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Abstract. When analyzing a block cipher, the first step is to search for some valid
distinguishers, for example, the differential trails in the differential cryptanalysis and
the linear trails in the linear cryptanalysis. A distinguisher is advantageous if it can
be utilized to attack more rounds and the amount of the involved key bits during the
key-recovery process is small, as this leads to a long attack with a low complexity.
In this article, we propose a two-step strategy to search for such advantageous
distinguishers. This strategy is inspired by the intuition that if a differential is
advantageous only when some properties are satisfied, then we can predefine some
constraints describing these properties and search for the differentials in the small
set.
As applications, our strategy is used to analyze GIFT-128, which was proposed
in CHES 2017. Based on some 20-round differentials, we give the first 27-round
differential attack on GIFT-128, which covers one more round than the best previous
result. Also, based on two 17-round linear trails, we give the first linear hull attack
on GIFT-128, which covers 22 rounds. In addition, we also give some results on two
GIFT-128 based AEADs GIFT-COFB and SUNDAE-GIFT.
Keywords: GIFT · Differential Trail · Linear Trail · Distinguisher Search Strategy
· SUNDAE-GIFT · GIFT-COFB

1 Introduction
Differential cryptanalysis was proposed by Biham and Shamir in [BS91] and linear crypt-
analysis was proposed by Matsui in [Mat94]. These are the most two famous methods
for analyzing block ciphers. For both these two methods, the first step is to search out
some valid distinguishers: the differential trails for differential cryptanalysis and the linear
trails for linear cryptanalysis. When searching out a distinguisher: Input→ Output, the
cryptanalysts extend some round functions backward from the Input and forward from
the Output. After that, a key recovery attack is executed by guessing the involved key
bits in the extended rounds. Usually, more extended rounds and less involved key bits are
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expected, as it leads to a more efficient attack with a longer length and a lower complexity,
respectively. Both these two expectations are affected by the distinguisher’s Input and
Output.

To search for differential and linear trails efficiently, several automatic methods have
been introduced and they have facilitated many fruitful works [KLT15, AK18, SS14,
FWG+16, AST+17, KLT15, AK18]. Among them, the MILP based method and the
SMT/SAT based method are most widely used. These methods perform well when the
searching space is not too large and the model is very easy to implement. However,
when searching for long trails, they may be inefficient as the search space is too large.
What’s more, the underlying solvers of these methods, such as Gurobi [Gur] in MILP
and STP [STP] in SMT/SAT, are used as black boxes. We can not iteratively make
adjustments according to their outputs. In addition to these new introduced methods,
Matsui’s branch-and-bound algorithm may be the most well known method to search for
differential and linear trails. It also has two sides. On one side, this algorithm employs a
depth-first with pruning search strategy and does guarantee to return all best trails for
any initial value. On the other side, the cryptanalysts need to know what a good initial
value might be before the search process.

In another direction, GIFT [BPP+17] lightweight block cipher is designed by Banik et
al. [BPP+17], which includes two versions: GIFT-64 and GIFT-128. Both of them have a
128-bit key size and inherit the design framework from PRESENT [BKL+07], but correcting
the weakness in linear cryptanalysis. Specially, by a dedicated selection of the Sbox and
the linear layer, it avoids the single active bit transitions for two consecutive rounds in
both differential and linear trails, which stops the very effective linear hull attacks. GIFT
gains more efficiency in various domains, i.e., much smaller hardware implementation,
faster encryptions and more secure against the known attacks. Moreover, the hardware
cost of the GIFT Sbox is smaller than that of PRESENT Sbox and its key schedule is also
much simpler, which makes it more lightweight. In addition, in the round based hardware
implementation, the area of GIFT is even smaller than the recently proposed lightweight
block ciphers SKINNY [BJK+16] and SIMON [BSS+15]. Due to the nice performance and
high security level, many lightweight designs choose GIFT as their basic primitives, such as
SUNDAE-GIFT [BBP+], TGIF [IKM+], GIFT-COFB [BCI+] and Elastic-Tweak [CDJ+19].
Notably, GIFT-COFB [BCI+] and SUNDAE-GIFT [BBP+] have been recently selected as
the second round candidates of the ongoing NIST Lightweight Cryptography (LWC)
Standardization Project [NIS].

Hence, it is quite important to understand the security level of GIFT and many evaluation
results of GIFT have been published. In the GIFT [BPP+17] document, the designers claimed
a 9-round differential with probability 2−44.415 and a 9-round linear with probability
2−49.997. At CT-RSA 2019, Zhu et al. [ZDY18] gave the first third-party cryptanalysis on
GIFT, including a 19-round and a 22-round key-recovery attack on GIFT-64 and GIFT-128,
respectively. Sasaki et al. [Sas18] improved the meet-in-the-middle (MitM) attack on
15-round GIFT-64. Zhou et al. [ZZDX19] gave the minimum number of differential/linear
active Sboxes for up to 16/15 rounds and found the best differential/linear characteristics
for up to 15/13 rounds of GIFT-64. Li et al. [LWZZ19] reduced the searching time to 4
seconds to obtain a 9-round GIFT-64 differential trail with probability 2−42. For GIFT-128,
they found a 21-round differential trail with probability 2−126.415. Due to too many active
bits on the output of the 21-round differential trail, they utilized the last 20 rounds of the
21-round differential trail as the distinguisher to attack 26-round GIFT-128. Later, the
26-round attack is improved by Ji et al. [JZZD20]. In [JZD19], Ji et al. improved Matsui’s
algorithm by using three new methods. They claimed the highest probability of the
differential trails of GIFT-128 up to 19-round and the highest probability of the best linear
trails up to 10-round. They presented a 19-round differential trail and a 10-round linear
trail, both with the highest probability. What’s more, they also claimed that a 20-round
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GIFT-128 differential trail with probability 2−121.415 and a 21-round one with probability
2−126.415 were found. In [LLL+19], the authors found another 21-round differential trail on
GIFT-128 with probability 2−126.415. All the above results are under the single-key setting.
In related-key setting, Liu and Sasaki [LS19] gave a 23-round and a 21-round boomerang
attack on GIFT-64 and GIFT-128, respectively. Chen et al. [CWZ] gave a 23-round related-
key rectangle attack on GIFT-64, and Zhao et al. [ZDM+19] improved it to a 24-round
attack. Ji et al. [JZZD20] improved the related-key attack on GIFT-128 to 23 rounds.
In the GIFT document, the designers claimed no security under the related-key setting.
In [LWZZ19], the authors study the influences between the solution and construction of
MILP models, and give good results on PRESENT, GIFT-64 and GIFT-128. However, the
exact relationship is still ambiguous. To study the dependence of key bits, there are two
articles [HV18,Sas18] published. In [HV18], the algorithm can be used to estimate the key
dependent correlation distribution of a linear approximation to facilitate advanced linear
attacks and also search for a large number of trails by converting the diffferential/linear
trails into paths in a multistage graph. However, no results on GIFT-128 are given in this
article. In [Sas18], the algorithm studying the dependence between key bits is used to
facilitate advanced meet-in-the-middle attack on GIFT-64.

Our Contributions
We propose a two-step strategy for searching advantageous distinguishers which can lead
to long attacks with a small number of involved key bits. The overall concept is inspired
by that, when mounting an attack, the two expectations: 1) more rounds are extended
by the distinguisher and 2) less key bits are involved during the key-recovery process, are
both determined by the distinguisher’s Input and Output. In the first step, we specify the
Input(Output) values in a set called the InitialSet which need to satisfy the following
two conditions: 1) a distinguisher with an input (output) from the InitialSet can be
extended by many rounds at the top (the bottom), to lead a long attack, 2) the amount of
involved key bits in the extended rounds is small, to lead a low attack complexity. In the
second step, we only search for advantageous distinguishers with input and output values
from the InitialSet. This provides two benefits: the searching space is reduced and an
efficient attack can be mounted once a distinguisher is found out. As a first application,
we use it to search differential and linear trails of GIFT-128 and give cryptanalysis results
on GIFT-128 and two GIFT-128-based proposals: SUNDAE-GIFT and GIFT-COFB. In more
detail, we achieve the following:

a. We utilize the MILP technique and revisit Matsui’s branch-and-bound algorithm to
implement a two-step strategy of searching for advantageous differential and linear
distinguishers. In the first step, we construct some MILP models describing the
difference (linear mask) propagation in a block cipher’s round function and marking
the involved key bits. This step can output the InitialSet including all possible
values of the Input(Output) that most rounds can be added at the top (the bottom)
of a distinguisher while the involved key bits are the least. In the second step,
we revisit Matsui’s algorithm to search out some advantageous distinguishers that
can lead to efficient attacks. The initial value of this step is only chosen from the
InitialSet.

These two steps make full use of the good sides of both the MILP method and
Matsui’s algorithm, while avoiding their bad sides. Usually, the searching space
of the first step is small, the MILP method can be very efficient to searching the
solutions. In the second step, the problem that Matsui’s algorithm needs some
good initial values is solved by only searching in a smaller space limited by the
InitialSet.
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b. We apply our strategy to analyze GIFT-128 and search for both differential and linear
trails. For differential cryptanalysis, we find a 20-round differential that can be used
to attack 27-round GIFT-128. This is the first 27-round attack on GIFT-128, which
covers one more round than the other results. Although some 21-round differential
are found in some other works, they are all weaker than our 20-round differential trail.
And this also proves the validity of our search strategy. For linear cryptanalysis, we
find a 17-round linear hull and give the first linear key-recovery attack on GIFT-128,
which covers 22 rounds.

c. We mount linear cryptanalysis on the most two notable GIFT-based proposals:
GIFT-COFB and SUNDAE-GIFT. For GIFT-COFB, we analyze the security of its 15-
round GIFT-128 version; for SUNDAE-GIFT, we analyze the security of its 16-round
GIFT-128 version.

