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Abstract. Being one of the winning algorithms of the CAESAR competition and
currently a second round candidate of the NIST lightweight cryptography standard-
ization project, the authenticated encryption scheme Ascon (designed by Dobraunig,
Eichlseder, Mendel, and Schläffer) has withstood extensive self and third-party crypt-
analysis. The best known attack on Ascon could only penetrate up to 7 (out of 12)
rounds due to Li et al. (ToSC Vol I, 2017). However, it violates the data limit of 264

blocks per key specified by the designers. Moreover, the best known distinguishers
of Ascon in the AEAD context reach only 6 rounds. To fill these gaps, we revisit
the security of 7-round Ascon in the nonce-respecting setting without violating the
data limit as specified in the design. First, we introduce a new superpoly-recovery
technique named as partial polynomial multiplication for which computations take
place between the so-called degree-d homogeneous parts of the involved Boolean
functions for a 2d-dimensional cube. We apply this method to 7-round Ascon and
present several key recovery attacks. Our best attack can recover the 128-bit secret
key with a time complexity of about 2123 7-round Ascon permutations and requires
264 data and 2101 bits memory. Also, based on division properties, we identify several
60 dimensional cubes whose superpolies are constant zero after 7 rounds. We further
improve the cube distinguishers for 4, 5 and 6 rounds. Although our results are far
from threatening the security of full 12-round Ascon, they provide new insights in
the security analysis of Ascon.
Keywords: Ascon · Authenticated encryption · Cube attack · Division property ·
Partial polynomial multiplication

1 Introduction
Around 2000, Bellare and Namprempre introduced the notion of authenticated encryption
(AE) – a type of symmetric-key primitive providing both confidentiality and authenticity.
Its subsequent development is shaped by real-world applications and finally it evolves into
the notion of authenticated encryption with associated data (AEAD) [Rog02, Rog04, RS06],
where the authenticity of the associated data (some public information like packet headers)
along with the message is also ensured.
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The first major event in the cryptographic community for soliciting and evaluating
AEADs was the CAESAR competition (the Competition for Authenticated Encryption:
Security, Applicability, and Robustness), initially announced at the Early Symmetric-key
Crypto workshop 2013 [Ear, CAE]. After several years of intensive analysis and comparison
of the 57 submissions, the final portfolio was announced in February 2019, and the winning
algorithms are categorized into three use cases listed as follows:

• Lightweight applications: Ascon [DEMS16] and ACORN [Wu16a];

• High-performance applications: AEGIS-128 [WP16] and OCB [KR16];

• Defense in depth: Deoxys-II [JNPS16] and COLM [ABD+16].

Ascon, the main target of this work, is a family of lightweight AEAD which has been
selected as the primary choice for the lightweight use case in the final portfolio of the
CAESAR competition. It was subsequently submitted to the LWC project – a public
competition-like process to solicit, evaluate, and standardize authenticated encryption
and hashing schemes suitable for highly constrained computing environments initiated by
the US National Institute of Standards and Technology (NIST) [Nat19]. On August 30,
2019, Ascon was selected as one of the 32 second-round candidates out of the 57 initial
submissions (only 56 were accepted as the first-round candidates) based on public feedbacks
and internal reviews. As one of the winning algorithms of the CAESAR competition
and second-round candidates of the NIST LWC project, Ascon has withstood extensive
self-evaluation and third-party cryptanalysis, which are briefly summarized in the following.

Previous Cryptanalysis. Apart from the self-analysis provided by the designers [DEMS16],
Ascon has gone through substantial third-party cryptanalysis. First of all, without con-
sidering the AEAD context, the security of the underlying permutation of Ascon was
evaluated with respect to (impossible) differential cryptanalysis [Tez16], (zero-correlation)
linear cryptanalysis [DEM15], differential-linear cryptanalysis [DEMS15, BDKW19], inte-
gral (based on division properties) or zero-sum distinguishing attacks [YLW+19, DEMS15,
GRW16, Tod15], and subspace trail cryptanalysis [LTW18]. While these works do provide
a deeper understanding of the security of Ascon permutation, generally they do not
directly translate into meaningful attacks in the AEAD setting.

