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Abstract. In this paper, we analyze the collision resistance of the two smallest
versions of Keccak which have a width of 200 and 400 bits respectively. We show
that algebraic and linearization techniques can serve collision cryptanalysis by using
some interesting properties of the linear part of the round function of Keccak.
We present an attack on the Keccak versions that could be used in lightweight
cryptography reduced to two rounds. For Keccak[40, 160] (resp. Keccak[72, 128]
and Keccak[144, 256]) our attack has a computational complexity of 273 (resp. 252.5

and 2101.5) Keccak calls.
Keywords: Keccak · Algebraic Cryptanalysis · Hash functions · Linearization ·
Collision attack

1 Introduction
The family of primitives Keccak was designed by the Keccak team (Guido Bertoni,
Joan Daemen, Michaël Peeters and Gilles Van Assche) as a candidate to the US National
Institute of Standards and Technology’s hash function competition to create a new Secure
Hash Algorithm standard. In 2012, Keccak won this contest and six of its instances
became standardized as SHA-3. Keccak uses the Sponge construction [BDPA11a] which
was introduced in 2007 [BDPA07]. Since its creation, Keccak standardized and non
standardized instances have fostered a lot of cryptanalysis. Furthermore, to stimulate
practical cryptanalysis, the Keccak designers have organized a cryptanalysis contest on
Keccak instances with a generic security level of 280 [BDPA08b].

The first practical pre-image and collision attack on 2-round Keccak was introduced
by Naya-Plasencia, Röck and Meier in 2011 using differential cryptanalysis [NRM11].
Keccak cryptanalysis quickly started to also use algebraic techniques, starting in 2012
for collision search with a practical attack on four rounds by Dinur, Dunkelman and
Shamir [DDS12] and in 2013 for pre-image search with a SAT-based attack by Morawiecki
and Srebrny [MS13].

About collision search, Dinur, Dunkelman and Shamir published another article in
2013 [DDS13] and found the first collisions on Keccak-384 and Keccak-512 reduced
to three rounds. In 2017, building on their work, Qiao, Song, Liu and Guo [QSLG17]
presented new attacks on instances of the Crunchy contest and Song, Liao and Guo [SLG17]
presented the first practical attack against Keccak-224 reduced to five rounds, and against
Keccak[1440,160] reduced to six rounds with digests of 160 bits. Finally, in 2016 and
2017, a number of collisions on Keccak instances from the Crunchy contest were found
and later published in [GLL+20].

Pre-image attacks have been dominated since 2016 by linearization techniques following
the introduction of linear structures by Guo, Liu and Song [GLS16]. The following year,
building on their work, other cryptanalysts introduced cross-linear structures [LSLW17]
and attacked other instances of the Crunchy Contest. On larger instances of Keccak,

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-09-01 Revised: 2020-11-23 Accepted: 2021-01-23 Published: 2021-03-19

https://doi.org/10.46586/tosc.v2021.i1.239-268
mailto:yann.rotella@uvsq.fr
mailto:camille.nous@cogitamus.fr
http://creativecommons.org/licenses/by/4.0/


240 Algebraic Collision Attacks on Keccak

Kumar, Rajasree and Al-Khzaimi [KRA18] introduced the first practical attack against
Keccak-512 in 2017, also thanks to linearization techniques. The following year, building
up on the work [NRM11], Kumar, Mittal and Singh [KMS18] offered an improvement on
an attack on Keccak-384 reduced to two rounds. In 2019, Rajasree [Raj19] improved
the previous attacks on Keccak-384 and Keccak-512 reduced to three and four rounds.
In 2019, Li and Sun presented the first practical attack against Keccak-224 reduced to
three rounds as well as impractical attacks on three and four rounds of Keccak-224 and
Keccak-256 [LS19].

In the literature, there is also a plethora of cryptanalysis of keccak instances using
cube-like attacks thanks to the very low degree of the round function: the only non-linear
part is χ, which is quadratic. While those attacks are of interest to distinguish the
Keccak-p permutations from a random permutation, it is unlikely to use them in a
collision or pre-image attack on a Keccak instance.

In a summary of the current results of the Crunchy contest, the authors notice that
‘Remarkably, the smaller versions are harder to break’. Indeed, only the 1-round version of
the smallest version, namely Keccak[40,160] reduced to one round has been successfully
attacked [EW17] by just canceling the effect of the (single) round constant. It has thus
been suggested to use the smallest versions of Keccak in constrained environments [KY10].
Moreover, the permutations of the smallest instances, namely Keccak-p[200, nr] and
Keccak-p[400, nr] are used as building blocks for some Authenticated Encryption algo-
rithms for different numbers of rounds nr, such as Ketje [BDP+16] and two proposals
present in the second round of the NIST lightweight competition that started in 2018;
ISAP [DEM+20] and Elephant [BCDM20]. On the other hand, one can notice that crypt-
analysts of Keccak have mainly targeted the standards [oST15]. There exists much more
third-party cryptanalysis on the instances with 1600 bits states than the instances with
200 or 400 bits states. We thus decided to analyze the security of these smaller instances
of Keccak against collision attacks to fill this void.

Our contribution In this paper, we show that algebraic analysis can also serve collision
attacks, and not only pre-image attacks. We use a squeeze attack as described in [DDS13]
in order to provide inner state collisions. Our attack can therefore be applied even if the
output length is extended, or if Keccak is used as a XOF (eXtendable Output Function).
We control the diffusion over one round thanks to interesting properties of the θ mapping.
By analyzing the χ mapping, we derive necessary linear equations and use them as a basis
to compute Keccak states such that their inner states belong to a subset of the output set.
Our attack is better than existing ones for the versions of Keccak that have small width.
Indeed, the existing attacks on other instances of Keccak mainly work because the rate
offers a relatively large degree of freedom, whilst this is not the case for Keccak[40, 160],
Keccak[72, 128] and Keccak[144, 256] when looking for inner collisions.

Table 1 summarizes the complexity of our collision attack. The memory complexity is
negligible, as stated in Section 9.

Table 1: Summary of our contribution. The time complexity for our collision attacks is
given in number of calls to the Keccak construction when the width is 200 and 400 and
when the number of rounds is 2.

Keccak instance, nr = 2 Keccak[40, 160] Keccak[72, 128] Keccak[144, 256]

Time complexity 273 252.5 2101.5
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Comparison with previous works Our cryptanalysis works on the smallest Keccak
versions reduced to two rounds. It cannot beat the best known attacks when the width is
800 or 1600. Previous techniques [NRM11, DDS12, DDS13, QSLG17, SLG17, GLL+20]
which have been used to build squeeze attacks to get collisions in the output cannot be
employed on small versions since the attacker can only control a small amount of bits
between each iteration of Keccak-p[200] and Keccak-p[400]. Hence our attack shows
that cryptanalysis does not naturally scale with the width, even though the construction
works similarly.

Our collision attack uses linearization techniques that are usually employed in pre-
image attacks such as in [GLS16] or more recently in [SLG17, GLL+20] to improve the
work of [DDS12]. However, the linear conditions derived by the linearization of the χ
mapping in the above pre-image attacks are conditions that the state must satisfy, in other
words necessary conditions. On the other hand, we derive sufficient conditions from the
linearization of χ.

We use an interesting property of the θ mapping to control the diffusion on selected
pairs of bits. Although many things were already known on θ [SD18], our observation is
different to the extent that it is a property on pairs of bits before and after θ. This allows
us to work locally, without worrying about the effect of θ on other bits on the state or
parity-bit values of columns.

Finally, our attack is an inner collision attack, which can be applied no matter what the
output length is. This is not the case for most collision attacks, as cryptanalysts usually
look into building collisions in the output (that is, the outer part).

Outline of the paper We begin with a brief description of Keccak in Section 2. Section 3
provides a generic description of our attack. In Section 4, we describe the properties of the
Keccak step mappings that we will use as a starting point for our cryptanalysis while
Section 5 fixes the choices we make for our cryptanalysis. Section 6 describes our specific
use of the χ mapping linearization and Section 7 provides improvements of the attack.
Section 8 describes how to use our attack for any possible rate. Finally, Section 9 provides
the exact complexity of our attack and a brief description of the implementation of our
proof of concept.

2 Description of the Keccak family
In this section, we provide a short description of the Keccak family.

2.1 The sponge construction
The family of hash functions Keccak is built on the sponge construction [BDPA07,
BDPA08a, BDPA11a, BDPA13]. As illustrated in Figure 1, the sponge construction is a
mode of operation which maps an inputM of arbitrary length called the message to an
output Z of fixed length d, where d is called the diversifier. To do so, it uses a permutation
f and a padding rule. The permutation f operates on a state S of width b = r + c where
c is called the capacity and r the bitrate. The bits of the state S are numbered from 0
to b− 1. The first r bits of a state S form the outer state, and its value is denoted by S,
while the next c bits correspond to the inner state, and its value is denoted by Ŝ.

The construction works as follows. The messageM is first padded so that its length is
a multiple of r. Then, it is cut into n bit strings of length r: M0, . . . ,Mn−1. The state
is initialized to 0b. The mode of operation then proceeds in two phases. The absorbing
phase consists in XORing the r first bits of the current state with Mi, apply f , and iterate.
The squeezing phase consists in returning the outer part of the state Z0, then applying f ,
then returning the outer state of the image f(Z0) = Z1 and concatenate this image to Z0,
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and so on and so forth. When the length of Z0||Z1|| · · · is greater than the desired length
d, it is truncated to such length to form the output Z.

Keccak is the family of sponge functions which use the padding rule pad10*1 and a
permutation f from the Keccak-p family as the underlying permutation.

Absorbing phase Squeezing phase

M0

c bits

r bits

f

M1

f

M2

f

M3

f

Z0

f

Z1

f

Z2

Figure 1: The Sponge Construction

2.2 The Keccak-p permutations
The Keccak-p permutations are specified with parameters b and nr, where b is the width
of the state and nr the number of iterated rounds. We denote a permutation of this family
by Keccak-p[b, nr].

