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Abstract. This paper provides an improved preimage attack method on standard
4-round Keccak-224/256. The method is based on the work pioneered by Li and
Sun, who design a linear structure of 2-round Keccak-224/256 with 194 degrees of
freedom left. By partially linearizing 17 output bits through the last 2 rounds, they
finally reach a complexity of 2207/2239 for searching a 4-round preimage. Yet under
their strategy, those 17 bits are regarded as independent bits and the linearization
costs a great amount of freedom. Inspired by their thoughts, we improve the partial
linearization method where multiple output bits can reuse some common degrees of
freedom. As a result, the complexity of preimage attack on 4-round Keccak-224/256
can be decreased to 2192/2218, which are both the best known theoretical preimage
cryptanalysis so far. To support the theoretical analysis, we apply our strategy to a
64-bit partial preimage attack within practical complexity. It is remarkable that this
partial linearization method can be directly applied if a better linear structure with
more freedom left is proposed.
Keywords: Keccak · SHA-3 · Preimage attack · Linear structure

1 Introduction
SHA family are one of the most widely used hash functions in cryptography and have been
standardized as the Federal Information Processing Standards (FIPS) by the National
Institute of Standards and Technology (NIST). Till now, there are three generations of
SHA standards. SHA-1, designed by the National Security Agency (NSA) in 1995, has
been proved to be insecure in collision resistance by Wang et al. in 2005 [WY05]. The
SHA-2 series, also designed by NSA in 2001, are still undetermined in security due to their
resemblance with SHA-1. Because of this, NIST decided to launch a public competition
in 2008 to find a new hash function standard. Through four years of intensive scrutiny,
the Keccak function won the competition among 64 initial submissions and was finally
standardized as SHA-3 in 2015 [oST15].

The Keccak function, which was designed by Bertoni et al. [BDPV11a, BDPV11b],
adopts a new iterative structure named sponge instead of the previous Merkle-Damgard
structure of SHA-1 and SHA-2. The designers have proved [BDPV08] that the sponge
construction has the characteristics of indifferentiability and collision resistance if its
inner permutation Keccak-f can be regarded as a pseudo-random permutation. Although
Keccak-f cannot be proved to be pseudo-random, the hybrid permutation consisting of 24
rounds of iteration still shows high resistance against any kind of cryptanalysis.

Since Keccak was publicly available in 2008, numerous researches have been conducted
from public community. About the pseudo-randomness of Keccak-f , there are mainly two
types of distinguishers: differential characteristic distinguishers and zero-sum distinguishers.
In [DGPW12], Duc et al. made use of multiple 5-round differential paths and derived
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an 8-round distinguisher with complexity of about 2491. The zero-sum attack was firstly
proposed by Aumasson et al. in 2009 [AM09], reaching a practical attack for 9 rounds
and a birthday attack (bounded by 2800) for 15 rounds. In 2011, Boura et al. [BCC11]
proposed a full-round zero-sum distinguisher with complexity of 21590 (improved by Duan
et al. [DL11] with complexity of 21579). As for collision attacks, most results depend on the
differential trails. In [DV12], Daemen et al. analyzed the differential properties of Keccak
and Kölbl et al. went further to study the differential properties of Keccak-f [800] and
Keccak-f [1600] in [KMNS13]. In 2012, Dinur et al. [DDS12] proposed a new technology
named target difference algorithm. Using this technology, they obtained collisions for
4-round Keccak-224/256 within practical complexities. After that, Qiao, Song, Guo et
al. [GLL+20, QSLG17, SLG17] improved the technology and finally they were able to
construct practical collisions for up to 5-round Keccak-224/256. Besides these, there are
also attacks in other security settings. We would not list them here all since they are less
relevant to our work.

In this paper, we mainly focus on preimage attacks. Although there exist some other
kinds of preimage cryptanalysis [Ber10, MPS13, MS13], most preimage attacks depend
on the linear characteristics of Keccak, especially of its nonlinear S-box. In [DMP+15],
Dinur et al. proposed an idea of keeping the first round linear and used it to analyze
the security of keyed-variant Keccak. Guo et al. [GLS16] further developed this idea by
constructing a 3-round linear structure of Keccak-f and obtained a practical distinguisher
for up to 11 rounds. Moreover, they adopted a similar 2-round structure and reached
good results on searching a preimage for 3-round Keccak, or 4-round Keccak with low
parameters such as Keccak Challenge and SHAKE128. However, when applied to standard
4-round Keccak-224/256, the linear structure will be severely affected by the restrictions in
the starting state (the last several lanes must be all ‘0’) and thus cannot perform well. In
2019, Li and Sun [LS19] proposed a 2-block model to loosen the restrictions. Under their
model, the starting state of the second message block (which is also the ending state of the
first message block) only needs to meet 129/193 conditions (for Keccak-224/256), instead
of 448/512 all ‘0’. Therefore, more degrees of freedom can be left in their structure after
2-round entire linearization. Using the new linear structure as well as the new attack model,
they succeeded in constructing the first practical preimage for 3-round Keccak-224 and
their attack method also performed well on 4-round Keccak-224/256. All those preimage
cryptanalysis on 4-round Keccak-224/256 are summarized in Table 1.

Table 1: Summary of preimage cryptanalysis on 4-round Keccak-224/256.

Round Instance Complexity Reference
4 Keccak-224 2221

[MPS13]
4 Keccak-256 2252

4 Keccak-224 2213
[GLS16]

4 Keccak-256 2251

4 Keccak-224 1st block: 2129a 2nd block: 2207b

[LS19]
4 Keccak-256 1st block: 2193a 2nd block: 2239b

4 Keccak-224 1st block: 2129a 2nd block: 2192b

This Paper
4 Keccak-256 1st block: 2193a 2nd block: 2218b

aCorrected: when considering the message padding of Keccak, the complexity of the
1st block should be increased by 22.
bNote: those results do not include the complexities for solving the linear equation
system (with a factor O(n3) where n is the number of linear equations).

Our contributions. Our work is mainly about the last 2 rounds of 4-round Keccak-
224/256. In the third round, we propose an efficient partial linearization strategy where
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multiple bits can reuse some common degrees of freedom. Under this new strategy, 56 bits
located at specific sites can be linearized within 162 degrees of freedom, passing through
the third S-box layer and reaching the fourth S-box layer. In the fourth round, we reveal
the relation between the 224/256 output bits and the 56 linearized sites. We thoroughly
analyze the situations where a linearized site works or not and calculate the expected gain
of all 56 sites in total under a random digest. Combining our partial linearization and our
expectation analysis with the linear structure inherited from [LS19], a complete preimage
attack algorithm for 4-round Keccak-224/256 is constructed with complexity of 2192/2218.
To support our analysis, we present a partial pseudo preimage (the second message block)
for 4-round Keccak matching 64 bits of the digest, with practical complexity of only 233.

Organization. The paper starts with some preliminaries and notations about Keccak
in Section 2. In Section 3, we give a brief discussion about Li and Sun’s work, especially
about their 2-round linear structure. The following Section 4 introduces our partial
linearization strategy and our expected gain analysis on 4-round Keccak-256. Section 5 is
similar for 4-round Keccak-224. Experimental results of 64-bit partial pseudo preimage
attack are presented in Section 6 and conclusions are summarized in Section 7.

2 Preliminaries
This section gives some descriptions about the sponge construction, the Keccak-f permu-
tation, the SHA-3 standard, and the meanings of those notations used in this paper.

2.1 Sponge Construction
The Keccak hash function adopts the sponge construction, as depicted in Figure 1. It
involves three parameters r, c, ` and a permutation Keccak-f [b] with b = r + c, which will
be further described in the next section.

Figure 1: The sponge construction.

