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Abstract. The Gimli permutation proposed in CHES 2017 was designed for cross-platform
performance. One main strategy to achieve such a goal is to utilize a sparse linear
layer (Small-Swap and Big-Swap), which occurs every two rounds. In addition, the
round constant addition occurs every four rounds and only one 32-bit word is affected
by it. The above two facts have been recently exploited to construct a distinguisher for
the full Gimli permutation with time complexity 264. By utilizing a new property of
the SP-box, we demonstrate that the time complexity of the full-round distinguisher
can be further reduced to 252 while a significant bias still remains. Moreover, for
the 18-round Gimli permutation, we could construct a distinguisher even with only 2
queries. Apart from the permutation itself, the weak diffusion can also be utilized
to accelerate the preimage attacks on reduced Gimli-Hash and Gimli-XOF-128 with
a divide-and-conquer method. As a consequence, the preimage attacks on reduced
Gimli-Hash and Gimli-XOF-128 can reach up to 5 rounds and 9 rounds, respectively.
Since Gimli is included in the second round candidates in NIST’s Lightweight Cryp-
tography Standardization process, we expect that our analysis can further advance
the understanding of Gimli. To the best of our knowledge, the distinguishing attacks
and preimage attacks are the best so far.
Keywords: hash function · Gimli · Gimli-Hash · Gimli-XOF · preimage attack ·
distinguisher

1 Introduction
Background. The Gimli permutation was proposed by Bernstein et al. in CHES
2017 [BKL+17]. As the designers claimed, Gimli is distinguished from other permutation-
based primitives for its cross-platform performance. One main strategy to improve the
performance of Gimli is to process the 384-bit data in four 96-bit columns independently
and make only a 32-bit word swapping among the four columns every two rounds.

Like the AES and SHA-3 competitions, NIST is currently holding a public lightweight
cryptography competition, aiming at lightweight cryptography standardization [lwc]. Since
Gimli has been included in the Round 2 candidates in NIST’s Lightweight Cryptography
Standardization process, it is of practical importance to further investigate its secu-
rity, especially for its authenticated encryption scheme (Gimli-Cipher) and hash scheme
(Gimli-Hash) in the submitted Gimli document.
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Existing Work. The first third-party cryptanalysis of Gimli was made by Hamburg and
the security claim of Gimli was questioned [Ham17]. However, the attack in [Ham17] only
works for an ad-hoc mode and cannot be directly applied to Gimli-Cipher or Gimli-Hash.

Recently, two teams made a comprehensive study for Gimli [LIM20, GLNP+20], cover-
ing the properties of the SP-box used in Gimli, the distinguishing attacks on the Gimli
permutation, collision and semi-free-start collision attacks on Gimli-Hash and state-recovery
attacks on the Gimli-Cipher. Notably, the collision attack in [GLNP+20] can reach up to
12 rounds in the classical setting, though it starts from an intermediate round, i.e. there
is no swap operation in the first round. For the collision attack starting from the first
step, to the best of our knowledge, the best attack1 can only reach up to 6 rounds with
time/memory complexity 264 [LIM20]. Moreover, the time complexity of the distinguishing
attack on full-round Gimli can be as low as 264 in [GLNP+20], while the previously best
distinguishing attack can only reach 14 rounds with time complexity 2351 [CWZ+19].

Difficulty of Cryptanalysis. For Keccak [BDPA11b], the algebraic degrees of the round
function and its inverse are 2 and 3, respectively. Benefiting from the low-degree feature,
the zero-sum distinguisher [AM] becomes the most powerful distinguisher for Keccak, which
is based on degree evaluation. However, the disadvantages of this distinguisher are the
high data and time complexity since the algebraic degree is almost exponentially increasing
as the number of rounds increases. For Gimli, due to the recursive way to compute the
inverse of its SP-box, the algebraic degree increases much faster in the backward direction,
though the algebraic degree of the round function is 2 in the forward direction. Such a way
to construct the SP-box should prevent a similar zero-sum distinguisher once successfully
applied to Keccak, as shown in [CWZ+19]. However, the new features of Gimli are its
weak diffusion and high symmetry. Therefore, instead of evaluating the algebraic degree,
whether there is another way to construct a distinguisher for Gimli similar to the zero-sum
distinguisher for Keccak by exploiting the new features of Gimli is an interesting problem.
Such a problem has been independently addressed in [GLNP+20] where a full-round
distinguisher can be constructed with time complexity 264.

Gimli-Hash is based on the well-known sponge structure [BDPA11a, BDPA08], with
128-bit rate and 256-bit capacity. For such a small rate, it is challenging to devise a faster
preimage attack on Gimli-Hash than the generic one, which requires 2128 time and 2128

memory2. This is because the attacker has to utilize at least two message blocks to match
a given 256-bit hash value. In other words, 2n rounds of the Gimli permutation need to
be taken into account to efficiently find a preimage of n-round Gimli-Hash. Considering
the progress in the cryptanalysis of Keccak [BDPA11b], even with a relatively large rate,
the currently best preimage attacks can only reach up to 4 rounds [GLS16, MPS13, LS19].
For Ascon [DEMS18], the preimage attack is much more difficult due to the small rate.
As a result, the designers could only mount a preimage attack on up to 5 rounds of
Ascon-XOF-64 with a rather high time complexity [DEMS19], which is almost close to an
exhaustive search. Especially, to demonstrate the efficiency of the new technique called
linear structures [GLS16] for the preimage attack on reduced Keccak, Guo et al. provided
a practical preimage attack on 3-round SHAKE-128 as an extreme example.

Following the research on Keccak and Ascon, we believe it meaningful to study the
security of both Gimli-XOF-128 and Gimli-Hash. On the one hand, it can be used to
demonstrate the limit of our developed divide-and-conquer technique. On the other
hand, a comparison can be made between Gimli and other primitives regarding the

1The collision attack on 6-round Gimli-Hash [ZDW19] is proven to be flawed in [LIM20]. In addition, it
seems that the collision attack framework in [GLNP+20] can not work when the swap operation is used in
the first round. Indeed, the collision attack framework in [GLNP+20] is very similar to the semi-free-start
collision attack on 8-round Gimli-Hash in [LIM20] and the swap operation in the first round will destroy
such a structure to find collisions or semi-free-start collisions.

2It is possible to make the memory complexity negligible with Floyd’s cycle finding algorithm [Flo67].
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preimage resistance, especially for those selected in the second round in NIST’s Lightweight
Cryptography Standardization process.

Our Contributions. Leveraging the symmetry of Gimli, we propose a distinguisher
by tracing both the symmetry in a single internal state and the symmetry between two
different internal states. In this way, a distinguisher for 18-round Gimli permutation can be
achieved with only 2 queries. There seems to be a flaw to extend this 18-round distinguisher
to full rounds. Therefore, we turn to improving the full-round distinguisher proposed
in [GLNP+20], where only the symmetry in a single internal state is traced. By exploiting
a new property of the SP-box, we could construct a similar full-round distinguisher as
in [GLNP+20] with time complexity 252 while the bias is still kept significant.

In addition, the divide-and-conquer method seems to fit well with the weak linear layer
of Gimli. Consequently, we are motivated to develop a divide-and-conquer method to
accelerate the exhaustive search for preimages of reduced Gimli-Hash and Gimli-XOF-128.
For our preimage attack on 5-round Gimli-Hash, 10 rounds of the Gimli permutation are
investigated and we have to exhaust a message space of size 2256 in less than 2128 time
in order to gain advantages over the generic preimage attack. For our preimage attack
on 9-round Gimli-XOF-128, 9 rounds of the Gimli permutation are investigated and a
message space of size 2128 has to be travsersed in less than 2128 time. Without a dedicated
analysis of the linear layer and SP-box, the above two attacks are almost impossible. Our
results are summarized in Table 1.

To verify the correctness of our attacks, we have implemented the preimage attack on
5-round Gimli-Hash, the preimage attack on 9-round Gimli-XOF-128 and the distinguishing
attack on the full Gimli permutation by reducing the size of the Gimli state. The source code
is available at https://github.com/LFKOKAMI/SmallGimli.git. The implementation of
the distinguisher for the 18-round Gimli permutation is also included.

Table 1: The analytical results of Gimli, where the attacks in the quantum setting are
omitted.

Target Attack Type Rounds Memory Time Ref.

Permutation distinguisher

14 negligible 2351 [CWZ+19]
18 negligible 2 Sect. 4.1

24(full rounds) negligible 264 [GLNP+20]
24(full rounds) negligible 252 Sect. 4.2

Gimli-Hash preimage 2 232 242.4 App. A
5 265 296 Sect. 5

Gimli-XOF-128 preimage 9 270 2104 Sect. 6.1
AE scheme state-recovery 9 2190 2192 [LIM20]

Gimli-Hash collision 6 264 264 [LIM20]
12a negligible 296 [GLNP+20]

Gimli-Hash SFS collisionb 8a negligible 264 [LIM20]
18a 264 296 [GLNP+20]

a An attack starting at an intermediate step, i.e. there is no swap operation in the first
round.

b semi-free-start collision.

Organization. This paper is organized as follows. In Section 2, we introduce the notations,
the Gimli permutation, the hash scheme Gimli-Hash and Gimli-XOF. In Section 3, some
useful properties of the SP-box will be listed. The distinguishing attacks are detailed in
Section 4. Our preimage attacks on 5-round Gimli-Hash and 9-round Gimli-XOF-128 are
shown in Section 5 and Section 6, respectively. Finally, the paper is concluded in Section 7.

https://github.com/LFKOKAMI/SmallGimli.git


188 Exploiting Weak Diffusion of Gimli: Improved Distinguishers and Preimage Attacks

2 Preliminaries
In this section, we will present some notations, the description of the Gimli permutation
and its applications to hashing. Meanwhile, some useful properties of the SP-box discussed
in [LIM20] will be introduced as well.

2.1 Notation
1. �, �, ≪, ≫, ⊕, ∨, ∧ represent the logic operations shift left, shift right, rotate

left, rotate right, exclusive or, or, and, respectively.

2. Z[i] represents the (i+ 1)-th bit of the 32-bit word Z. where the least significant
bit is the 1st bit and the most significant bit is the 32nd bit. For example, Z[0]
represents the least significant bit of Z.

3. Z[i : j](0 ≤ j < i ≤ 31) represents the (j + 1)-th bit to the (i+ 1)-th bit of the 32-bit
word Z. For example, Z[1 : 0] represents the two bits Z[1] and Z[0] of Z.

4. A||B represents the concatenation of A and B. For example, if A = 0012 and
B = 10012, then A||B = 00110012.

5. 0n represents an all-zero string of length n.

6. SP represents the application of the 96-bit SP-box.

7. r represents the size of the outer part of the Gimli state.

8. c represents the size of the inner part of the Gimli state.

9. f represents the Gimli permutation.

10. f−1 represents the inverse of the Gimli permutation.

2.2 Description of Gimli
Gimli was proposed in CHES 2017 [BKL+17] and is a Round 2 candidate in NIST’s
Lightweight Cryptography Standardization process [lwc]. The Gimli state can be viewed
as a two-dimensional state S = (S[i][j]) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3), where S[i][j] ∈ F 32

2 , as
illustrated in Figure 1.