The Keccak state

As specified in the last section, the Keccak-p permutations operate on a state S ∈ Zb2,
where b ∈ {25× 2i}i∈[0,6]. This state can be represented in a three dimensional array of
size A[5, 5, ω] of elements of F2, where ω = b

25 . We let A[x, y, z] be the bit with coordinates
(x, y, z) in this array, where 0 ≤ x < 5, 0 ≤ y < 5, 0 ≤ z < ω. The mapping between the
bits of the state S and those of A is S[ω(5y+ x) + z] = A[x][y][z]. The labeling convention
of the array is represented in Figure 2 below.

Terminology The outer state as well as the inner state are defined as sub-parts of the
Keccak state. The inner state is made of the last c bits of the state. Hence, we define
IS as the set of indices of those bits. Namely

IS = {(x, y, z) | ω(5y + x) + z ≥ r} .

Adopting the representation of the Keccak designers (Guido Bertoni, Joan Daemen,
Michaël Peeters and Gilles Van Assche), we will use the following notations :

– a slice (in orange in Figure 2) is a set of 25 bits with constant z coordinate A[∗, ∗, z];

– a plane is a set of 5ω bits with constant y coordinate A[∗, y, ∗];

– a sheet is a set of 5ω bits with constant x coordinate A[x, ∗, ∗];

– a row (in cyan in Figure 2) is a set of 5 bits with constant y and z coordinates
A[∗, y, z];
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Figure 2: The Keccak state.

– a column (in red in Figure 2) is a set of 5 bits with constant x and z coordinates
A[x, ∗, z];

– a lane (in blue in Figure 2) is a set of ω bits with constant x and y coordinates
A[x, y, ∗].

The Keccak round

The Keccak-p permutations consist in the iteration of a set number of rounds nr. A
round consists in the composition of 5 state mappings θ, ρ, π, χ and ι. In the following,
the operations on coordinates are always computed modulo 5, 5 and ω respectively. For
0 ≤ x, y < 5 and 0 ≤ z < ω,

– θ XORs each bit of the state with the parities of two other columns of the state:

θ(A)[x, y, z] = A[x, y, z]⊕
4⊕
i=0

(A[x− 1, i, z]⊕A[x− 1, i, z − 1]) ;

– ρ rotates each lane by a constant:

ρ(A)[x, y, z] = A[x, y, z + c(x, y)] ;

– π modifies the position of each lane:

π(A)[x, y, z] = A[x+ 3y, x, z] ;

– χ is a non-linear mapping. It XORs each bit with a non-linear function of two other
bits of its row:

χ(A)[x, y, z] = A[x, y, z]⊕ (¬A[x+ 1, y, z]) ∧A[x+ 2, y, z] ;

– ι XORs the lane A[0][0][∗] with a constant which depends on a round index ir, where
ir depends on b and nr.

The round mapping consists in the composition of these permutations. Namely,

R = ι(−, ir) ◦ χ ◦ π ◦ ρ ◦ θ .
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2.3 The Keccak functions
The Keccak-f family of permutations is defined as follows:

Keccak-f [b] = Keccak-p[b, 12 + 2`], where ` = log2(ω) .

Keccak is the family of sponge functions which uses the padding rule pad10*1 (multi-rate
padding) and the Keccak-f [b] permutations. More precisely, Keccak[r, c] denotes the
sponge function which uses the multi-rate padding, the bitrate r and the permutation
Keccak-f [r + c].

Keccak[r, c] = Sponge[Keccak-f [r + c], pad10*1, r]

The permutation used in the SHA-3 standard [oST15] from the National Institute for
Standard Technology is Keccak-f [1600]. However, the design of Keccak comes with
several instances, including instances with a permutation Keccak-f that operates a smaller
state width b, such as Keccak-f [200]. This allows the use of Keccak in constrained
environments as well. For instance, the permutations Keccak-f [200] or Keccak-f [400]
are used in a proposal in an unkeyed mode for RFID [KY10]. For different number of rounds
nr, the permutations Keccak-p[200, nr] and Keccak-p[400, nr] also appear in keyed mode
proposals, such as Ketje [BDP+16] in the CAESAR competition or ISAP [DEM+20]
and Elephant [BCDM20] in the NIST lightweight cryptography competition. Finding a
collision on the function using a round-reduced version of Keccak[40,160] reduced to two
rounds is a problem that was posed by the Keccak designers in their Crunchy Contest
[BDPA08b]. Hence studying smaller versions has a theoretical and practical interest.

A note on the output size. Note that the size of the output size d (the digest size) is
not set, and has to be specified. For the SHA-3 standards, d = c

2 . Versions with a smaller
width such as the instances that use Keccak-f [200] as their permutation also have a
smaller capacity (for example c = 160 or c = 128 for b = 200). If for these versions we had
d = c

2 as well, then a generic birthday attack would lower their security to 2 c
4 , which is

not secure. As a consequence, for small instances, designers usually set d = c. This the
case for the instance of Keccak[40,160] that is proposed as a cryptanalysis challenge in
the Crunchy contest.

We will show that our attack works on several variants, but only beats the best attacks
when the bitrate is somehow ‘small’ compared to the capacity. We will also show that it
applies only to the search for inner collisions, which is relevant when the output length d
is larger or equal to c. Hence, our attack is particularly relevant on versions of Keccak
with small width since in these variants, c is proportionally larger compared to b and d
than in other versions so as to maintain the same security level.

3 Generic description of the attack
This section presents useful observations on the different strategies that can be used to
find collisions on sponge functions with different parameters.

3.1 Building collisions on sponge functions
In the following, we use the absorb function as defined in Section 2.4.1 of [BDPA11a]
which takes as input a string P with |P | multiple of r and returns the value of the state
obtained after absorbing P . Similarly, we use the following definitions of [BDPA11a]:

Definition 1. Let P ∈ Z∗2r . P is a path to the state S if S = absorb(P ). More generally
we denote by path P any bit string of which the size is a multiple of r.
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Definition 2. A collision or output collision on a sponge function Sponge is a pair of
two different messagesM andM′ such that Sponge(M) = Sponge(M′).

Definition 3. A state collision is a pair of two different paths P and P ′ such that
absorb(P ) = absorb(P ′).

Definition 4. An inner collision is defined as a state collision on the inner state. More
precisely, it is a pair of two different paths P and P ′ such that âbsorb(P ) = âbsorb(P ′).

As observed in [BDPA11a], if one finds an inner collision they can derive an output
collision from it. Indeed, for any A,B ∈ Zr2 such that absorb(P )⊕ A = absorb(P ′)⊕ B,
any two messages of the formM = P ||A||N andM′ = P ′||B||N , where N is any message,
will lead to a collision in the output.

For Keccak standardized hash functions [oST15], the length of the output d is half
the length of the capacity c. Therefore, in these versions, a collision can be found by
generating approximately 2 d

2 outputs thanks to the classical birthday argument. On the
other hand, generating generically an inner collision is more expensive since it requires the
attacker to generate approximately 2 c

2 = 2d absorbed states. Moreover, it is noticeable
that in these standardized versions, the bitrate is always larger than the diversifier. This
means that in practice, the squeezing phase only consists in outputting the first d bits of
the image of an absorbed message. An attacker is therefore going to seek a collision on the
first d bits of the state of an absorbed message, which we call a d-collision. This strategy
was used in all the Keccak cryptanalysis papers that looked at the search of collisions so
far [NRM11, DDS12, DDS13, QSLG17, SLG17, GLL+20].

In this paper, we study different instances of Keccak, smaller versions, for which
the previous observations do not apply. On small Keccak instances, it is often smarter
to look for an inner collisions rather than d-collision. There are two reasons for this.
First, often, the capacity equals the output length, c = d (see Section 2.2). Therefore,
the birthday attack has no reason to work better on the search for d-collisions. In fact,
there is already a small advantage to the search of inner collisions. Indeed, it enables
the attacker to ignore the padding rule. As stated before, for any A,B ∈ Zr such that
absorb(P ) ⊕ A = absorb(P ′) ⊕ B, any two messages of the form M = P ||A||N and
M′ = P ′||B||N , where N is any message, will lead to a collision in the output. That
means that in practice once an inner collision is found, it is easy to extend the two messages
to an arbitrary length so that the padding rule will only have an effect on the new appended
part and still lead to an output collision. This does not hold for d-collisions. Secondly, the
bitrate is smaller than the output size, r < d. Therefore, looking for a d-collision would
force the attacker to obtain several outer state collisions in the squeezing phase. This
would require the attacker to control not only the outer but also the inner part of the
state. It stems from our analysis that the best strategy when the bitrate is smaller than
the output length, and the capacity is smaller or equal to the output length, is to search
for an inner collision. Indeed, inner collision resistance does not depend on the output
length nor on the padding rule.

3.2 Generic description of the attack
The birthday squeeze attack

The strategy we use to produce a collision is a birthday squeeze attack, as it is called by
the authors of [DDS13]. Because of the birthday paradox, if a function maps the set of
possible inputs to an output set E of size |E|, then we need to try about

√
|E| inputs

so as to find two colliding outputs. But if we are able to pick inputs so that they are
all mapped to a predefined subset E′  E of size |E′| < |E|, then we will only need to
produce about

√
|E′| of these inputs so as to find a collision. In our case, since we are
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looking for a collision on an output of size c (the inner state of an absorbed message), a
generic birthday attack requires about 2 c

2 inputs. Yet we are going to exploit the degree of
freedom provided by the bit string M so as to produce outputs that are all in a predefined
subset of smaller size, thereby improving the complexity of the attack.

Birthday squeeze attacks on inner collisions

In [DDS13], the birthday squeeze attack on Keccak was used in order to search for d-
collisions. In our case however, we are looking for an inner collision. It was thus necessary
for us to adapt the birthday squeeze attack. To do so, we rely on the following theorem
which is essentially a reformulation of results of [BDPA11a].