This construction processes a message in two phases—absorbing phase and squeezing
phase. In the absorbing phase, the message M (after padding) is split into r-bit blocks
firstly. Beginning with a b-bit all ‘0’ IV, the first r bits are XORed with the first message
block, followed with an execution of Keccak-f . Similar steps are repeated until all message
blocks are processed. Then it comes to the squeezing phase. The sponge construction first
outputs an r-bit block, then mixes its state by executing Keccak-f , and outputs another
r-bit block, repeating until the digest length meets the requirement. Finally, the digest is
truncated to the first ` bits.

Since the target preimage is only 2-block in our attack model and ` is much smaller
than r in Keccak-224/256, we just need to focus on the specific sponge construction with
Keccak-f executed exactly twice.
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2.2 Keccak-f Permutation
The core of Keccak-f [b] is its b-bit inner state. The designers provided seven Keccak-f
permutations in [BDPV11b] with b ∈ {25, 50, 100, 200, 400, 800, 1600}. NIST finally chose
b = 1600 as SHA-3 standard. In this paper, we also consider the case of b = 1600 only.

In the case of b = 1600, the b-bit inner state can be organized as 5 ∗ 5 64-bit lanes like
Figure 2. Each bit is denoted as Ax,y,z. The triple (x, y, z) denote the indices of a bit,
where x varies from 0 to 4, y varies from 0 to 4, and z varies down from 63 to 0 (counting
from the most significant bit) as the arrows in Figure 2 show. The r-bit part of the b-bit
state is in order of A0,0,0 ∼ A0,0,63, A1,0,0 ∼ A1,0,63, . . . , A4,0,0 ∼ A4,0,63, A0,1,0 ∼ A0,1,63...

Figure 2: The Keccak-f state.

The Keccak-f permutation consists of 24 rounds of function R, and each R consists of
five steps R = ι ◦ χ ◦ π ◦ ρ ◦ θ, where:

θ : Ax,y,z = Ax,y,z ⊕
⊕

i=0∼4
(Ax−1,i,z ⊕Ax+1,i,z−1)

ρ : Ax,y,z = Ax,y,(z−rx,y)

π : Ax,y,z = Ax+3y,x,z

χ : Ax,y,z = Ax,y,z ⊕ (Ax+1,y,z ⊕ 1) ·Ax+2,y,z

ι : A0,0,z = A0,0,z ⊕RCz

In the formulas above, “⊕” means bit-wise XOR and “·” means bit-wise logic AND.
The indices x and y are calculated modulo 5 and the index z is calculated modulo 64.
Besides, rx,y refers to a lane-dependent rotation constant as shown in Table 2. RCz is a
round-dependent constant. We omit the details of RC here since those constants do not
affect our attack method.

Table 2: The offsets of ρ.

x = 0 x = 1 x = 2 x = 3 x = 4
y = 0 0 1 62 28 27
y = 1 36 44 6 55 20
y = 2 3 10 43 25 39
y = 3 41 45 15 21 8
y = 4 18 2 61 56 14

2.3 SHA-3 Standard
Any Keccak instance can be denoted as Keccak[r, c, `] with capacity c, bitrate r and digest
length `. In [oST15], NIST standardized several SHA-3 versions that have r = 1600− 2`
and c = 2`, where ` ∈ {224, 256, 384, 512}. Therefore, we can use Keccak-` or SHA-3-` to
denote a SHA-3 version for short.

In this paper, we would not present those details such as the padding rule, the message
reversing and the big-endian byte order. We just notice that the padding rule will bring
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an extra 2-bit (4-bit for SHA-3, instead) restriction and the last 32 bits of the 224-bit
digest are corresponding to z = 0 ∼ 31 of the fourth lane. For more details of Keccak and
SHA-3, please refer to [oST15].

2.4 Notations
From this section onwards, we will no longer use the capital letter A to denote the inner
state, since it cannot accurately show its execution process. Instead, we will use capital
Greek letters (in {Θ,P,Π,X, I}) with a superscript (from 1 to 4) to express the state
exactly after the corresponding step is executed. For example, Π3 denotes the state after
π in the third round, and X4 denotes the state after χ in the fourth round.

The starting state of the first Keccak-f is denoted as IV, and the starting state of the
second Keccak-f is denoted as H. The 2-block message is denoted as M1M2. The digest
of 4-round Keccak-224/256 is truncated from I4. Notice that ι−1 can be easily applied to
the digest, recovering corresponding 224/256 bits of X4. In this paper, “digest” means
those bits in I4 and “output” means those bits in X4. If attackers are able to match the
output, the digest can also be easily matched.

To avoid ambiguity, we will always use three indices in subscript to denote a part of
the inner state. However, we may use “∗” to indicate all legal values. For example, Π3

∗,y,z

is a 5-bit row, Π3
x,∗,z is a 5-bit column, Π3

x,y,∗ is a 64-bit lane, and Π3
∗,∗,z is a 5 ∗ 5 slice. If

we omit the subscript, it indicates the 1600-bit whole state (just like the notations above).
And if we omit the superscript, it means the statement is general in each round.

In the rest of the paper, we may use the word “site” to describe a certain bit in Π4.
We say a site Π4

x,y,z is linearized, if it can be expressed by an XOR sum of several bits
from H and M2 (through 3 nonlinear S-box layers).

3 Overview
This section gives an overview about our preimage attack on 4-round Keccak-224/256.
First, we briefly recall the 2-round linear structure designed by Li and Sun. Second, we
present the outline of our attack model. Thirdly, we take a preview on the strategy of
partial linearization and how linearized sites work under different outputs.

3.1 2-Round Linear Structure via an Allocating Approach
In [LS19], the authors provided a 2-round linear structure with 194 degrees of freedom left
via an allocating approach. The structure is depicted in Figure 3.

� = � ⊕ "#

$ ∘ & ∘ '

() *) +)

(# *# +# *,

' $ ∘ & - ∘ . '

$ ∘ & - ∘ .

= 0 = 1 = linear = restricted const = random const

Figure 3: The 2-round linear structure in [LS19].
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This structure starts with the ending state H of the first Keccak-f by absorbing M1.
After XORed with M2, if H

′ = H ⊕M2 meets H ′

x,1,z = H
′

x,3,z = H
′

x,4,z ⊕ 1, the first θ
step can lead to Θ1

x,1,z = Θ1
x,3,z = 0 and Θ1

x,4,z = 1 by controlling H ′

x−1,0,z ⊕H
′

x−1,2,z ⊕
H

′

x+1,0,z−1 ⊕H
′

x+1,2,z−1 = H
′

x,4,z ⊕ 1. These constants can keep the number of uncertain
bits at the least level after the first nonlinear χ step. In the second θ step, those column
sums I1

x,0,z ⊕ I1
x,1,z ⊕ I1

x,2,z ⊕ I1
x,3,z ⊕ I1

x,4,z (denoted as SI1(x, z)) will be randomly set to
prevent the diffusion of uncertain bits. Finally the structure can pass through the second
χ step and reach the third χ step, which is a 2-round linear structure.

Theorem 1. If the starting state meets H ′

x,1,z = H
′

x,3,z = H
′

x,4,z ⊕ 1 and
⊕

x,z H
′

x,4,z = 0,
Figure 3 can construct a 2-round linear structure with 194 degrees of freedom left.

In [LS19] the authors have actually proven this theorem. Here we just briefly explain
their ideas. Θ1 can be obtained by setting H ′

x−1,0,z⊕H
′

x−1,2,z⊕H
′

x+1,0,z−1⊕H
′

x+1,2,z−1 =
H

′

x,4,z ⊕ 1, which composes 320 linear equations in total. Among these equations, 160 of
them can infer

⊕
x,z(H ′

x,0,z ⊕H
′

x,2,z) to equal a certain value, and the other 160 of them
also infer

⊕
x,z(H ′

x,0,z ⊕H
′

x,2,z) to equal a certain value. Therefore, this part will return 1
degree of freedom and

⊕
x,z H

′

x,4,z = 0 is required to avoid contradictions. In the second
part of 128 column sums, since the sum of all 640 variables is certain, 1 column sum can
be inferred from the other 127 column sums, which returns 1 degree of freedom. Overall,
this linear structure leaves 640− 320− 128 + 2 = 194 degrees of freedom.