Remarks. In [ZSCH18], the authors show how to tweak the objective functions of the
MILP models for finding better trails, with some constraints derived from the bounding
condition of Matsui’s algorithm. The key different point of this work and ours is that the
MILP technique is utilized to search for trails, while for our strategy, the MILP technique
is used to search for the InitialSet and the Matsui’s algorithm is to search for specific
trails.

Table 1: Summary of differential and linear trails of GIFT-128, trail means one single differen-
tial(linear) trail, trails means differential(linear hull), the number in the Attack column means
the length of the attack based on the given distinguisher.

Type Rounds Probability Attack Ref
trail 9 2−44.415 – [BPP+17]
trail 18 2−109 22 [ZDY18]
trails 20 2−120.245 26 [JZZD20]
trail 20 2−121.415 26 [LWZZ19]

Differential trail 20 2−121.415 – [JZD19]
trails 20 2−121.813 27 Section 5
trail 21 2−126.415 – [JZD19,LLL+19,LWZZ19]
trails 9 2−49.997 – [BPP+17]

Linear trail 10 2−52 – [JZD19]
trails 15 2−109 22 Section 6

Table 2: Cryptanalysis results of GIFT-128. DC stands for differential cryptanalysis; LC stands
for linear cryptanalysis; SK stands for single-key setting; RK stands for related-key setting;
Boomerang stands for boomerang attack. Note that there is no security claim of GIFT under the
related-key setting.

Rounds Approach Setting Time Data Memory Ref
22 DC SK 2120 2120 286 [ZDY18]
26 DC SK 2124.415 2109 2124.415 [LWZZ19]
26 DC SK 2123.245 2123.245 2109 [JZZD20]
27 DC SK 2124.83 2123.53 280 Section 5
22 LC SK 2117 2117 278 Section 6
21 Boomerang RK 2126.6 2126.6 2126.6 [LS19]
23 Rectangle RK 2126.89 2121.31 2121.63 [JZZD20]
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Table 3: Cryptanalysis results of SUNDAE-GIFT and GIFT-COFB.
Scheme Rounds Approach Setting Time Data Memory Ref

GIFT-COFB 15 LC SK 290.7 262 296-bit Section 7
SUNDAE-GIFT 16 LC SK 291.2 260 296-bit Section 8

Table 4: The notations of GIFT
P : the plaintext,
C : the ciphertext,
Xi : the input state of the i-th round fuction,
XS
i : the state after the SubCells operation,

XP
i : the state after the PermBits operation,

XK
i : the state after the AddRoundKey operation,

X[i] : the i-the bit of X, X[0] is the rightmost bit,
RKi : the i-th round key,
ki : the i-th 16-bit word of the master key,
kji : the j-th bit of ki,
f−1 : the inverse operation of f ,
∆X : the difference in the state X,

X[j · · · k] : jth bit, · · · , kth bit of state X, note that X[0] is the LSB of X.
X[j ∼ k] : the successive bit from the jth bit to the kth bit of state X,
≫ i : an i-bit right rotation within a 16-bit word.
RK ′i : equal to PermBits−1(RKi).
X ′Ki : equal to PermBits−1(Xi+1)
X ′Pi : equal to Xi+1

2 Preliminaries
2.1 GIFT-128
GIFT [BPP+17] lightweight block cipher was proposed by Banik et al. at CHES 2017.
Similar to PRESENT, GIFT adopts an SPN structure with an Sbox layer and a bitwise
permutation layer. The authors define two versions of GIFT, namely, GIFT-64 and GIFT-128
according to the block size. Both versions have a 128-bit key. The round numbers of them
are 28 and 40, respectively. Since our paper is mainly about GIFT-128, so we omit the
description on GIFT-64. Table 4 gives some notations used throughout this paper. In each
round function, three operations are performed in sequence, i.e., SubCells, PermBits and
AddRoundKey:

• SubCells : Apply 32 4-bit Sboxes in parallel to every nibble of the internal state of
GIFT-128. The Sbox is given in Table 5.

Table 5: The Sbox of GIFT-128
x 0 1 2 3 4 5 6 7 8 9 a b c d e f

GS(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

• PermBits : Linear bit permutations bP (i) ← bi, ∀i ∈ {0, 1, ...127}, where the P (i)s
are

P128(i) =4b i16c+ 32
(

3b i mod 16
4 c+ (i mod 4)mod 4

)
+ (i mod 4).

• AddRoundKey : The round keys RK is 64-bit, which is generated by the key state.
Let RK = U‖V = u31...u0||v31...v0.
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The round key is Xored to the state b127...b0 in the following way:

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi, ∀i ∈ {0, ..., 31}.

A single bit “1” and a 6-bit constant C are Xored into the internal state b127...b0 at
positions 127, 23, 19, 15, 11, 7 and 3 respectively.

The Key schedule. The 128-bit master key is initialized as K = k7‖k6‖...‖k0, where
|ki| = 16. For GIFT-128, the round key RK is RK = U‖V = k5‖k4‖k1‖k0. The key state
is updated as follows,

k7‖k6‖...‖k0 ← (k1 ≫ 2)‖(k0 ≫ 12)‖...‖k3‖k2.

For more details of GIFT-128, we refer the readers to [BPP+17].

2.2 GIFT-COFB and SUNDAE-GIFT

GIFT-COFB [BCI+] and SUNDAE-GIFT [BBP+] are among of the 2nd round AE (authen-
ticated encryption) candidates of the ongoing NIST lightweight standardisation process.
GIFT-COFB uses a mode of operation COFB proposed by Chakraborti et al. at CHES
2017 [CIMN17]. SUNDAE-GIFT adopts the mode of operation SUNDAE introduced by Banik
et al. [BBLT18] at ToSC 2018. The underlying block cipher is also GIFT-128 [BPP+17].
We show the specifications of GIFT-COFB and SUNDAE-GIFT in Appendix A and B .

3 The Strategy for Searching Differential Trails
Our strategy can be used to search for both differential trails and linear trails. To facilitate
the narrative, we first introduce the process of searching for differential trails. After that,
we give the process of searching for linear trails and list the different points between these
two processes.

When mounting a differential key-recovery attack after searching out a valid differential
∆in→ ∆out, the cryptanalysts usually have two expectations:

1. The amount of the involved key bits during the key-recovery process is less as it will
lead to a lower attack complexity,

2. More rounds can be extended at the top and the bottom of the differential without
activating all the bits of the plaintext and ciphertext, as it will lead to a longer
attack.

A differential is advantageous if both two expectations are achieved and the value of
∆in and ∆out plays a decisive role. Motivated by this, we propose a two-step strategy
that only concentrates on searching for the advantageous differentials. The first step is
to find out the values of the ∆in and ∆out that can satisfy the above two expectations.
All possible values of ∆in and ∆out are stored in a set called the InitialSet. After
that, the second step is to search for differentials whose input and output difference is
only from the InitialSet. This provides two important benefits: 1). the searching space
is greatly reduced as the potential distinguisher’s input and output difference is limited
by the InitialSet, 2) the attack can cover more rounds with a lower complexity once a
advantageous differential is found.

The first step utilizes the MILP techniques and the second step is a revisit of Matsui’s
branch-and-bound search algorithm. We give a detailed introduction of these two steps in
the following.
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3.1 The MILP Model Searching for the InitialSet

After searching out a valid differential, we try to extend some round functions at its top
and bottom and check the state to avoid all bits are activated. In this step, what matters
is usually the state’s activeness but not the potential specific difference value. For example,
if an r-round GIFT-128 differential with output difference ∆out is found and ∆out has
one active bit, the input of the first added round has only one active Sbox. Suppose the
Sbox’s input difference is 0001, according to the difference distribution table (DDT), it can
propagate to 8 output difference values: {0101, 0110, 1000, 1001, 1010, 1011, 1100, 1111}.
We would mark all 4 output bits as uncertain bits as they have different activeness in
different output differences.

Constraints describing the activeness of the Sbox’s input and output difference. We
use 0 to denote an inactive bit and 1 to denote an active bit or an uncertain bit. The
activeness of the input and output difference can be denoted as some 8-bit points. And
the propagation rule is as follows: the 4 output bits are 1 as long as the input has at least
one active bit. We use 8 boolean variables (x[3], x[2], x[1], x[0], y[3], y[2], y[1], y[0]) denoting
the Sbox’s input and output difference. The rule can be constrained by the following
inequalities, and there are 20 inequalities for each Sbox in total.

y[i]− x[3] ≥ 0,
y[i]− x[2] ≥ 0,
y[i]− x[1] ≥ 0, 0 ≤ i ≤ 3
y[i]− x[0] ≥ 0,
x[3] + x[2] + x[1] + x[0]− y[i] ≥ 0.

Constraints describing the forward round function. We use 128 boolean variables,
xr[i], 0 ≤ i ≤ 127, describing the activeness of input state of the r-th extended round.
Since the PermBits operation is a linear bitwise permutation, no extra variables are needed
to describe it. For example, for a Sbox in the r-th round, the input xr[i3, i2, i1, i0] is
related to xr+1[PermBits[i3, i2, i1, i0]]. We construct inequalities describing all relations
between the state in two consecutive rounds.

Other constraints. When extended at the bottom of a differential, the differential’s
output difference, denoted by x0, should have at least one active bit. And the output
difference of the last extended round, denoted by xr, should have at least one inactive bit.
These two constraints can be described by the following two inequalities:

127∑
i=0

x0[i] ≥ 1,
127∑
i=0

xr ≤ 127.

Till now, we construct the MILP model describing the state’s activeness in the added r
rounds at the bottom of the distinguisher. We start to solve the MILP model with r = 1,
and if the r-round model is feasible, we construct the r+ 1-round model and see whether it
is feasible... Then the feasible model with the largest r tell us that we can extend at most
r rounds at the bottom of a differential. Since we just want to see the model is infeasible
or not, the objective function can be optional.

