 55.7s 46.8s 55.9s - 2−9 24.3s 24.5s 36.2s 31.6s 33.5s 41.2s -
7 2−21 484.8s 331.3s 395.7s 399.7s 706.5s 426.6s - 2−13 275.5s 339.7s 395.0s 392.0s 262.2s 518.9s -
8 2−30 2.6h 2.7h 3.7h 4.1h 2.7h 3.4h - 2−18 1.2h 1.1h 2.0h 2.2h 2.3h 3.6h -
9 2−39 40.8h 37.4h 68.5h 76.0h 88.9h 63.2h - 2−22 6.9h 6.0h 9.4h 12.1h 14.1h 25.5h -
10 - - - - - - - - 2−27 152.0h 141.0h 157.3h - - - -

Total 43.6h 40.1h 72.4h 80.2h 91.8h 66.8h - 160.1h 148.3h 168.9h 14.4h 16.5h 29.3h -
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