As for the complexity of constructing a qualified H ′ , notice that the message block
M2 can adjust 5 lanes of H ′

x,1,∗ and 2/3 lanes of H ′

x,3,∗ in Keccak-256/224, leaving 3/2
lanes only. Therefore, 192/128 equations of Hx,3,z = Hx,4,z ⊕ 1 need to be met in H and
the complexity is 2193/2129 (including

⊕
x,z Hx,4,z = 0). When considering the message

padding of Keccak, extra 2 bits (4 bits for SHA-3) are restricted in H ′

3,1,∗/H
′

3,2,∗, and thus
the complexity should be increased by 22, becoming 2195/2131.

3.2 Outline of 4-Round Preimage Attack
Figure 4 shows the outline of our 4-round preimage attack. The figure takes Keccak-256
as an example, while it is similar for Keccak-224.

IV
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output
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4-round

origin

structure

2-round

linear

structure
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partial

linearization

expectation analysis

0 fixed

unconcerned restricted

linearized

entirely

linearized

partially

Figure 4: The outline of 4-round preimage attack.

Attackers first find out a message blockM1 to make H meet those 195 conditions. With
H determined, 7 lanes are fixed and 10 lanes are varied in message block M2. By setting
446 linear equations, the inner state after the third π step is still entirely linearized with
194 degrees of freedom left. Then attackers apply a partial linearization strategy to pass
through the third χ step in order that several sites in Π4 can be linearized. It is expected
that those linearized sites can bring gains in matching the output, which corresponds to
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the state just one step behind. If attackers fail in matching the output, they can reset all
random values and find a new solution of the linear equation system, leaving H and M1
unchanged. This process will be repeated until the output is matched. Finally, the 2-block
preimage is M = M1M2.

Apparently, the main problems of this outline are how to linearize as many sites as
possible, and how to analyze the expected gain of those linearized sites. Before taking a
preview on these problems, we first discuss how [LS19] deals with them.

3.3 Basic Strategy of Partial Linearization
Actually in [LS19], the authors haven’t proposed the concept of “partial linearization” or
“expectation analysis”, but the idea is the same in a way. Their strategy is to control a
single bit by spending 11 degrees of freedom, as shown in Figure 5.

In order to control a single bit in Π4, which corresponds to a bit in Θ4, 11 bits in X3

need to be linearized. Notice that Π3 is still entirely linear because of the 2-round linear
structure. Then to linearize a bit X3

x,y,z = Π3
x,y,z ⊕ (Π3

x+1,y,z ⊕ 1) ·Π3
x+2,y,z, just ensure

either Π3
x+1,y,z or Π3

x+2,y,z is a constant. By randomly setting 10 bits in Π3 to be ‘0’ or
‘1’ (just like Figure 5), the target bit in Π4 can be successfully linearized.

Including the equation of the target bit itself, it costs 11 degrees of freedom in total to
control a single bit in Π4. Within 187 out of 194 degrees of freedom, 17 bits of Π4 are
finally controlled. These bits can be sited at any position to the needs of attackers.

�∗,∗,!
" #∗,∗,!$""

"

% ∘ '

(∗,∗,!$""
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(∗,∗,!$"*
)

+

+

�∗,∗,!$""
)

�∗,∗,!$"*
)

= linear

= random const

= unconcerned

� ∘ !

= wasted linear

Figure 5: Control a single bit by spending 11 degrees of freedom.

On the other hand, some bits in Π4
∗,0,∗ can be directly recovered from the 224/256

output bits. For example, if one row of S-box output is X∗,0,z = 1001? (“?” denotes the
uncertain bit from the fifth lane), the input may be Π∗,0,z = 10000 or Π∗,0,z = 11011
(denoted as 1?0?? for short) with 2 recovered bits. Suppose attackers control Π4

0,0,z = 1
to match the output row 1001?. Then the other 4 bits, which are all the sum of 11 bits
in I3, can be regarded as independent Bernoulli variables with probability of 1/2 as long
as any of those 11 bits is uncontrolled. Thus among all 16 cases, 2 cases of 10000 and
11011 can lead to 1001?, with probability of 2−3 rather than 2−4. From this perspective,
1 recovered bit in Π4

∗,0,∗ can bring a gain of 21 in matching the output. Although there
may be some bad output rows such as 1000?←?????, attackers can almost always find 17
recovered bits to control. Therefore, the complexity decrease is 217 in [LS19] for 4-round
Keccak-224/256.

The advantage of this strategy is that attackers are able to control any site of Π4
∗,0,∗.

In other words, the average gain of a single site is 21, since attackers can always choose
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those recovered sites. However, in Figure 5 those 10 constant bits actually linearize 20
bits in X3. This strategy directly wastes 9 of them, which means the average usage of a
single linear bit is only about 1/2. In the next section, we will take a preview on a new
strategy with average usage about 2 and average gain about 20.5 to 20.75, which can be
much more efficient.

3.4 Preview on Freedom Reuse Strategy
In Figure 5, a single bit in Π4 is linearized by 10 constants in Π3, leading to 20 linear
bits with 9 of them wasted. Actually these 9 bits can be used for linearizing another bit in
Π4, just by adding 1 constant. The method is presented in Figure 6.
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- ∘ /
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= linear

= random const

= random const added

= unconcerned

Figure 6: Multiple bits reuse common degrees of freedom.

The origin Π4
1,0,z (corresponding to Θ4

1,1,z−44) is determined by two columns X3
0,∗,z−44

and X3
2,∗,z−45 with one solitary bit X3

1,1,z−44. These bits can be linearized by setting 10
constants, as shown in Figure 6. Notice that all the 5 bits in column Θ4

1,∗,z−44 actually
have been linearized, but only 1 bit can reach Π4

∗,0,∗ (passing through the step π). These
10 constants also linearize another two columns X3

1,∗,z−44 and X3
3,∗,z−45. By just adding 1

constant to linearize X3
2,2,z−44, the bit Π4

2,0,z−1 (corresponding to Θ4
2,2,z−44) can also be

linearized. The freedom reuse strategy can continue by adding 6 constants (1 in Π3
∗,∗,z−45

and 5 in Π3
∗,∗,z−46), generating another 2 linearized bits in Π4

∗,0,∗.
However, the positions of those linearized bits are relatively fixed under this strategy.

As the example in Figure 6 shows, if attackers start with Π4
1,0,z, following linearized bits

must be Π4
2,0,z−1, Π4

3,0,z−24, Π4
4,0,z−31... Figure 7 further reveals some laws about this

strategy. It starts with 5 bits in column Π3
x=xs,∗,z=zs

and continues with 5 bits in column
Π3

x+2,∗,z−1 as well as 1 solitary bit Π3
x+2,x,z (or Π3

x+1,x,z), linearizing 2 sites in each step.
After five steps, the constant column returns to xs and all z-axes are rotated by an offset
of 5, forming one cycle. It’s seen that each constant column is related to 4 linearized sites
and each solitary constant bit is related to only 1 linearized site.
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Figure 7: The freedom reuse strategy (one cycle).

Using this freedom reuse strategy, attackers can linearize 28 ∗ 2 = 56 bits by setting
5 + 28 ∗ 6 = 173 constants. Those 56 bits will all be located at specific sites once the
starting column is chosen. Notice that there are 320 groups of linearized sites in total (by
changing the starting column) and attackers are able to go through them all to search one
with the greatest gain. However, we still need to analyze the expected gain of a certain
group since attackers can only choose one group to build up the linear equation system.