The MILP model describing the rounds extended at the top is almost the same as
above. We don’t repeat the detailed description. We just point out the only difference
when extending backward at the top of the distinguisher: the number of active bits in the
last added round should be should be less than 128, to avoid a full-codebook attack.
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Adding the involved key bits. We already know how many rounds can be extended both
at the top and the bottom of the differential and the extended round number is denoted
by R. Next we try to find out which input and output difference values can be extended
by R rounds, meanwhile, the amount of involved key bits in the R rounds is small. These
constraints are very easy to construct.

For each extended round, we add 64 boolean variables k[i], 0 ≤ i ≤ 63 denoting the
64-bit round key RK for GIFT-128. k[i] = 0 represents RK[i] is not involved and k[i] = 1
otherwise. For example, in the encryption direction, RK[i] will be Xored into the jth
Sbox. Suppose the input-output difference bits is (x[3], x[2], x[1], x[0], y[3], y[2], y[1], y[0]),
then if the jth Sbox is active, we have to guess RK[i]. Hence, we have k[i]− x[l] ≥ 0 for
0 ≤ l ≤ 3.

In the decryption direction, the round keys are Xored into the state after PermBits.
However, in the key-recovery process, the round keys are transformed as RK ′ (only key
bit positions are change from RK) and Xored into the state after Sbox layer. Hence,
the constraints on RK ′ are similar to those in encryption phase. Note that there are
dependencies between the round keys, two round key bits share a same variable if they are
derived from the same master key bit.

The objective function Since this new MILP model is to find output difference values
that lead to a small amount of involved key bits. The objective function is as follows:

Minimize

rR∑
j=r1

63∑
i=0

kj [i].

Using this model, we will know the least amount of involved key bits and get all
corresponding input and output difference values. We store all these difference values in
the InitialSet.

3.2 A Revisit of Matsui’s Algorithm Searching for Advantageous Dif-
ferentials

In this step, we try to find out the longest differentials with a high probability, whose input
and output difference from the InitialSet. The search process as shown in Algorithm 1 is
a revisit of Matsui’s branch-and-bound algorithm which adopts a depth-first with pruning
strategy. This method guarantees to return all best trails for any initial value. As we
already get the advantageous initial values in the first step, which are stored in the
InitialSet, we are confident to search out some advantageous differentials.

We start the second step with the optimal elements of the InitialSet, i.e., the greatest
number of rounds can be extended and the involved key bits are the least, and set them
as the input and output value of the potential differential trails. However, when given
an input and output value, we can not determine the existence of valid distinguishers in
advance before the searching process of the second step. Our strategy in this step is that,
we start searching process with the optimal choices from the InitialSet, if we can not
get advantageous distinguishers, we go on searching with the sub-optimal ones until we
find out some valid distinguishers. This strategy ensures that the distinguishers searched
out can lead to the best key-recovery attacks.

For GIFT-128, every round function has 32 Sboxes, the searching space will be very
large when no constraints about the number of active S-boxes are set, as the algorithm
needs to traverse all possible differentials. Due to this, we set up an upper bound of active
S-boxes in each round function to be 4. And also, we set a lower bound of the probability
of the differential characteristics that will be recorded to be 2−128. When the searching
process covers r rounds, it outputs the qualified results. Note that r is decided somewhat
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Algorithm 1: The Search Algorithm
Procedure 1: Initialization
1. Initialize t as the upper bound of the number of active Sboxes in each round, r as
the number of searched rounds and prob as the lower bound of probability of qualified
differential trails.
2. Choose the input difference, ∆X0, from the InitialSet, set the initial probability
as p0 = 1.
Procedure 2: Recursive Search - search round i, i ≥ 1
4. For each (i− 1)-round differential trail, we get the output difference ∆Xi−1 and the
corresponding probability pi−1.
For each Sbox in round i, try all of its possible output differences.

Check the overall propagation probability p and the number of active SBoxes te.
Continue to the next Sbox only when p ≥ prob and te ≤ t.

5. Get qualified ∆Xi and pi = pi−1 · pe.
pe is the propagation probability from ∆Xi−1 to ∆Xi.

6. If i < r, go to search round i+ 1.
7. If i = r and pi ≥ prob, go to Procedure 3.
Procedure 3: Record Qualified Results
8. If ∆Xr is also in InitialSet, record it.
The record format is (∆X0, p0), (∆X1, p1), · · ·, (∆Xr, pr).

9. Summarize all possible differentials and compute their overall probability.
The differential record format is (∆X0,∆Xr, pr).

experimentally, for example, we already know the longest known GIFT-128 differential
tails are less than 22 rounds, then we run the model for r=21,20,19. . . until we find a
valid trail to launch the attack.

Remarks. There are other options to perform the second stage, such as MILP-based
or SAT-based differential search. However, with the differential searching experiences
[ZDY18,JZD19,JZZD20] on GIFT-128, when searching for longer rounds (e.g., 19, 20, 21
rounds etc.) with the same constrained number of active S-boxes in each round, the branch
and bound method is more efficient than those automatic-tool based method. Hence, for
the attack on GIFT-128, we mainly use Matsui’s method to perform the second stage.

For GIFT-COFB [BCI+] and SUNDAE-GIFT [BBP+], due the data limitation, only short
trials with high probabilities can be used to perform key-recovery attack. The search space
is small, the tool-based model is also efficient. Hence, to search those trails we can use
tool-based method to replace Matsui’s method.

On the balance between the first stage and the second stage. The first stage is very
fast. It only outputs some candidate initial values for the second stage. In the first stage,
we collect those initial values that do not fully activate the plaintext and ciphertext when
appending 4 rounds and 3 rounds at the top and bottom of the distinguisher. Then,
we sort those initial values by the number of key bits involved in the extended rounds
and store them in InitialSet. In the second stage, we use large computing resources
(Dell PowerEdge with about 64 cores in our platform) to enumerate the initial values
in InitialSet from the best one, until a distinguisher is found. We start the second
step with the best elements from InitialSet, if failed, we continue searching with some
second-best elements. But for other ciphers, the situation may be different.

On the output of the second stage. The second stage outputs some distinguishers
conforming with certain initial values from the InitialSet, with probability larger than
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2−n. However, we can not guarantee those distinguishers can be used to perform key-
recovery attacks by extending 4 rounds and 3 rounds at the top and the bottom of the
distinguisher. Look at the constraints in the first stage, we only restrict that the difference
bits of plaintext and ciphertext are not fully activated. Then, use the number of key
bits involved in the extended rounds to sort those candidate initial values in InitialSet.
Hence, the output distinguishers by the second stage may not lead a valid attack because
of other factors, for example, the probability of the distinguisher may be too low to work,
or the number of active bits after appending 4 rounds and 3 rounds are too many to use.
If these cases happen, we may either tweak the distinguishers by peeling off one round to
increase the probability, or extend fewer rounds on the top or the bottom to enjoy fewer
active bits in plaintext or ciphertext. Therefore, our model may fail its target in certain
situations. However, the distinguishers given in the second stage under the guide from the
first stage are likely to work, for example the 27-round key-recovery attack on GIFT-128
in Section 5. Even though for certain cases, some tweaks have to be applied to the given
distinguisher, it still preserves some advantages in the key-recover attack. For example, if
we have to extend fewer rounds at the top and bottom (e.g., 3 and 2 rounds), the number
of active bits are likely to be small, since when extending 4 rounds and 3 round at the top
and bottom, the input and output states are not fully activated yet.

4 The Strategy for Searching Linear Trails
The two-step strategy can also be used to search for advantageous linear trails. As in a
linear key-recovery attack, the process is executed by first searching out some good linear
trails as the distinguisher and then adding some rounds at the top and the bottom of it,
which is very similar with that in the differential key-covery attack. The overall procedure
is very similar with that used for searching differentials in Section 3.

Due to the fact that the interplay of the Sbox and the linear layer in GIFT is well-crafted
to resist linear cryptanalysis, we can not search out long linear trails when t (the upper
bound of linear active Sboxes in each round in the Matsui’s branch and bound algorithm)
is not larger than 4. We set t as 5 and the lower bound of the probability of qualified
linear trails as 2−128.

5 Differential Cryptanalysis of GIFT-128

Following the strategy in Section 3, we first get the InitialSet and find that at most 4
rounds can be extended at the top and at most 3 rounds can be extended at the bottom
of a distinguisher. The least amount of the involved key bits is 62, we find 2436 optimal
elements of the InitialSet. For the best solutions, there are only one or two active bits in
the input or the output. However, we can not search out long valid differentials with them
when executing further in the second step. Instead, we find out some differentials with the
second-best solutions. We list two of them in Table 6.

Table 6: Solutions of the first step
Best Solution Second-best Solution

Input 00000000000000040000000200000000 000000000000000000000000000000a0
Output 0000000000000000000000000000000c 00000000000000000000002200000011
Involved 62 80
Key k0, k15,14,5−0

1 , k6,4−0
2 , k4 k11−0

0 , k1, k6,4,2,0
2 , k15−12,10,8−4

3 , k7−0
4

Bits k12−4
5 , k3−0

6 ,k14,12,2,0
7 k5, k14,12,10,8

6 , k15−12,7−4,2,0
7

Top 4 rounds 4 rounds
Bottom 3 rounds 3 rounds
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In addition, we also have some other observations. When the length of the potential
distinguisher and the number of the extended rounds are fixed, the involved key bits are
the same, it is not influenced by the starting round index of the distinguisher. For example,
the least involved key bits of a potential 27-round attack based on a 20-round distinguisher
by extending 4 rounds and 3 rounds at the top and the bottom is 62, it is the same when
the attack occupies round 0 27, 1 28, 2 29, 3 30, 4 31. What’s more, we also find that
three rounds can be extended at the bottom as long as the output is only inactive in the
first half or the second half bits.