Cryptanalysis of Ascon in the AEAD context can be divided into two categories.
In the first category, generic security analysis or comparison of a series of constructions
with Ascon or its variants as special cases is conducted. For example, security analysis
and bounds for the full-state keyed duplex with application to Ascon was discussed
in [DMA17]. In [VV18], Vaudenay and Vizár analyzed the misuse resistance of Ascon
along with other third-round CAESAR candidates. At ASIACRYPT 2014, Jovanovic et
al. provided security proofs for sponge-duplex mode concluding that Ascon can process
higher data rate without degradation in security [JLM14]. Later, in [SY15], Sasaki and
Yasuda gave some suggestions on processing associated data efficiently in SpongeWrap-like
modes (including Ascon), which can achieve the same security bounds as Jovanovic et al.
[JLM14]. Moreover, Forler et al. discussed the reforgeability of Ascon and many other
authenticated encryption algorithms in [FLLW17].

The second category is more relevant to our work, where concrete cryptanalysis specific
to Ascon is performed, including state recovery attacks [DKM+17], differential-linear
cryptanalysis [DEMS15], and cube-like attacks [LZWW17, DEMS15, LDW17]. A summary
of the results are given in Table 1, from which we can see that the best claimed attack
penetrates seven rounds of Ascon. It is worth noting that all 7-round attacks on Ascon in
literature so far require some misuse of the target violating the security claims of the design
and thus are invalid. Therefore, the best previous attack only reaches six rounds [LDW17].
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Table 1: Summary of attacks and distinguishers on Ascon in the AEAD context
Type #Rounds Data Time Method Validity Source

Key recovery

4/12 218 218 Differential-linear 3 [DEMS15]
5/12 236 236 Differential-linear 3 [DEMS15]
5/12 235 235 Cube-like 3 [DEMS15]
5/12 224 224 Conditional cube 3 [LDW17]
6/12 266 266 Cube-like 3 [DEMS15]
6/12 240 240 Conditional Cube 3 [LDW17]
7/12 277.2 2103.9 Conditional cube 7 [LDW17]
7/12 277.2 277 Conditional cube‡ 7 [LDW17]
7/12 233 297 Cube-like 5 [LZWW17]
7/12 233 297 Cube tester 5 [LZWW17]
7/12 264 2123 Cube 3 Section 6

Distinguisher

4/12 29 29 Degree 3 [DEMS15]
5/12 217 217 Degree 3 [DEMS15]
6/12 233 233 Degree 3 [DEMS15]
4/12 25 25 Division Property 3 Section 7
5/12 216 216 Division Property 3 Section 7
6/12 231 231 Division Property 3 Section 7
7/12 260 260 Division Property 3 Section 7

Forgery

3/12 233 233 Differential 3 [DEMS15]
4/12 2101 2101 Differential 7 [DEMS15]
4/12 29 29 Cube-like 5 [LZWW17]
5/12 217 217 Cube-like 5 [LZWW17]
6/12 233 233 Cube-like 5 [LZWW17]

State recovery 5/6 218 266 Cube-like 5 [LZWW17]

7: Invalid as the required data is beyond 264; 5: Invalid as the nonce is repeated; ‡ : Weak
key setting

Our Contributions. Before listing the contributions, we would like to emphasize the
security claims [DEMS16] made by the designers of Ascon and discuss their implications
on previous cryptanalysis:

“The number of processed plaintext and associated data blocks protected by the
encryption algorithm is limited to a total of 264 blocks per key ...” (see [DEMS16,
Chapter 2, Page 9])

“In order to fulfill the security claims ..., implementations must ensure that
the nonce (public message number) is never repeated for two encryptions under
the same key ...” (see [DEMS16, Chapter 3, Page 12])

The above two statements indicate that any attack requiring more than 264 known/chosen
data (plaintexts, associated data or nonces) blocks under a same key is invalid. Taking
the 7-round attack given by Li et al. [LDW17] for example, it requires at least 265 nonces
with the same secret key, and since they employed several different cubes of dimension 65,
their actual data complexity is more than 265. Accordingly, we conclude that this attack
is invalid and the best known attack reaches only six rounds of Ascon.1 In this work,
complying with the security requirements, we present the first misuse-free key recovery
and distinguishing attacks on 7-round Ascon. Our contributions are twofold.