Now we can take a preview on the expected gain analysis. The main principle is that
no matter what the output is, we will always use the same group of linearized sites (just for
analysis). Take zs = 0 as an example. Suppose one output row is X4

∗,0,0 = 1001?← 1?0??.
Then the linearized site Π4

0,0,0 can bring a gain of 21 by setting the linear equation
Π4

0,0,0 = 1 (this equation also costs 1 degree of freedom), which is a typical situation of a
linearized site working. Suppose another output row is X4

∗,0,41 = 1000? ←?????, which
is the worst situation of all solitary bits not working. Then we can do nothing with the
linearized site Π4

1,0,41 expect neglecting the efforts we have made to linearize it. Finally,
the gain of this certain group corresponds to the number of effective equations we can
establish, which also depends on the number of recovered bits among all linearized sites.
Although there may be some bad cases like outputs with lots of 1000?, the expected gain
under a random digest can still reach a better result since the number of linearized sites is
much greater than 17.
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Table 3 shows those recovered bits under all 4-bit outputs, which supports a primary
analysis for Keccak-256. Regarding all 56 sites as solitary bits, the expected number of
recovered bits is (among those 64 groups starting from Π3

1.∗,z):

12 ∗ 0.75 + 11 ∗ 0.75 + 11 ∗ 0.5 + 11 ∗ 0.5 + 11 ∗ 0 = 28.25

Under this analysis, the expected total gain of constructing a 4-round preimage for a
random 256-bit digest can reach 228.

Table 3: Recovered bits under different cases.

Output Input Output Input
0000? ?0?0? 1000? ?????
0001? 0101? 1001? 1?0??
0010? ?0??? 1010? ?0?0?
0011? 101?? 1011? 0011?
0100? 01?0? 1100? 1????
0101? 0001? 1101? 1?0??
0110? 01?0? 1110? 11???
0111? 0111? 1111? 111??

∗Total: Π4
0,0,z : 0.75 Π4

1,0,z : 0.75 Π4
2,0,z : 0.5 Π4

3,0,z : 0.5 Π4
4,0,z : 0

∗Π4
x,0,z corresponds to an input bit of the table. Among all 16 cases, 12 Π4

0,0,z are
recovered without “?” and thus the total ratio is 0.75. Other ratios are similar.

However, for those linearized sites located at the same row, their efficiency can greatly
increase compared with solitary bits from different rows. For example, although X4

∗,0,42 =
1000?←?????, we can still get a gain of 21 by setting Π4

0,0,42 ⊕Π4
2,0,42 = 1 (Π4

0,0,42 is also
linearized in the group starting from Π3

1.∗,0). Detailed analysis will be provided in Section
4 and Section 5.

To sum up, this section has given an overview about our preimage attack method: by
setting 173 constants in entirely linearized Π3, 56 bits in Π4 can be partially linearized,
bringing some kinds of benefits in matching the digest. A common doubt is: how can we
get a gain greater than 221 since we have set 173 linear equations out of 194 degrees of
freedom? Actually those constants need not cost 173 degrees of freedom, which refers to a
technology named zero coefficient. Moreover, if some linearized sites do not work, we can
delete the constants of related solitary bits, which refers to a technology named freedom
return. These technologies will also be introduced in following sections.

4 Improved Preimage Attack on 4-Round Keccak-256
Preimage cryptanalysis on 4-round Keccak-256 is provided in this section. After introducing
how to set 173 constants by spending 162 degrees of freedom, we will display all the details
about 173 constant bits and 56 linearized sites. Then we further analyze the expected
gain in 3 cases: rows containing 1, 2 or 3 linearized sites. In the third part, we discuss
the technology of freedom return, which can make up the lack of freedom. It is finally
concluded that attackers can set 38 effective equations with probability of 74.5%, obtaining
a complexity decrease of 238 under a random 256-bit digest.

4.1 How to Set 173 Constants within 162 Degrees of Freedom
We have introduced our freedom reuse strategy of linearizing 56 sites in Π4

∗,0,∗ by setting
173 constants in Π3. Those specific constant bits are summarized in Table 4.
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Table 4: Details about 173 constant bits (example starting from Π3
4,∗,0).

step 1 2 3 4 5 6 7
column Π3

1,∗,63 Π3
3,∗,62 Π3

0,∗,61 Π3
2,∗,60 Π3

4,∗,59 Π3
1,∗,58 Π3

3,∗,57
solitary Π3

1,4,0 Π3
2,1,63 Π3

0,3,62 Π3
2,0,61 Π3

4,2,60 Π3
1,4,59 Π3

3,1,58

step 8 9 10 11 12 13 14
column Π3

0,∗,56 Π3
2,∗,55 Π3

4,∗,54 Π3
1,∗,53 Π3

3,∗,52 Π3
0,∗,51 Π3

2,∗,50
solitary Π3

0,3,57 Π3
2,0,56 Π3

4,2,55 Π3
1,4,54 Π3

3,1,53 Π3
0,3,52 Π3

2,0,51

step 15 16 17 18 19 20 21
column Π3

4,∗,49 Π3
1,∗,48 Π3

3,∗,47 Π3
0,∗,46 Π3

2,∗,45 Π3
4,∗,44 Π3

1,∗,43
solitary Π3

4,2,50 Π3
1,4,49 Π3

3,1,48 Π3
0,3,47 Π3

2,0,46 Π3
4,2,45 Π3

1,4,44

step 22 23 24 25 26 27 28
column Π3

3,∗,42 Π3
0,∗,41 Π3

2,∗,40 Π3
4,∗,39 Π3

1,∗,38 Π3
3,∗,37 Π3

0,∗,36
solitary Π3

3,1,43 Π3
0,3,42 Π3

2,0,41 Π3
4,2,40 Π3

1,4,39 Π3
3,1,38 Π3

0,3,37

The law of each step has been revealed in Figure 7, which is Π3
x,∗,z → Π3

x+2,∗,z−1
with solitary bits Π3

x,x−2,z+1 → Π3
x+2,x,z. Including the starting column, those constants

consist of 29 columns and 28 solitary bits. Although it is only an example starting from
Π3

4,∗,0, other situations are actually similar, which shows a characteristic of rotational
symmetry. Notice that except Π3

2,1,63, all solitary bits have the form Π3
x+2,x,z. We choose

Π3
2,1,63 instead of Π3

3,1,63 because it can bring 1 degree of freedom, which refers to the
technology of zero coefficient.

�∗,∗,!"
#

�∗,∗,!$
#

%∗,∗,!&'
(

%∗,∗,!
(

)∗,∗,!
#

* + ∘ .

= unconcerned

= linear

= target bit

Figure 8: The idea of zero coefficient.

The idea of zero coefficient is shown in Figure 8. Passing through the 2-round linear
structure, each single bit in I2 to Π3 can be expressed by a linear representation of the
original 640 variables, which corresponds to a 640-dimensional 0-1 vector. This vector is
called the coefficient of a bit. It is just the coefficient of the linear equation if we want to
set the bit as a constant. The coefficients are still simple in I2, while they become quite
complex in Π3 because each bit is the sum of 11 bits from I2. It seems that 173 out of
1600 bits can hardly have linear correlations to bring extra degrees of freedom. However,
for those pairs corresponding to identical column in Θ3, they are XORed by the same
group of 10 bits. If we further ensure the remaining 2 bits also have identical coefficients
(as shown in Figure 8), then the corresponding bits in Π3 can be linearly correlated and
bring 1 degree of freedom. Actually the only possibility that 2 bits from identical column
have identical coefficients is zero coefficient. In other words, they must be both ‘0’ or ‘1’
(unnecessary to be equal), not diffused by those 640 variables.
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1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

2 3 1

1 2 3

3 1 2

2 3 1

1 determined by � ! 0, " ⊕ � ! 2, "

$% &' ('

2 determined by � ! 2, " 3 determined by � ! 0, "

= = =Figure 9: The relation between column sums and constant bits.