We finally use some 20-round advantageous differentials with probability 2−121.83 to
attack 27-round GIFT-128. The time complexity is 2124.83, the data complexity is 2123.53,
the memory complexity is 280-bit space.

5.1 The 20-round Differentials

We search out 8 valid differentials and list them in Table 7. For these differentials, the
involved key bits are the same and each contains 8 valid differential trails. For example,
there are 8 differential trails in the first differential: 2 trails are with probability of 2−124;
4 trails are with probability of 2−125; 2 trails are with probability of 2−126. We also list
two of them in Table 8, they are both with probability of 2−124.

Table 7: The 20-round differentials of GIFT-128
Input Difference Output Difference Pr(log2)

1 000000000000000000000000000000a0 00000000000000000000002200000011 -121.83
2 000000000000000000000000000000a0 00000000000000002000000210000001 -121.83
3 000000000000000000000000000000d0 00000000000000002000000210000001 -122.83
4 000000000000000000000000000000d0 00000000000000000000002200000011 -121.83
5 00000000000000000000000000000a00 00000000000000000200002001000010 -121.83
6 00000000000000000000000000000a00 00000000000000000000002200000011 -121.83
7 00000000000000000000000000000d00 00000000000000000200002001000010 -122.83
8 00000000000000000000000000000d00 00000000000000000000002200000011 -122.83

Table 8: Two 20-round differential trails with probability 2−124

r ∆Xr Pr ∆Xr Pr
0 000000000000000000000000000000a0 0 000000000000000000000000000000a0 0
1 00000001000000000000000000000000 -2 00000001000000000000000000000000 -2
2 08000000000000000000000000000000 -5 08000000000000000000000000000000 -5
3 20000000100000000000000000000000 -7 20000000100000000000000000000000 -7
4 40400000202000000000000000000000 -12 40400000202000000000000000000000 -12
5 50500000000000005050000000000000 -20 50500000000000005050000000000000 -20
6 000000000000000000000000a000a000 -32 000000000000000000000000a000a000 -32
7 00000000000000000000001100000000 -36 00000000000000000000001100000000 -36
8 00000800000008000000000000000000 -42 00000800000008000000000000000000 -42
9 02020000010100000000000000000000 -46 02020000010100000000000000000000 -46
10 00000000505000000000000050500000 -56 00000000505000000000000050500000 -56
11 00000000000000000000000000a000a0 -68 00000000000000000000000000a000a0 -68
12 00000011000000000000000000000000 -72 00000011000000000000000000000000 -72
13 08000000080000000000000000000000 -78 08000000080000000000000000000000 -78
14 20200000101000000000000000000000 -82 20200000101000000000000000000000 -82
15 50500000000000005050000000000000 -92 50500000000000005050000000000000 -92
16 00000000a000a0000000000000000000 -104 00000000a000a0000000000000000000 -104
17 00000000000000000011000000000000 -108 00000000000000000011000000000000 -108
18 000000000000c0000000000000001000 -114 000000000000c0000000000000003000 -114
19 00000000000000000000000000080008 -120 00000000000000000000000000080008 -120
20 00000000000000000000002200000011 -124 00000000000000000000002200000011 -124
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Table 9: The differential attack on 27-round GIFT-128
∆P **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****

**** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
∆XS

1 -**- --** *--* **-- -**- --** *--* **-- -**- --** *--* **-- -**- --** *--* **--
-**- --** *--* **-- -**- --** *--* **-- -**- --** *--* **-- -**- --** *--* **--

∆XP
1 **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
RK1 -11- -11- -11- -11- -11- -11- -11- -11- -11- -11- -11- -11- -11- -11- -11- -11-

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
∆XS

2 -**- --** *--* **-- -**- --** 1--* *1-- -**- --** *--* **-- -**- --** *--* **--
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

∆XP
2 **** **** **** **** ---- ---- ---- ---- **** 11** **** **** ---- ---- ---- ----

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
RK2 -11- -11- -11- -11- ---- ---- ---- ---- -11- -11- -11- -11- ---- ---- ---- ----

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
∆XS

3 *--- -*-- --*- ---* ---- ---- ---- ---- *--- -1-- --*- ---* ---- ---- ---- ----
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

∆XP
3 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

---- ---- ---- ---- ---- ---- ---- ---- **** ---- *1** ---- ---- ---- ---- ----
RK3 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

---- ---- ---- ---- ---- ---- ---- ---- -11- ---- -11- ---- ---- ---- ---- ----
∆XS

4 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- ---- ---- ---- ---- ---- 1--- ---- --1- ---- ---- ---- ---- ----

∆XP
4 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1-1- ----
RK4 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
Input ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1-1- ----
Output ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

---- ---- ---- ---- ---- ---- --1- --1- ---- ---- ---- ---- ---- ---- ---1 ---1
RK′25 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

---- ---- ---- ---- ---- ---- -11- -11- ---- ---- ---- ---- ---- ---- -11- -11-
∆X′P25 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

---- ---- ---- ---- ---- ---- **** **** ---- ---- ---- ---- ---- ---- **** ****
∆X26 ---- ---- ---- ---- ---- *--* ---- *--* ---- ---- ---- ---- ---- **-- ---- **--

---- ---- ---- ---- ---- -**- ---- -**- ---- ---- ---- ---- ---- --** ---- --**
RK′26 ---- ---- ---- ---- ---- -11- ---- -11- ---- ---- ---- ---- ---- -11- ---- -11-

---- ---- ---- ---- ---- -11- ---- -11- ---- ---- ---- ---- ---- -11- ---- -11-
∆X′P26 ---- ---- ---- ---- ---- **** ---- **** ---- ---- ---- ---- ---- **** ---- ****

---- ---- ---- ---- ---- **** ---- **** ---- ---- ---- ---- ---- **** ---- ****
∆X27 ---- *-*- ---- *-*- ---- *-*- ---- *-*- ---- -*-* ---- -*-* ---- -*-* ---- -*-*

---- *-*- ---- *-*- ---- *-*- ---- *-*- ---- -*-* ---- -*-* ---- -*-* ---- -*-*
RK′27 ---- -11- ---- -11- ---- -11- ---- -11- ---- -11- ---- -11- ---- -11- ---- -11-

---- -11- ---- -11- ---- -11- ---- -11- ---- -11- ---- -11- ---- -11- ---- -11-
∆X′K27 ---- **** ---- **** ---- **** ---- **** ---- **** ---- **** ---- **** ---- ****

---- **** ---- **** ---- **** ---- **** ---- **** ---- **** ---- **** ---- ****
∆C *-*- *-*- *-*- *-*- *-*- *-*- *-*- *-*- -*-* -*-* -*-* -*-* -*-* -*-* -*-* -*-*

*-*- *-*- *-*- *-*- *-*- *-*- *-*- *-*- -*-* -*-* -*-* -*-* -*-* -*-* -*-* -*-*
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Table 10: Key bits involved of 27-round differential cryptanalysis of GIFT-128
1 k15

5 k15
1 k14

5 k14
1 k13

5 k13
1 k12

5 k12
1 k11

5 k11
1 k10

5 k10
1 k9

5k9
1 k8

5k8
1 k7

5k7
1 k6

5k6
1 k5

5k5
1 k4

5k4
1 k3

5k3
1 k2

5k2
1 k1

5k1
1 k0

5k0
1

2 k15
7 k15

3 k14
7 k14

3 k13
7 k13

3 k12
7 k12

3 k7
7k7

3 k6
7k6

3 k5
7k5

3 k4
7k4

3

3
k3

0k7
4 k1

0k5
4

4

25
k2

4k10
0 k14

5 k2
0 k0

4k8
0 k12

5 k0
0

26 k14
6 k10

3 k2
7k6

2 k12
6 k8

3 k0
7k4

2
k10

6 k6
3 k14

7 k2
2 k8

6k4
3 k12

7 k0
2

27 k11
0 k11

5 k5
1k7

4 k10
0 k10

5 k4
1k6

4 k9
0k9

5 k3
1k5

4 k8
0k8

5 k2
1k4

4
k7

0k7
5 k1

1k3
4 k6

0k6
5 k0

1k2
4 k5

0k5
5 k15

1 k1
4 k4

0k4
5 k14

1 k0
4

5.2 The 27-round Differential Key-recovery Attack
Based on the first 20-round differential in Table 7:

(000000000000000000000000000000a0→ 00000000000000000000002200000011),

we attack 27-round GIFT-128 by extending 4 rounds at the top and 3 rounds in the bottom.
The whole attack details are shown in Table 9. For better readability, we use - denoting
the inactive bits in the state. The attack procedure is as follows.

Data collection.

1. In GIFT, there is no whitening key at the beginning, we can construct structures
before the first round key involved at XP

1 . We set XP
1 [63 ∼ 0] as constant and

traverse all values of XP
1 [127 ∼ 64] as one structure. There are 264 elements in each

structure, providing 264×2−1 = 2127 pairs.

2. Construct 2t structures, we get 2127+t message pairs.

3. For each message, we can get the plaintext P by applying the PermBits−1 and
SubCells−1 operations. After that, we can get the corresponding ciphertext by
encrypting the plaintext.

Key Recovery. In the key-recovery process, we only care for which the ciphertext differ-
ence conforms to the difference pattern of ∆C as shown in Table 9. ∆C has 64 inactive
bits, this will perform a 64-bit filter, about 2t+127−64 = 2t+63 pairs remain. The involved
key bits during the key recovery process is given in Table 10. To simplify the description
of the key guessing procedure, we move the subkeys involved in the last two rounds to the
place between the SubCells and PermBits operation. Next we give the detailed procedure
of counting right pairs using a guess and filter approach.