Theorem 1. Finding an inner collision is equivalent to finding two paths P, P ′ and two
bit strings M,M ′ ∈ Zr2 such that the two following conditions are true

P 6= P ′ or M 6= M ′ (1)
̂

f(M ||Ŝ) = ̂
f(M ′||Ŝ′) (2)

where S = absorb(P ) and S′ = absorb(P ′).

To prove this theorem, we first demonstrate the following lemma. This lemma demon-
strates one implication of Theorem 1. The other implication is easy to derive from the
definition of an inner collision. Again we derive this result from [BDPA11a], which one
can refer to for more details.

Lemma 1. Let M,M ′ ∈ Zr2, and P, P ′ two paths such that M 6= M ′ or P 6= P ′. Suppose
we have ̂

f(M ||Ŝ) = ̂
f(M ′||Ŝ′). Then P ||(S ⊕M) and P ′||(S′ ⊕M ′) is an inner collision.

Proof. Let M,M ′ ∈ Zr2, and P, P ′ two paths such that M 6= M ′ or P 6= P ′. Let
S := absorb(P ) and S′ := absorb(P ′). Suppose we have ̂

f(M ||Ŝ) = ̂
f(M ′||Ŝ′). We have

̂absorb(P ||(M ⊕ S)) = ̂f(S ⊕ ((M ⊕ S)||0c)

= ̂
f(M ||Ŝ)

= ̂
f(M ′||Ŝ′)

= ̂f(S′ ⊕ ((M ′ ⊕ S′)||0c))

= ̂absorb(P ′||(M ′ ⊕ S′)) .

If P 6= P ′, then P ||(M ⊕ S) 6= P ′||(M ′ ⊕ S′). If P = P ′, then M 6= M ′, P ||(M ⊕ S) 6=
P ′||(M ′ ⊕ S′) and we have proven the lemma.

In order to seek an inner collision, we are thus going to look for two pairs (P,M) and
(P ′,M ′) that respect the two conditions of Theorem 1.

Since r < c
2 , it is unlikely to obtain a collision in the inner states produced by taking the

image by f of the same initial inner state Ŝ and only modifying the bit string M . Indeed,
for a single S, there are 2r possible M ||Ŝ and therefore exactly 2r possible values for
f(M ||Ŝ) as f is a permutation. To use a squeeze attack with 2r inner states, we would need
these inner states to all belong to a predetermined subset of Fc2 of size (2r)2 = 22r < 2c.
Yet the high diffusion and confusion provided by a round of Keccak make it unlikely a
priori that this is true. In particular, there is no reason to always consider S = 0c. As a
consequence, our attack uses inner states of absorbed random bits strings. On the other
hand, attacks on standardized versions of Keccak rely on the search for d-collisions, and



Rachelle Heim Boissier, Camille Noûs and Yann Rotella 247

since r > d
2 , considering the 2r possible M ||0c is sufficient. In our attack algorithm, we

decided arbitrarily to use paths of size 10r in the case of Keccak[40, 160]. We could have
chosen a different coefficient j as long as jr � c in order to assume accurately that the
states we obtain follow a uniform distribution over the inner states in Fc2.

We can now provide the reader with a generic algorithmic description of our attack.

Generic description of our attack algorithm

1. Start with an empty table.

2. Produce a random inner state.
To do so, produce a random padded message P = M1||M2|| · · · ||Mj where jr � c
by concatenating random r-bit strings M1,M2, . . . ,Mj . Absorb it so as to produce
a random state S = absorb(P )

3. Produce an inner state belonging to a predefined subset of X ⊂ Fc2.
Exploit the different properties of Keccak in order to find an r-bit string M such
that the inner state of f(M ||Ŝ) belongs to a predetermined proper subset of Fc2 with
high probability.
If the inner state of f(M ||Ŝ) belongs to the desired subset, store it in a hash table,
and continue. Else, discard it and go back to step 2.

4. Look for collisions.
Check for a collision in the table. If a collision is found, output the two pairs (P , M)
and (P ′, M ′). Else go back to step 2.

The birthday squeeze attacks works in our case by using the degree of freedom provided
by the r-bit strings M in the absorbing phase. For each random state S, we are going to
choose the next absorbed bit string M so as to ensure that the inner state of f(M ||Ŝ)
belongs to a predetermined proper subset of Fc2 with high probability. Once a collision is
found in the table of the above algorithm, condition (2) in Theorem 1 is automatically
satisfied. Furthermore, using random paths to produce random inner states enables us to
satisfy condition (1) in Theorem 1 with high probability.

The proper subset to which we seek our inner states to belong to is predefined in the
sense that it is common for all P , and depends neither on previous elements of the table
nor on the random inner state considered. Similarly, the choice of each M does not depend
on previous computation, but only on the current Ŝ considered and the predefined proper
subset. This is so as to ensure the applicability of the birthday paradox. This predefined
proper subset is denoted by X. There are several X’s possible. Our work consists in
describing a subset X, together with an algorithm faster than processing random paths
that can produce paths P such that ̂absorb(P ) ∈ X, that is Step 3.

4 Properties of Keccak-p permutations
In this section, we describe properties of the Keccak state mappings that are at the heart
of our cryptanalysis.

4.1 Preliminary properties and definitions
4.1.1 About ρ

As stated in [BDPA11b], the mapping ρ consists of translations within the lanes: its effect
is independent on each lane. Therefore, a zero difference between two states in a lane at
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the input of ρ is equivalent to a zero difference at the output. Let A,A′ ∈ Fb2,

∀0 ≤ i, j < 5, ρ(A)[i, j, ∗] = ρ(A′)[i, j, ∗] ⇐⇒ A[i, j, ∗] = A′[i, j, ∗] . (3)

4.1.2 About χ

As stated in [BDPA11b], χ can be seen as the parallel application of 5ω S-boxes operating
on rows. Therefore, a zero difference between two states in a row at the input of χ is
equivalent to a zero difference at the output. In the case of collisions, this means that
having a collision on a full row before χ is equivalent to have a collision after χ.

4.1.3 About π

As stated in [BDPA11b], the mapping π consists in a reorganization of the lanes of the
state. Therefore, a zero difference in a lane at the output π can be easily traced back to a
zero difference at the input of π.

Further, π and π−1 operate on the coordinates (x, y) in a linear way. The linear map
is such that two lanes of a state which belong to the same plane are mapped by π−1 to
two different sheets. Indeed, let A ∈ Fb2, let 0 ≤ y0 < 5, 0 ≤ z0 < ω , such that A[∗, y0, ∗]
is a plane of the state. For any 0 ≤ x 6= x′ < 5, π−1(A)[x, y0, ∗] = A[x + 3y0, x, ∗] and
π−1(A)[x′, y0, ∗] = A[x′ + 3y0, x

′, ∗] are located in two different sheets since x 6= x′.

4.2 Understanding inner collisions
Let Keccak-p[b, nr] be a Keccak-p permutation with capacity c and bitrate r. Recall that
ω = b

25 . We study what it means for two states A,A′ ∈ Fb2 to be such that f̂(A) = f̂(A′)
so as to respect condition (2) of Theorem 1. We use the following notations to analyze
Keccak round function. We denote the output of the (i+ 1)-st round by Ai+1, where
0 ≤ i < nr, and the initial state by A0 or A. We define Aiθ, Aiρ, Aiπ, Aiχ as follows.

Ai
θ−→ Aiθ

ρ−→ Aiρ
π−→ Aiπ

χ−→ Aiχ
ι−→ Ai+1

Note that Anr is the same as f(A).

4.2.1 The alternative inner state

In this section, we define a set of bit positions, such that having a collision on those bits
before the last application of π is equivalent to having an inner collision when the inner
state is made of full planes. This set of positions defines, for a state S an alternative inner
state. The alternative inner state of any S ∈ Fb2 corresponds to the lanes that will be
reorganized by π into the inner state of Anr−1

π .

Definition 5 (Alternative inner state). The alternative inner state is made of the bits
such that their coordinates are in the set

AIS = {(x, y, z) | (x+ 3y, x, z) ∈ IS} .

The alternative inner state has the following important property.

Proposition 1. Let A,A′ ∈ Fb2. Suppose 5ω divides c. A collision on the alternative
inner state of Anr−1

θ and (A′)nr−1
θ is equivalent to f̂(A) = f̂(A′).

Proof. Let A,A′ ∈ Fb2 such that f̂(A) = f̂(A′). Since 5ω divides c, the inner state is made
of c

5ω planes. Let 0 ≤ y0 < 5 such that the plane of coordinate y = y0 is in the inner state.
We have the following equivalence

f(A)[∗, y0, ∗] = f(A′)[∗, y0, ∗] ⇐⇒ Anr−1
π [∗, y0, ∗] = (A′)nr−1

π [∗, y0, ∗] . (4)
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Indeed, ι does not affect the difference between two states, and as shown in Section 4.1.2,
a zero difference on a row before the application of χ is equivalent to a zero difference
after. Further, (4) is also equivalent to

Anr−1
ρ [x, y, z] = (A′)nr−1

ρ [x, y, z] for any (x, y, z) ∈ IS .

In other words, (4) corresponds to a zero difference between the bits of the alternative
inner state of Anr−1

ρ and (A′)nr−1
ρ . Lastly, since a zero difference between two states in

a lane at the input of ρ is equivalent to a zero difference at the output and since the
alternative inner state contains only full lanes, this is also equivalent to

Anr−1
θ [x, y, z] = (A′)nr−1

θ [x, y, z] for any (x, y, z) ∈ IS .