S[0][0] S[0][1] S[0][2] S[0][3]

S[1][0] S[1][1] S[1][2] S[1][3]

S[2][0] S[2][1] S[2][2] S[2][3]

Figure 1: The Gimli state

The Gimli permutation is described in Algorithm 1. As specified in [BKL+17], the
permutation is composed of four operations: SP-box, Small-Swap, Big-Swap and Constant
Addition. For simplicity, we denote the SP-box, Small-Swap, Big-Swap and Constant
Addition by SP, S_SW, B_SW and AC, respectively. In this way, the 24-round permutation
can be viewed as 6 iterations of the application of the following sequence of operations
(from right to left) :

(SP) ◦ (B_SW ◦ SP) ◦ (SP) ◦ (AC ◦ S_SW ◦ SP).
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Algorithm 1 Description of Gimli permutation
Input: S = (S[i][j])
1: for R from 24 down to 1 inclusive do
2: for j from 0 to 3 inclusive do
3: IX ← S[0][j] ≪ 24 . SP-box
4: IY ← S[1][j] ≪ 9
5: IZ ← S[2][j]
6:
7: S[2][j]← IX ⊕ IZ � 1⊕ (IY ∧ IZ)� 2
8: S[1][j]← IY ⊕ IX ⊕ (IX ∨ IZ)� 1
9: S[0][j]← IZ ⊕ IY ⊕ (IX ∧ IY )� 3
10: end for
11:
12: if R mod 4 =0 then
13: S[0][0], S[0][1], S[0][2], S[0][3]← S[0][1], S[0][0], S[0][3], S[0][2] . Small-Swap
14: else if r mod 2 =0 then
15: S[0][0], S[0][1], S[0][2], S[0][3]← S[0][2], S[0][3], S[0][0], S[0][1] . Big-Swap
16: end if
17:
18: if R mod 4 =0 then
19: S[0][0]← S[0][0]⊕ 0x9e377900⊕ r . Constant Addition
20: end if
21: end for
22: return (S[i][j])

For convenience, denote the internal state after r-round permutation by Sr and the
input state by S0. In other words, we have

S4i SP−→ S4i+0.5 S_SW−→ AC−→ S4i+1 SP−→ S4i+2 SP−→S_BW−→ S4i+3 SP−→ S4i+4,

where 0 ≤ i ≤ 5. Moreover, the six 32-bit round constants are denoted by ci (0 ≤ i ≤ 5),
where ci = 0x9e377900⊕ (24− 4i).

To represent a column of the Gimli state Sr, we denote the (j + 1)-th column of the
Gimli state by Sr[·][j], i.e. Sr[·][j] = (Sr[0][j], Sr[1][j], Sr[2][j]) (0 ≤ j ≤ 3). To represent
a row of the Gimli state, we denote the (i+ 1)-th row of the Gimli state by Sr[i][·], i.e.
Sr[i][·] = (Sr[i][0], Sr[i][1], Sr[i][2], Sr[i][3]) (0 ≤ i ≤ 2).

To represent a group of state words, we use Sr[I][j] or Sr[i][J ] or Sr[I][J ], i.e.
Sr[I][j] = {Sr[i][j]|i ∈ I ⊆ {0, 1, 2}}, Sr[i][J ] = {Sr[i][j]|j ∈ J ⊆ {0, 1, 2, 3}} and
Sr[I][J ] = {Sr[i][j]|i ∈ I ⊆ {0, 1, 2}, j ∈ J ⊆ {0, 1, 2, 3}}. Right now, two differ-
ent states can be the same, if their internal values are permuted within I or J in-
dices. For example, Sr[0, 1][2] = (Sr[0][2], Sr[1][2]), Sr[0][0, 1] = (Sr[0][0], Sr[0][1]) and
Sr[0, 1][0, 1] = (Sr[0][0], Sr[0][1], Sr[1][0], Sr[1][1]).

2.3 SP-box
The SP-box can be viewed as a 96-bit S-box. Denote the 96-bit input and output by
(IX, IY, IZ) ∈ F 32×3

2 and (OX,OY,OZ) ∈ F 32×3
2 , respectively. Formally, the following

relation holds:

(OX,OY,OZ) = SP (IX, IY, IZ).

(OX,OY,OZ) is computed as follows:

IX ← IX ≪ 24
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IY ← IY ≪ 9
OZ ← IX ⊕ IZ � 1⊕ (IY ∧ IZ)� 2
OY ← IY ⊕ IX ⊕ (IX ∨ IZ)� 1
OX ← IZ ⊕ IY ⊕ (IX ∧ IY )� 3

2.4 Linear Layer
The linear layer consists of two swap operations, namely Small-Swap and Big-Swap.
Small-Swap occurs every 4 rounds starting from the 1st round. Big-Swap occurs every 4
rounds starting from the 3rd round. The illustration of Small-Swap and Big-Swap can be
referred to Figure 2.

Figure 2: The linear layer, where the left/right part represents S_SW/B_SW.

2.5 Gimli-Hash
How Gimli-Hash compresses a message is illustrated in Figure 3. Specifically, Gimli-Hash
initializes a 48-byte Gimli state to all-zero. It then reads sequentially through a variable-length
input as a series of 16-byte input blocks, denoted by M0, M1, · · ·.

S0 S1

⊕

M0

r

f

c

M1

⊕

Mi

Si

c

Sh0 Sh1

f f f

Injection Hash value

Figure 3: The process to compress the message

Each full 16-byte input block is handled as follows:

• XOR the block into the first 16 bytes of the state (i.e. the top row of 4 words).

• Apply the Gimli permutation.

The input ends with exactly one final non-full (empty or partial) block, having b bytes
where 0 ≤ b ≤ 15. This final block is handled as follows:

• XOR the block into the first b bytes of the state.

• XOR 1 into the next byte of the state, position b.

• XOR 1 into the last byte of the state, position 47.

• Apply the Gimli permutation.

After the input is fully processed, a 32-byte hash output is obtained as follows:

• Output the first 16 bytes of the state (i.e. the top row of 4 words), denoted by H0.

• Apply the Gimli permutation.
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• Output the first 16 bytes of the state (i.e. the top row of 4 words), denoted by H1.
As depicted in Figure 3, the state after Mi (i ≥ 0) is injected is denoted by Si and the

256-bit hash value is the concatenation of (Sh0[0][0], Sh0[0][1], Sh0[0][2], Sh0[0][3], Sh1[0][0],
Sh1[0][1], Sh1[0][2], Sh1[0][3]). Formally, the following relations hold:

S0 = 0384 ⊕ (M0||0256),
Si+1 = f(Si)⊕ (Mi+1||0256) (i ≥ 0),

In our preimage attacks on Gimli-Hash, two consecutive message blocks will be utilized.
To distinguish the states where different message blocks are processed, we further introduce
the following notations: when processing Mi, denote the internal state after the r-round
permutation by Sr

i and the input state by S0
i . In other words, we have

S4j
i

SP−→ S4j+0.5
i

S_SW−→ AC−→ S4j+1
i

SP−→ S4j+2
i

SP−→S_BW−→ S4j+3
i

SP−→ S4j+4
i ,

where 0 ≤ j ≤ 5 and i ≥ 0.
To represent a column of the Gimli state Sr

d, we denote the (j + 1)-th column of the
Gimli state by Sr

d [·][j], i.e. Sr
d [·][j] = (Sr

d [0][j], Sr
d [1][j], Sr

d [2][j]) (0 ≤ j ≤ 3). To represent
a row of the Gimli state, we denote the (i+ 1)-th row of the Gimli state by Sr

d[i][·], i.e.
Sr

d [i][·] = (Sr
d [i][0], Sr

d [i][1], Sr
d [i][2], Sr

d [i][3]) (0 ≤ i ≤ 2).
To represent a group of state words, we use Sr

d[I][j] or Sr
d[i][J ] or Sr

d[I][J ], i.e.
Sr

d[I][j] = {Sr
d[i][j]|i ∈ I ⊆ {0, 1, 2}}, Sr

d[i][J ] = {Sr
d[i][j]|j ∈ J ⊆ {0, 1, 2, 3}} and

Sr
d[I][J ] = {Sr

d[i][j]|i ∈ I ⊆ {0, 1, 2}, j ∈ J ⊆ {0, 1, 2, 3}}. Right now, two differ-
ent states can be the same, if their internal values are permuted within I or J in-
dices. For example, Sr

d[0, 1][2] = (Sr
d[0][2], Sr

d[1][2]), Sr
d[0][0, 1] = (Sr

d[0][0], Sr
d[0][1]) and

Sr
d [0, 1][0, 1] = (Sr

d [0][0], Sr
d [0][1], Sr

d [1][0], Sr
d [1][1]).

2.5.1 Gimli-XOF

In addition to Gimli-Hash, another application of the Gimli permutation called "extendable
one-way function" (Gimli-XOF) is specified in the submitted Gimli document [BKL+17].
For completeness, we briefly introduce the construction of Gimli-XOF recommended by
the designers for lightweight applications.

Construction. At the squeezing phase, different from Gimli-Hash which generates a
fixed-length output of 32 bytes, Gimli-XOF works as follows to generate t bytes of output:

1. Concatenate d t
16e blocks of 16 bytes, each of which is obtained by extracting the

first 16 bytes of the state and then applying the Gimli permutation.

2. Truncate the obtained 16d t
16e bytes to t bytes.

At the absorbing phase, the so-called two-way fork [BKL+17] is adopted, as specified
below:

1. Read the message byte by byte (imaging that there is a device). Xor the byte at
the current position and then increase the current position. If the current position
exceeds the end of the block (each block can absorb at most 16 bytes per time),
apply the permutation and set the current position back to the first byte.

2. When reaching the "end of data", xor 1 into the state at the current position and
apply the Gimli permutation.

Obviously, the difference between Gimli-Hash and Gimli-XOF at the absorbing phase
exists in the padding rule.

To apply our technique, the parameter t is set as 16. In other words, the Gimli
permutation is used to generate 128 bits of output. For simplicity, Gimli-XOF with a
128-bit output is denoted by Gimli-XOF-128.
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3 Properties of the SP-box
Suppose (OX,OY,OZ) = SP (IX, IY, IZ). Several properties have been discussed in [LIM20]
and we list some useful ones for our attacks.

Property 1. [LIM20] If (IY ≪ 9) ∧ 0x1fffffff = 0, OX will be independent of IX.

Property 2. [LIM20] A random triple (IY, IZ,OX) is potentially valid with probability
2−15.5 without knowing IX.

Property 3. [LIM20] Given a random triple (IX,OY,OZ), it is valid with probability
2−1. Once it is valid, (OX[30 : 0], IY, IZ[30 : 0]) can be determined.

Property 4. [LIM20] Given a random triple (IY, IZ,OZ), (IX,OX,OY ) can be uniquely
determined. In addition, a random tuple (IY, IZ,OY,OZ) is valid with probability 2−32.

In addition to the above mentioned properties, we provide some extra meaningful
properties of the SP-box.

Property 5. Let (OX ′, OY ′, OZ ′) = SP (IX ′, IY ′, IZ ′). If IY = IY ′ and IZ = IZ ′, the
following relations must hold:

OX[0] = OX ′[0], OX[1] = OX ′[1], OX[2] = OX ′[2],
OY [0]⊕OZ[0] = OY ′[0]⊕OZ ′[0].

Proof. This can be easily observed from the expressions to calculate OX[i] (0 ≤ i ≤ 2)
and OY [0]⊕OZ[0], as specified below:

OX[i] = IZ[i]⊕ IY [i− 9] (0 ≤ i ≤ 2),
OY [0]⊕OZ[0] = IY [23]⊕ IX[8]⊕ IX[8] = IY [23].

Since IY ⊕ IY ′ = 0 and IZ ⊕ IZ ′ = 0, the following four relations must hold:

OX[0] = OX ′[0], OX[1] = OX ′[1], OX[2] = OX ′[2],
OY [0]⊕OZ[0] = OY ′[0]⊕OZ ′[0].

Property 6. Let (OX ′, OY ′, OZ ′) = SP (IX ′, IY ′, IZ ′). If OY = OY ′ and OZ = OZ ′,
the following relations must hold:

IX[8] = IX ′[8], IY [23] = IY ′[23].

Proof. This can be easily observed from the expressions to calculate OY [0] and OZ[0], as
specified below:

OY [0] = IY [23]⊕ IX[8], OZ[0] = IX[8].

Therefore, we have IX[8] = OZ[0] and IY [23] = IX[8]⊕OY [0] = OZ[0]⊕OY [0]. Since
OY ⊕OY ′ = 0 and OZ ⊕OZ ′ = 0, the following two relations must hold:

IX[8] = IX ′[8], IY [23] = IY ′[23].