(a) Guess the involved key bits in RK1 and RK27.
Guess the value of RK1[51, 50], i.e., k9

5 and k9
1. As the value of XP

1 [103 ∼ 100] is
known, we can make an Sbox operation and get the value of XS

2 [103 ∼ 100]. Discard
the pairs that don’t satisfy ∆XS

2 [103, 102, 101] = 100. This performs a 3-bit filter,
about 2t+60 pairs remain.
According to the key schedule, when i ≡ j mod 2, RKi and RKj consist of the same
64 bits. Thus, RK27 contains the same 64 master key bits as RK1. As shown in
Table 10, k9

5 is also involved in the 27-th round. The value of X ′P26 can be deduced
by a PermBits−1 operation on the ciphertext. By guessing the value of k9

0, we can
make an Sbox−1 operation can get the value of X27[91 ∼ 88]. Discard the pairs that
don’t satisfy ∆X27[91, 89] = 00. This also performs a 2-bit filter, about 2t+58 pairs
remain.
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Overall, 3 key bits are guessed and the filter probability is 2−5.

Similarly, another 5-bit filter can be got by guessing the value of k8
5,k8

1 and k8
0.

After this, the other 14 active Sboxes are all 4-to-2 transformations. Similar as above,
we make a Sbox operation by guessing two key bits in the first round and then make
a Sbox−1 operation by guessing one key bit in the 27-th round. Each step performs
a 4-bit filter. We repeat the process until all involved key bit in RK27 and RK1 are
guessed.

After this step, about 2t+63−2×5−14×4 = 2t−3 pairs remain.

(b) Guess the value of RK2[61, 60], i.e., k14
7 and k14

3 make an Sbox operation to deduce the
value of XS

3 [123 ∼ 120]. Discard the pairs that do not satisfy ∆XS
3 [123, 121, 120] =

000. This performs a 3-bit filter.

As shown in Table 10, k14
7 is also involved in RK ′26. By guessing the value k2

2, we
make an Sbox−1 operation to deduce ∆X26[35 ∼ 32]. Discard the pairs that don’t
satisfy ∆X26[35, 32] = 00. This performs a 2-bit filter.

There are four same bits in RK2 and RK ′26, k14
7 , k12

7 , k6
3, k

4
3. We repeat a similar

process four times. Notice that the pairs go through the 22-th Sbox in the second
round with probability 2−2. About 2t−3−5∗3−4 = 2t−22 pairs remain.

For the other involved key bits in RK2 , the pairs will be filtered with probability
2−3 after guessing every two key bits. For the other involved key bits in RK ′26 , the
pairs will be filtered with probability 2−2 after guessing every two key bits. This
procedure is operated 8 times until all involved bits in RK ′2 and RK ′26 are guessed.
The number of candidate pairs will be 2t−22−5∗4 = 2t−42.

(c) Guess the value of RK3[15], notice that RK3[14] = k7
4 is already guessed in RK ′27.

Encrypt and discard the pairs that the difference pattern of ∆XS
4 [31 ∼ 28] does not

conform to 1000. This performs a 4-bit filter.

Guess RK3[11], notice that RK3[10] = k5
4 is already guessed in RK ′27. Encrypt and

discard the pairs that the difference pattern of ∆XS
4 [23 ∼ 20] does not conform to

0100. This performs a 3-bit filter.

About 2t−42−7 = 2t−49 pairs remain.

(d) As shown in Table 10, k2
4, k

0
4, k

10
0 , k8

0 are already guessed in RK ′27, k14
5 , k12

5 are already
guessed in RK1. We only need to guess the value of k2

0 and k0
0. Deduce the value of

XS
25[7 ∼ 4]. After a Sbox−1 operation, discard the pairs that the difference pattern

of ∆X25[7 ∼ 4] do not conform to 0001. We repeat a similar process four times and
discard the pairs that can not conform to the output difference of the differential.
Each process performs a 4-bit filter, about 2t−49−4×4 = 2t−65 pairs remain.

Table 11: Time complexity in each step. Note that after guessing the keys involved in an S-box,
we have to use 2 S-box operations to compute the partial internal values for P and P ′, which is
about 2

32 = 1
16 one round operation.
Step #Pairs #Keys Time( 1

16 Round) Probability
a 2t+63 232+16 2t+66.7 2−5×2−4×14

b 2t−3 216+12 2t+1.72 2−4−7×5

c 2t−42 22 2t−40 2−4−3

d 2t−49 22 2t−55 2−4×4
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Complexity. The detailed time complexity estimation is shown in Table 11. For the
wrong key guesses, 2t−49−4×4 = 2t−65 pairs remain. While for the right key guesses,
there are about 2t+127−64−121.83 = 2t−58.83 pairs remaining. We set t ≈ 60.83, about 22

pairs remain for the right key guesses, and 2−4.17 pairs remain for each wrong key guess.
The data complexity is 260.83+64 = 2124.83, and the time complexity of the key recovery
process is dominated by step (a), which is equal to 1

16 × 260.83+66.7 ≈ 2123.53. The memory
complexity for storing the guessed key bits is 280-bit space.

6 Linear Cryptanalysis of GIFT-128
For GIFT-128, different from differential cryptanalysis, in our two-stage model to search
linear hulls, the second stage that applies Matsui’s algorithm is very time consuming due
to the fast diffusion of the linear mask. In our computing resource (Dell PowerEdge with
about 64 cores ), we have to restrict the round number of the second stage as 15 rounds.
In total, we need about 45 days run the second stage to output a sound 15-round linear
hull. However, the time consumption of first stage is negligible. In the InitialSet, the
best initial values only involve 56-bit key in the rounds extended at the top and bottom of
the linear hull. The second-best solutions involve 76-bit keys. Finally, with the second-best
initial values, we find some good 15-round linear hulls as shown in Table 12.

However, based on the 15-round linear hulls, we can not directly launch an attack
by extending 4 rounds and 3 rounds at the top and bottom. Note that in our two-stage
model, according to the constraints of the first stage, we only restrict that the state of
plaintext and ciphertext is not fully activated and then sort the corresponding initial values
(input-output of the distinguisher) with the number of involved key bits in the InitialSet.
Hence, those distinguishers are only chosen towards a better key-recovery attack, but can
not be guarantee to achieve an valid attack. For example, when extending 4-round and
3-round at the top and the bottom of the 15-round distinguishers, the bits of plaintext and
ciphertext are not fully activated, but the number of active bits is too large to perform a
valid linear attack (the time complexity is higher than exhaustive search). Therefore, our
two-stage model is finding distinguishers towards better attacks, but can not guarantee it.
When extending 4-round and 3-round fail the attack, we have to peel off several rounds the
top or the bottom to enjoy more inactive bits until a valid attack is obtained. Since the
initial values in InitialSet do not reach full active bits with 4 rounds (top) and 3 rounds
(bottom) extended, they are likely to have fewer active bits when extending fewer rounds
(e.g., 3 rounds at top and 2 rounds at bottom) than those not in InitialSet. Hence, the
InitialSet is actually a guide to key-recovery-attack-friendly distinguishers.

In addition, due to the 15-round limitation in the second stage, the probability of the
linear hulls obtained are usually high. Hence, we extend the 15-round linear hull by one
round at the top and bottom to get a 17-round linear hull with probability of 2−115:

(0000000000000000000000000a010000) 7→ (00001000000000000000400000000000).

The 17-round linear hull includes 2 trails given in Table 13. Of course, one can search the
17-round linear hull directly in the second stage if the computing resource is large enough.

6.1 The 22-round Linear Hull Attack
Based on the 17-round linear hull, we mount a 22-round linear hull attack on GIFT-128.
The whole attack details are shown in Table 14. The attack procedure is as follows.

The attack procedure.
1. Denote the number of the needed plaintext-ciphertext pairs as N . For each of the

plaintext-ciphertext pair, do the following steps.
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Table 12: 15-round linear hulls of GIFT-128 with probability 2−109

Input Mask Output Mask #Trails
1 000000a0000000000000000000000000 00000000000000800000000000000000 2
2 000000b0000000000000000000000000 00000000000000800000000000000000 2
3 000000c0000000000000000000000000 00000000000000800000000000000000 2
4 000000d0000000000000000000000000 00000000000000800000000000000000 2
5 0000a000000000000000000000000000 00000000800000000000000000000000 2
6 0000b000000000000000000000000000 00000000800000000000000000000000 2
7 0000c000000000000000000000000000 00000000800000000000000000000000 2
8 0000d000000000000000000000000000 00000000800000000000000000000000 2

Table 13: Two 17-round linear trails with probability 2−116

r ∆Xr Pr ∆Xr Pr
0 0000000000000000000000000a010000 0 0000000000000000000000000a010000 0
1 000000a0000000000000000000000000 -4 000000a0000000000000000000000000 -4
2 00000000000000000000000002000000 -6 00000000000000000000000002000000 -6
3 00000020000000100000000000000000 -8 00000020000000100000000000000000 -8
4 01000000080800000000000000000000 -14 01000000080800000000000000000000 -14
5 00000000105000000000000040500000 -22 00000000105000000000000040500000 -22
6 0050005000a000a00000000000000000 -32 0050005000a000a00000000000000000 -32
7 00000000000000004400000000220000 -44 00000000000000004400000000220000 -44
8 00006000000020c0000000000000c010 -54 00006000000030c0000000000000c010 -54
9 000000000200000a01000000000a0000 -66 000000000200000a01000000000a0000 -66
10 00000000000000000082802000000000 -76 00000000000000000082802000000000 -76
11 00009500000000000000650000000000 -86 00009500000000000000650000000000 -86
12 0000000000000000000000000c000c00 -100 0000000000000000000000000c000c00 -100
13 00000000000000110000000000000000 -104 00000000000000110000000000000000 -10
14 00000000000c00000000000000000000 -110 00000000000c00000000000000000000 -106
15 00000000000000000000000000100000 -112 00000000000000000000000000100000 -112
16 00000000000000800000000000000000 -114 00000000000000800000000000000000 -114
17 00001000000000000000400000000000 -116 00001000000000000000400000000000 -116

2. The corresponding value of XP
1 and X ′K22 can be deduced from each plaintext-

ciphertext pair. Compress the N samples into 278 counters according to the value of
(X1

P [63 ∼ 48], X1
P [31 ∼ 0], X ′K22 [127 ∼ 124, 111 ∼ 108, 95 ∼ 92, 79, 76, 63 ∼ 60, 47 ∼

44, 31 ∼ 28, 15 ∼ 12]). Since when decrypting the messages, X ′P21 [78] is linear with
X ′S22 [77] and X ′S22 [78], there is no need to store them. If X ′S22 [78] ⊕ X ′S22 [77] = 0,
increase the corresponding counter by one and otherwise, decrease it by one. There
are 278 counters remaining.