We illustrate Proposition 1 on one slice when the outer state is only one plane. It is
the case for example in Keccak[40, 160]. In this case, AIS = {(x, y, z)|x 6= y}.

f(A)⊕ f(A′)

χ−1 ◦ ι−1

Anr−1
π ⊕ (A′)nr−1

π

ρ−1 ◦ π−1

Anr−1
θ ⊕ (A′)nr−1

θ

Figure 3: Illustration of Proposition 1 on one slice when the outer state is one plane.

4.2.2 Avoiding θ diffusion

Effectively, defining the alternative inner state has allowed us to work on θ ◦Rnr−1 instead
of f = Rnr . We have gained almost one round with a probability of 1 for states with a
convenient inner state. θ however is not so easy to ‘reverse’ since it neither consists in bit
reorganization nor is a permutation on a substructure of the state. We still managed to
limit its diffusion effect thanks to the following theorem.

Theorem 2. The sum of two bits located in the same column after θ is equal to the sum
of the same two bits before θ. More precisely, let A ∈ Fb2 be any state, let 0 ≤ x < 5 and
0 ≤ z < ω. Let Ai[x, ∗, z] and Aiθ[x, ∗, z], 0 ≤ i < nr, be a column before and after applying
θ. Then

Aiθ[x, y, z]⊕Aiθ[x, y′, z] = Ai[x, y, z]⊕Ai[x, y′, z] for any 0 ≤ y, y′ < 5 .

Proof. Let 0 ≤ x, y, y′ < 5 and 0 ≤ z < ω. We have

Aiθ[x, y, z]⊕Aiθ[x, y′, z] = Ai[x, y, z]⊕
4⊕
l=0

(Ai[x− 1, l, z]⊕Ai[x− 1, l, z − 1])

⊕Ai[x, y′, z]⊕
4⊕
l=0

(Ai[x− 1, l, z]⊕Ai[x− 1, l, z − 1])

= Ai[x, y, z]⊕Ai[x, y′, z] .

The next theorem is at the core of our attack. It is a direct consequence of Theorem 2.



250 Algebraic Collision Attacks on Keccak

Theorem 3. If 5ω divides c and f̂(A) = f̂(A′), then Anr−2
χ ⊕ (A′)nr−2

χ is constant on the
bits of each column that are located in the alternative inner state.

Proof. Let A,A′ such that f̂(A) = f̂(A′). Let 0 ≤ z < ω, 0 ≤ x, y < 5 so that A[x, y, z] is
located in the alternative inner state. From proposition 1, we deduce:

Anr−1
θ [x, y, z] = (A′)nr−1

θ [x, y, z] . (5)

When the inner state is made of planes, that is when 5ω divides c, each columns
contains exactly c

5ω bits located on the alternative inner state. This is because the inner
state is then made of c

5ω planes, and each lane of each plane will be mapped to a different
sheet by π−1 as explained in Section 4.1.3. When c

5ω = 1, each columns contains a single
bit located on the alternative inner state. Therefore the proof of theorem is trivial in that
case. Let us now focus on the case c

5ω > 1.
Let b0, b1, . . . , b4 (resp. b′0, b′1, . . . , b′4) be five bits of a column of Anr−1

θ (resp. (A′)nr−1
θ ).

Let a0, a1, . . . , a4 (resp. a′0, a′1, . . . , a′4) be five bits of the same column of Anr−2
χ (resp.

(A′)nr−2
χ ). In the following, we assume that c

5ω = 4 and that b0 is the only bit of the
column that is not on the inner state. This is so as to have convenient notations, but our
proof is exactly the same for any other value of c

5ω > 1. By (5), we get:
b1 = b′1
b2 = b′2
b3 = b′3
b4 = b′4

which is equivalent to 
b1 = b′1
b1 ⊕ b2 = b′1 ⊕ b′2
b2 ⊕ b3 = b′2 ⊕ b′3
b3 ⊕ b4 = b′3 ⊕ b′4 .

From Proposition 2, it comes that
b1 ⊕ b2 = b′1 ⊕ b′2
b2 ⊕ b3 = b′2 ⊕ b′3
b3 ⊕ b4 = b′3 ⊕ b′4

is equivalent to


a1 ⊕ a2 = a′1 ⊕ a′2
a2 ⊕ a3 = a′2 ⊕ a′3
a3 ⊕ a4 = a′3 ⊕ a′4

which is also equivalent to

a1 ⊕ a′1 = a2 ⊕ a′2 = a3 ⊕ a′3 = a4 ⊕ a′4 .

It comes that Anr−2 ⊕ (A′)nr−2 must be constant on c
5ω bits of each column. Since ι does

not affect the value of this difference, this necessary condition already applies before ι.
Thus Anr−2

χ ⊕ (A′)nr−2
χ must be constant on c

5ω bits of each column.

Constancy on columns on bits of the alternative inner state of Anr−2
χ ⊕ (A′)nr−2

χ is
thus a necessary condition for two states to present an inner collision. We will show in
Section 8 that this can also be adapted when the outer part is not exactly full planes
as long as the inner part contains at least two full planes. In Figure 4 we show how the
difference between two states presenting an inner collision should therefore look like after
χ on a slice.
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C3,z

C3,z

C3,z

C3,z

C4,z

C4,z

C4,z

C4,z

C0,z

C0,z

C0,z

C0,z

C1,z

C1,z

C1,z

C1,z

C2,z

C2,z

C2,z

C2,z

Figure 4: The difference between two inner colliding states after χ when the inner state
is one plane. We call the constant for each column Cx,z, 0 ≤ x < 5, 0 ≤ z < ω. The
anti-diagonal can be set to any value.

5 Choosing the subset for the squeeze attack
The subset X which will be used for our birthday squeeze attack is comprised of inner
states Ŝ ∈ Fc2 such that on several columns of Anr−2

χ , some pre-determined bits are all
equal to a constant. In this section, we will demonstrate why this choice of subset is
relevant thanks to results from Section 4.

Recall that after computing S from a path P , Step 3 consists in finding M given Ŝ
such that f(M ||Ŝ) belongs X. To do so, we start again from analyzing inner collisions.
We study what it means for M , M ′, S, S′ to be such that the inner states of f(M ||Ŝ) and
f(M ′||Ŝ′) are equal.

In the following, we denote the r bits ofM (respectivelyM ′) by m0,m1, . . . ,mr−1 (resp.
m′0,m

′
1, . . . ,m

′
r−1) and the c bits of Ŝ (resp. Ŝ′) by s0, s1, . . . , sc−1 (resp. s′0, s′1, . . . , s′c−1).

Finding an inner collision is equivalent to solving a system S of c equations that depend
on the bits of M , M ′, S and S′.


f0(m0, . . . ,mr−1, s0, . . . , sc−1) = f0(m′0, . . . ,m′r−1, s

′
0, . . . , s

′
c−1)

f1(m0, . . . ,mr−1, s0, . . . , sc−1) = f1(m′0, . . . ,m′r−1, s
′
0, . . . , s

′
c−1)

· · ·
fc−1(m0, . . . ,mr−1, s0, . . . , sc−1) = fc−1(m′0, . . . ,m′r−1, s

′
0, . . . , s

′
c−1)

(S)

where the fi for i from 0 to c− 1 are the component functions of f .
Recall that we assume that c is a multiple of 5ω. By Proposition 1, under this condition,

an inner collision is equivalent to a collision on the alternative inner state of Anr−1
θ and

(A′)nr−1
θ . We also showed in the demonstration of Theorem 3 that each column of Anr−1

θ

contains exactly c
5ω bits of the alternative inner state. Since there are 5ω columns in a

state, the alternative inner state contains exactly 5ω × c
5ω = c bits. If we denote by F the

permutation θ ◦Rnr−1, it comes that S is equivalent to a system S ′ of the form:


F0(m0, . . . ,mr−1, s0, . . . , sc−1) = F0(m′0, . . . ,m′r−1, s

′
0, . . . , s

′
c−1)

F1(m0, . . . ,mr−1, s0, . . . , sc−1) = F1(m′0, . . . ,m′r−1, s
′
0, . . . , s

′
c−1)

· · ·
Fc−1(m0, . . . ,mr−1, s0, . . . , sc−1) = Fc−1(m′0, . . . ,m′r−1, s

′
0, . . . , s

′
c−1) .

(S ′)

where the Fi for i from 0 to c− 1 are the component functions of F = θ ◦Rnr−1.

Proposition 2. Let A = M ||Ŝ, A′ = M ′||Ŝ′. Anr−2
χ ⊕ (A′)nr−2

χ being constant on k > 1
bits of a column located in the alternative inner state is equivalent to satisfying k − 1
equations of S ′.
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Proof. Let A = M ||Ŝ, A′ = M ′||Ŝ′. As in the proof of Theorem 3, let b0, b1, . . . , b4
(resp. b′0, b′1, . . . , b′4) be five bits of a column of Anr−1

θ (resp. (A′)nr−1
θ ). Let a0, a1, . . . , a4

(resp. a′0, a
′
1, . . . , a

′
4) be five bits of the same column of Anr−2

χ (resp. (A′)nr−2
χ ). Let

k be the number of constant bits of a column located in the alternative inner state of
Anr−1
χ ⊕ (A′)nr−1

χ . We assume without loss of generality that these bits are located next
to each other.

Let 0 < i ≤ 4 such that ai+j ⊕ a′i+j = ai+j+1 ⊕ a′i+j+1 for 0 ≤ j ≤ k − 2. This is
equivalent to

ai+j ⊕ ai+j+1 = a′i+j ⊕ a′i+j+1 for 0 ≤ j ≤ k − 2 (6)

which is in turn equivalent to

bi+j ⊕ bi+j+1 = b′i+j ⊕ b′i+j+1 for 0 ≤ j ≤ k − 2

which is equivalent to the k − 1 last lines of
bi = b′i
bi ⊕ bi+1 = b′i ⊕ b′i+1
· · ·
bi+k−2 ⊕ bi+k−1 = b′i+k−2 ⊕ b′i+k−1

which is equivalent to the k − 1 last lines of
bi = b′i
bi+1 = b′i+1
· · ·
bi+k−1 = b′i+k−1 .