As for how to ensure a bit is zero-coefficient, it depends on the random column sum
SI1(x, z) = I1

x,0,z ⊕ I1
x,1,z ⊕ I1

x,2,z ⊕ I1
x,3,z ⊕ I1

x,4,z (x ∈ {0, 2}). Suppose a target bit is I2
x,y,z.

Then we can fix the corresponding column sum to control the constant bit Π2
x+1,y,z or

Π2
x+2,y,z so that the effect of variable Π2

x+2,y,z or Π2
x+1,y,z can be offset by logic AND

(Π2
x,y,z cannot be variable first). The relation between column sums and constant bits is

revealed in Figure 9.
Take Figure 8 as an example. If we want to ensure I2

2,2,z and I2
2,3,z are zero-coefficient

bits, Π2
3,2,z = 1 and Π2

4,3,z = 0 are required separately. Then we need to fix corresponding
column sums SI1(0, z1) = 0 and SI1(2, z2) = 1 (notice that I1

∗,4,∗ = 1) instead of random
values. It is seen that 1 pair of zero-coefficient bits will expend 2 random values. Those
random values are set to ensure that the attack algorithm can be repeatedly operated
until a preimage is found. Actually, neglecting the zero coefficient technology, there exist
127 + 173 = 300 random values. Those zero-coefficient pairs only expend a few of them,
remaining enough space to search a preimage.

We have introduced the principle of zero coefficient technology. It is finally found that
for xs = 4, those 173 specific bits in Π3, corresponding to 173 bits in Θ3, contain 11 pairs
that can both be ensured zero-coefficient. Therefore, those constants can be set within 162
degrees of freedom. All 11 pairs are summarized in Table 5 with fixed column sums.

Table 5: Pairs of zero-coefficient bits (example with the starting column Π3
4,∗,0).

Pair Constant Bit Required Column Sum
Θ3

0,2,60 Π3∗
2,1,63 SI1(2, 35) = 1

Θ3
0,3,60 Π3

3,4,37
aSI1(0, 50)⊕ SI1(2, 50) = 0

Θ3
2,2,3 Π3∗

2,0,46 SI1(0, 59) = 0
Θ3

2,4,3 Π3
4,1,0 SI1(0, 1)⊕ SI1(2, 1) = 0

Θ3
2,2,62 Π3∗

2,0,41 SI1(0, 54) = 0
Θ3

2,4,62 Π3
4,1,59 SI1(0, 60)⊕ SI1(2, 60) = 0

Θ3
2,3,42 Π3

3,3,57 SI1(2, 50) = 1
Θ3

2,4,42 Π3
4,1,39 SI1(0, 40)⊕ SI1(2, 40) = 0

Θ3
2,3,47 Π3

3,3,62 SI1(2, 55) = 1
Θ3

2,4,47 Π3
4,1,44

bSI1(0, 45)⊕ SI1(2, 45) = 0
Θ3

3,0,8 Π3
0,1,36 SI1(0, 58) = 0

Θ3
3,1,8 Π3

1,4,63
cSI1(2, 44) = 1

Θ3
4,0,29 Π3

0,3,56 SI1(0, 49)⊕ SI1(2, 49) = 0
Θ3

4,3,29 Π3
3,2,37 SI1(0, 2) = 0

Θ3
4,0,34 Π3

0,3,61 SI1(0, 54)⊕ SI1(2, 54) = 0
Θ3

4,3,34 Π3
3,2,42 SI1(0, 7) = 0
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Θ3
4,0,25 Π3∗

0,3,52
bSI1(0, 45)⊕ SI1(2, 45) = 0

Θ3
4,4,25 Π3

4,0,39 SI1(2, 34) = 1
Θ3

4,0,30 Π3∗
0,3,57

aSI1(0, 50)⊕ SI1(2, 50) = 0
Θ3

4,4,30 Π3
4,0,44 SI1(2, 39) = 1

Θ3
4,0,35 Π3∗

0,3,62 SI1(0, 55)⊕ SI1(2, 55) = 0
Θ3

4,4,35 Π3
4,0,49

cSI1(2, 44) = 1
∗Those bits are from the solitary part in Table 4.
a,b,cIdentical column sums are involved without contradictions.

Similarly, this example can represent all 64 groups starting from Π3
4,∗,zs

because of
rotational symmetry. However, the result cannot hold for xs 6= 4: when xs changes, the
corresponding bits in Θ3 will greatly change (because offsets in ρ step relatively change).
In other words, situations of xs 6= 4 may bring even more than 11 degrees of freedom. Yet
we would not be concerned with those situations for the reason that xs = 4 can actually
bring greater gains in expectation compared with other selections. Detailed analysis is
provided in the next section.

4.2 Gain Analysis of 56 Linearized Sites
Those 56 linearized sites in Π4

∗,0,∗ are summarized in Table 6. It is still an example of
zs = 0, while it can represent other situations of zs: when zs changes, just rotate all entries
of the table with the same offset.

Table 6: 56 linearized sites (example with the starting column Π3
4,∗,0).

z Π4
x,0,z z Π4

x,0,z z Π4
x,0,z z Π4

x,0,z

0 \ 16 Π4
2,0,z Π

4
3,0,z 32 \ 48 Π4

0,0,z

1 Π4
3,0,z Π

4
4,0,z 17 \ 33 Π4∗

1,0,z 49 \
2 \ 18 Π4∗

1,0,z 34 Π4∗
2,0,z 50 \

3 \ 19 Π4∗
2,0,z Π

4
3,0,z 35 Π4

1,0,z 51 Π4∗
0,0,z

4 Π4∗
3,0,z Π

4∗
4,0,z 20 Π4

1,0,z 36 Π4
2,0,z 52 \

5 \ 21 Π4
2,0,z Π

4
3,0,z 37 \ 53 Π4

0,0,z Π
4∗
4,0,z

6 Π4
3,0,z Π

4
4,0,z 22 \ 38 Π4

0,0,z Π
4∗
1,0,z 54 \

7 \ 23 Π4∗
1,0,z 39 Π4∗

2,0,z 55 Π4
4,0,z

8 \ 24 Π4∗
2,0,z 40 Π4

1,0,z 56 Π4∗
0,0,z

9 Π4
3,0,z Π

4∗
4,0,z 25 Π4

1,0,z 41 Π4
0,0,z Π

4
2,0,z 57 \

10 \ 26 Π4
2,0,z 42 \ 58 Π4

0,0,z Π
4∗
3,0,z Π

4∗
4,0,z

11 Π4
3,0,z Π

4
4,0,z 27 \ 43 Π4

0,0,z Π
4
1,0,z 59 \

12 \ 28 Π4∗
1,0,z 44 \ 60 Π4

3,0,z Π
4
4,0,z

13 \ 29 Π4∗
2,0,z 45 \ 61 Π4∗

0,0,z

14 Π4
3,0,z Π

4∗
4,0,z 30 Π4

1,0,z 46 Π4
0,0,z 62 \

15 \ 31 Π4
2,0,z 47 \ 63 Π4

0,0,z Π
4∗
3,0,z Π

4∗
4,0,z

∗Those bits are relevant to the solitary part in Table 4, and meanwhile irrelevant to the
solitary part appearing in Table 5.