3. Guess the value of RK1[0, 1] and make one Sbox operation. We can get the value of
XS

2 [2]. Similar to the above step, we can compress the states into the counters of
(XP

1 [63 ∼ 48], XP
1 [31 ∼ 4], X ′K22 [127 ∼ 124, 111 ∼ 108, 95 ∼ 92, 79, 76, 63 ∼ 60, 47 ∼

44, 31 ∼ 28, 15 ∼ 12]). This requires 278+2 = 280 Sbox operations and 274 counters
remain.

4. Repeat guessing every two bits of RK1 and making the single Sbox operation. After
guessing all 24 involved key bits in RK1, according to the value of (XP

2 [111 ∼
108, 102 ∼ 100, 65 ∼ 64], X ′K22 [127 ∼ 124, 111 ∼ 108, 95 ∼ 92, 79, 76, 63 ∼ 60, 47 ∼
44, 31 ∼ 28, 15 ∼ 12]), the messages can be compressed into 239 counters. The total
complexity of guessing RK1 is 280 + 278 + 276 + 275 + 274 + 273 + · · · + 267 ≈ 280

Sbox operations.

5. Guess the value of RK ′22[6, 7] and make the inverse operation of a single Sbox, we can
get the value of X ′P21 [12]. The messages can be compressed into 236 counters according
to the value of XP

2 [111 ∼ 108, 102 ∼ 100, 65, 64], X ′K22 [127 ∼ 124, 111 ∼ 108, 95 ∼
92, 79, 76, 63 ∼ 60, 47 ∼ 44, 31 ∼ 28], X ′P21 [12]. This requires 224 × 239+2 = 265 Sbox
operations.
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Table 14: The linear hull attack on 22-round GIFT-128

P **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
**** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****

XS
1 *--* **-- -**- --** *--* **-- -**- --** *--* **-- -**- --** *--* **-- -**- --**

*--* **-- -**- --** *--* **-- -**- --** *--* **-- -**- --** *--* **-- -**- --**
XP

1 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
**** **** **** **** ---- ---- ---- ---- **** **** **** **** **** **** **** ****

RK1 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
-11- -11- -11- -11- ---- ---- ---- ---- -11- -11- -11- -11- -11- -11- -11- -11-

XS
2 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

-*-- --*- ---* *--- ---- ---- ---- ---- -*-- --*- ---* 1--- --*- ---* 1--- -1--
XP

2 ---- ---- ---- ---- **** ---- 1*** ---- ---- ---- ---- ---- ---- ---- ---- 11**
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

RK2 ---- ---- ---- ---- -11- ---- -11- ---- ---- ---- ---- ---- ---- ---- ---- -11-
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

XS
3 ---- ---- ---- ---- 1--- ---- --1- ---- ---- ---- ---- ---- ---- ---- ---- ---1

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
XP

3 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- ---- ---- ---- ---- ---- ---- 1-1- ---- ---1 ---- ---- ---- ----

RK3 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- ---- ---- ---- ---- ---- ---- --1- ---- ---- ---- ---- ---- ----

Input ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- ---- ---- ---- ---- ---- ---- 1-1- ---- ---1 ---- ---- ---- ----

Output ---- ---- ---- ---1 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- -1-- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

XS
21 ---- ---- ---- **** ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

---- ---- ---- *11* ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
RK′21 ---- ---- ---- -11- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

---- ---- ---- -11- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
X′K21 ---- ---- ---- **** ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

---- ---- ---- *11* ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
X′P21 *--- ---- ---- ---- *--- ---- ---- ---- -*-- ---- ---- ---- -1-- ---- ---- ----

--*- ---- ---- ---- --1- ---- ---- ---- ---* ---- ---- ---- ---* ---- ---- ----
XS

22 **** ---- ---- ---- **** ---- ---- ---- **** ---- ---- ---- *11* ---- ---- ----
**** ---- ---- ---- **** ---- ---- ---- **** ---- ---- ---- **** ---- ---- ----

RK′22 -11- ---- ---- ---- -11- ---- ---- ---- -11- ---- ---- ---- -11- ---- ---- ----
-11- ---- ---- ---- -11- ---- ---- ---- -11- ---- ---- ---- -11- ---- ---- ----

X′K22 **** ---- ---- ---- **** ---- ---- ---- **** ---- ---- ---- *11* ---- ---- ----
**** ---- ---- ---- **** ---- ---- ---- **** ---- ---- ---- **** ---- ---- ----

C -*-- -*-- -*-- -1-- -*-- -*-- -*-- -*-- --*- --*- --*- --1- --*- --*- --*- --*-
---* ---* ---* ---* ---* ---* ---* ---* *--- *--- *--- *--- *--- *--- *--- *---
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Table 15: Key bits involved of 22-round linear cryptanalysis of GIFT-128
1

k15
4 k15

0 k14
4 k14

0 k13
4 k13

0 k12
4 k12

0 k7
4k7

0 k6
4k6

0 k5
4k5

0 k4
4k4

0 k3
4k3

0 k2
4k2

0 k1
4k1

0 k0
4k0

0
2 k11

7 k11
3 k9

7k9
3 k0

7k0
3

3
k6

4
21 k1

5k11
0

k13
5 k7

0
22 k9

7k1
3 k8

7k0
3 k7

7k15
3 k6

7k14
3

k5
7k13

3 k4
7k12

3 k3
7k11

3 k2
7k10

3

EK G ⊕ ⊕

Trunc

L

N

A[1] 2L‖0n/2

EK G ⊕ ⊕

A[a− 1] 2a−1L‖0n/2

EK G ⊕ ⊕

pad(A[a])

2a−13iL‖0n/2

EK

Y [a] G ⊕ ⊕

⊕

C[1]

M [1]

2a3iL‖0n/2

EK

X[a+ 1] Y [a+ 1]

G ⊕ ⊕

⊕

C[2]

M [2]

2a+13iL‖0n/2

EK T

Figure 1: Attack target of GIFT-COFB

6. Repeat guessing the other 12 bits in RK ′22 (the key bits with symbol *) and com-
pressed the messages into 215 counters according to the value of XP

2 [111 ∼ 108, 102 ∼
100, 65, 64], X ′K21 [115 ∼ 112, 51, 48]. The total complexity of guessing RK ′22 is about
241 Sbox operations.

7. Similarly, we can guess two key bits and compress the states in each step until
covering all key bits involved in the attack. This leads to a significant less time
compared to the time in step 4. We omit the detailed procedure in this paper.

8. We store the number of messages that satisfy {Input[27]⊕ Input[25]⊕ Input[16] =
Output[112]⊕Output[50]} in the remaining counter as λ and choose the corresponding
key as the right key that |λ−N/2| is the largest.

Complexity. To deduce the right key value, we collect N = c · 1
ε2 = 4 · 1

2−115 = 2117

plaintext-ciphertext pairs. The time complexity of the attack procedure for guessing keys is
dominated by Step(4) and it is about 280 Sbox operations, thus the time complexity is 2117

for encrypting the messages. The memory complexity is about 278-bit for implementing
the counters.

7 Linear Cryptanalysis on GIFT-COFB

The attacking target is the part in dashed box in Figure 1. The security claim of
GIFT-COFB is up to birthday bound, thus, the valid data complexity of cryptanalysis
on GIFT-COFB should be less than 2n/2 = 264. In addition, since the input of EK has
the form as shown in Figure 1, taking the first block as example, the input of the EK
is G(Y [a]) ⊕M [1] ⊕ (2a3iL‖0n/2), where L is unknown (depending on Nonce and key).
Hence, there should be no active mask bits in the most significant 64 bits of the input.
The largest number of extended rounds at the top/bottom is different from GIFT-128, i.e.,
3 rounds both on the top and the bottom for GIFT-COFB. Based on a 9-round linear hull:

00000000000050500000000000005050→ 00000000000000000000040000000200
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Table 16: The 9-round linear trail
r Xr Pr
0 00000000000050500000000000005050 0
1 00000000000a000a00000000000a000a -8
2 00000000000000000022002200000000 -16
3 00009900000000000000660000000000 -28
4 0000000000000000000000000c000c00 -40
5 00000000000000110000000000000000 -44
6 00000000000c00000000000000000000 -50
7 00000000000000000000000000100000 -52
8 00000000000000000000004000000000 -56
9 00000000000000000000040000000200 -58

with probability 2−58, we analyze the security of its 15-round GIFT-128-based version.
The linear trail is shown in Table 16.