(7)

System (7) is equivalent to k equations of S ′ since it effectively represents a collision on k
bits of the alternative inner state of Anr−1

θ and (A′)nr−1
θ . Satisfying (6) is thus equivalent

to satisfying k − 1 equations of S ′.

Proposition 2 shows that a good strategy is to produce states between which the
difference on certain columns is constant on 2, 3 or 4 bits of the alternative inner state after
χ since it is equivalent to satisfying some equations of S ′. However one must be cautious in
the production of these states: to ensure the applicability of the birthday argument, each
new state that we produce must satisfy the difference constancy with all states already
produced. Then, let n be the number of equations of the system that are automatically
satisfied by any pair of states produced. The size of the predetermined subset X where
we send our states is thus 2c−n. Hence, a collision can be found by producing about
2 c−n

2 < 2 c
2 such states, therefore improving the memory complexity of a simple birthday

attack.
We decided to produce states that are constant on certain columns. Indeed, if two

states are constant on a given column, then their difference will also be constant on this
column. This choice is arbitrary, and we could have chosen any other ‘pattern’ than
constancy.

6 S-box linearization
Whilst the analysis we have provided so far is general, the following is specific to two
rounds Keccak functions. We narrow down our analysis to Keccak functions with
nr = 2. The notations from Section 4.2 can be simplified. We only wish to linearize the
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first round since the necessary condition of constancy on columns applies after the first
application of χ. We denote the initial state by A0 or A. We define Aθ, Aρ, Aπ, Aχ as
follows :

A
θ−→ Aθ

ρ−→ Aρ
π−→ Aπ

χ−→ Aχ .

Producing states that are constant on certain columns after χ corresponds to solving a
system of the form Aχ[x, y, z](m0, . . . ,mr−1, s0, . . . , sc−1) = Cx,z for a number of specific
x, y, z. Yet χ is not linear, making this system a priori very hard to solve. We overcome
this difficulty by linearizing χ thanks to a technique that we will detail in this section.
It is inspired by methods that are usually employed in pre-image attacks or in a keyed
setting analysis [GLS16, QSLG17, LSLW17, SLG17, DLWQ17, SGSL18, FNR18, KRA18,
KMS18, LS19, Raj19, GLL+20]. The main idea is to construct a linear system L such
that satisfying L is equivalent to satisfying as many equations of the non-linear system S ′
as possible.

6.1 Well-known properties of χ

To linearize χ, one must first recall a number of its properties that can be naturally
derived from the observations made in [Dae95]. Proposition 3 is also present in [GLS16]
and Proposition 4 could be derived from the observations in [GLS16]. Let A ∈ Fb2. Let
0 ≤ y < 5 and 0 ≤ z < ω. Let Aρ[∗, y, z] = (c0, c1, . . . , c4) and Aχ[∗, y, z] = (d0, d1, . . . , d4),
0 ≤ i < nr be a row before and after applying χ.

Proposition 3. For any 0 ≤ j < 5, cj = dj holds with probability 0.75.

Proof. For any 0 ≤ j < 5, dj = cj ⊕ (¬cj+1) ∧ cj+2 and (¬cj+1) ∧ cj+2 = 0 holds with
probability 0.75.

Proposition 4. For any 0 ≤ j < 5, if cj is known, then dj−1 and dj−2 can be written as
linear expressions of the other ck, k 6= j.

Proof. This comes from:

dj−1 = cj−1 ⊕ (¬cj) ∧ cj+1 ,

dj−2 = cj−2 ⊕ (¬cj−1) ∧ cj .

When cj is known, dj−1 and dj−2 are linear expressions of the other ck, k 6= j.

6.2 Basic linearization technique
We wish to construct a linear system L such that satisfying L is equivalent to satisfying as
many equations of S ′ as possible. A linear system has a solution with high probability
if the number of variables is equal to the number of equations. We do not control the si
since they correspond to the value of the inner state of random absorbed bit strings. On
the other hand, we can choose the value of M . We thus have r degrees of freedom (or
variables), the mi. In practice we might have more than r equations, in which case we will
satisfy the system with a probability p < 1.

In order to construct L, we will mainly use the result from Proposition 4. We call
fixing a bit the allocation of a set value to a bit. After producing random inner states
Ŝ, we fix bits of Aπ so as to obtain a linear expression of bits of Aχ in terms of bits of
Aπ. Since the three first mappings of the round are linear, the bits of Aπ in turn depend
linearly on the bits of A. We can therefore efficiently linearize two rounds of Keccak.
We give examples in the next section.

We denote by allocation strategy the set of decisions consisting in choosing which
bits to fix. In general, defining an allocation strategy is not trivial. It depends on the
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parameters c, r of the Keccak function we wish to attack. We will give examples of
allocation strategies when the outer state is one plane, as it is the case for example for
Keccak[40, 160] reduced to two rounds. Even though the examples we provide must be
carefully adapted to each function, our examples give a good overview of how to define a
smart allocation strategy.

Figure 5: Fixing the bit in blue before χ enables one to obtain a linear expression of each
bit in yellow. The bit in blue has the same value as the bit in orange with probability 0.75.

6.3 Allocation strategies on a slice

We start by working on a slice of the Keccak state, that is a 5 × 5 array of the form
A[∗, ∗, z] where 0 ≤ z < ω. Indeed, to fix bits in a smart way, one needs to start by
considering each slice of the state independently. Considering each column is too narrow
because fixing a bit linearizes two other bits in its row. Considering each row is inadequate
since we want to reach constancy on columns.

χ

Figure 6: Fixing 3 bits on a slice before χ. The blue bits are fixed so as to linearize the
expression of the yellow bits. The orange bits are equal to the blue bits with probability
0.75. The black bits do not matter, as those will go to the outer part after applying the
remaining step mappings.

Example 1 (3 bits per slice). We start with an empty linear system L. We fix 3 bits in a
slice of Aπ, all located in the same column. Since the three first mappings are linear, each
bit of Aπ depends linearly on the mi, 0 ≤ i < r. As illustrated in Figure 6, we carefully
pick these three bits so that the bits of which we will get a linear expression are located
on the alternative inner state. We thus add three linear equations to our linear system L,
they correspond to the expression of these three bits equal to a constant. In the example
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corresponding to Figure 6, the equations added to L are of the following form:

Aπ[2, 2, 0](m0, . . . ,mr−1, s0, . . . , sc−1) = D2

Aπ[2, 3, 0](m0, . . . ,mr−1, s0, . . . , sc−1) = D3

Aπ[2, 4, 0](m0, . . . ,mr−1, s0, . . . , sc−1) = D4 ,

where D2, D3 and D4 are arbitrary constants.
Now, we know the value of three bits of Aπ. We obtain a linear expression of 3 bits of

two columns, the 6 yellow bits in Figure 6. We want to allocate a common value to bits of
the same column. At first sight, the smart strategy is to add the linear expression of these
bits to our linear system equal to a common value. In the example corresponding to 6, the
equations added to L would be of the following form for the column x = 1:

Aχ[1, 2, 0](m0, . . . ,mr−1, s0, . . . , sc−1) = C1,0

Aχ[1, 3, 0](m0, . . . ,mr−1, s0, . . . , sc−1) = C1,0

Aχ[1, 4, 0](m0, . . . ,mr−1, s0, . . . , sc−1) = C1,0 .

Yet the choice of the value of C1,0 would be arbitrary, which increases the complexity
of our attack. Instead, we add the following equations:

Aχ[1, 2, 0](m0, . . . ,mr−1, s0, . . . , sc−1)⊕Aχ[1, 3, 0](m0, . . . ,mr−1, s0, . . . , sc−1) = 0
Aχ[1, 3, 0](m0, . . . ,mr−1, s0, . . . , sc−1)⊕Aχ[1, 4, 0](m0, . . . ,mr−1, s0, . . . , sc−1) = 0 .

For each ‘linearized’ column, we thus add 2 linear equations to L. In total, we thus add
3 + 2× 2 = 7 equations to L. If we solve this system, we achieve constancy on three bits of
two columns of the state. By Proposition 2, we thereby satisfy 2× 2 = 4 equations of S ′.

χ

Figure 7: Fixing 4 bits on a slice before χ. The blue bits are fixed so as to linearize the
expression of the yellow bits. The orange bits are equal to the bits in blue with probability
0.75. The black bits are not of interest.

Example 2 (4 bits per slice). We start with an empty linear system L. We fix 4 bits in a
slice of Aπ, all located in the same column. We thus add 4 linear equations to our linear
system L, they correspond to the expression of these four bits equal a constant. In the
example corresponding to Figure 7, the equations added to L are of the following form:

Aπ[2, i, 0](m0, . . . ,mr−1, s0, . . . , sc−1) = Di for 1 ≤ i < 5 ,

where Di, 1 ≤ i < 5 are arbitrary constants.
Now, we know the value of four bits of Aπ. We obtain a linear expression of 4 bits of

two columns. As illustrated in Figure 7, for one of these two columns, only 3 bits are of
interest since the fourth one is not located on the alternative inner state. These 3 + 4 = 7
bits are in yellow in Figure 7. We want to allocate a common value to bits of the same
column. As in the previous example, we do not care about their actual value. Thus for
each column where we have obtained the expression of k bits, we only need adding k − 1
equations to our system to ensure constancy. We thus add a total of 3 − 1 + 4 − 1 = 5
equations to our system.

In total, we thus added 4 + 5 = 9 equations to our system. If we solve this system,
we achieve constancy on 3 bits of a column of the state, and 4 on another column. By
Proposition 2, we thereby satisfy 2 + 3 = 5 equations of S ′.
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χ

Figure 8: Fixing 5 bits on a slice before χ. The blue bits are fixed so as to linearize the
expression of yellow bits. The orange bits are equal to the blue bits with probability 0.75.
The black bits are not of interest.