Firstly, we propose a generic technique called partial polynomial multiplication for cube
attacks. The technique enables to recover the superpoly of a given cube by multiplying

1We have confirmed this issue with both the designers of Ascon and the authors of [LDW17].
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the simplified versions of the involved Boolean functions. More precisely, under certain
conditions, the superpoly of a 2d-dimensional cube at r-th round can be computed by
multiplying some specific sets of partial polynomials (the so-called degree-d homogeneous
parts) from previous rounds. We apply this technique on 7-round Ascon and could recover
the superpolies of a 64 dimensional cube with time complexity of about 2123 7-round Ascon
permutations. We give the superpoly recovering procedure for different configurations of
cube and non-cube variables to achieve a key-recovery attack with minimal time complexity.
Our best attack can recover the 128-bit secret key with time and memory complexities of
2123 and 2101 bits, respectively.

Secondly, we identify several new cube distinguishers for Ascon in the AEAD setting
using the division property. We show that there exist 219.27 60 dimensional cubes whose
superpolies are constant zero after seven rounds. To the best of our knowledge, these
are the first distinguishers for 7-round Ascon. For 4-, 5-, and 6-round Ascon, we
find distinguishers with complexities 25, 216, and 231 which improves the best known
cube distinguishers by a factor of 24, 2, and 22, respectively. All the source codes for
verification are publicly available at https://github.com/raghavrohit/ascon_cube_
distinguishers.

Outline. The rest of the paper is organized as follows. Section 2 provides an overview of
useful techniques in the theory of Boolean functions, cube attacks, and division properties.
The specification of Ascon and our attack models are described in Section 3. We introduce
the notion of partial polynomial multiplication in Section 4 and give our key recovery
attacks in Sections 5 and 6. Our MILP modeling for the division properties and the
obtained distinguishers are discussed in Section 7. Finally, we conclude in Section 8 with
some open problems.

2 Notations and Preliminaries
Let A and B be two sets. The number of elements in A is written as |A|. The set of
all elements in A but not in B is denoted by A − B. Let F2 = {0, 1} be the finite field
with two elements and f : Fn2 → F2 be a Boolean function whose algebraic normal form
(ANF) is f(x) =

∑
u∈Fn

2
aux

u, where x = (x0, · · · , xn−1), au ∈ F2, and xu =
∏n−1
i=0 xi

ui .
We denote the coefficient of the monomial xu in f by au = Coef (xu). Given a set
I ⊆ {0, · · · , n− 1} of indexes, x[I] denotes the set of variables {xi : i ∈ I} and xI denotes
the monomial

∏
i∈I xi. Let u = (u0, · · · , un−1) and v = (v0, · · · , vn−1) be two vectors in

Fn2 . We say u � v if ui ≤ vi for all i ∈ {0, · · · , n− 1}. In addition, the Hamming weight of
u is denoted by wt(u). Note that we use “+” to denote all kinds of additions (of integers,
field elements, Boolean functions, etc.), the actual meaning of a specific use instance should
be clear from the context.

Lemma 1 ([Car10, Can16]). Given an oracle access to the Boolean function f , the
coefficient of the monomial xu in f for a particular u can be computed as Coef (xu) =∑

x�u f(x) with 2wt(u) evaluations of f .

Lemma 2 ([Car10, Can16]). The set of all coefficients {au =
∑

x�u f(x) : u ∈ Fn2} of
the ANF of f can be obtained from the truth table of f with the so-called fast Möbius
transform with about n2n XOR operations2.

Definition 1. The degree of a Boolean function f , represented by deg(f), is defined as
max{wt(u) : u ∈ Fn2 and Coef (xu) 6= 0}.

2In [Can16], the complexity is given as n2n−1. We note that this complexity discrepancy of the fast
Möbius transform does not affect the dominant terms of the complexities of our attacks.

https://github.com/raghavrohit/ascon_cube_distinguishers
https://github.com/raghavrohit/ascon_cube_distinguishers
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Definition 2. The degree-d homogeneous part of a Boolean function f =
∑

u∈Fn
2
aux

u is
defined as the sum of all degree-d terms of f , and is denoted as

}d(f) =
∑

u∈Fn
2 ,wt(u)=d

aux
u.

Example 1. For a Boolean function f(x0, x1, x2, x3) = x0x1x2 +x0x2x3 +x1x2x3 +x0x1 +
x0x3 +x1 +x3 +1 the degree-3 homogeneous part of f is }3(f) = x0x1x2 +x0x2x3 +x1x2x3
while the degree-2 homogeneous part of f is }2(f) = x0x1 + x0x3.