Suppose we get a set of plaintext-ciphertext pairs of GIFT-COFB, i.e., (M [1], C[1]),
(M [2], C[2]), . . . , (M [m−1], C[m−1]) under one nonceN . Then we can get the input-output
pairs of the cipher GIFT-128, where the input is G(M [i]⊕C[i])⊕M [i], the corresponding
output is M [i+ 1]⊕ C[i+ 1]. So just according to each (G(M [i]⊕ C[i])⊕M [i])[63− 0]
and M [i + 1] ⊕ C[i + 1], we can get one useful plaintext-ciphertext pair. In fact, these
samples may also be collected from the plaintext-ciphertext pairs under different nonces.
The attack process is shown in Table 18 and the involved key bits are listed in Table 19 in
Appendix C

The attack procedure.

1. Denote the number of the needed plaintext-ciphertext pairs as N . For each of the
plaintext-ciphertext pair, do the following steps.

2. The corresponding value of XP
1 and X ′K15 can be deduced from each plaintext-

ciphertext pair. Compress the N samples into 296 counters according to the value
of (X1

P [111 ∼ 96], X1
P [79 ∼ 64], X ′K15 [123 ∼ 120, 107 ∼ 104, 91 ∼ 88, 83 ∼ 80, 75 ∼

72, 67 ∼ 64, 59 ∼ 56, 51 ∼ 48, 43 ∼ 40, 35 ∼ 32, 27 ∼ 24, 19 ∼ 16, 11 ∼ 8, 3 ∼ 0]).

3. Guess the value of RK1[33, 32], i.e., k0
5k

0
1. Make one Sbox operation to calculate the

value of XS
2 [65, 64].

k0
5 is also involved in the 15-th round as RK ′15[41]. By guessing the value of RK ′15[42],

we can make one Sbox−1 operation and get the value of X15[43, 41].
Similar to the above step, we can compress the states into the counters of (X1

P [111 ∼
96], X1

P [79 ∼ 68], XS
2 [65, 64], X ′K15 [123 ∼ 120, 107 ∼ 104, 91 ∼ 88, 83 ∼ 80, 75 ∼

72, 67 ∼ 64, 59 ∼ 56, 51 ∼ 48, 35 ∼ 32, 27 ∼ 24, 19 ∼ 16, 11 ∼ 8, 3 ∼ 0], X15[43, 41]).
This requires about 296 · 22 + 294 · 23 = 298 + 297 Sboxes and 292 counters remain.

4. There are 8 same key bits in RK1 and RK ′15, i.e., k3∼0
5 , k11∼8

1 . Each key bit
corresponds to one active Sbox in the first round. Repeat a similar process as in
Step 3 for 8 times to guess all involved key bits in RK1 and 16 key bits in RK ′15.
After that, there are still 16 unknown key bits in RK ′15, repeat guessing each two
key bits which corresponds to the same Sbox and make one Sbox−1 operation until
all key bits in RK ′15 are known.
Till now, we get the value of all involved key bit in RK1 and RK ′15. The states can be
compressed into 246 counters, which corresponds to the value of (XS

2 [111, 108, 107, 106,
102, 101, 97, 96, 79, 76, 75, 74, 70, 69, 65, 64], X ′K14 [43 ∼ 40, 35 ∼ 32, 11, 8, 3 ∼ 0]). Since
when decrypting the messages, X ′K14 [10, 9] is linear with X14[10], there is no need to
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EK ⊕

A[1]

IV EK ⊕

pad(A[2])

⊗ EK ⊕

M [1]

EK ⊕

pad(M [2])

⊗ EK

T

EK

⊕

C[1]

M [1]

EK

b·c|M [2]|
⊕

C[2]

M [2]

Figure 2: Attack target of SUNDAE-GIFT

store them. If X ′K14 [10]⊕X ′K14 [9] = 0, increase the corresponding counter by one and
otherwise, decrease it by one.

The total complexity of guessing RK1 and RK ′15 is 298 +2 ·297 + · · ·+2 ·290 +7 ·289 ≈
299.6 Sbox operations.

5. Since the time complexity is dominated by guessing RK1, RK
′
15 and the process for

guessing the involved key bits in RK2, RK3, RK
′
13, RK

′
14 and compressing the states

is similar to the process as describe in above steps, we don’t repeat the details.

6. We store the number of messages that satisfy {Input[78]⊕ Input[76]⊕ Input[70]⊕
Input[68]⊕ Input[14]⊕ Input[12]⊕ Input[6]⊕ Input[4] = Output[9]⊕Output[42]}
in the remaining counter as λ and choose the corresponding key as the right key that
|λ−N/2| is the largest.

Complexity. The attack need a c
ε2 = 262 data when c = 4, the time complexity is about

299.6 Sbox operations, which is equivalent to 299.6 · 1
32 ·

1
15 ≈ 290.7 15-round encryptions,

the memory complexity is about 296-bit space to implement the counters.

8 Linear Cryptanalysis on SUNDAE-GIFT

In our cryptanalysis on SUNDAE-GIFT, we focus on the Encryption message step shown
in dashed box in Figure 2. Due to the security claim up to birthday bound, the data
complexity of cryptanalysis on SUNDAE-GIFT should be also less than 2n/2 = 264. Hence,
the analysis result in Section 6 is invalid. In the data collection phase, we collect T ,
(M [1], C[1]),...,(M [l], C[l]). The input and output pairs of GIFT-128 are (T,M [1]⊕C[1]),...,
(M [i]⊕ C[i],M [i+ 1]⊕ C[i+ 1]).

Key recovery attack. Based on the a 10-round linear trail

000000000000000000000000a008a002→ 00000000000000000044000000220000

with probability 2−56, we analyze the security of the 16-round GIFT-128-based version of
SUNDAE-GIFT. Due to the data usage limit, we can only add 4 rounds at the top and 2
rounds at the bottom. The situation is similar to the 22-round linear attack on GIFT-128.
The trail is shown in Table 20 in Appendix C.

During the key-recovery process, the linear mask of XP
1 has 64 active bits and the

linear mask of the ciphertext has 32 active bits. The memory complexity is dominated
by implementing the 264+32 = 296 counters with about 296-bit space. Similarly with the
process in Section 6, by guessing key bits involved in each Sbox operation and compressing
messages into new counters, we choose the corresponding key as the right key with the
largest bias.
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Complexity. The data complexity is c
ε2 = 260 when c is set as 4. The time complexity

is about 2100.2 Sbox operations, which is equivalent to 291.2 16-round encryptions. The
memory complexity is 296-bit space.

Comment. Due to the data usage limitation of GIFT-COFB and SUNDAE-GIFT, we can not
mount long differential attack on these two proposals. In addition, for GIFT-COFB, there
are varied secret 2a · 3i · L for different blocks. While for linear attack, we can ignore this
value with zero linear mask for this part.

9 Conclusion
In this article, we propose a two-step strategy for searching advantageous distinguishers
which can lead to long attacks with small involved key bits. The first step is to reduce
the searching space and give advantageous initial values of the second step. It utilizes the
advantages of the MILP based method and Matsui’s branch-and-bound algorithm and
can be used to search for differential trails and linear trails. As a first application, the
strategy is used to analyze GIFT-128 and a 27-round differential attack and a 22-round
linear hull attack on GIFT-128. The differential attack covers one more round than the
previous result. What’s more, we give evaluation results on two GIFT-128-based proposals:
SUNDAE-GIFT and GIFT-COFB.
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A GIFT-COFB
GIFT-COFB instantiates the COFB (Combined FeedBack) block cipher based AEAD mode
with the GIFT-128 block cipher. This proposal primarily focuses on the hardware imple-
mentation size.

Recommended Parameter Choice. In GIFT-COFB, the underlying block cipher is
the only parameter. The block cipher can be chosen by the following recommendation.

1. n: Length of the block cipher state in bits. The recommended choice is n = 128.

2. τ : Length of the tag in bits. The recommended choice is τ = 128.

3. EK : The recommended choice of EK is the block cipher GIFT-128.

Input and Output Data. To encrypt a message M with associated data A and
nonce N , one needs to provide the information given below.

The encryption algorithm takes as input:

• An encryption key K ∈ {0, 1}128.

• A nonce N ∈ {0, 1}128. This can include the counter to make the nonce non-repeating.

• Associated data and message A,M ∈ {0, 1}∗.

It generates the following output data:

• Ciphertext C ∈ {0, 1}|M |.

• Tag T ∈ {0, 1}128.

To decrypt (with verification) a ciphertext-tag pair (C, T ) with associated data A and
nonce N , one needs to provide the information given below.

• An encryption key K ∈ {0, 1}128.

• A nonce N ∈ {0, 1}128.

• Associated data and ciphertext A,C ∈ {0, 1}∗.

• Tag T{0, 1}128.

It generates the following output data:

• Message M{0, 1}|C|
⋃
{⊥}. ⊥ is a special symbol denoting rejection.

The specifications of GIFT-COFB are shown in Algorithm 2 and Figure 3. For more
details, please refer to [BCI+].