Example 3 (5 bits per slice). We start with an empty linear system L. We fix 5 bits in a
slice of Aπ, all located in the same column. We thus add 5 linear equations to our linear
system L, they correspond to the expression of these four bits equal a constant. In the
example corresponding to Figure 8, the equations added to L are of the following form:

Aπ[2, i, 0](m0, . . . ,mr−1, s0, . . . , sc−1) = Di for 0 ≤ i < 5 ,

where Di, 0 ≤ i < 5 are arbitrary constants.
Now we know the value of five bits of Aπ. We obtain a linear expression of 5 bits of

two columns. As illustrated in Figure 8, for both of these two columns, only 4 bits are of
interest since the fifth one is not located on the alternative inner state. These 4 + 4 = 8
bits are in yellow in Figure 8. We want to allocate a common value to bits of the same
column. As in the previous example, we do not care about their actual value. Thus for
each column where we have obtained the expression of k bits, we only need adding k − 1
equations to our system to ensure constancy. We thus add a total of 2 × (4 − 1) = 6
equations to our system.

In total, we thus added 5 + 6 = 11 equations to our system. If we solve this system,
we achieve constancy on 4 bits of two columns of the state. By Proposition 2, we thereby
satisfy 2× 3 = 6 equations of S ′.

Example 4 (2 bits per slice). We start with an empty linear system L. We fix 2 bits in a
slice of Aπ, all located in the same column. We thus add 2 linear equations to our linear
system L, they correspond to the expression of these two bits equal a constant. In the
example corresponding to Figure 8, the equations added to L are of the following form:

Aπ[2, i, 0](m0, . . . ,mr−1, s0, . . . , sc−1) = Di for 3 ≤ i < 5

where Di, 3 ≤ i < 5 are arbitrary constants.
Now we know the value of five bits of Aπ. We obtain a linear expression of 2 bits of

two columns. We want to allocate a common value to bits of the same column. Using the
same reasoning as above, we add 2 × (2− 1) = 2 equations to our system.

In total, we thus added 2 + 2 = 4 equations to our system. If we solve this system, we
achieve constancy on 2 bits of two columns of the state. By Proposition 2, we thereby
satisfy 2× 1 = 2 equations of S ′.

Summary of the allocation strategies on a slice

We define νslice to be the ratio between the number of equations of S ′ that are satisfied
per equation added to L. In Table 2 are presented the different νslice for states where the
outer state is one slice. It comes that the best strategy is to maximize the number n3 of
slices where we allocate 3 bits. This is inherently linked to the fact that the outer state is
one plane, and is not to be taken as a general statement for Keccak sponges.
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Table 2: Different choices for the number of fixed bits per slice when the outer state is
made of one plane

Number of fixed bits 2 3 4 5

Number of equations added to L 4 7 9 11

Number of equations satisfied in S ′ 2 4 5 6

Ratio νslice 0.5 0.57 0.56 0.55

6.4 Allocation strategies on a state
Keeping Table 2 in mind, we present different allocation strategies at a state scale.
Allocation strategies at the state scale, just like allocation strategies at the slice scale, are
tightly linked to the specific parameters r, c, ω of each sponge function. Again, we give
examples of strategies for Keccak[40, 160] reduced to two rounds. The examples provide
a good overview of how to strategically fix bits.

A note on time complexity

Finding solutions to L allows us to send states into a predetermined subset X of Fc2 of size
2c−n, where n is the number of equations of S ′ every state produced satisfies. We deduce
that our memory complexity is 2 c−n

2 . Now, to compute the time complexity, we need to
determine more precisely how much it costs to produce one state that satisfies n equations
of S ′. Let e be the number of equations in L. In a general setting, we have r variables. We
naturally always have e ≥ rank(L) and r ≥ rank(L). The probability of finding a solution
to L is 2rank(L)−e. Once a solution to L is found, we obtain easily 2r−rank(L) − 1 other
solutions, and thus in total 2r−rank(L) different possible states that go into the desired
subset X. Hence, regardless of the rank of the system, each produced random state gives
us on average 2r−e possible states that go into X. Letting g be the complexity of the
Gaussian elimination, it comes that the time complexity equals the memory complexity
multiplied by 2e−r× g. We will show later on that we can replace g by a smaller coefficient.

Example 5. Let ni be the number of slices where we fix i bits. Since the greatest νslice
is associated to fixing 3 bits per slice, it seems that the best strategy is to fix 3 bits on as
many slices as possible. On each slice, fixing 3 bits means adding a total of 7 equations to
our system. The greatest a such that 7a ≤ r is a = 5. We thus set n3 = 5. We thereby
add 7× 5 = 35 linear equations to our system. For the remaining 5 equations that we can
add to our system, we can fix 2 bits on n2 = 1 slice, thereby adding 4 equations to L. By
solving L, we satisfy 4n3 + 2n2 = 20 + 2 = 22 equations of S ′. The subset of Fc2 where we
send every state is thus of size 2c−22 = 2138. Our memory complexity is thus of 2 138

2 = 269.
Since e = 39 and r = 40, we need to find a solution to the linear system 268 times. Our

time complexity is thus of 268 × g.

Example 6. We set n3 = 6. In this case, we must solve a system of e = 42 equations. By
solving L, we satisfy 4n3 = 24 equations of S ′. The subset of Fc2 where we send every state
is of size 2c−24 = 2136. Our memory complexity is thus of 2 136

2 = 268. As for the time
complexity, since e− r = 2 and since we need to produce 268 states, our time complexity
is of 268 × 22 × g = 270 × g. In this example, we gained a factor 2 in memory complexity
but lost a factor 22 in time complexity compared to Example 5.
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Example 7. We could think that it is interesting to try and have our number of equations
strictly equal to the number of variables. For example, we can decide to fix 4 bits of n4 = 4
slices, thereby adding 4× 9 = 36 equations to our system, and further 2 bits on n2 = 1
slice, thereby adding 4 equations to our system. We obtain a system of 40 equations. Yet
this is not optimal in terms of complexity. Solving this system, we satisfy 5n4 + 2n2 = 22
equations of S ′, as in Example 5. We thus have the same memory complexity. Yet this
time, since e− r = 0 rather than −1, our time complexity is greater than in Example 5 by
a factor 2.

Example 6 offered an example of time-memory trade-off. Example 7 has shown us that
it is not optimal in general to aim for a perfectly balanced system in terms of number
of variables and equations. In the next section we will show how to slightly improve the
complexities of the attack, by using simple properties of χ.

7 Improvements
In this section, we describe various ways of improving and/or optimising our attack. We
also show that our attack can be adapted to the attacker’s needs thanks to time-memory
trade-offs.

7.1 Generic time-memory trade-off
When doing a birthday squeeze attack, it is always possible to do time-memory trade-offs.
On our example of allocation on a slice, we only worried about constancy on two columns.
We could decide that on another arbitrary column of the slice, we require constancy on
k bits as well, for 0 ≤ k < 5. After having produced the state A = M ||Ŝ, we check if it
meets the constancy requirement on this k extra bits, and if it does not, we discard it.

The probability that A fulfills this requirement is p = 2−(k−1) < 1, but it allows us
to create a subspace of pairs that all satisfy k − 1 extra equations of S ′. Satisfying an
extra k − 1 equations of S ′ improves our memory complexity by 2 k−1

2 (it is multiplied by
2 1−k

2 ). Since we need to produce less states, our time complexity is also improved by 2 k−1
2 .

However, it is more costly to produce one state, and thus we also multiply it by 1
p . In

total, our time complexity is multiplied by 1
p × 2 1−k

2 = 2k−1− k−1
2 = 2 k−1

2 .
This extends easily at a state scale. If we require this constancy on an extra column on

n′k slices, the probability that A will be kept is p′ = (2−(k−1))n′k = 2n′k×(1−k), yet it allows
us to create a subspace of pairs that all satisfy n′k × (k − 1) extra equations of S ′. Again,
our memory complexity is improved by 2n′k

(k−1)
2 . Yet our time complexity is multiplied by

2n′k
(1−k)

2 × 1
p′ = 2n′k

(k−1)
2 .

7.2 Improvement of the time-memory trade-off
When we build our system L, we fix some bits of the states (the blue bits in Figure 6,
7 and 8). By Proposition 3, the value of each orange bit after the χ mapping (also in
Figures 6, 7 and 8) is equal to the value of a corresponding blue bit before the χ mapping
with probability 0.75. Hence, the value of the blue bits after they’ve been fixed can play a
role in the complexity of the attacks. In this section, we will show how to improve the
generic time-memory trade-off thanks to Proposition 3 and those improvements will help
us to slightly improve the attack presented in Examples 5, 6 and 7.

In Example 5 of Section 6, 2 bits that we fixed are located on the alternative inner
state, that is Aπ[2, 3, 0] and Aπ[2, 4, 0]. We set these two bits to a constant by adding the
two following equations to our system L:
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Aπ[2, 3, 0](m0, . . . ,mr−1, s0, . . . , sc−1) = D3

Aπ[2, 4, 0](m0, . . . ,mr−1, s0, . . . , sc−1) = D4

where D3 and D4 are arbitrary constants.
By Proposition 3, for each i = 3, 4, we have Aχ[2, i, 0] = Di with a probability p = 3

4 .
Thus, if we allocate the same value to both bits (we choose D3 and D4 such that D3 = D4),
there is a probability p =

( 3
4
)2 +

( 1
4
)2 = 5

8 >
1
2 that Aχ[2, 3, 0] = Aχ[2, 4, 0]. Thus, if we

do so on n3 slices, there is a probability p =
( 5

8
)n3 that Aχ is constant on two bits of the

column y = 2 of these n3 slices.
More generally, if we allocate the same value to k bits of the alternative inner state

before χ, there is a probability p =
( 3

4
)k +

( 1
4
)k that they will also have the same value

after χ, which allows us to satisfy extra equations of S ′. It is thus smarter to allocate the
same value to blue bits (in the figures) of the same columns. We could thus decide to only
keep the states A = M ||Ŝ such that they are equal on these 2 bits, and thereby improve
the memory complexity of the previous examples as follows.