The motivation to investigate Property 5 and Property 6 is to construct the distinguisher
for the 18-round Gimli permutation. To improve the full-round distinguisher proposed
in [GLNP+20], we will extend Property 6 to Property 9. The motivation to do such an
extension will be clear when the improved full-round distinguisher is described. Therefore,
Property 9 will be detailed in Subsection 4.2.
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Property 7. Let (x1, y1, z1) = SP (x0, y0, z0) and (x′, y′, z′) = SP (x2, y1, z1). Given a
random value of (y0, z0, y

′, z′), all feasible solutions of (x0, x2) can be recovered with time
complexity 210.4.

Proof. First of all, consider the generic time complexity to recover the pair (x0, x2). For
each guessed value of x0, (x1, y1, z1) can be determined. Since (y′, z′) are known, based on
Property 4, the correctness of the computed (y1, z1) can be immediately checked without
knowing x2. According to Property 4, the tuple (y1, z1, y

′, z′) is valid with probability 2−32.
Since there are at most 232 values of x0, after all the possible values of x0 are traversed,
one can expect only one solution of x0 which can make the tuple (y1, z1, y

′, z′) valid. Once
the tuple is valid, x2 can be uniquely determined based on Property 4. Consequently,
the generic method is a simple exhaustive search for x0, which requires 232 time. In our
following method, x0 can be efficiently exhausted with the guess-and-determine technique.

For simplicity, let v = x0 ≪ 24. First of all, consider the relations between (x0, y0, z0)
and (y1, z1):

z1 = v ⊕ (z0 � 1)⊕ ((y0 ≪ 9) ∧ z0)� 2,
y1 = (y0 ≪ 9)⊕ v ⊕ (v ∨ z0)� 1.

It can be easily observed that when (y0, z0) are known, each bit of (z1, y1) can be expressed
as follows:

z1[i] = v[i]⊕ γi,

y1[i] = v[i]⊕ µiv[i− 1]⊕ λi,

where γi, µi and λi (0 ≤ i ≤ 31) are known values over GF (2), which can be calculated
according to (y0, z0).

For convenience, let y = y1 ≪ 9, z = z1, x = x2 ≪ 24. Then, each bit of (z, y) can be
expressed as follows:

z[i] = v[i]⊕ γi,

y[i] = v[i− 9]⊕ αiv[i− 10]⊕ βi,

where γi, αi and βi (0 ≤ i ≤ 31) are known values over GF (2), which can be calculated
according to (y0, z0).

Consider the relations between (x, y, z) and (y′, z′), as specified below:

z′ = x⊕ (z � 1)⊕ (yz)� 2,
y′ = y ⊕ x⊕ (x ∨ z)� 1 = y ⊕ x⊕ (xz ⊕ x⊕ z)� 1.

We rewrite the expression of y′ as follows:

y′ = y ⊕ x⊕ (xz ⊕ x⊕ z)� 1 = y ⊕ (x⊕ (z � 1))⊕ (xz ⊕ x)� 1.

By involving z′ into the expression of y′, we can obtain that

y′ = y ⊕ (x⊕ (z � 1))⊕ (xz ⊕ x)� 1
= y ⊕ z′ ⊕ (yz)� 2⊕ (xz)� 1.

⇓
y′ ⊕ z′ = y ⊕ (yz)� 2⊕ (xz)� 1.

As

x = z′ ⊕ (z � 1)⊕ (yz)� 2,
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it can be derived that

y′ ⊕ z′ = y ⊕ (yz)� 2⊕ (z(z′ ⊕ (z � 1)⊕ (yz)� 2))� 1.

For simplicity, let Y = y′ ⊕ z′. Considering the expression from the bit level, we can
derive the following 32 equations:

Y [0] = y[0], (1)
Y [1] = y[1]⊕ z′[0]z[0], (2)
Y [2] = y[2]⊕ y[0]z[0]⊕ z[1](z′[1]⊕ z[0]), (3)
Y [3] = y[3]⊕ y[1]z[1]⊕ z[2](z′[2]⊕ z[1]⊕ y[0]z[0]), (4)
Y [4] = y[4]⊕ y[2]z[2]⊕ z[3](z′[3]⊕ z[2]⊕ y[1]z[1]), (5)
Y [5] = y[5]⊕ y[3]z[3]⊕ z[4](z′[4]⊕ z[3]⊕ y[2]z[2]), (6)
Y [6] = y[6]⊕ y[4]z[4]⊕ z[5](z′[5]⊕ z[4]⊕ y[3]z[3]), (7)
Y [7] = y[7]⊕ y[5]z[5]⊕ z[6](z′[6]⊕ z[5]⊕ y[4]z[4]), (8)
Y [8] = y[8]⊕ y[6]z[6]⊕ z[7](z′[7]⊕ z[6]⊕ y[5]z[5]), (9)
Y [9] = y[9]⊕ y[7]z[7]⊕ z[8](z′[8]⊕ z[7]⊕ y[6]z[6]), (10)
Y [10] = y[10]⊕ y[8]z[8]⊕ z[9](z′[9]⊕ z[8]⊕ y[7]z[7]), (11)
Y [11] = y[11]⊕ y[9]z[9]⊕ z[10](z′[10]⊕ z[9]⊕ y[8]z[8]), (12)
Y [12] = y[12]⊕ y[10]z[10]⊕ z[11](z′[11]⊕ z[10]⊕ y[9]z[9]), (13)
Y [13] = y[13]⊕ y[11]z[11]⊕ z[12](z′[12]⊕ z[11]⊕ y[10]z[10]), (14)
Y [14] = y[14]⊕ y[12]z[12]⊕ z[13](z′[13]⊕ z[12]⊕ y[11]z[11]), (15)
Y [15] = y[15]⊕ y[13]z[13]⊕ z[14](z′[14]⊕ z[13]⊕ y[12]z[12]), (16)
Y [16] = y[16]⊕ y[14]z[14]⊕ z[15](z′[15]⊕ z[14]⊕ y[13]z[13]), (17)
Y [17] = y[17]⊕ y[15]z[15]⊕ z[16](z′[16]⊕ z[15]⊕ y[14]z[14]), (18)
Y [18] = y[18]⊕ y[16]z[16]⊕ z[17](z′[17]⊕ z[16]⊕ y[15]z[15]), (19)
Y [19] = y[19]⊕ y[17]z[17]⊕ z[18](z′[18]⊕ z[17]⊕ y[16]z[16]), (20)
Y [20] = y[20]⊕ y[18]z[18]⊕ z[19](z′[19]⊕ z[18]⊕ y[17]z[17]), (21)
Y [21] = y[21]⊕ y[19]z[19]⊕ z[20](z′[20]⊕ z[19]⊕ y[18]z[18]), (22)
Y [22] = y[22]⊕ y[20]z[20]⊕ z[21](z′[21]⊕ z[20]⊕ y[19]z[19]), (23)
Y [23] = y[23]⊕ y[21]z[21]⊕ z[22](z′[22]⊕ z[21]⊕ y[20]z[20]), (24)
Y [24] = y[24]⊕ y[22]z[22]⊕ z[23](z′[23]⊕ z[22]⊕ y[21]z[21]), (25)
Y [25] = y[25]⊕ y[23]z[23]⊕ z[24](z′[24]⊕ z[23]⊕ y[22]z[22]), (26)
Y [26] = y[26]⊕ y[24]z[24]⊕ z[25](z′[25]⊕ z[24]⊕ y[23]z[23]), (27)
Y [27] = y[27]⊕ y[25]z[25]⊕ z[26](z′[26]⊕ z[25]⊕ y[24]z[24]), (28)
Y [28] = y[28]⊕ y[26]z[26]⊕ z[27](z′[27]⊕ z[26]⊕ y[25]z[25]), (29)
Y [29] = y[29]⊕ y[27]z[27]⊕ z[28](z′[28]⊕ z[27]⊕ y[26]z[26]), (30)
Y [30] = y[30]⊕ y[28]z[28]⊕ z[29](z′[29]⊕ z[28]⊕ y[27]z[27]), (31)
Y [31] = y[31]⊕ y[29]z[29]⊕ z[30](z′[30]⊕ z[29]⊕ y[28]z[28]). (32)

In the above equation system (Eq. 1∼32), (z′, Y ) are known and (y, z) are linear in the
unknown x0. Our aim is to recover (y, z) in order to recover the unknowns (x0, x2).

The procedure to solve the above equation system is described as follows:

Step 1: Guess (z[0], z[1], z[2], z[3], z[4]). For each such guess, v[i] (0 ≤ i ≤ 4) becomes
known. Based on Eq. 1∼6, we can also uniquely compute

(y[0], y[1], y[2], y[3], y[4], y[5]).
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Note that we need to compute y[i] before computing y[i+ 1] (0 ≤ i ≤ 4).

Step 2: The expression of y[i] is as follows:

y[i] = v[i− 9]⊕ αiv[i− 10]⊕ βi.

Since (y[0], y[1], y[2], y[3], y[4], y[5]) are known, we can uniquely determine v[i]
(22 ≤ i ≤ 28) by guessing v[22].

Step 3: Guess (y[22], y[23], y[24]). Since v[i] (22 ≤ i ≤ 28) have been determined at Step 2,
we can compute the corresponding z[i] (22 ≤ i ≤ 28). Then, based on Eq. 26∼30,
we can uniquely compute

(y[25], y[26], y[27], y[28], y[29]).

Then

(y[22], y[23], y[24], y[25], y[26], y[27], y[28], y[29])

become determined. Therefore, we can uniquely determine v[i] (12 ≤ i ≤ 20) by
guessing v[12].

Step 4: At this step, only v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11, 21, 29, 30, 31}) are unknown. We
can compute (y[11], y[12], y[13]) according to the knowledge of (v[1], v[2], v[3], v[4]).
Observing Eq. 15, when z[13] = 1 or y[11] = 0, we can uniquely compute y[14]
since the unknown z[11] will not influence the calculation of y[14] anymore. After
y[14] is obtained, based on Eq. 16∼21, we can uniquely compute

(y[15], y[16], y[17], y[18], y[19], y[20]).

Then, the values of v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11}) are determined.
If z[13] = 0 and y[11] = 1, which occurs with probability 2−2, similarly, we simply
guess z[11] and then obtain the value of

(y[14], y[15], y[16], y[17], y[18], y[19], y[20]),

which will correspond to a solution of v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11}). Compare the
value of v[11] with its guessed value (we can obtain v[11] from z[11]). If they are
consistent, we find a correct solution of v[i] (i ∈ {5, 6, 7, 8, 8, 10, 11}). Otherwise,
it is wrong.
In conclusion, whatever the case is, we could only get one solution of v[i] (i ∈
{5, 6, 7, 8, 8, 10, 11}). The average cost at this step can be estimated as 3

4 + 1
4 ×2 ≈

20.4.

Step 5: Since (v[5], v[6], v[7]) are determined, we can compute (z[5], z[6], z[7]). Then,
based on Eq. 7∼9, we can uniquely compute (y[6], y[7], [8]), thus determining
(v[29], v[30], v[31]) and (z[29], z[30], z[31]). Then, we can compute y[30] based on
Eq. 31 because z[29] becomes known. After y[30] is computed, we can uniquely
determine v[21]. Until this phase, (v, y, z) are fully determined and we can check
the correctness by checking the validity of the tuple (y, z, y′, z′) according to
Property 4.

The time complexity of our guess-and-determine method to solve the above equation
system can be evaluated in this way. At Step 1, (z[0], z[1], z[2], z[3], z[4]) are guessed. At
Step 2, v[22] is guessed. At Step 3, (y[22], y[23], y[24], v[12]) are guessed. At Step 4, the
cost of guessing can be evaluated as 20.4. As a result, the time complexity to traverse all
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solutions of the above equation system is 25+1+4+0.4 = 210.4. On the other hand, we do
not construct any coefficient matrix nor use Gauss elimination when solving the above
equation system. The unknown variables can be calculated step by step by considering
the corresponding expressions, which is very efficient.