It is concluded that those 56 bits are distributed in 38 out of 64 rows, which can be
divided into 3 classes:
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– Rows containing 1 linearized bit, 22 rows in total.
– Rows containing 2 linearized bits, 14 rows in total.
– Rows containing 3 linearized bits, 2 rows in total.
Based on Table 6, we can provide a detailed analysis on the expected gain. In Section

3, we have mentioned that the total gain of those 56 linearized sites is corresponding to
the number of effective equations: 1 effective equation can exclude half of possible cases
(e.g., 16 out of 32) and meanwhile conserve both 2 matched inputs in the remaining cases.
Therefore, our analysis mainly focuses on the number of effective equations under 3 classes.

• Rows containing 1 linearized bit.

The equation will be effective if and only if the linearized bit exactly matches those
recovered bits. For example, under the output row 1001?← 1?0??, those Π4

0,0,z and Π4
2,0,z

can bring 1 effective equation and the others cannot. In Table 3, we have revealed the
probability of one linearized bit matching the recovered bits. According to the result, the
expected total number of effective equations from this part is:

5 ∗ 0.75 + 9 ∗ 0.75 + 7 ∗ 0.5 + 0 ∗ 0.5 + 1 ∗ 0 = 14

• Rows containing 2 linearized bits.

Apparently, there are three situations: both linearized bits can match, exactly one bit
can match, and neither of them can match. The second situation is just the same as one
solitary bit: setting equation on the matched one and ignoring the other one can bring
a gain of 21. If 2 linearized bits both match, they can work together because 2 effective
equations can exclude three quarters of possible cases and bring a gain of 22. It is worth
mentioning that the last situation also leads to 1 effective equation. The example is still
1001?← 1?0??. Since Π4

3,0,z and Π4
4,0,z are both uncertain in 10000 and 11011, their sum

must be certain and the equation of Π4
3,0,z ⊕Π4

4,0,z = 0 can bring a gain of 21.
In summary, each row in this class can at least lead to 1 effective equation. Another

effective equation can be set if and only if 2 linearized bits both match those recovered
bits. As for the probability of 2 bits simultaneously matching, please refer to Table 7.

Table 7: Probability of 2 bits matching.

x1 = 0 x1 = 1 x1 = 2 x1 = 3 x1 = 4
x2 = 0 \ 9/16 8/16 6/16 0
x2 = 1 9/16 \ 6/16 8/16 0
x2 = 2 8/16 6/16 \ 4/16 0
x2 = 3 6/16 8/16 4/16 \ 0
x2 = 4 0 0 0 0 \

The expected total number of effective equations from this part is:

14 + 2 ∗ 9/16 + 1 ∗ 8/16 + 3 ∗ 4/16 + 8 ∗ 0 ≈ 16.5

• Rows containing 3 linearized bits.

This class becomes much more complicated. Fortunately, we only need to focus on the
situation of (Π4

0,0,z Π
4
3,0,z Π

4
4,0,z). Notice that Π4

4,0,z can never match a recovered bit since
those bits from the fifth lane are always uncertain. Thus, the conclusion is no matter how
Π4

0,0,z and Π4
3,0,z match those recovered bits, we can always set 2 effective equations on

Π4
0,0,z, Π4

3,0,z, Π4
0,0,z ⊕Π4

4,0,z or Π4
3,0,z ⊕Π4

4,0,z. The total number of effective equations
from this part is 2 ∗ 2 = 4.

Finally, the expected gain of all 56 linearized sites under a random 256-bit digest is:
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214 ∗ 216.5 ∗ 24 = 234.5

It is emphasized again that this result can hold for all 64 groups of 56 linearized sites
starting from Π3

4,∗,zs
, while cannot hold for xs 6= 4. In this paper we would not provide

any analysis on xs 6= 4 (including Keccak-224) because xs = 4 is the only selection leading
to the best results. From the analysis above, we can see that multiple bits located at the
same row are much more efficient than several solitary bits. And xs = 4 is exactly the
best selection with fewest (22 out of 56) solitary bits.

Although attackers can find 34.5 effective equations, a problem is that the degree of
remaining freedom is only 32 (162 out of 194). We will solve this problem in Section 4.3
by using the technology of freedom return. In addition, although the expected gain of a
single group is 234.5, attackers are actually able to go through all 64 groups to search one
with the greatest gain. We will discuss this problem in Section 4.4.

4.3 Freedom Return
In Section 3, we have explained that our strategy is partially linearizing 56 sites in Π4

∗,0,∗
by setting 173 constants in Π3 (spending 162 degrees of freedom). Those linearized sites
may work or may not work in different cases. In the previous section, we further analyzed
that those 56 sites can compose 34.5 effective equations in average, remaining about one
quarter unused. A natural idea is, resetting those constants to linearize used sites only,
so that several degrees of freedom can be saved. In other words, unused sites are able to
return some degrees of freedom. In this section, we give a discussion on this problem.

Notice that those 173 constants consist of 29 columns and 28 solitary bits. We have
mentioned in Section 3 that each column is related to 4 linearized sites. These degrees of
freedom can be returned only if 4 sites are simultaneously unused—we regard it as hardly
possible since the ratio of unused sites is only 1/4. However, for those solitary bits, each of
them is related to only 1 linearized site. If the corresponding 28 linearized sites are partly
unused, degrees of freedom can be returned by removing the solitary constant bits.

Take Π4
1,0,18 (in Table 6, z = 18) as an example. Suppose the output row is 1001?←

1?0??. Then the linearized site remains unused and its corresponding constant bit Π3
3,1,38

(in Table 4, step = 27) can be removed, which will not influence the linearization of all
other 55 sites. Take Π4

0,0,46 (in Table 6, z = 46) as another example. If this site remains
unused, its corresponding constant bit Π3

2,0,46 (in Table 4, step = 19) cannot be removed,
because it has been bound with Π3

4,1,0 (in Table 5, line 4). Actually those 22 bits with
notation “*” in Table 6 are exactly all the sites that can return degrees of freedom. The
situations of freedom return (or those bits being ineffective) are summarized in Table 8
with corresponding probabilities. It is concluded that those 22 bits can return 7 degrees of
freedom in average, which is enough to make up the lack of freedom.

Table 8: Situations of freedom return (example with the starting column Π3
4,∗,0).