Example 8. We set n3 = 5. We thereby add 7× 5 = 35 linear equations to our system.
For the remaining 5 equations that we can add to our system, we fix 2 bits on n2 = 1 slice,
thereby adding 4 equations to L. In total L thus contains e = 39 equations. By solving
L, we satisfy 4n3 + 2n2 = 20 + 2 = 22 equations of S ′. We also allocate the same value
(D3 = D4) to all blue bits on each of the n3 + n2 slices, and discard any state such that
the equality is not preserved by χ. This allows us to satisfy an extra n3 +n2 = 6 equations
of S ′. The subset X of Fc2 where we send every state is thus of size 2c−28 = 2132. Our
memory complexity is thus of 2 132

2 = 266.
As for the time complexity, producing 2r−e = 2 states that satisfy the first set of

requirements costs g. Each of these states has a probability p =
( 5

8
)n3+n2 =

( 5
8
)6 ≈ 2−4.1

to satisfy the extra 6 equations. Our time complexity is thus around 266×2e−r×24.1×g =
269.1 × g.

Example 9. We set n4 = 4. We thereby add 9× n4 = 36 linear equations to our system.
For the remaining 4 equations that we can add to our system, we can fix 2 bits on n2 = 1
slice, thereby adding 4 equations to L. In total L thus contains e = 40 equations. By
solving L, we satisfy 5n4 +2n2 = 20+2 = 22 equations of S ′. Further, we allocate the same
value 3 blue bits on n4 slices, and to 2 blue bits on n2 slice, and discard any state such
that this equality is not preserved by χ. This allows us to satisfy an extra 2n4 + n2 = 9
equations of S ′. The subset X of Fc2 where we send every state is thus of size 2c−31 = 2129.
Our memory complexity is thus of 264.5.

As for the time complexity, producing 2r−e = 1 state that satisfies the first set of
requirements costs g. Each state has a probability

p =
((

3
4

)2
+
(

1
4

)2
)n2

×

((
3
4

)3
+
(

1
4

)3
)n3

= 5
8 ×

(
7
16

)4
≈ 2−5.4

to satisfy the extra 9 equations of S ′. Our final time complexity is thus around 264.5 ×
25.4 × g = 269.9 × g.

Example 10. We set n5 = 3. We thereby add 11× 3 = 33 linear equations to our system.
For the remaining 7 equations that we can add to our system, we can fix 3 bits of a slice.
By solving L, we satisfy 6n5 + 4n3 = 18 + 4 = 22 equations of S ′. Further, we allocate
the same value to 4 bits on n5 slices, and to 2 bits on n3 slice, and discard any state such
that this equality is not preserved by χ. This allows us to satisfy an extra 3n5 + n3 = 10
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equations of S ′. The subset X of Fc2 where we send every state is thus of size 2c−32 = 2128.
Our memory complexity is thus of 2 128

2 = 264.
Producing 2r−e = 1 state that satisfies the first set of requirements costs g. Each state

has a probability

p =
((

3
4

)2
+
(

1
4

)2
)n3

×

((
3
4

)4
+
(

1
4

)4
)n5

= 5
8 ×

(
41
128

)3
≈ 2−5.6

to satisfy the 10 extra equations of S ′. Our final time complexity is around 264×25.6×g =
269.6 × g.

One can notice that all the trade-offs presented in the Examples 8, 9 and 10 are worst
in terms of time complexity than the original attack made in Example 5. The reason
for that is the following: in the trade-offs, we have a probability of p1 = 5

8 , p2 = 7
16 and

p3 = 41
128 to satisfy 1, 2 and 3 equations respectively. As p1, p2 and p3 are respectively

smaller than 1√
2 ,

1
2 and 1

2
√

2 , our trade-offs cannot beat the first attack used in Example 5.

7.3 Optimizing the complexity
The existence of time-memory trade-offs that are better than the generic one described
in Section 7.1 suggests that the way the bits are allocated (in blue in Figures 6, 7 and 8)
impacts the complexity of the attack, even when the attacker does not discard states as
we presented in the trade-offs. In the following, we will compute the advantage to allocate
the same value to bits of the same column.

Fixing two bits on a slice in the alternative state When two bits on a slice are fixed
before χ to the same value (say 00 without loss of generality), then the output on those
two bits after χ is 00 with probability 9

16 , 01 with probability 3
16 , 10 with probability 3

16
and 11 with probability 1

16 .
Let A1 and A2 be two states produced after allocating the same value to two blue bits

of the same column and let s1 and s2 be the values on those two bits after χ (located in the
same column and in the alternative inner state). We know from Proposition 2 that being
constant on those bits, i.e. s1 ⊕ s2 = 00 or 11 exactly satisfies an equation of S ′. Using
the probabilities above, we find that if the bits in blue are allocated to the same value,
then this equation will be satisfied, not with a probability of 1

2 , but with a probability of

9
16 ×

9
16 + 2× 9

16 ×
1
16 + 1

16 ×
1
16 + 4× 3

16 ×
3
16 = 17

32 >
1
2 .

Fixing three bits on a slice in the alternative state Using the same reasoning, when we
fix three bits, we can look at the probability of satisfying the corresponding two equations
of S ′. Considering three bits in the same column with the input pattern 000, the probability
that two states at the output have the same difference in this column is exactly(

27
64

)2
+ 3

(
9
64

)2
+ 3

(
3
64

)2
+ 3× 2× 3

64 ×
9
64 +

(
1
64

)2
+ 27

64 ×
1
64 × 2 = 19

64 >
1
4 .

Fixing four bits on a slice in the alternative state When we have four bits with the
input pattern 0000, we find that the probability of satisfying three equations in S ′ is(

81
28

)2
+
(

1
28

)2
+ 81

28 ×
2
28 + 4

(
27
28

)2
+ 4

(
3
28

)2
+ 12×

(
9
28

)2
+ 27

28 ×
4× 2× 3

28

= 353
2048 >

1
8 .
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In conclusion, it is always better to allocate the same value to the blue bits of the same
column in the alternative inner state. The equations are then satisfied with a higher
probability than in the random case. Naturally, on the other hand, allocating a different
value to bits of the same column decreases the probability of getting a collision. The full
complexity of our attack will be given in Section 9.

8 Attacks in the general context
So far, we have only described our attack when the outer state is exactly one plane.
However, the Keccak versions can absorb more (or less) bits per Keccak-p permutations
calls, for different width and rate. A user can use an arbitrary rate, as long as both
the capacity and the output length are at least twice the security level this user wants
to achieve. In other words, the outer part can be two planes, or it can also be strictly
contained in one or more plane. In this section, we will show how our attack can be applied
in a general setting as long as the inner state contains at least two planes. We apply it to
Keccak[72, 128] and Keccak[144, 256]. Those two versions are proposed in [KY10].

8.1 Getting collisions in a general setting
Let r be any rate and c a capacity such that c

5ω ≥ 2. Then finding a collision is equivalent
to solving the system of equations S defined in Section 5. Define r′ as the smallest multiple
of 5ω such that r ≤ r′. Then, our system S can be rewritten as the concatenation of two
systems: one with r′ − r equations, and one with c− (r′ − r) equations.

f0(m0, . . . ,mr−1, s0, . . . , sc−1) = f0(m′0, . . . ,m′r−1, s
′
0, . . . , s

′
c−1)

f1(m0, . . . ,mr−1, s0, . . . , sc−1) = f1(m′0, . . . ,m′r−1, s
′
0, . . . , s

′
c−1)

· · ·
fr′−r−1(m0, . . . ,mr−1, s0, . . . , sc−1) = fr′−r−1(m′0, . . . ,m′r−1, s

′
0, . . . , s

′
c−1)

(S1)


fr′−r(m0, . . . ,mr−1, s0, . . . , sc−1) = fr′−r(m′0, . . . ,m′r−1, s

′
0, . . . , s

′
c−1)

fr′−r+1(m0, . . . ,mr−1, s0, . . . , sc−1) = fr′−r+1(m′0, . . . ,m′r−1, s
′
0, . . . , s

′
c−1)

· · ·
fc−1(m0, . . . ,mr−1, s0, . . . , sc−1) = fc−1(m′0, . . . ,m′r−1, s

′
0, . . . , s

′
c−1)

(S2)

where the fi for i from 0 to c− 1 are the component functions of the Keccak permutation
for the bits located in the inner state.

Since r′ is a multiple of 5ω, we also have that c − (r′ − r) is also a multiple of 5ω.
Applying Proposition 2 and Theorem 3 to the system S2, we know that the system S2
is equivalent to a system S ′2, where satisfying equations of this system can be done by
satisfying constancy on some bits located in the same column.

The attack then works the same as if the outer part was made exactly of full planes.
By building a linear system L, we try to satisfy as many equations as possible in S ′2 and
we consider that S1 is satisfied with probability 2r−r′ .

8.2 Attack on concrete instances
We apply this to Keccak[72, 128] and Keccak[144, 160]. Both correspond to 16 lanes of
capacity, and therefore 9 lanes of rate. We attack these instances as if we sought a collision
on three planes. It is exactly the same idea as Section 6.3. The results of this analysis are
summed up in Table 3. To help the reader understanding these results, one can rely on
Figures 9 and 10.
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Table 3: Different choices for the number of bits per slice to fix. (outer state made of two
planes)

Number of allocated bits 2 3 4 5

Number of equations added to L 3 5 7 9

Number of equations satisfied in S ′ 1 2 3 4

Ratio νslice 0.33 0.40 0.43 0.44

f(A)⊕ f(A′)

χ−1 ◦ ι−1

Anr−1
π ⊕ (A′)nr−1

π

π−1 ◦ ρ−1

Anr−1
θ ⊕ (A′)nr−1

θ

Figure 9: Illustration of the effect of the Keccak mappings when the outer state is two
planes.