As explained at the beginning of the proof, since x0 can be exhausted in 210.4 time,
(x0, x2) can be recovered in 210.4 time and the expected number of solutions is 1.

Property 8. Given a random constant value of OX and N uniformly distributed pairs of
(IY, IZ), when N is sufficiently large, the expectation of the number of the solutions of
IX is N .

Proof. Consider the expressions to compute OX as shown in Equation 33.

OX[i] =
{
IZ[i]⊕ IY [i− 9] (0 ≤ i ≤ 2)
IZ[i]⊕ IY [i− 9]⊕ (IX[i− 27] ∧ IY [i− 12]) (3 ≤ i ≤ 31)

(33)

Denote the probability that there are 2s solutions of IX for a given random triple
(IY, IZ,OX) by Pr(s). Therefore,

Pr(s+ 3) = 2−3 × 2−s ×
(29

s

)
229 , (0 ≤ s ≤ 29).

This is because IX[i− 27] ∧ IY [i− 12] is irrelevant to IX[i− 27] when IY [i− 12] = 0.
As a result, the expectation of the number of solutions of IX denoted by E can be

formulated as follows:

E = N ×
29∑

s=0
(2s+3 × Pr(s+ 3))

= N ×
29∑

s=0
(2s+3 × 2−3 × 2−s ×

(29
s

)
229 ) = N ×

29∑
s=0

(29
s

)
229 = N.

In addition, according to Property 2, a random triple (IY, IZ,OX) is valid with probability
2−15.5. Thus, we can expect N solutions of IX when N is sufficiently large, e.g. N = 232.
According to experiments, when N = 232, about 232 (slightly greater than 232) solutions
of (IX, IY, IZ) can be obtained to match a given OX.

As mentioned in the proof, a random triple (IY, IZ,OX) is valid with probability 2−15.5

based on Property 2. Therefore, it would be meaningful to study how many solutions
there will be for (IX,OY,OZ) when there are a large number of uniformly distributed
triples (IY, IZ,OX).

4 Improved Distinguishers for Gimli
A well-known powerful distinguisher for the Keccak permutation is the so-called zero-sum
distinguisher [AM], where the attacker starts from a middle round and chooses a set of
values for the intermediate state so that the sum of the inputs and outputs are all zero
when computing backwards and forwards. In addition, the common differential distin-
guisher [BS90] tries to capture some undesirable behaviour of the output difference for a
certain input difference. Benefiting from the internal differential [Pey10], which has been
applied to the cryptanalysis of Keccak [MPS13, DDS13], we propose a new distinguisher
called hybrid zero-internal-differential (ZID) distinguisher for Gimli. Such a new distin-
guisher is inspired from the zero-sum distinguisher [AM], differential distinguisher [BS90]
and internal differential [Pey10], as illustrated in Figure 4. Specifically, we start from a
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middle round and choose two different intermediate internal states of a specific format.
Then, we carefully trace both the symmetry in each internal state and the symmetry
between two different internal states generated by the two intermediate internal states.
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Figure 4: Illustration of the distinguishers

4.1 Deterministic Hybrid ZID Distinguisher for 18-Round Gimli
We begin with the hybrid ZID distinguisher for 18 rounds of the Gimli permutation, which
only requires 2 queries to the 18-round Gimli permutation. Starting from S9, we choose
two different values denoted by (A9, B9) for S9 such that the second column and the fourth
column share the same values in (A9, B9) while the first column and the third column
are swapped in (A9, B9). In addition, there are extra conditions on state words in the
first row of the first and third columns to eliminate the influence of the constant addition.
Formally, the conditions are specified below:

A9[0][0] = c2 ⊕A9[0][2], A9[1][0] = A9[1][2], A9[2][0] = A9[2][2],
A9[·][1] = A9[·][3] = B9[·][1] = B9[·][3],
B9[·][0] = A9[·][2], B9[·][2] = A9[·][0].

(34)

where c2 is the round constant used to compute S9 in the Gimli permutation.
As illustrated in Figure 5, we can trace the evolutions of the internal difference in both

directions for A9 and B9, respectively. The following relations inside (A17, B17) can be
derived, i.e. the last two rows of the second column and the fourth column are swapped
for (A17, B17).

A17[1][1] = B17[1][3], A17[2][1] = B17[2][3],
A17[1][3] = B17[1][1], A17[2][3] = B17[2][1].

In addition, we have the following relations inside (A0.5, B0.5), i.e. the last two rows of
the first column and the third column are identical in both (A0.5, B0.5).{

A0.5[1][0] = A0.5[1][2], A0.5[2][0] = A0.5[2][2],
B0.5[1][0] = B0.5[1][2], B0.5[2][0] = B0.5[2][2].

(35)

Consequently, according to Property 5, the following 8 relations always hold for (A18,
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Figure 5: Evolution of the internal difference for (A9, B9).
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B18). 

A18[0][1][0] = B18[0][3][0], A18[0][1][1] = B18[0][3][1],
A18[0][1][2] = B18[0][3][2], B18[0][1][0] = A18[0][3][0],
B18[0][1][1] = A18[0][3][1], B18[0][1][2] = A18[0][3][2],
A18[1][1][0]⊕A18[2][1][0] = B18[1][3][0]⊕B18[2][3][0],
B18[1][1][0]⊕B18[2][1][0] = A18[1][3][0]⊕A18[2][3][0].

(36)

In addition, according to Property 6, the following 4 relations always hold for (A0, B0):{
A0[0][0][8] = A0[0][2][8], A0[1][0][23] = A0[1][2][23],
B0[0][0][8] = B0[0][2][8], B0[1][0][23] = B0[1][2][23].

(37)

As a result, one could construct a distinguisher for 18 rounds of the Gimli permutation,
whose data and time complexity are both 2. Such a 18-round distinguisher has been
experimentally verified. Note that for a random permutation, it requires at least 1 + 22 = 5
queries to find (A0, A18, B0, B18) satisfying Equation 37 and Equation 36 by first encrypting
A0 and then decrypting B18. However, if we consider a distinguisher to find ω different
tuples (A0, A18, B0, B18) satisfying Equation 37 and Equation 36 in 2ω consecutive queries
where both A0 and B0 are not allowed to repeat, our hybrid ZID distinguisher would
succeed with probability 1 while a generic method for a random permutation would succeed
with probability 2−2ω. This explains the meaningfulness of our 18-round distinguisher.
Note that the multiple-of-8 distinguisher [GRR17] for 5-round AES holds with probability
2−3 for a random permutation while it holds with probability 1 for 5-round AES. Anyway,
our distinguisher obviously shows that the symmetry of the Gimli permutation is an issue
in the design, which enables us to trace a probability-1 undesirable property covering 18
rounds.

Experiments. We have implemented the distinguisher for the 18-round Gimli permutation
and an example of (A0, A18, B0, B18) is given in Table 2. Indeed, we tested 10000 times
and each time we could obtain the desired tuple (A0, A18, B0, B18) with only 2 queries.

Table 2: An example of the desired tuple (A0, A18, B0, B18)

A0 B0

8d721a09 f548593b 62c57087 95c53635 dccc5b3e e1bd8f95 b531f364 3a051437
dc8613e5 49e467db 24adf926 e8c377c 8d62f2cf 3e330461 7506cf6e feb3e567
92f2a7a1 8c8ea56e 7340ebd6 41692d0 b0a26ad0 6fa3501c 17f381e4 e8020c45

A0.5 B0.5

deff7cd8 2691375 33a0859f 9c5e6a6d 5363951a 29af9200 3ecdda1e b798eb18
325556d5 8cc52434 325556d5 46d492c7 86c48ef7 c2e84cd 86c48ef7 ae84d043
2ce233dc d2928d 2ce233dc 3da2a0d6 5d1831bb d2a61dc7 5d1831bb 67362c8a

A17 B17

eae98eec 15f351e4 3ba5537c ed850386 a5922a74 166df491 74def7e4 8ffddbfd
9c017fa2 28711665 92e577d7 b559b653 f87ea35a b559b653 801c02a1 28711665
e3647d3b 32ea6462 e91d8495 7e9c5645 808411d7 7e9c5645 e2c3b714 32ea6462

A18 B18

e6c93043 d0e0bcb2 62af03b8 de94d93f dde62527 45d1da2f dae4e414 d0a0ecb2
31c857c8 ebc6d7e7 4cab41d8 c87a8ce7 60a80024 dd463574 119e6219 e07ccc7d
23b30718 9603a95 8e36bc6d b3e53089 75bdf6c4 a41ed87e a1f7bcdf 10fa341f

Extending to full rounds. To extend this distinguisher to the full-round Gimli permuta-
tion, we can add 128-bit conditions, as specified below:

A17[0][3] = B17[0][1],
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A17[0][1] = B17[0][3],
A21[0][3] = B21[0][1],
A21[0][1] = B21[0][3].

The conditions A17[0][3] = B17[0][1] and A17[0][1] = B17[0][3] are used to ensure that
A20.5[·][1] = B20.5[·][3] and A20.5[·][3] = B20.5[·][1]. Due to the Small-Swap operation,
whether A21[0][3] = B21[0][1] and A21[0][1] = B21[0][3] hold is uncertain. Therefore, if
we add conditions A21[0][3] = B21[0][1] and A21[0][1] = B21[0][3], it can be ensured that
A24[·][1] = B24[·][3] and A24[·][3] = B24[·][1].

For a random permutation, A24[·][1] = B24[·][3] and A24[·][3] = B24[·][1] hold with
probability 2−96×2 = 2−192. However, if the above 128-bit conditions hold, there must be
A24[·][1] = B24[·][3] and A24[·][3] = B24[·][1]. As A0 and B0 always satisfy Equation 37, by
choosing 2128 random values3 for (A9, B9) satisfying Equation 34 and computing backwards
and forwards, Equation 37 always holds for all the obtained (A0, B0) and we can expect 1
value of (A24, B24) satisfying A24[·][1] = B24[·][3] and A24[·][3] = B24[·][1].

Flaws in the above full-round distinguisher. Based on the above analysis, it can be
estimated that the time complexity of the distinguisher is 2128 in order to detect a
distinguishing point, i.e. A24[·][1] = B24[·][3] and A24[·][3] = B24[·][1]. However, to find
the desired tuple (A0, B0, A24, A24) satisfying Equation 37 and A24[·][1] = B24[·][3] and
A24[·][3] = B24[·][1], we can achieve it with only 22 = 4 queries, i.e. first compute forwards
from A0 to A24 and then compute backwards from B24 to B0. Therefore, the generic time
complexity of the above full-round distinguisher is 4 while our way requires 2128 attempts.
Therefore, our full-round distinguisher is indeed not a reasonable one, though it did reveal
a probabilistic property of the full-round Gimli permutation.

4.2 Improving the Full-Round Distinguisher
Since our hybrid ZID distinguisher cannot reach full rounds, we turn to improving the
distinguisher in [GLNP+20] by extending Property 6. For completeness, we first give a
brief description of the full-round distinguisher proposed in [GLNP+20]. It can be found
that both the distinguisher in [GLNP+20] and our hybrid ZID distinguisher exploit a
very similar structure underlying the Gimli permutation. Specifically, the procedure to
construct the full-round distinguisher in [GLNP+20] is as follows:

Step 1: Fix the pattern of S9 and we again use A9 to represent the value of S9 for
consistency. Then, A9 should satisfy A9[·][1] = A9[·][3], A9[0][0] = c2 ⊕ A9[0][2]
and A9[i][0] = A9[i][2] (1 ≤ i ≤ 2). As the format of A9 is the same with that of our
18-round distinguisher, we reuse Figure 5 to explain the full-round distinguisher
in [GLNP+20].