Bit Return Situation Prob. Bit Return Situation Prob.
Π4∗

3,0,4 Never 0 Π4∗
1,0,18 Π4∗

1,0,18 doesn’t match 0.25
Π4∗

1,0,23 Π4∗
1,0,23 doesn’t match 0.25 Π4∗

2,0,24 Π4∗
2,0,24 doesn’t match 0.5

Π4∗
1,0,28 Π4∗

1,0,28 doesn’t match 0.25 Π4∗
2,0,29 Π4∗

2,0,29 doesn’t match 0.5
Π4∗

1,0,33 Π4∗
1,0,33 doesn’t match 0.25 Π4∗

2,0,34 Π4∗
2,0,34 doesn’t match 0.5

Π4∗
2,0,39 Π4∗

2,0,39 doesn’t match 0.5 Π4∗
0,0,51 Π4∗

0,0,51 doesn’t match 0.25
Π4∗

0,0,56 Π4∗
0,0,56 doesn’t match 0.25 Π4∗

3,0,58 Never 0
Π4∗

0,0,61 Π4∗
0,0,61 doesn’t match 0.25 Π4∗

3,0,63 Never 0
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Π4∗
4,0,4

Π4∗
3,0,4 matches 0.5 Π4∗

4,0,9
Π4

3,0,9 matches 0.5
Π4∗

4,0,4 doesn’t match Π4∗
4,0,9 doesn’t match

Π4∗
4,0,14

Π4
3,0,14 matches 0.5 Π4∗

2,0,19
Π4∗

2,0,19 doesn’t match 0.25
Π4∗

4,0,14 doesn’t match Π4
3,0,19 matches

Π4∗
1,0,38

Π4
0,0,38 matches 3/16 Π4∗

4,0,53
Π4

0,0,53 matches 0.75
Π4∗

1,0,38 doesn’t match Π4∗
4,0,53 doesn’t match

Π4∗
4,0,58

Π4
0,0,58 matches

6/16 Π4∗
4,0,63

Π4
0,0,63 matches

6/16Π4∗
3,0,58 matches Π4∗

3,0,63 matches
Π4∗

4,0,58 doesn’t match Π4∗
4,0,63 doesn’t match

4.4 Best Result among 64 Groups
In Keccak-256, the 256-bit output (or digest) consisting of 64 rows shows a characteristic
of rotational symmetry. This symmetry ensures that the expected gains of all 64 groups
of linearized sites are exactly the same (234.5). However, for a certain output, attackers
are able to go through all 64 groups to search one with the greatest gain. For example, a
256-bit output contains 4 rows of 1000?←????? in average. Then those groups affected by
4 bad rows are apparently less efficient than those groups that rotate 4 bad rows to 26
nonlinearized rows. On the other hand, since there are 64 groups in total, attackers can
fix 6 linearized sites and hope that there exists 1 group where 6 linearized sites can all
match those recovered bits, leading to a gain increase of about 23. Overall, the best result
among 64 groups can be much higher than the expected gain of a single group.

The best result among 64 groups can hardly be analyzed theoretically. Therefore, we
run a program to provide a practical analysis instead. It is concluded that under 1000000
tests of random digests, 74.5% of them can lead to a gain of 238 (with enough freedom).
Notice that to search the best group with the greatest gain, attackers only need to count
the number of recovered bits among all linearized sites. Thus the cost of 26 searching can
be neglected compared with even 1 round of equations solving and Keccak running, and
the final complexity is still 2218.

5 Improved Preimage Attack on 4-Round Keccak-224
Preimage cryptanalysis on 4-Round Keccak-224 is provided in this section, which is quite
similar to Section 4. The main difference is that the Keccak-224 output contains 32 rows
with only 3 certain bits. After discussing the influence of this difference, we will present
the expected gain analysis of a specific group of linearized sites. It is finally concluded
that attackers can obtain a complexity decrease of 232 with probability of 61.3% under a
random 224-bit digest.

5.1 Linearized Sites Matching 3-Bit Output Rows
In Keccak-256, the total gain is corresponding to the number of effective equations, because
each equation can exclude half of possible cases and conserve both 2 matched inputs.
However, in Keccak-224, things become different for those 3-bit output rows: the number
of matched inputs becomes 4 and an effective equation may exclude 1 of them. In this
situation, the probability of successfully matching is 3/16 rather than 2−3, with a gain
of only 3/2. For example, suppose the output row is 100?? with matched inputs 11010,
00101, 10000 and 11011. Then the equations on Π4

0,0,z and Π4
2,0,z will both exclude 1 of

them. Although equations like Π4
0,0,z ⊕Π4

2,0,z = 1 can conserve all matched inputs with
an entire gain of 21, it is still less efficient than 2 equations of Π4

0,0,z = 1 and Π4
2,0,z = 0
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(with a gain of 3). Actually the expected gain of rows containing 2 linearized bits is very
complex. But for solitary bits, the expected gain can be easily summarized by Table 9.

Table 9: Cases of solitary bits matching 3-bit output rows.

Gain Π4
0,0,z Π4

1,0,z Π4
2,0,z Π4

3,0,z Π4
4,0,z

21 4 out of 8 4 out of 8 0 0 0
20.5∗ 4 out of 8 0 8 out of 8 0 0
20 0 4 out of 8 0 8 out of 8 8 out of 8

∗It denotes the gain of 3/2, since 3/2 ∗ 3/2 ≈ 21.

It’s seen that there are still a half of linearized sites which can match those recovered
bits. However, the efficiency of those linearized sites in the 3-bit part decreases because 1
effective equation may bring a gain of 20.5, still costing 1 degree of freedom. Moreover,
Π4

3,0,z and Π4
4,0,z are severely useless in the 3-bit part, even with another linearized bit

located at the same row. Therefore, to reach the best result, attackers should choose a
specific group so that:

a. Most linearized sites work in the 4-bit part instead of the 3-bit part.
b. Few of Π4

3,0,z and Π4
4,0,z are located at the 3-bit part.

It is found that zs = 6 can exactly meet the conditions above. The details are shown
in Table 10.

Table 10: The specific group of 56 linearized sites (with the starting column Π3
4,∗,6).

z Π4
x,0,z z Π4

x,0,z z Π4
x,0,z z Π4

x,0,z

0 Π4
0,0,z Π

4∗
3,0,z Π

4∗
4,0,z 16 \ 32 Π4

2,0,z 48 \
1 \ 17 Π4

3,0,z Π
4
4,0,z 33 \ 49 Π4

0,0,z Π
4
1,0,z

2 Π4
3,0,z Π

4
4,0,z 18 \ 34 Π4∗

1,0,z 50 \
3 Π4∗

0,0,z 19 \ 35 Π4∗
2,0,z 51 \

4 \ 20 Π4
3,0,z Π

4∗
4,0,z 36 Π4

1,0,z 52 Π4
0,0,z

5 Π4
0,0,z Π

4∗
3,0,z Π

4∗
4,0,z 21 \ 37 Π4

2,0,z 53 \
6 \ 22 Π4

2,0,z Π
4
3,0,z 38 \ 54 Π4

0,0,z

7 Π4
3,0,z Π

4
4,0,z 23 \ 39 Π4∗

1,0,z 55 \
8 \ 24 Π4∗

1,0,z 40 Π4∗
2,0,z 56 \

9 \ 25 Π4∗
2,0,z Π

4
3,0,z 41 Π4

1,0,z 57 Π4∗
0,0,z

10 Π4∗
3,0,z Π

4∗
4,0,z 26 Π4

1,0,z 42 Π4
2,0,z 58 \

11 \ 27 Π4
2,0,z Π

4
3,0,z 43 \ 59 Π4

0,0,z Π
4∗
4,0,z

12 Π4
3,0,z Π

4
4,0,z 28 \ 44 Π4

0,0,z Π
4∗
1,0,z 60 \

13 \ 29 Π4∗
1,0,z 45 Π4∗

2,0,z 61 Π4
4,0,z

14 \ 30 Π4∗
2,0,z 46 Π4

1,0,z 62 Π4∗
0,0,z

15 Π4
3,0,z Π

4∗
4,0,z 31 Π4

1,0,z 47 Π4
0,0,z Π

4
2,0,z 63 \

∗Those bits are relevant to the solitary part in Table 4, and meanwhile irrelevant to the
solitary part appearing in Table 5.

Notice that the 224-bit output (or digest) does not fulfill the characteristic of rotational
symmetry. Thus the expected gains are quite different among 64 groups of linearized sites.
Although attackers are still able to go through them all, the best gain will not be larger
than of this specific group since most groups cannot meet the strict conditions. Therefore,
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in the next section we only need to analyze the expected gain of this specific group, and
the result is just the final complexity of preimage attack on 4-round Keccak-224.

5.2 Gain Analysis of 56 Linearized Sites
Since the specific group has rotated most Π4

3,0,z and Π4
4,0,z to the 4-bit part, the efficiency

of those linearized sites in the 3-bit part can greatly increase (about five sixth effective).
In other words, the degree of remaining freedom is possibly insufficient for all effective
equations. To reach the best result, attackers should set linear equations in order of:

1. The 4-bit part z = 0 ∼ 31 where an effective equation always brings a gain of 21.
2. Π4

0,0,z and Π4
1,0,z in the 3-bit part which may bring a gain of 21.

3. Rows containing 2 linearized bits in the 3-bit part (more efficient).
4. Spend remaining freedom on those solitary bits with a gain of only 20.5.
In this section, we also provide the theoretical analysis under this order.