χ

χ

χ

Figure 10: Linear equations derived when the outer state is two planes. The blue bits in
blue are fixed. We satisfy constancy on the yellow bits by finding solutions to L. The
orange bits are equal to the blue bits with high probability.
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Example 11 (Keccak[72, 128]). We study an allocation strategy on Keccak[72,128]
reduced to two rounds. Since the greatest νslice is associated to fixing 5 bits per slice, it
seems that the best strategy is to fix 5 bits on as many slices as possible. On each slice,
fixing 5 bits means adding a total of 9 equations to our system. We set n5 = 8. Note that
ω = 8 so this is possible. We thereby add 8 × 9 = 72 linear equations to our system L.
Further, for each 5 bits of a column we fix, we allocate the same value to the 3 of them
that are located on the alternative inner state when the rate is r′ = 80 as defined above,
as we know from Section 7.3 that this is the best choice.

In total, we satisfy 32 equations of S ′. The subset X of Fc2 where we send every state
is thus of size 2c−32 = 296. Our memory complexity is thus slightly smaller than 2 96

2 = 248,
as some extra equations are satisfied with higher probability (see Section 7.3). We will
give the exact time complexity in Section 9.2, but we already know that it is smaller than
248 × g.

Example 12 (Keccak[144, 256]). We study an allocation strategy on Keccak[144, 256].
Since the greatest νslice is associated to fixing 5 bits per slice, it seems that the best
strategy is to fix 5 bits on as many slices as possible. On each slice, fixing 5 bits means
adding a total of 9 equations to our system. We set n5 = 16. Note that ω = 16 so this is
possible. We thereby add 16× 9 = 144 linear equations to our system L. Further, for each
5 bits of a column we fix, we allocate the same value to the 3 of them that are located on
the alternative inner state when the rate is r′ = 160 as defined above.

In total, we satisfy 64 equations of S ′. The subset of Fc2 where we send every state is
thus of size 2c−64 = 2192. Our memory complexity is thus slightly smaller than 2 192

2 = 296,
while our time complexity is smaller than 296 × g (see the exact time complexity in
Section 9.2).

9 Complexity and implementation
In this section, we provide the exact complexity of our attack and a brief description of
the implementation of our proof of concept.

9.1 Pre-computation of Gaussian elimination
In general, the cost of solving a linear system of r equations is r3 bit operations. If the size
of the system is small enough to fit in the processor register, it can also be reduced to r2 64-
bit operations for instance if the processor works on 64 bit words. However, one can notice
that the Gaussian elimination operation is the same for all produced states. This allows
us to put this computation in a pre-computation phase, replacing the multiplication by g
from all previous complexities with one multiplication matrix-vector, where the matrix is
of size (b− r)× r and the vector is of size b− r, to provide the right message(s) of length
r. Ahead of this multiplication matrix-vector we sequentially determine if the state is a
right candidate. This is done by looking if the system is solvable and requires e− rank(L)
scalar products on elements of length b− r which can be considered as negligible in front
of the Keccak round function.

Let’s now compare the cost of the Keccak round function with the multiplication
matrix-vector. θ requires 25 XORs to compute the parities of the 5ω columns, 5 rotations,
and 50 XORs to add for every bit. ρ requires 24 rotations, π requires 25 change of
coordinates and χ requires 25× 3 gates. Finally, taking into account the round constant,
we count one round function of Keccak as 205 logic operations. We can then say that
two rounds of Keccak require 410 operations, when our matrix-vector multiplication can
require up to r × (b− r) operations.
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For Keccak[40, 160], the ratio between the cost of system solving and the cost of two
rounds of Keccak is then 40×160

410 . Then we replace g by g′ = 640
41 . For Keccak[72, 128],

g has to be replaced by g′ = 4608
205 . As for Keccak[144, 256], we replace g by g′ = 18432

205 .

9.2 Complexity of our attack
For the birthday argument, if the size of the subset we’re looking at is of size 2s, then the
Birthday paradox says that a collision is found with probability 2−1 when we collected
2s/2 states. Taking this into account, as well as the the fact that we can pre-compute the
Gaussian elimination (see Section 9.1) together with the improvements that are due to the
χ mapping properties (see Section 7.3), we can obtain the exact complexities of the best
attacks on Keccak[40, 160], Keccak[72, 128] and Keccak[144, 256].

For Keccak[40, 160], the Crunchy Contest version, our attack is described by Example 5.
The best time-memory trade-off is described in Example 10. For the attack with the best
time complexity, n3 = 5 and n2 = 1, where we allocate bits in blue to the same value,
the number of equations satisfied with probability 1 is n = 22. Each of the remaining
6 equations are satisfied with probability 17

32 (only 2 bits in blue per slice are relevant)
between any pair of states produced. Hence, the probability that we get an inner collision
between a pair of states S and S′ is exactly

Pr[Ŝ = Ŝ′] = 2n+6−c
(

17
32

)6
.

The number of state to collect is the square root of the inverse of this probability. The
time complexity T of the attack in number of Keccak calls reduced to two rounds is thus

2× 640
41 × 2−1 × 2

c−n−6
2 ×

(
32
17

)3
= 266 × 640

41 ×
(

32
17

)3
≈ 273 .

The factor 2−1 comes from the fact that in this example, the number of equations is 39
and not 40, meaning that each time we compute a state, we can derive an other one faster
than applying Keccak.

For Keccak[72, 128], we have n = 32, we fix 5 bits per slice. We allocate the same
value to the 3 of them that are located on the alternative inner state. Therefore 8 × 2
equations are satisfied with a probability higher than 2−1. The probability of getting an
inner collision between two states S and S′ is thus

Pr[Ŝ = Ŝ′] = 2n+16−c
(

19
64

)8
.

The time complexity T of the attack in number of Keccak calls reduced to two rounds is
thus

2× 4608
205 × 2

c−n−16
2 ×

(
64
19

)4
= 241 × 4608

205 ×
(

64
19

)4
≈ 252.5 .

Finally, for Keccak[144, 256], we have n = 64, we also fix 5 bits per slice. We allocate
the same value to the 3 of them that are located on the alternative inner state. The
probability of getting an inner collision between two states S and S′ is thus

Pr[Ŝ = Ŝ′] = 2n+32−c
(

19
64

)16
.

The time complexity T of the attack in number of Keccak calls reduced to two rounds is
thus

2× 18432
205 × 2

c−n−32
2 ×

(
64
19

)8
= 281 × 18432

205 ×
(

64
19

)8
≈ 2101.5 .

Our attack then beats the generic one with a factor of 227.5.
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Memory-less attack Our attack consists mainly in producing states that belong to a
given subset. We can define a deterministic function that takes the inner part of a Keccak
state, and from this value derives deterministically a string that we can consider as random.
This string can be used as a message which we can process with Keccak. We can then
choose a message m in order to send this message into the desired subset X.

Let then g be the function that takes a message and returns an inner part as defined
by our attack. g produces an inner part that lies in the desired subset with a certain
probability, which we computed exactly. Let h be the function that takes an inner part
and extends it to a certain message. Finally, let f = g ◦ h. f is a function from Fc2 into
Fc2. Thus, we can chain the inner part values, and assuming that f is a random function
over Fc2 which produces states in the desired subset with a good probability (defined by
Section 7.2), we can apply a cycle finding algorithm such as Floyd’s algorithm [Flo67] or
Brent’s algorithm [Bre80] on the functional graph of f . Such an algorithm finds a collision
with a negligible amount of memory and with the same time memory as computed above.
For advanced techniques, one can see the work of Van Oorschot and Wiener [vOW94].

9.3 Implementation

As a proof of concept, we implemented our attack in C on an even smaller version of
Keccak, Keccak[30, 70], reduced to two rounds. This instance is interesting because it
has allowed us to verify the theory on many points. It has a rate that is not a multiple
of 5ω = 20. Its inner state is made of one slice and a half. We used our attack as if the
outer state was made of two planes and thereby required constancy only on bits we could
control. We used Xoshiro-128 as a non-cryptographic but fast PRNG, that guarantees a
long period in the output sequence to produce the input messages.

We constructed L by allocating 5 bits on three slices, and 2 bits on a last one. In total
we thus added 5n5 + 2n2 + 4n5 + 1n2 = 30 equations to L, and satisfied 4n5 + 1n2 = 13
equations of S ′. We precomputed the Gaussian elimination of L and found out that our
system had a rank of 27 rather than 30. As explained in Section 6.4 this did not cause any
increase in our time complexity. In order to provide a fast proof of concept that can be run
in a practical time, we looked for semi-collision, that is a collision on the last 60 bits of the
state. We implemented the memory-less version of the attack to show how it can be done.

Furthermore, this proof of concept allowed us to verify probabilities involved in our at-
tack; the number of times the system has a solution (one out of eight times) together with the
number of times the χ mapping follows identity on well chosen bits, that is ( 7

16 )3 ≈ 0, 0837.
The practical statistics thus match our theoretical values. The code is freely available at
https://github.com/YannRotella/AlgebraicCollisionKeccakSmall100/.

Conclusion

In this paper, we presented a collision attack on round-reduced versions of Keccak. Our
attack only beats the best attacks on the smallest versions of Keccak. Indeed, it is only
relevant when the capacity is proportionally large compared to b (or equivalently r) and d,
making attacks that would be based on differential characteristics impractical. We tackled
the challenge of the Keccak team: ‘surprisingly, the smallest versions are the hardest to
break’. Our cryptanalysis shows that their statement is true, as even two rounds required a
strong effort. Most importantly, we showed that small Keccak instances require dedicated
cryptanalysis, since the techniques used to attack the bigger versions are very different
from the ones that worked for the smaller ones.

https://github.com/YannRotella/AlgebraicCollisionKeccakSmall100/
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