Keyed Boolean Functions. In the context of symmetric-key cryptanalysis, we typically
regard each output bit of a keyed primitive with an m-bit secret key as a keyed Boolean
function fk : Fn2 → F2 whose algebraic normal form is

fk(x) =
∑

u∈Fn
2

au(k)xu,x ∈ Fn2 ,k ∈ Fm2 , (1)

where we regard k as a (secret) constant. In this setting, the coefficient Coefk
(xu) can

be represented as a Boolean function from Fm2 → F2 which maps k to au(k). In fact, the
function mapping (x,k) to fk(x) can be expressed as a Boolean function from Fm+n

2 to
F2. However, in our work, k (secret constants) and x (Boolean variables) are not treated
equally. When we talk about the degree of a keyed Boolean function, the degree is defined
with respect to x. Moreover, we may use f(x,k) to denote the keyed Boolean function
fk(x) when there is no confusion. We use the following example to clarify potential
notation confusions caused by keyed Boolean functions.

Example 2. For a keyed Boolean function f(x0, x1, x2, k0, k1, k2) = k0k1k2x0x1x2 +
k1k2x0x1x2 +k0x0x2x3 +k1x0x1 +k2x0x1 +x2 +k2 = (k0k1k2 +k1k2)x0x1x2 +k0x0x2x3 +
(k1 + k2)x0x1 + x2 + k2 with a 3-bit secret key (k0, k1, k2), the degree of f is 3 rather than
6. The set of all terms involved in f is

{(k0k1k2 + k1k2)x0x1x2, k0x0x2x3, (k1 + k2)x0x1, x2, k2}

rather than {k0k1k2x0x1x2, k1k2x0x1x2, k0x0x2x3, k1x0x1, k2x0x1, x2, k2}. Also, we have
Coef (x0x1x2) = k0k1k2 + k1k2. The degree-3 homogeneous part of f is }3(f) = (k0k1k2 +
k1k2)x0x1x2 +k0x0x2x3 while the degree-2 homogeneous part of f is }2(f) = (k1 +k2)x0x1.

According to Lemma 1, for any keyed Boolean function f and any given k, the value of
Coef (xu) can be obtained with 2wt(u) evaluations of f . Thus, the truth table of Coef (xu)
for all possible k ∈ Fm2 can be obtained with 2m+wt(u) evaluations of f . Then, applying
Lemma 2, the ANF of the Coef (xu) in k can be derived with aboutm2m = 2m+log2 m XOR
operations. Therefore, if wt(u) is much larger than log2 m, the complexity for recovering
the ANF of Coef (xu) for this particular u can be estimated as 2m+wt(u) evaluations of f .
For the sake of convenience, we write it as a Lemma.

Lemma 3. For the Boolean function shown in Equation 1, it takes 2m+wt(u) evaluations
of f to recover au(·) for a certain u where wt(u) > log2(m).

Cube Attack and Division Property. The cube attack was proposed at EUROCRYPT
2009 by Dinur and Shamir to analyze black-box tweakable polynomials [DS09]. Given a
keyed Boolean function f(x,k) with n-bit public input x ∈ Fn2 and m-bit secret input
k ∈ Fm2 , for a set I ⊆ {0, · · · , n− 1} with its complementary set Ī = {0, · · · , n− 1}− I, we
have

f(x,k) = xI · pI(x[Ī],k) + q(x,k),
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where each term of q(x,k) misses some variables in x[I]. We call xI the cube term
and pI(x[Ī],k) the superpoly of xI in f(x,k). If we set the variables in x[Ī] to some
fixed constants, the superpoly pI(x[Ī],k) is a Boolean function of k. How to recover the
algebraic normal form of pI(x[Ī],k) in the key bits is a fundamental problem in cube
attacks. Concerning the superpoly, we have the following lemma.

Lemma 4 ([DS09]). For a set I ⊆ {0, · · · , n− 1} and a keyed Boolean function

f(x,k) =
∑

u∈Fn
2

au(k)xu = xI · pI(x[Ī],k) + q(x,k),

we have pI(x[Ī],k) =
∑

x[I]∈F|I|2
f(x,k).