Step 2: Randomly choose a value for A9[·][0]. Let A9[0][2] = c2 ⊕A9[0][0] and A9[i][2] =
A9[i][0] (1 ≤ i ≤ 2). Compute until A13, i.e. (A13[0][1], A13[0][3]) and (A13[1, 2][0],
A13[1, 2][2]) can be computed without knowing (A9[·][1], A9[·][3]). Choose the
value for (A9[·][0], A9[·][2]) such that A13[0][1] = A13[0][3] and then move to Step
3.

Step 3: Randomly choose a value for A13[0][0] and let A13[0][2] = c3 ⊕A13[0][0]. In this
way, the first column and the third column of A13 are fully known and we could
therefore compute (A17[0][1], A17[0][3]) based on the same reason as in Step 2.
Choose the value for (A13[0][0], A13[0][2]) such that A17[0][1] = A17[0][3] and then
move to Step 4.

3There are in total 2192 possible values.
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Step 4: Until this step, we emphasize that only four 32-bit state words in A13 remain
unfixed. Thus, randomly choose a value for (A13[1][1], A13[2][1]) and let A13[i][3] =
A13[i][1] (1 ≤ i ≤ 2). In this way, the patten of A9 remains unchanged as the
current assignment for A13 fulfills the pattern propagated from A9. As the full
state of A13 becomes known and the pattern of A9 is preserved, the pattern of A0.5

remains the same, i.e. Equation 35 holds, thus resulting that A0[·][0] = A0[·][2]
holds with probability 2−32. In addition, in the forward direction, due to the
way to choose values for state words in step 2 and Step 3, it can be derived that
A17[·][1] = A17[·][3], thus resulting that A24[·][1] = A24[·][3] holds with probability
2−32. Exhaust all possible 264 values of (A13[1][1], A13[2][1]) and check whether
A0[·][0] = A0[·][2] and A24[·][1] = A24[·][3] hold simultaneously.

The time complexity at Step 2 and Step 3 are both 232. The time complexity at Step
4 is 264 as A0[·][0] = A0[·][2] and A24[·][1] = A24[·][3] hold with probability 2−64. Thus,
the total time complexity to find such (A0, A24) is 264 while it requires 296 queries for a
random permutation.

However, to construct a distinguisher in this way, there is indeed no need to constrain 96
bit conditions on A0. Specifically, we consider a slightly different requirement for (A0, A24)
where only partial bits in the first column and the third column of A0 are identical while
the condition that A24[·][1] = A24[·][3] remains unchanged.

Supposing there are g(< 96) bit conditions on A0 in the new setting, the generic time
complexity to find such (A0, A24) would be 2g. If we could find such a pair in less than 2g

time, a distinguisher is obtained.
The motivation to construct such a distinguisher is that the relations in A0.5 are not

fully exploited in [GLNP+20]. To exploit such relations, we extend Property 6 as follows.

Property 9. Let (OX ′, OY ′, OZ ′) = SP (IX ′, IY ′, IZ ′). If OY = OY ′ and OZ = OZ ′,
supposing there are w(< 32) consecutive bits starting from the least significant bit of OX
and OX ′ satisfying OX[i] = OX ′[i] (0 ≤ i ≤ w − 1), there will be 2 + 3w linear relations
inside (IX, IY, IZ) and (IX ′, IY ′, IZ ′), as specified below:

IX[8] = IX ′[8],
IY [23] = IY ′[23],
IZ[i] = IZ ′[i],

IX[9 + i] = IX ′[9 + i],
IY [24 + i] = IY ′[24 + i],

where the indices are considered within modulo 32.

Proof. According to Property 6, we can know that IX[8] = IX ′[8] and IY [23] = IY ′[23]
always hold when OY = OY ′ and OZ = OZ ′. For convenience, we introduce 4 intermediate
variables TX, TY , TX ′, and TY ′ representing IX ≪ 24, IY ≪ 9, IX ′ ≪ 24 and
IY ′ ≪ 9, respectively. Then, the specification of the SP-box can be written as follows:

TX ← IX ≪ 24
TY ← IY ≪ 9
OZ ← TX ⊕ IZ � 1⊕ (TY ∧ IZ)� 2
OY ← TY ⊕ TX ⊕ (TX ∨ IZ)� 1
OX ← IZ ⊕ TY ⊕ (TX ∧ TY )� 3

In this way, under the condition that OY = OY ′, OZ = OZ ′ and OX[i] = OX ′[i]
(0 ≤ i ≤ w − 1), we need to prove

TX[0] = TX ′[0],
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TY [0] = TY ′[0],
IZ[i] = IZ ′[i],

TX[i+ 1] = TX ′[i+ 1],
TY [i+ 1] = TY ′[i+ 1]

for all i satisfying 0 ≤ i ≤ w − 1, where TX[i] = IX[i + 8], TY [i] = IY [i + 23],
TX ′[i] = IX ′[i+ 8], TY ′[i] = IY ′[i+ 23] and the indices are considered within modulo 32.

We now prove this property by induction. As OY = OY ′ and OZ = OZ ′, TX[0] =
TX ′[0] and TY [0] = TY ′[0] always hold. When w = 1, it holds that

OX[0] = OX ′[0]⇒ IZ[0]⊕ TY [0] = IZ ′[0]⊕ TY ′[0]⇒ IZ[0] = IZ ′[0].

As

OZ[1] = TX[1]⊕ IZ[0],
OY [1] = TY [1]⊕ TX[1]⊕ TX[0] ∨ IZ[0]

we have

OZ[1] = OZ ′[1]⇒ TX[1] = TX ′[1],
OY [1] = OY ′[1]⇒ TY [1] = TY ′[1].

Therefore, the property holds for w = 1.
Assume that the property holds for w = k (1 ≤ k < 31), i.e. the following relations

hold for 0 ≤ i ≤ k − 1.

TX[0] = TX ′[0],
TY [0] = TY ′[0],
IZ[i] = IZ ′[i],

TX[i+ 1] = TX ′[i+ 1],
TY [i+ 1] = TY ′[i+ 1].

We now prove that it also holds for w = k + 1.
When w = k + 1 ≤ 3, we have

OX[k] = IZ[k]⊕ TY [k]

As TY [k] = TY ′[k] already holds, when OX[k] = OX ′[k], we have IZ[k] = IZ ′[k].
When w = k + 1 > 3, we have

OX[k] = IZ[k]⊕ TY [k]⊕ TX[k − 3] ∧ TY [k − 3]

As TY [k] = TY ′[k], TX[k − 3] = TX ′[k − 3] and TY [k − 3] = TY ′[k − 3] already hold,
when OX[k] = OX ′[k], we have IZ[k] = IZ ′[k].

Therefore, IZ[k] = IZ ′[k] holds for w = k + 1. Next, we prove that TX[k + 1] =
TX ′[k + 1] and TY [k + 1] = TY ′[k + 1].

As

OZ[k + 1] = TX[k + 1]⊕ IZ[k]⊕ TY [k − 1] ∧ IZ[k − 1],
OY [k + 1] = TY [k + 1]⊕ TX[k + 1]⊕ TX[k] ∨ IZ[k],

based on that OZ = OZ ′, IZ[k] = IZ ′[k], TY [k − 1] = TY ′[k − 1] and IZ[k − 1] =
IZ ′[k − 1], it can be deduced that TX[k + 1] = TX ′[k + 1]. Similarly, based on that
OY = OY ′, TX[k + 1] = TX ′[k + 1], TX[k] = TX ′[k] and IZ[k] = IZ ′[k], we have
TY [k + 1] = TY ′[k + 1].

Therefore, when w = k + 1, there must be IZ[k] = IZ ′[k], TX[k + 1] = TX ′[k + 1]
and TY [k + 1] = TY ′[k + 1]. In other words, the property also holds for w = k + 1, which
completes the proof.
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The improved distinguisher. When A0.5[1][0] = A0.5[1][2], A0.5[2][0] = A0.5[2][2] and
A0.5[0][0][i] = A0.5[0][2][i] (0 ≤ i ≤ w − 1), according to Property 9, we can derive that

A0[0][0][8] = A0[0][2][8],
A0[1][0][23] = A0[1][2][23],
A0[2][0][i] = A0[2][2][i],
A0[0][0][9 + i] = A0[0][2][9 + i],
A0[1][0][24 + i] = A0[1][2][24 + i],

(38)

where 0 ≤ i ≤ w − 1 and the indices are considered within modulo 32. As A0.5[1][0] =
A0.5[1][2] and A0.5[2][0] = A0.5[2][2] always hold as long as A9 satisfies A9[·][1] = A9[·][3],
A9[0][0] = c2 ⊕A9[0][2] and A9[i][0] = A9[i][2] (1 ≤ i ≤ 2), we can know that finding such
(A0, A24) that A0 satisfies Equation 38 and A24 satisfies A24[·][1] = A24[·][3] by running the
algorithm as in [GLNP+20] would require 232+w queries, while it requires 23w+2 queries
for a random permutation. To obtain a significant bias, w = 20 is chosen. In this way,
we could find the desired (A0, A24) in 252 time while it requires 262 time for a random
permutation. Thus, we succeed in constructing a distinguisher for the full-round Gimli
permutation with time complexity 252.

Experiments. We have implemented the improved full-round distinguisher by reducing
the size of the state word from 32 bits to 16 bits. In this case, the SP-box is accordingly
adjusted, as specified below:

IX ← IX ≪ 12
IY ← IY ≪ 5
OZ ← IX ⊕ IZ � 1⊕ (IY ∧ IZ)� 2
OY ← IY ⊕ IX ⊕ (IX ∨ IZ)� 1
OX ← IZ ⊕ IY ⊕ (IX ∧ IY )� 3

In our experiments, the six 16-bit round constants are randomly generated. In this way, as
displayed in Table 3, we could find a desired pair (A0, A24) where there are 48 conditions
on A24 and 10× 3 + 2 = 32 conditions on A0. The time complexity of a generic method
to find such a pair is 232 while we can find it with time complexity 216+10 = 226. The
correctness of the estimation of the time complexity has been confirmed via experiments.

Table 3: An example of the desired pair (A0, A24)

Round Constants
5ebc, ca5d, d968, 57c6, afec, 2d58
A0 A24

cbe5 34c2 4be9 4a9 2640 9fc0 8f56 9fc0
b186 539e b3c6 a83d a628 56e0 77d6 56e0
4880 b896 1c80 8815 e5de afb dc93 afb

cbe5=1100 1011 1110 01012
4be9=0100 1011 1110 10012
b186=1011 0001 1000 01102
b3c6=1011 0011 1100 01102
4880=0100 1000 1000 00002
1c80=0001 1100 1000 00002
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5 Preimage Attacks on Reduced Gimli-Hash
As can be observed from the above distinguishers for the Gimli permutation, we take
many advantages of the weak diffusion. Different from Keccak [BDPA11b], in which
the diffusion is strong, the diffusion of Gimli is rather weak. As pointed out by the
designers, the avalanche effect requires 10 rounds of the Gimli permutation. Therefore, the
divide-and-conquer method may work well to accelerate the preimage finding procedure.

5.1 The Generic Preimage Attack on Gimli-Hash
The generic preimage attack on Gimli-Hash is based on a meet-in-the-middle method, as
depicted in Figure 6.

f f f−1 f−1 f−1 f

S0 S1 S2 S3 S4 Sh1

M0 M1 M2 M3 M4

Sh0

outer part

match

Phase 2 Phase 1Phase 3

Figure 6: Framework of the generic preimage attack

Specifically, consider five message blocks (M0, M1, M2, M3, M4) and utilize them to
find a preimage for a given hash value. In other words, consider the following sequence of
state transitions:

S0
f−→ S1

f−→ S2
f−→ S3

f−→ S4
f−→ Sh0

f−→ Sh1. (39)

Given a hash value (Sh0[0][0], Sh0[0][1], Sh0[0][2], Sh0[0][3], Sh1[0][0], Sh1[0][1], Sh1[0][2],
Sh1[0][3]), the generic preimage attack can be described as follows:

Phase 1: Randomly choose a value for the 256-bit inner part of Sh0 and compute the
corresponding Sh1. Repeat it until the computed 128-bit outer part of Sh1 is
consistent with that in the given hash value.