EK G ⊕ ⊕

Trunc

L

N

A[1] 2L‖0n/2

EK G ⊕ ⊕

A[a− 1] 2a−1L‖0n/2

EK G ⊕ ⊕

pad(A[a])

2a−13iL‖0n/2

EK

Y [a] G ⊕ ⊕

⊕

C[1]

M [1]

2a3iL‖0n/2

EK

X[a+ 1] Y [a+ 1]

G ⊕ ⊕

⊕

C[2]

M [2]

2a+13iL‖0n/2

EK T

Figure 3: GIFT-COFB encryption [BCI+].
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Algorithm 2: The encryption of COFB [BCI+]
Input: N,A,M
Output: C, T
1: Y [0]← EK(N)
2: L← Truncn/2(Y [0])
3: (A[1], ..., A[a])← Pad(A)
4: if M 6= ε then
5: (M [1], ...,M [a])← Pad(M)
6: for i from 1 to a− 1 do
7: L← 2 · L
8: X[i]← A[i]⊕G · Y [i− 1]⊕ L‖0n/2

9: Y [i]← EK(X[i])
10: if |A|modn = 0 and A 6= ε then
11: L← 3 · L
12: else
13: L← 32 · L
14: if M 6= ε then
15: L← 32 · L,
16: X[a]← A[a]⊕G · Y [a− 1]⊕ L‖0n/2

17: Y [a]← EK(X[a])
18: for i from 1 to m− 1 do
19: L← 2 · L
20: C[i]←M [i]⊕ Y [i+ a− 1]
21: X[i+ a]←M [i]⊕G · Y [i+ a− 1]⊕ L‖0n/2

22: Y [i+ a]← EK(X[i+ a])
23: if M 6= ε then
24: if |M |modn = 0 then
25: L← 3 · L
26: else
27: L← 32 · L
28: C[m]←M [m]⊕ Y [a+m− 1]
29: X[a+m]←M [m]⊕G · Y [a+m− 1]⊕ L‖0n/2

30: Y [a+m]← EK(X[a+m])
31: C ← Trunc|M |(C[1]‖...‖C[m])
32: T ← Truncτ (Y [a+m])
33: else
34: C ← ε
35: T ← Truncτ (Y [a])

return (C, T )

B SUNDAE-GIFT

The encryption of SUNDAE takes a 128-bit key K, an associated data A ∈ {0, 1}∗ and
a message M ∈ {0, 1}∗ as input. The designers define four variants of SUNDAE-GIFT
depending on 4 different length of nonce N as shown in Table 17. For simplicity, the
nonce N and associated data A are regarded as A← N‖A. SUNDAE outputs a ciphertext
C ∈ {0, 1}n+|M |, where the first n bits are the tag T . The encryption algorithm shown in
Figure 4 is composed of five steps:

1. Initialization. An initial block B = b127b126b125b124‖0 is defined as follows:
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b127 =
{

0 if |A| = 0
1 otherwise.

b126 =
{

0 if |M | = 0
1 otherwise.

b125b124 =


00 if |N | = 0
01 if |N | = 64
10 if |N | = 96
11 if |N | = 128.

Apply GIFT-128 block cipher EK to the initial block B to produce a chaining value
V .

2. Processing associated data. If the associated data A is empty, skip this step.
Otherwise, partition A into 128-bit blocks (the last block may be a partial block).
The blocks are processed as shown in Figure 4 and the last padded block is processed
differently by multiplying m before applying GIFT-128 block cipher.

3. Processing message. The message M is processed in a similar way to the step of
Processing associated data.

4. Extracting tag. As shown in Figure 4, the chaining value is outputed as the tag T .

5. Encrypting message. The message blocks are encrypted as shown in Figure 4.

For more detials about SUNDAE-GIFT, please refer to [BBP+].

Table 17: Four members in the SUNDAE-GIFT family [BBP+]
Member Name Nonce length Key length Tag length

1 SUNDAE-GIFT-96 96 128 128
2 SUNDAE-GIFT-0 0 128 128
3 SUNDAE-GIFT-128 128 128 128
4 SUNDAE-GIFT-64 64 128 128

EK

11b125b1240124

EK EK EK EK EK EK+ + + +

A[1] A[2] M [1] M [2]

pad pad

× ×

b·c|M [2]|

+ +M [1] M [2]

C[1] C[2]T

(a) SUNDAE-GIFT encryption with associated and plaintext data. The box below the rightmost
block cipher call represents truncation.

EK10b125b1240124 EK EK+ +

A[1] A[2]

pad

×

T

(b) SUNDAE-GIFT without plaintext data, meaning only a tag is produced, like a MAC.

EK01b125b1240124 EK EK EK EK+ +

M [1] M [2]

pad

×

b·c|M [2]|

+ +M [1] M [2]

C[1] C[2]T

(c) SUNDAE-GIFT encryption with only plaintext data.

Fig. 1: Diagrams of SUNDAE-GIFT encryption and authentication. The initial block cipher
call changes depending upon the presence of associated and plaintext data. b125b124 is
defined based on the SUNDAE-GIFT member used. The multiplication × by 2 or 4 and
depends on the length of the last blocks.

9

Figure 4: SUNDAE-GIFT encryption with association and plaintext data [BBP+].
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C Tables of the attack on GIFT-COFB and the 10-round
linear trail of SUNDAE-GIFT

Table 18: The linear hull attack on 15-round-GIFT-128-based GIFT-COFB
P ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

**** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****
XS

1 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
-**- --** *--* **-- -**- --** *--* **-- -**- --** *--* **-- -**- --** *--* **--

XP
1 ---- ---- ---- ---- **** **** **** **** ---- ---- ---- ---- **** **** **** ****

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
RK1 -- -- -- -- 11 11 11 11 -- -- -- -- 11 11 11 11

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
XS

2 ---- ---- ---- ---- *--* **-- -**- --** ---- ---- ---- ---- *--* **-- -**- --**
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

XP
2 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

---- **** ---- **** ---- ---- ---- ---- ---- **** ---- **** ---- ---- ---- ----
RK2 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

-- 11 -- 11 -- -- -- -- -- 11 -- 11 -- -- -- --
XS

3 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- -1-1 ---- -1-1 ---- ---- ---- ---- ---- -1-1 ---- -1-1 ---- ---- ---- ----

XP
3 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -1-1 ---- -1-1 ----

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -1-1 ---- -1-1 ----
RK3 -- -- -- -- -- -- -- -- -- -- -- -- 1- -- 1- --

-- -- -- -- -- -- -- -- -- -- -- -- 1- -- 1- --
Input ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -1-1 ---- -1-1 ----

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -1-1 ---- -1-1 ----
Output ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

---- ---- ---- ---- ---- -1-- ---- ---- ---- ---- ---- ---- ---- --1- ---- ----
XS

13 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- ---- ---- *11* ---- ---- ---- ---- ---- ---- ---- **** ---- ----

RK′13 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- 11 -- -- -- -- -- -- -- 11 -- --

X′K13 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- ---- ---- *11* ---- ---- ---- ---- ---- ---- ---- **** ---- ----

X14 ---- ---- ---- ---- ---- --1- ---- --*- ---- ---- ---- ---- ---- ---* ---- ---*
---- ---- ---- ---- ---- *--- ---- *--- ---- ---- ---- ---- ---- -1-- ---- -*--

XS
14 ---- ---- ---- ---- ---- **** ---- **** ---- ---- ---- ---- ---- **** ---- ****

---- ---- ---- ---- ---- **** ---- **** ---- ---- ---- ---- ---- *11* ---- ****
RK′14 -- -- -- -- -- 11 -- 11 -- -- -- -- -- 11 -- 11

-- -- -- -- -- 11 -- 11 -- -- -- -- -- 11 -- 11
X′K14 ---- ---- ---- ---- ---- **** ---- **** ---- ---- ---- ---- ---- **** ---- ****

---- ---- ---- ---- ---- **** ---- **** ---- ---- ---- ---- ---- *11* ---- ****
X15 ---- *-*- ---- *-*- ---- *-*- ---- *-1- ---- -*-* ---- -*-* ---- -*-* ---- -*-*

---- *-*- ---- *-*- ---- *-*- ---- *-*- ---- -*-* ---- -*-* ---- -*-* ---- -1-*
XS

15 ---- **** ---- **** ---- **** ---- **** ---- **** ---- **** ---- **** ---- ****
---- **** ---- **** ---- **** ---- **** ---- **** ---- **** ---- **** ---- ****

RK′15 -- 11 -- 11 -- 11 -- 11 -- 11 -- 11 -- 11 -- 11
-- 11 -- 11 -- 11 -- 11 -- 11 -- 11 -- 11 -- 11

X′K15 ---- **** ---- **** ---- **** ---- **** ---- **** ---- **** ---- **** ---- ****
---- **** ---- **** ---- **** ---- **** ---- **** ---- **** ---- **** ---- ****

C *-*- *-*- *-*- *-*- *-*- *-*- *-*- *-*- -*-* -*-* -*-* -*-* -*-* -*-* -*-* -*-*
*-*- *-*- *-*- *-*- *-*- *-*- *-*- *-*- -*-* -*-* -*-* -*-* -*-* -*-* -*-* -*-*
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Table 19: Involved key bits of linear cryptanalysis on GIFT-COFB
1 k11

5 k11
1 k10

5 k10
1 k9

5k9
1 k8

5k8
1 k3

5k3
1 k2

5k2
1 k1

5k1
1 k0

5k0
1

2
k14

6 k14
2 k12

6 k12
2 k6

6k6
2 k4

6k4
2

3 k5
1 k3

1
k15

0 k13
0

13
k6

4k0
1 k4

4k14
1

14 k10
6 k4

3 k12
7 k2

2 k8
6k2

3 k10
7 k0

2
k6

6k0
3 k8

7k14
2 k4

6k14
3 k6

7k12
2

15 k7
0k5

5 k15
1 k3

4 k6
0k4

5 k14
1 k2

4 k5
0k3

5 k13
1 k1

4 k4
0k2

5 k12
1 k0

4
k3

0k1
5 k11

1 k15
4 k2

0k0
5 k10

1 k14
4 k1

0k15
5 k9

1k13
4 k0

0k14
5 k8

1k12
4

Table 20: The 10-round linear trail
r Xr Pr
0 000000000000000000000000a008a002 0
1 00000000000000660000000000000011 -8
2 00000000000c000c0000000000000000 -20
3 00000000000000000000000000110000 -24
4 00000000000000c00000000000000000 -30
5 00000000000000000000000000020000 -32
6 00000000000000000000002000000010 -34
7 00000000000008080000000000000000 -40
8 00000000000500000000000000050000 -44
9 00000000004000400000000000000000 -52
10 00000000000000000044000000220000 -56
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