• The 4-bit part z = 0 ∼ 31 where an effective equation always brings a gain of 21.

The principle is the same as Section 4.2 and Section 4.3. Here we just conclude that
this part can lead to 19 effective equations and return 3.75 degrees of freedom in average.

• Π4
0,0,z and Π4

1,0,z in the 3-bit part which may bring a gain of 21.

The 3-bit part contains 9 solitary Π4
0,0,z and Π4

1,0,z. Including Π4
0,0,59 (since Π4

4,0,59 is
almost useless), these 10 bits can lead to 5 effective equations with a gain of 21 and return
2 degrees of freedom in average.

Here we return the freedom of those unused bits in advance (5 degrees in total) for
convenience. In the next two steps, 1 linearized bit with “*” will cost 2 degrees of freedom.

• Rows containing 2 linearized bits in the 3-bit part (more efficient).

From this step onwards we have to deal with those equations with a gain of only 20.5.
Up to this step, attackers have set 24 equations with 194 − 162 − 24 + 4 + 2 + 5 = 19
degrees of remaining freedom in average.

As for those rows containing 2 linearized bits, it is worth mentioning that separately
setting 2 equations will never be less efficient than 1 equation. For example, to match the
output row 100??, equation Π4

0,0,z = 1 will exclude half of possible cases and 1 matched
input (with a gain of 3/2), while equations Π4

0,0,z = 1 and Π4
4,0,z = 0 will exclude three

quarters of possible cases and 2 matched inputs (with a gain of 2). Table 11 summarizes
the gains of those most efficient equations under all 8 possible cases.

Table 11: Cases of 2 linearized bits matching 3-bit output rows.

Gain Π4
0,0,z Π

4
1,0,z Π4

0,0,z Π
4
2,0,z Π4

0,0,z Π
4
4,0,z

22 2 out of 8 0 0
21.5 2 out of 8 8 out of 8 0
21 4∗ out of 8 0 8 out of 8

∗Note: 2 out of 4 only need 1 equation on Π4
0,0,z.

The table above also provides an analysis for Π4
0,0,59 and Π4

4,0,59. Notice that the gain
of these 2 linearized sites is at most 21, costing 3 degrees of freedom (Π4

4,0,59 can return
freedom). Yet the gain of single Π4

0,0,59 has reached 20.75. Thus it will be more efficient if
attackers neglect Π4

4,0,59 and spend the freedom on another equation with a gain of 20.5.
Excluding the entry (Π4

0,0,z Π
4
4,0,z) of z = 59, this part can bring a gain of 24.25 and

cost 6.25 degrees of freedom in average.



Le He, Xiaoen Lin and Hongbo Yu 235

• Spend remaining freedom on those solitary bits with a gain of only 20.5.

The remaining freedom is about 12 degrees till this step. Attackers first focus on those
Π4

2,0,z and unused Π4
0,0,z without “*” (costing 1 degree of freedom each). Then attackers

spend all remaining freedom on those bits with “*” (costing 2 degrees of freedom each).
There are 3 terms Π4

2,0,z and 3 terms Π4
0,0,z without “*” in the 3-bit part. Notice that

Π4
0,0,z may have been used in the second step (1.5 terms in average). Thus attackers are

expected to set 4.5 equations without “*” and 3.75 equations with “*” within 12 degrees
of remaining freedom. In summary, this part can lead to about 8 effective equations and
the expected gain is 24.

Finally, the expected gain of this specific group of 56 linearized sites is:

219 ∗ 25 ∗ 24.25 ∗ 24 ≈ 232

To support the theoretical gain analysis, we also run a program to provide a practical
analysis. It is concluded that under 1000000 tests of random digests, 61.3% of them can
lead to a gain of 232.

6 Experiments on 64-Bit Partial Preimage Attack
We present the result of partial preimage attack in this section. The 64-bit target digest is
corresponding to z = 0 ∼ 15 of those lanes, or to say, 16 4-bit rows. If we adopt previous
freedom reuse strategy, at most 17 linearized sites can be located at corresponding rows,
still hard to reach a practical complexity. Therefore, we adopt a modified strategy as
shown in Figure 10, which can linearize 31 sites in z = 0 ∼ 15 by setting 160 constants.

+

 ∗,∗,"#
$  ∗,∗,"%

$

 #,%,#
&  ",%,%

&' ∘ ) ∘ * ∘ - ∘ .

 #,%,"
&  ",%,#

&

 ∗,∗,"#
$ ∗,∗,""

$

+
' ∘ ) ∘ * ∘ - ∘ .

+

 ∗,∗,$&
$ ∗,∗,$/

$

 #,%,#/
&  ",%,#&

&' ∘ ) ∘ * ∘ - ∘ .

⋮

⋮

 ∗,∗,$1
$  ∗,∗,$/

$

 ",%,#/
&' ∘ ) ∘ * ∘ - ∘ .

+ = random const

= unconcerned

= linear

Figure 10: The modified freedom reuse strategy.

The basic idea is to linearize 2 sites by setting 11 constants in each procedure. Excluding
14 duplicate bits, 15 ∗ 2 = 30 sites can be linearized by 15 ∗ 11− 14 = 151 constants. With
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another 10 constants (1 duplicate) linearizing Π4
2,0,15, it costs 160 degrees of freedom (158

combined with zero coefficient) in total. These 31 linearized sites can lead to 15 ∼ 31
effective equations (21 in average). And thus attackers can construct a partial preimage
matching 64-bit all ‘1’ digest with a complexity of only 233.

One instance is presented in Table 12.

Table 12: One instance matching 64-bit digest (in big-endian order).

Starting Statea (the secondb message block)
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff

Partial Preimage (the secondb message block)
6b43dfc40739a467 c383cffe561c722d 61b08ad49180b726 9055e2f81e25111f 995ca723a4ad4e52
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
6b43dfc40739a467 c383cffe561c722d 61b08ad49180b726 9055e2f81e25111f 995ca723a4ad4e52
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

4-Round Digest
ffffc207c85f3d18 ffff7f390a78ac44 ffffdb5599aafd65 fffff81322092859

aNote: Although it is a special case with all ‘0’ and all ‘1’ words, in general cases, the
complexity is still 233 as long as the starting state meets those 195 conditions.
bNote: To construct the first message block linking all ‘0’ IV to the starting state, the
complexity is 2195, which is still impractical.

7 Conclusion
In this paper, we provide an improved preimage cryptanalysis on 4-round Keccak-224/256
based on a 2-round linear structure proposed by Li and Sun. Our main idea is partially
linearizing as many sites as possible within the 194 degrees of remaining freedom. For this
target, we improve the preimage attack algorithm in three aspects:

1. We adopt a freedom reuse strategy where multiple sites can be linearized by some
common constants.

2. We propose a zero coefficient technology so that several degrees of freedom can be
saved from those constant bits.

3. For those unused sites, we return the corresponding freedom which would not affect
the linearization of other used sites.

With these improvements, 56 sites can be linearized within 162 degrees of freedom and
return 7 degrees of freedom in average. Then we spend the remaining freedom on setting
effective equations which can decrease the complexity of searching a preimage. It is finally
analyzed, theoretically and practically, that the expected complexity of preimage attack
on 4-round Keccak-224/256 can be decreased to 2192/2218. So far, the results are both the
best preimage cryptanalysis on 4-round Keccak.

It is noted that our attack algorithm is still far from threatening the security of even
5-round Keccak: making use of 2-round linear structure, 1-round partial linearization and
1-round probability analysis, the linear route can hardly pass through the fifth nonlinear
S-box layer. However, it should be emphasized that our idea can actually be applied with
any linear structure. If a better linear structure is found with more degrees of freedom
left, the complexity of preimage attack can further decrease.
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