Phase 2: At this phase, the full state of Sh0 becomes known. Thus, randomly choose
2128 values for (M3,M4) by taking the padding in S4 into account and compute
backwards the corresponding 2128 values of the inner part of S2. Store them in a
table denoted by T0.

Phase 3: Randomly choose a value for (M0,M1) and compute forwards the corresponding
value of the inner part of S2. Repeat it until the computed value is in T0 and
record the corresponding (Sh0, M0, M1, M3, M4).

Phase 4: Compute S′2 = f(S1) and S2 = f−1(S3). Then, M2||0256 = S2 ⊕ S′2.

Complexity Evaluation. Obviously, the time complexity at Phase 1 is 2128 since a 128-bit
value needs to be matched. For Phase 2, the time and memory complexity are both 2128.
At Phase 3, the time complexity is 2128 since 2256 pairs need to be generated in order to
match the 256-bit inner part of S2. Consequently, the time and memory complexity4 of
the generic attack on Gimli-Hash are both 2128.

4It is possible to make the memory complexity negligible with Floyd’s cycle finding algorithm [Flo67].
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5.2 The Preimage Attack with Divide-and-Conquer Methods
Our attack procedure is slightly different from the generic one. To gain advantages, Phase
1 has to be finished in less than 2128 time. In addition, at Phase 2, we only choose 1
random value for (M3,M4) by considering the padding in S4. In this way, the inner part
of S2 is fixed and only takes one value. Then, at Phase 3, instead of only choosing 2128

values for (M0,M1), our aim is to exhaust all the 2256 possible values of (M0,M1) in less
than 2128 time to match the 256-bit inner part of S2 obtained at Phase 2. Finally, compute
M2 in the same way as in the generic attack.

Since (M0,M1) can take 2256 possible values, it is expected that Phase 2 is only
performed for only a few times. Obviously, the main obstacle in our method is how to
achieve Phase 1 and Phase 3 efficiently, i.e. in less than 2128 time. In the following
description of our preimage attack on 5 rounds of Gimli-Hash, Phase 1 is called Finding a
Valid Inner Part and Phase 3 is called Matching the Inner Part. If the two phases
can be finished in less than 2128 time, advantages over the generic attack are obtained.

Specifically, when the Gimli permutation is reduced to n rounds, Finding a Valid
Inner Part is equivalent to the following problem:

Given the outer part of S0 and Sn (n ≤ 24), how to find a solution of the inner part
of S0 to match the given outer part of Sn?

For Matching the Inner Part, since two message blocks need to be considered, we
distinguish the states by S0 and S1 as depicted in Figure 3 for convenience. Then, it is
equivalent to the following problem:

Given the inner part of S0
0 and Sn

1 , how to find a solution of the outer part of S0
0 and

S0
1 to match the given inner part of Sn

1 ?

5.3 The Preimage Attack on 5-Round Gimli-Hash
In this section, how to mount the preimage attack on 5-round Gimli-Hash will be introduced.
We only focus on Finding a Valid Inner Part and Matching the Inner Part.

5.3.1 Finding a Valid Inner Part

As illustrated in Figure 7, the corresponding procedure can be divided into 4 steps, as
shown below.

S0 S0.5 S1 S2 S3

S4S4.5S5

SP

S SW

AC

SP SP

B SW

SP

SP

S SW

AC

?

?

?

Known

Known after guessing

Match

Known after guessing

Known after guessing
Step 1: Guess Step 2: Guess Step 3: Guess

Figure 7: Generate a valid inner part for the preimage attack on 5-round Gimli-Hash

Step 1: Randomly choose a value for S0[1, 2][0, 1] and compute the corresponding (S3[0][2, 3],
S3[1, 2][0, 1]). Store the values of (S3[0][2, 3], S3[1, 2][0, 1]) in a table denoted by
T2. Repeat this step for 264 random values of S0[1, 2][0, 1].
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Step 2: Randomly choose a value for S5[1, 2][0, 1] and compute the corresponding S3[0, 1, 2][0, 1].
Check whether the computed S3[1, 2][0, 1] is in T2. If it is, record the correspond-
ing value of (S5[1, 2][0, 1], S3[0][·]) and move to Step 3. Otherwise, repeat trying
different random values for S5[1, 2][0, 1].

Step 3: It should be emphasized that (S5[1, 2][0, 1], S3[0][·]) is a fixed value at this step.
Randomly choose a value for S5[1, 2][2] and compute the corresponding S3[·][2].
Check whether the computed S3[0][2] is consistent with the one obtained at
Step 2. If it is not, repeat choosing a random value for S5[1, 2][2]. If it is,
continue computing the corresponding (S0.5[0][3], S0.5[1, 2][2]) with the knowledge
of (S3[0][0], S3[1, 2][2]). According to Property 3, (S0[0][2], S0.5[1, 2][2]) is valid
with probability 2−1. Once it is valid, compute S0.5[0][2][30 : 0] and store the
value of (S5[1, 2][2], S0.5[0][2][30 : 0], S0.5[0][3]) in a table denoted by T3. Repeat
this step until all the 264 values of S5[1, 2][2] are traversed.

Step 4: Similar to Step 3, guess S5[1, 2][3] and compute S3[·][3]. If the computed S3[0][3]
is not consistent with the one obtained at Step 2, guess another value. Other-
wise, continue computing (S0.5[0][2], S0.5[1, 2][3]). Based on Property 3, we can
compute S0.5[0][3][30 : 0] to match S0[0][3]. Then, check whether the computed
(S0.5[0][2][30 : 0], S0.5[0][3][30 : 0]) is contained in T3. If it is, record S5[1, 2][2, 3]
and exit. Repeat this step until all 264 values of S5[1, 2][3] are traversed.

Complexity Evaluation. At Step 1, the time and memory complexity are both 264. At
Step 2, it is necessary to match a 128-bit value of S3[1, 2][0, 1] based on a meet-in-the-
middle method. Therefore, it is required to try 264 possible values of S5[1, 2][0, 1]. Thus,
the time complexity at Step 2 is also 264. At step 3, a total of 264 values of S5[1, 2][2]
are traversed and each of it will be first filtered by S3[0][2] and then filtered according to
Property 3. Thus, it is expected that there will be 231 elements in T3. Similarly, at Step 4,
there will be 231 valid guesses of S5[1, 2][3] left after filtering. For each valid guess, we
need to manage a match in the 62-bit value of (S0.5[0][2][30 : 0], S0.5[0][3][30 : 0]). Since
there are in total 262 possible pairs, one can expect one match. Consequently, the time
and memory complexity to find a valid inner part are both 264.

5.3.2 Matching the Inner Part

Before describing how to match a given inner part by utilizing two message blocks, we will
pre-compute some tables in order to reduce the whole complexity.

Pre-computing Tables. As shown in Figure 8, based on Property 1, the following facts
can be observed:

• S0
1 [1, 2][0, 2] only depends on S0

0 [0][0, 2], thus taking at most 264 possible values.

• S0
1 [1, 2][1, 3] only depends on S0

0 [0][1, 3], thus taking at most 264 possible values.

Consequently, it is feasible to construct some mapping tables via pre-computation.
Specifically, exhaust all 264 values of S0

0 [0][0, 2] and compute the corresponding S0
1 [1, 2][0, 2].

Store the 264 values of (S0
0 [0][0, 2], S0

1 [1, 2][0, 2]) in a table denoted by T4, where the row
number represents the value of (S0

1 [1][0] + S0
1 [2][0]× 232).

Similarly, by exhausting all 264 values of S0
0 [0][1, 3], we can collect all the 264 values of

(S0
0 [0][1, 3], S0

1 [1, 2][1, 3]) and store them in a table denoted by T5, where the row number
represents the value of (S0

1 [1][1] + S0
1 [2][1]× 232).
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Figure 8: Illustration of the preimage attack on 5-round Gimli-Hash

Matching the Inner Part. After preparing the tables, matching the inner part by utilizing
two message blocks can be described as follows. The corresponding illustration can be
referred to Figure 8.

Step 1: Guess S5
1 [0][1, 3] and compute the corresponding (S0.5

1 [0][1, 3], S0.5
1 [1, 2][0, 2]). If

all the 264 values of S5
1 [0][1, 3] are traversed, move to Step 3. Otherwise, for each

guess of S5
1 [0][1, 3], move to Step 2.

Step 2: Further guess S0.5
1 [0][0] and compute S0

1 [1, 2][0]. Retrieve the corresponding values
of (S0

0 [0][0, 2], S0
1 [1, 2][2]) from the (S0

1 [1][0] + S0
1 [2][0]× 232)-th row of T4. Based

on Property 4, verify the correctness of the tuple (S0
1 [1][2], S0

1 [2][2], S0.5
1 [1][2],

S0.5
1 [2][2]). If it is valid, compute the corresponding S0.5[0][2] according to Prop-

erty 4 and store the corresponding values of (S0
0 [0][0, 2], S5

1 [0][1, 3], S0.5
1 [0][0, 1, 2, 3])

in a table denoted by T6. Otherwise, try another value of S0.5
1 [0][0]. If all the 232

values of S0.5
1 [0][0] are traversed, go back to Step 1.

Step 3: Similarly, exhaust all the 296 values of (S5
1 [0][0, 2], S0.5

1 [0][1]). For each of its
value, compute the corresponding (S0.5

1 [0][0, 2], S0
1 [1, 2][1, 3]). Retrieve (S0

0 [0][1, 3],
S0

1 [1, 2][3]) from the (S0
1 [1][1] + S0

1 [2][1]× 232)-th row of T5 and check the validity
of the tuple (S0

1 [1][3], S0
1 [2][3], S0.5

1 [1][3], S0.5
1 [2][3]) based on Property 4. If it is

valid, compute S0.5[0][3] and check whether the obtained value of S0.5
1 [0][0, 1, 2, 3]

at Step 3 also exists in T6. If it does, exit and a solution of the outer part of S0
0

and S5
1 is found to match the given inner part of S5

1 .

Complexity Evaluation. The time complexity at Step 1 is 264 since all the 264 values of
S5

1 [0][1, 3] need to be traversed. At Step 2, for each guessed value of S5
1 [0][1, 3], all the

232 values of S0.5
1 [0][0] will be traversed. After the 232 values of S0.5

1 [0][0] are traversed,
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one can expect one valid solution of S0.5
1 [0][·] due to the influence of Property 4. As a

result, there will be 264 elements in T6. As for Step 3, since all the 296 values of (S5
1 [0][0, 2],

S0.5
1 [0][1]) will be traversed and each guessed value is valid with probability of 2−32 based

on Property 4, one can expect 264 solutions of S0.5
1 [0][0, 1, 2, 3] in total. Thus, it is expected

that there will be one match between the values of S0.5
1 [0][0, 1, 2, 3] obtained at Step 3

and those stored in T6. As for the pre-computation, the time complexity and memory
complexity are 264 and 264+1 = 265, respectively. Consequently, taking the complexity to
find a valid inner part into account, the time complexity and memory complexity of the
preimage attack on 5-round Gimli-Hash are 296 and 264 × 2 = 265, respectively.

To demonstrate the correctness of our preimage attacks, we provide a practical preimage
attack on 2-round Gimli-Hash in Appendix A.