In Lemma 4, if I = {0, · · · , n − 1}, then the superpoly of xI in f(x,k) equals to
Coef (xI). In this case, recovering the ANF of the superpoly of xI is equivalent to
recovering the coefficient Coef (xI).

A very useful cryptanalytic technique in literature is the division property initially pro-
posed by Todo at EUROCRYPT 2015 [Tod15] as a generalization of integral cryptanalysis.
Its bit-based variants [TM16] together with their automatic search methods [XZBL16]
have been found to have a great potential in probing the structure of a Boolean function
described as a sequence of composition of Boolean functions whose overall ANF is too com-
plicated to compute [TIHM17, WHT+18, WHG+19, HLM+20]. In particular, bit-based
division property can detect the presence or absence of a monomial in the target Boolean
function, and therefore can be used to (partially) determine the algebraic structures of su-
perpolies in cube attacks [TIHM17, WHT+18, WHG+19, HLM+20, HLLT20, HSWW20].
In fact, division property has become a quite standard tool in assisting cube attacks. In
this work, we take the MILP (Mixed Integer Linear Programming) based approach to
search for division properties and find cube distinguishers of Ascon. The technical details
will be introduced on-site in Section 7 when immediately necessary.

3 Specification and Useful Properties of Ascon
Ascon (designed by Dobraunig, Eichlseder, Mendel, and Schläffer) is a family of AEAD
algorithms [DEMS16]. At a high level, as depicted in Figure 1, the Ascon AEAD algorithm
takes as input a nonce N , a secret key K, an associated data A and a plaintext or message
M , and produces a ciphertext C and a tag T . The authenticity of the associated data and
message can be verified against the tag T . Table 2 lists the variants of Ascon along with
the recommended parameter sets.

Ascon
Nonce N

Associated data A
Message M

Ciphertext C

Tag T

Key K

Figure 1: The high-level structure of the encryption algorithm of Ascon

Ascon adopts a MonkeyDuplex [Dae12] mode with a stronger keyed initialization and
keyed finalization phases as illustrated in Figure 2. The underlying permutations pa and
pb are iterative designs, whose round function p is based on the substitution permutation
network design paradigm and consists of three simple steps pC , pS , and pL. We now
describe the round function p and each step in detail.
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Table 2: Ascon variants and their recommended parameters

Name State size Rate r
Size of Rounds

Key Nonce Tag pa pb

Ascon-128 320 64 128 128 128 12 6
Ascon-128a 320 128 128 128 128 12 8

The round function p = pL ◦ pS ◦ pC operates on a 320-bit state arranged into
five 64-bit words. The input state to the round function at r-th round is denoted by
Xr

0‖Xr
1‖Xr

2‖Xr
3‖Xr

4 while the output state after pS is given by Y r0 ‖Y r1 ‖Y r2 ‖Y r3 ‖Y r4 . A
bit of these words is denoted by [·]. For instance, Xr

i [j] represents the j-th bit (starting
from left) of word i at r-th round for j = 0, · · · , 63. Alternatively, Xr

i [j] is also denoted
as Xr[64i + j]. The steps pC , pS , and pL (with round superscript removed for simplic-
ity) are visualized in Figure 3, Figure 5 and Figure 6 3, respectively and described as follows.

IV‖K0‖K1‖N0‖N1
320

pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

Figure 2: The encryption algorithm of Ascon

Addition of constants (pC). An 8-bit constant is XORed to the bit positions 56, · · · , 63 of
the 64-bit word X2 at each round.

X4

X3

X2

X1

X0

Figure 3: Addition of constant in word X2 of state

Substitution layer (pS). Update each slice of the 320-bit state by applying the 5-bit Sbox
defined by the following algebraic normal forms:

Y0[j]← X4[j]X1[j] +X3[j] +X2[j]X1[j] +X2[j] +X1[j]X0[j] +X1[j] +X0[j]
Y1[j]← X4[j] +X3[j]X2[j] +X3[j]X1[j] +X3[j] +X2[j]X1[j] +X2[j] +X1[j] +X0[j]
Y2[j]← X4[j]X3[j] +X4[j] +X2[j] +X1[j] + 1
Y3[j]← X4[j]X0[j] +X4[j] +X3[j]X0[j] +X3[j] +X2[j] +X1[j] +X0[j]
Y4[j]← X4[j]X1[j] +X4[j] +X3[j] +X1[j]X0[j] +X1[j]

(2)
The substitution layer is typically implemented using the bitsliced form rather than

applying 5-bit operation on each slice (Equation 2). This is illustrated in Figure 4 where
the operations are performed on each of the five 64-bit word.