Experiments. To further confirm the correctness of the time complexity of the preimage
attack on 5-round Gimli-Hash, we have implemented our methods to find a valid inner
part and to match a given inner part by reducing the size of the state word from 32 bits
to 8 bits. In this case, the SP-box is accordingly adjusted, as specified below:

IX ← IX ≪ 6
IY ← IY ≪ 3
OZ ← IX ⊕ IZ � 1⊕ (IY ∧ IZ)� 2
OY ← IY ⊕ IX ⊕ (IX ∨ IZ)� 1
OX ← IZ ⊕ IY ⊕ (IX ∧ IY )� 3

According to the experiments, we may repeat the whole procedure for only a few times
in order to find a valid inner part or to match a given inner part. In each repetition, the
number of attempts to find a valid inner part is upper bounded by 216 and the number of
attempts to find a valid inner part is upper bounded by 224, thus confirming our estimation.

6 Preimage Attacks on Round-Reduced Gimli-XOF-128
When the above preimage attack on Gimli-Hash is extended to more rounds, we are faced
with an obstacle caused by the degrees of freedom, i.e. at least two message blocks are
needed and they should be traversed in less than 2128 time to match a given hash value.
As can be observed in our method, benefiting from the weak diffusion of the linear layer
of Gimli, we can efficiently utilize the divide-and-conquer technique to divide the space
of two message blocks into several smaller ones and then find solutions in each smaller
space via an exhaustive search. Finally, the solutions in each smaller space are combined
and further verified to match the given hash value. When it comes to more rounds, it
is difficult to divide the space of two message blocks into smaller ones. Thus, turning
the exhaustive search in a large space into the exhaustive search in several smaller spaces
cannot be applied anymore. In addition, to control two consecutive message blocks when
the number of rounds of the Gimli permutation is reduced to n, the difficulty is almost
equivalent to an attack on 2n rounds of the Gimli permutation, by allowing the attacker
to control a 128-bit value in the intermediate state.

To test how far our divide-and-conquer method can go for reduced Gimli, we consider
another application of the Gimli permutation to hashing, namely the "extendable one-way
function", which has been specified in the submitted Gimli document. Considering the
existing preimage attacks on SHAKE-128 [GLS16] and Ascon-XOF-64 [DEMS19], we
believe it meaningful to investigate the preimage resistance of Gimli-XOF-128. In addition,
since the size of one message block is 128 bits when neglecting the padding rule, the
attacker only needs to focus on how to efficiently exhaust one message block rather than
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two message blocks in less than 2128 time. In other words, the attack on n rounds of
Gimli-XOF-128 is equivalent to an attack on n rounds of the Gimli permutation.

Similar to the method to turn the 6-round semi-free-start collisions into collisions
in [LIM20], to efficiently mount the preimage attack on reduced Gimli-XOF-128, some
conditions will be added. Specifically, when the target is n rounds of Gimli, an equivalent
problem to find the preimage of Gimli-XOF-128 can be described as below:

If

(S0[1][i] ≪ 9) ∧ 0x1fffffff = 0 (0 ≤ i ≤ 3), (40)

how to find a solution of S0[0][·] to match a given value of Sn[0][·]?

It should be emphasized that the initial value of Gimli-XOF-128 satisfies Equation 40.
In addition, due to the padding rule, there are at most 2128−8 = 2120 possible values of
S0[0][·]. Therefore, to mount the preimage attack on n rounds of Gimli-XOF-128, it is
expected that 28 different values of the inner part of S0 are tried. For each of them, check
whether there is a solution of S0[0][·] to match the given hash value under the conditions
as specified in Equation 40.

Consequently, our attack is divided into two phases. The first phase called Fulfilling
Conditions is to collect 28 different values of the inner part which can satisfy Equation 40.
The second phase called Matching the Outer Part is to exhaust the 2120 possible values
of S0[0][·] in less than 2120 time under the conditions as specified in Equation 40. As will
be shown, the main idea to finish the two tasks is almost the same. Therefore, in our
description, we will start from Matching the Outer Part and then move to Fulfilling
Conditions.

6.1 The Preimage Attack on 9-Round Gimli-XOF-128
The two phases of the preimage attack on 9-round Gimli-XOF-128 will be described in this
section. First of all, some tables will be pre-computed to reduce the whole time complexity.
An illustration of our preimage attack on 9-round Gimli-XOF-128 is shown in Figure 9.
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Figure 9: Illustration of the preimage attack on 9-round Gimli-XOF-128

6.1.1 Matching the Outer Part

For the given value of S9[0][0, 1, 2, 3], compute the corresponding S8.5[0][·] by reversing
the AC and S_SW operations. Then, pre-compute four mapping tables as follows:
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Constructing T7+i (0 ≤ i ≤ 3). Exhaust all 264 possible values of S8.5[1, 2][i] and
compute S7[·][i]. Store the corresponding S7[·][i] in a table denoted by T7+i

Obviously, the time and memory complexity to construct the four tables are 264 and
4× 264 = 266, respectively.

Matching the Outer Part. After pre-computation, how to find a solution of the outer
part of S0 under the condition that S0 satisfies Equation 40 can be specified as follows.

Step 1: Exhaust all the 264 values of S0[0][0, 2]. Since S0 satisfies Equation 40, based on
Property 1, for each guess of S0[0][0, 2], (S5[0][1, 3], S5[1, 2][0, 2]) can be determined
and we move to Step 2. If all possible values of S0[0][0, 2] are traversed, move to
Step 4.

Step 2: Exhaust all the 232 values of S5[0][0]. For each guess of S5[0][0], (S7[1, 2][0],
S7[0][2]) become known. Retrieve S7[0][0] from T7 according to the value of
S7[1, 2][0]. It is expected to obtain 232 solutions of S7[0][0, 2] after exhausting
S5[0][0] for each guessed value of S0[0][0, 2]. Store all the solutions of (S5[0][0],
S7[0][0, 2]) in a table denoted by T11. After exhausting S5[0][0], move to Step 3.

Step 3: Similarly, exhaust all the 232 values of S5[0][2]. For each guess of S5[0][2],
(S7[1, 2][2], S7[0][0]) become known. Retrieve S7[0][2] from T9 according to the
value of S7[1, 2][2]. For each solution of (S5[0][2], S7[0][0, 2]), check whether
(S7[0][0], S7[0][2]) exists in T11. If it does, a solution of S5[0][0, 2] which can match
S8.5[0][0, 2] for the guessed value of S0[0][0, 2] is found. It is expected that there
will be one solution of S5[0][0, 2] for each guessed value of S0[0][0, 2] since one
64-bit value needs to be matched. Consequently, after exhausting S0[0][0, 2], it is
expected to collect 264 possible values of (S0[0][0, 2], S5[0][·]). Store these values
in a table denoted by T12.

Step 4: Exhaust all the 256 values of S0[0][1, 3]. For each such guess, we first further
exhaust S5[0][1] to collect 232 solutions of S7[0][1, 3] according to T8 which can
match S8.5[0][1] and store them in a table denoted by T13. Then, exhaust S5[0][3]
to collect another 232 solutions of S7[0][1, 3] according to T10 which can match
S8.5[0][3] and check whether the obtained S7[0][1, 3] is in T13. For each guessed
value of S0[0][1, 3], it should be noted that S5[0][0, 2] are determined. In addition,
after exhausting S5[0][1, 3], one can expect a match in S7[0][1, 3], which will
correspond to a solution of S5[0][1, 3]. For each solution of S5[0][·] obtained in
Step 4, check whether it also exists in T12. If it does, output the corresponding
value of S0[0][·]. Otherwise, repeat until all values of S0[0][1, 3] are traversed.

Complexity Evaluation. Taking the first three steps into account, the time and memory
complexity to construct T12 are 296 and 264, respectively. For Step 4, the time complexity
is 256+32 = 288. As the matching probability in S5[0][0, 1, 2, 3] is 2−128 and there are
264+56 = 2120 pairs, it is expected that the whole procedure will be carried out for 28 times.
Therefore, by taking the pre-computation into account, the time complexity and memory
complexity are 2104 and 266, respectively.

6.1.2 Fulfilling Conditions

As the initial state of Gimli fulfills Equation 40, we can start from S0 satisfying Equation 40
and compute the solutions of S0[0][·] which can also make the inner part of S8.5 satisfy
Equation 41.

(S8.5[1][i] ≪ 9) ∧ 0x1fffffff = 0 (0 ≤ i ≤ 3). (41)
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The procedure is almost the same with that to find the outer part. First, pre-compute 4
tables as follows:

Constructing T14+i (0 ≤ i ≤ 3). Exhaust all 264+3 possible values of S8.5[·][i] satisfying
S8.5[1][i]∧0x1fffffff = 0 and compute the corresponding S7[·][i]. Store the corresponding
S7[·][i] in a table denoted by T14+i.

Obviously, there will be 264+3 = 267 elements in Ti (14 ≤ i ≤ 17).

Fulfilling Conditions. The corresponding procedure can be simply summarized as follows:

Step 1: Exhaust 264 values of S0[0][0, 2]. For each guess, we first exhaust S5[0][0] and
then exhaust S5[0][2]. When exhausting S5[0][0], by retrieving T14, collect all the
solutions of S7[0][0, 2] and store (S7[0][0, 2], S5[0][0]) in a table denoted by T18,
which is expected to contain 235 values. When exhausting S5[0][2], by retrieving
T16, compute S7[0][0, 2] and check whether it is in T18. Once it is, record the
corresponding value of (S0[0][0, 2], S5[0][0, 1, 2, 3]) in a table denoted by T19. After
exhausting S0[0][0, 2], one can expect 264+6 = 270 elements stored in T19.

Step 2: Exhaust 264 values of S0[0][1, 3]. For each guess, similarly, we can exhaust S5[0][1, 3]
in a divide-and-conquer manner to collect the valid solutions of S5[0][1, 3] with
time complexity 235. For each guess of S0[0][1, 3], it is expected collect 26 solutions
of S5[0][·]. Check whether the collected S5[0][·] exists in T19. If it does, output
the corresponding solution of S0[0][0, 1, 2, 3]. After exhausting S0[0][1, 3], one can
expect 2140−128 = 212 solutions of S0[0][·].

Complexity Evaluation. The time complexity and memory complexity5 to construct Ti

(14 ≤ i ≤ 17) are both 267. Regarding the time complexity to find a solution of S0[0][·],
it can be evaluated as 296+3 = 299. For the memory complexity, it is dominated by
constructing T19 and therefore it is 270. In a word, the time and memory complexity to
mount the preimage attack on 9-round Gimli-XOF-128 are 2104 and 270, respectively.

Remark. The preimage attack on 8-round Gimli-XOF-128 almost follows the same
procedure. The difference only consists in how to compute S7[0][i]. In the 9-round
preimage attack, S7[0][i] is computed with lookup tables. In the 8-round preimage attack,
the cost to construct these lookup tables can be eliminated. This is because at the phase
to match the outer part, we can simply compute S7[0][i] according to (S7[1, 2][i], S8[0][i]),
which corresponds to Property 8.

Experiments. To further confirm the correctness of the time complexity of the preimage
attack on 9-round Gimli-XOF-128, we have implemented our method to match a given value
of S8.5[0][·] by exhausting S0[0][·]. Similar to our experiments on the 5-round preimage
attack, the size of the state word is reduced from 32 bits to 8 bits, as specified below:

IX ← IX ≪ 6
IY ← IY ≪ 3
OZ ← IX ⊕ IZ � 1⊕ (IY ∧ IZ)� 2
OY ← IY ⊕ IX ⊕ (IX ∨ IZ)� 1
OX ← IZ ⊕ IY ⊕ (IX ∧ IY )� 3

5The elements in T14, T15, T16 and T17 are indeed the same. We keep to use them for better describing
our attacks. Therefore, the memory complexity is 267 rather than 269.
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In the experiment, S0[1][·] is set as all 0 and S0[2][·] is assigned to a random value in
each iteration. In each iteration, the goal is to exhaust all 232 values of S0[0][·] and check
whether S8.5[0][·] can be matched. According to the experiments, the 232 values can be
traversed with time complexity 216+8 = 224. After only a few times of iterations, we can
always match the given value of S8.5[0][·], thus confirming our estimation.

As the basic idea is to exhaust S0[0][·] in both the phases to fulfill the outer part and
to match the outer part, our experiments obviously demonstrate the correctness of the
time complexity of our divide-and-conquer method.

7 Conclusion
Due to the weak diffusion of the Gimli permutation, a novel hybrid zero-internal-differential
distinguisher is constructed for the 18-round Gimli permutation, which requires as few
as 2 queries. Moreover, by considering the distinguisher for the full Gimli permutation
from a different perspective, based on a novel property of the SP-box, we could reduce
the time complexity of the full-round distinguisher in [GLNP+20] to 252 from 264. To
further exploit the weak diffusion, we propose a divide-and-conquer method to accelerate
the preimage finding procedure for both Gimli-Hash and Gimli-XOF-128. As a result, the
theoretical preimage attack on Gimli-Hash can reach up to 5 rounds, while it can reach up
to 9 rounds for Gimli-XOF-128. To the best of our knowledge, our distinguishing attacks
and preimage attacks are the best thus far.
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Keccak reference, 2011. http://keccak.noekeon.org.

https://131002.net/data/papers/AM09.pdf
https://131002.net/data/papers/AM09.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://keccak.noekeon.org


Fukang Liu, Takanori Isobe, Willi Meier 213

[BKL+17] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-
Xavier Standaert, Yosuke Todo, and Benoît Viguier. Gimli : A cross-platform
permutation. In Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, pages 299–320, 2017.

[BS90] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosys-
tems. In Advances in Cryptology - CRYPTO ’90, 10th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1990,
Proceedings, pages 2–21, 1990.

[CWZ+19] Jiahao Cai, Zihao Wei, Yingjie Zhang, Siwei Sun, and Lei Hu. Zero-sum
distinguishers for round-reduced GIMLI permutation. In Proceedings of the
5th International Conference on Information Systems Security and Privacy,
ICISSP 2019, Prague, Czech Republic, February 23-25, 2019, pages 38–43,
2019.

[DDS13] Itai Dinur, Orr Dunkelman, and Adi Shamir. Collision attacks on up to 5
rounds of SHA-3 using generalized internal differentials. In Fast Software
Encryption - 20th International Workshop, FSE 2013, Singapore, March 11-13,
2013. Revised Selected Papers, pages 219–240, 2013.

[DEMS18] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2, 2018. https://ascon.iaik.tugraz.at/files/asconv12-nist.
pdf.

[DEMS19] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläf-
fer. Preliminary analysis of Ascon-Xof and Ascon-Hash (version 0.1),
2019. https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_
of_Ascon-Xof_and_Ascon-Hash_v01.pdf.

[Flo67] Robert W. Floyd. Nondeterministic algorithms. J. ACM, 14(4):636–644, 1967.

[GLNP+20] Antonio Flórez Gutiérrez, Gaëtan Leurent, María Naya-Plasencia, Léo Perrin,
André Schrottenloher, and Ferdinand Sibleyras. New results on gimli: full-
permutation distinguishers and improved collisions. Cryptology ePrint Archive,
Report 2020/744, 2020. https://eprint.iacr.org/2020/744.

[GLS16] Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applications
to cryptanalysis of round-reduced keccak. In Advances in Cryptology - ASI-
ACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, pages 249–274, 2016.

[GRR17] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. A new structural-
differential property of 5-round AES. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II,
volume 10211 of Lecture Notes in Computer Science, pages 289–317, 2017.

[Ham17] Mike Hamburg. Cryptanalysis of 22 1/2 rounds of gimli. Cryptology ePrint
Archive, Report 2017/743, 2017. https://eprint.iacr.org/2017/743.

https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf
https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_Ascon-Xof_and_Ascon-Hash_v01.pdf
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_Ascon-Xof_and_Ascon-Hash_v01.pdf
https://eprint.iacr.org/2020/744
https://eprint.iacr.org/2017/743


214 Exploiting Weak Diffusion of Gimli: Improved Distinguishers and Preimage Attacks

[LIM20] Fukang Liu, Takanori Isobe, and Willi Meier. Automatic verification of
differential characteristics: Application to reduced gimli. In Daniele Micciancio
and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO 2020
- 40th Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume 12172
of Lecture Notes in Computer Science, pages 219–248. Springer, 2020.

[LS19] Ting Li and Yao Sun. Preimage attacks on round-reduced keccak-224/256 via
an allocating approach. In Yuval Ishai and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part III, volume 11478 of Lecture
Notes in Computer Science, pages 556–584. Springer, 2019.

[lwc] https://csrc.nist.gov/projects/lightweight-cryptography/
round-2-candidates.

[MPS13] Pawel Morawiecki, Josef Pieprzyk, and Marian Srebrny. Rotational cryptanal-
ysis of round-reduced keccak. In Fast Software Encryption - 20th International
Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers,
pages 241–262, 2013.

[Pey10] Thomas Peyrin. Improved differential attacks for ECHO and grøstl. In
Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 370–392,
2010.

[ZDW19] Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. Collision attacks on round-
reduced Gimli-Hash/Ascon-Xof/Ascon-Hash. Cryptology ePrint Archive,
Report 2019/1115, 2019. https://eprint.iacr.org/2019/1115.

A The Preimage Attack on 2-Round Gimli-Hash
In this section, how to mount a preimage attack on 2-round Gimli-Hash with a practical
time complexity is explained. It should be emphasized that like the generic preimage
attack, our preimage attack is over 5 message blocks.

A.1 Finding a Valid Inner Part
For better understanding of our attack, it is better to refer to Figure 10. The corresponding
attack procedure is described as follows.
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Figure 10: Generate a valid inner part for the preimage attack on 2-round Gimli-Hash

Step 1: Choose a random value for S0[1, 2][0] and compute (S1[0][1], S1[1, 2][0]). Check
whether (S1[1, 2][0], S2[0][0]) is valid based on Property 2. If it is, store S0[1, 2][0]
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in a table denoted by T20. Otherwise, choose another value for S0[1, 2][0] and
repeat this step until about 232 random values are tried.

Step 2: Similarly, choose a random value for S0[1, 2][1] and compute (S1[0][0], S1[1, 2][1]).
Check whether (S1[1, 2][1], S2[0][1]) is valid based on Property 2. If it is, store
S0[1, 2][1] in a table denoted by T21. Otherwise, choose another value for S0[1, 2][1]
and repeat this step until 232 random values are tried.

Step 3: Consider all possible combinations between T20 and T21. For each combination,
(S0[1, 2][0], S0[1, 2][1]) are fully known. Therefore, it is possible to compute
S2[0][0, 1] and check whether it is consistent with the given value. Once a solution
of (S0[1, 2][0], S0[1, 2][1]) is found to match S2[0][0, 1], output the solution and
move to Step 4.

Step 4: Similarly, we can first try 232 possible values for S0[1, 2][2] and store the valid ones
which can possibly match S2[0][2] in a table denoted by T22. Then, try 232 possible
values for S0[1, 2][3] and store the valid ones which can possibly match S2[0][3] in
a table denoted by T23. Finally, exhaust all possible combinations between T22
and T23 and compute the corresponding S2[0][2, 3]. Check whether the computed
one is consistent with the given value. If it is, output the solution of (S0[1, 2][2],
S0[1, 2][3]) and exit.

Complexity Evaluation. Obviously, the time complexity to compute the table Ti (i ∈
{20, 21, 22, 23}) is 232 and the memory complexity is 232−15.5 ≈ 217 due to the effect of
Property 2. Since 264 random values of (S0[1, 2][0], S0[1, 2][1]) are used to match the 64-bit
S2[0][0, 1], it is expected that there will be one combination between T20 and T21 to match
S2[0][0, 1]. Similarly, it is expected that there will be one combination between T22 and
T23 to match S2[0][2, 3]. Based on Property 2, there will be 2(32−15.5)×2 = 233 possible
combinations between T20 and T21. Similarly, there are 233 combinations between T22 and
T23. Consequently, the time complexity and memory complexity to find a valid inner part
are 233 and 217+1 = 218, respectively.

A.2 Matching the Inner Part
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Figure 11: Illustration of the preimage attack on 2-round Gimli-Hash

As illustrated in Figure 11, the corresponding procedure to match a given inner part
by utilizing two message blocks can be described as follows.

Step 1: Guess the value of S0
0 [0][0]. Based on Property 1, S0

1 [1, 2][0] can be uniquely
determined. According to Property 7, we can find all the solutions of (S0

1 [0][0],
S1

1 [0][0]) with the knowledge of (S0
1 [1, 2][0], S2

1 [1, 2][0]). Once the solution is
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obtained, compute the corresponding S1
1 [0][1] by using S0

1 [·][0] and store the values
of (S0

0 [0][0], S0
1 [0][0], S1

1 [0][0, 1]) in a table denoted by T24. Repeat this step until
all 232 values of S0

0 [0][0] are traversed.

Step 2: Similarly, guess the value of S0
0 [0][1] and compute the corresponding S0

1 [1, 2][1].
Based on Property 7, compute all the solutions of (S0

1 [0][1], S1
1 [0][1]) which can

match S2
1 [1, 2][1]. Then, compute the corresponding S1

1 [0][0] by using S0
1 [·][1].

Check whether the computed S1
1 [0][0, 1] exists in T24. If it does, record the

corresponding tuple (S0
0 [0][0, 1], S0

1 [0][0, 1]) and move to Step 3. Otherwise, repeat
guessing S0

0 [0][1] until all 232 values of S0
0 [0][1] are traversed.

Step 3: Similarly, exhaust all 232 values of S0
0 [0][2] and store the corresponding solutions

of (S0
0 [0][2], S0

1 [0][2], S1
1 [0][2, 3]) in a table denoted by T25. Finally, exhaust all 232

values of S0
0 [0][3] and compute the corresponding solutions of (S0

1 [0][3], S1
1 [0][2, 3]).

If the solution of S1
1 [0][2, 3] also exists in T25, record the corresponding (S0

0 [0][2, 3],
S0

1 [0][2, 3]) and exit.

Complexity Evaluation. At Step 1, all 232 possible values of S0
0 [0][0] need to be traversed.

For each value, Property 7 is utilized to compute (S0
1 [0][0], S0

1 [0][0]). Therefore, the time
complexity at Step 1 is 232+10.4 = 242.4. Moreover, it is expected that there will be
232 elements in T24 since each guess of S0

0 [0][0] can correspond to 1 solution of (S0
1 [0][0],

S1
1 [0][0]) on average based on Property 7. Similarly, the time complexity at Step 2 is

also 242.4. Since there are 232 solutions of S1
1 [0][0, 1] in T24 and there will be another 232

solutions of S1
1 [0][0, 1] at Step 2, it is expected that there will be a match in S1

1 [0][0, 1] after
traversing all 232 values of S0

0 [0][1]. Similarly, the time complexity and memory complexity
at Step 3 are 242.4 and 232, respectively. In a word, taking into account the complexity
to find a valid inner part, the time complexity and memory complexity of the preimage
attack on 2-round Gimli-Hash are 242.4 and 232, respectively.

To verify the correctness of our attack, we provide a solution of (M0,M1,M2,M3,M4)
which can lead to an all-zero state in Table 4. Note that with such a message, we can
construct arbitrary second preimage and colliding message pairs for 2-round Gimli-Hash
with time complexity 1. Specifically, given a message Mx, (Mx,M0||M1||M2||M3||M4||Mx)
is a colliding message pair. Moreover, given a message Mx and its hash value Hx,
M0||M1||M2||M3||M4||Mx is a second preimage of Hx.

Table 4: A message leading to an all-zero state for 2-round Gimli-Hash

M0 1c5c59da 41b61bb7 0 0
M1 9cf49a4e 9a80d115 0 0
M2 a31c3903 41e6e73c 0 0
M3 456723c6 dc515cff 0 0
M4 98694873 944a58ec 0 0

Full-state Value
0 0 0 0
0 0 0 0
0 0 0 0
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