By studying the ANF of the Sbox in Equation 2, the following properties are given.
3Thanks to TikZ for Cryptographers [Jea16]. Ascon figures are adapted from [DEMS]
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X0

X1

X2

X3

X4

⊕

⊕

⊕

5
5

5
5

5

�

�

�

�

�

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

5

Y0

Y1

Y2

Y3

Y4

Figure 4: Bitsliced implementation of the substitution layer

Property 1. Among the 5-bit output of the Sbox, X4[·] never multiplies with X2[·].

Property 2. For each bit of the output, X3[·]X1[·] and X3[·]X2[·] always appear together
or do not appear.

Property 3. If X3[j] = X4[j], then Y2[j] and Y3[j] are independent of X3[j] and X4[j].

X4

X3

X2

X1

X0

Figure 5: The substitution layer pS

Linear diffusion layer (pL). Apply a linear transformation Σi to each 64-bit word Yi with
0 ≤ i < 5, where Σi is defined as

X0 ← Σ0(Y0) = Y0 + (Y0 ≫ 19) + (Y0 ≫ 28)
X1 ← Σ1(Y1) = Y1 + (Y1 ≫ 61) + (Y1 ≫ 39)
X2 ← Σ2(Y2) = Y2 + (Y2 ≫ 1) + (Y2 ≫ 6)
X3 ← Σ3(Y3) = Y3 + (Y3 ≫ 10) + (Y3 ≫ 17)
X4 ← Σ4(Y4) = Y4 + (Y4 ≫ 7) + (Y4 ≫ 41)

(3)

X4

X3

X2

X1

X0

Figure 6: The linear diffusion layer pL

Configurations for Our Attacks. The overall configuration for our attacks is visualized
in Figure 7, where only one block of message is involved and there is no associated data.
In our key-recovery attack, for each nonce N0||N1, we call the Ascon oracle to encrypt a
random plaintext P and obtain the corresponding ciphertext C, then X7

0 can be calculated
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IV‖K0‖K1‖N0‖N1
320

pa
⊕r

P C

Figure 7: Our attack model

by P + C. Since the linear operation Σ0 acts on word 0, we apply Σ−1
0 to X7

0 and obtain
Y 6

0 . Moreover, since

X7
0 = Σ0(Y 6

0 ) = Y 6
0 + (Y 6

0 ≫ 19) + (Y 6
0 ≫ 28)

the algebraic degrees of X7
0 [j] and Y 6

0 [j] are equal and it is simpler for us to recover
the superpoly for a certain cube term in Y 6

0 [j] than X7
0 [j]. Therefore, in this paper, we

always focus on recovering the superpoly of Y 6
0 [j], 0 ≤ j < 64. When without ambiguity,

the 7-round Ascon output means Y 6
0 [j]. For the distinguishers, the attack setting is

similar. The only difference is that instead of recovering a superpoly, we find cubes whose
superpolies are constant zero. In the following, we only give the key recovery attacks
and distinguishers for Ascon-128 in detail. However, they are equally applicable to
Ascon-128a.

4 New Technique for Superpoly Recovery: Partial Polyno-
mial Multiplication

In this section, we formally introduce the partial polynomial multiplication technique for
superpoly recovery. Let f(x,k) be a keyed Boolean function with algebraic normal form

f(x,k) =
∑

u∈Fn
2

au(k)xu,x ∈ Fn2 ,k ∈ Fm2 .

Here, by deg(f) we mean the algebraic degree in x. If f(x,k) can be written in the
following form

f(x,k) = ε(x,k) +
l−1∑
t=0

p(t)(x,k)q(t)(x,k)

such that deg(p(t)) ≤ n/2,deg(q(t)) ≤ n/2 and deg(ε) < n where n is even, then for
I = {0, · · · , n− 1},

Coef (xI) = Coe∑l−1
t=0

p(t)q(t)(xI) =
l−1∑
t=0

Coep(t)q(t)(xI), (4)

where we have

Coep(t)q(t)(xI) = Coe}n
2

(p(t))}n
2

(q(t))(xI)

=
∑

J⊆I,|J|= n
2

Coep(t)(xJ)Coeq(t)(xI−J). (5)

To summarize, ultimately, we only need to multiply the degree-n2 parts of p(t) and q(t)

for 0 ≤ t < l to determine the coefficient of xI in f . Putting it another way, the knowledge
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of all the coefficients of degree-n2 terms is enough to compute Coef (xI). Combining
Equation (4) and (5) gives

Coef (xI) =
l−1∑
t=0

∑
J⊆I,|J|= n

2

Coep(t)(xJ)Coeq(t)(xI−J). (6)

Assuming we have the oracle access to the keyed Boolean functions p(t)(x,k) and
q(t)(x,k) for 0 ≤ t < l, we can recover the algebraic normal form of Coef (xI) in two steps
as follows. First, we compute the algebraic normal forms of Coep(t)(xJ) and Coeq(t)(xJ)
for all J ⊆ I with |J |= n

2 . This step is equivalent to recover the degree-n2 homogeneous
parts of p(t)(x,k) and q(t)(x,k).
Lemma 5. Given an oracle access to the Boolean function p(x,k) =

∑
u∈Fn

2
au(k)xu

with x ∈ Fn2 and k ∈ Fm2 , the coefficients of all degree-d terms of p(x,k) can be recovered
with

(
n
d

)
· 2m+d evaluations of p.

Proof. It follows from Lemma 3 and the fact that there are at most
(
n
d

)
terms in }d(f).

According to Lemma 5, the complexity for recovering all the coefficients of degree-n2
terms of p(t)(x,k) for some t ∈ {0, · · · , l − 1} is about

(
n
n/2
)
· 2m+n/2 evaluations of p(t).

Moreover, if we know that p(t)(x,k) involves only mt < m bits of k, the time complexity
can be reduced to

(
n
n/2
)
·2mt+n/2 evaluations of p(t). Similarly, we can recover the degree-n2

homogeneous part of q(t).

Next, with the knowledge of all the coefficients of degree-n2 terms of p(t)(x,k) and
q(t)(x,k), we show how to compute∑

J⊆I,|J|= n
2

Coep(t)(xJ)Coeq(t)(xI−J).

For each J ⊆ I with |J |= n/2, if we know that Coep(t)(xJ) and Coeq(t)(xJ) involves
only mt < m bits of k in total and the set of key bits is {ki0 , · · · , kimt−1}, then we
can represent the algebraic normal form of Coep(t)(xJ) (or Coeq(t)(xJ)) as a 2mt-bit
sequence ν = (ν0, · · · , ν2mt−1) ∈ Fmt

2 such that νi = 1 if and only if the monomial∏mt−1
j=0 k

binmt (i)[j]
ij

appears in Coep(t)(xJ), where binmt
(i)[j] denote the j-th bit of the

mt-bit binary representation of the integer i. We then store Coep(t)(xJ ) as a 2mt -bit string
described as above into the hash table Tp(i) at address addr(xJ) = (µ0, · · · , µn−1) ∈ Fn2
with µi = 1 if and only if i ∈ J . After processing all possible J ⊆ I with |J |= n

2 ,
Tp(t) contains all coefficients of the degree-n2 terms of p(t), which requires

(
n
n/2
)
· 2mt bits

of memory. Similarly, we can construct the hash table Tq(t) for the coefficients of all
degree-n2 terms of q(t). Then

∑
J⊆I,|J|= n

2
Coep(t)(xJ )Coeq(t)(xI−J ) can be computed with

a complexity about
(
n
n/2
)
22mt memory accesses. In summary, to compute the coefficient

or the superpoly of xI in f :

Coef (xI) =
l−1∑
t=0

∑
J⊆I,|J|= n

2

Coep(t)(xJ)Coeq(t)(xI−J),

we require 2
∑l−1
t=0
(
n
n/2
)
· 2mt bits of memory,

∑l−1
t=0
(
n
n/2
)
22mt memory accesses, and(

n
n/2
)
· 2mt+n/2 evaluations of p(t) and q(t) for 0 ≤ t < l.

Note that in practice the evaluation of p(t) and q(t) for many different t’s may be
executed in parallel through an oracle access to a vectorial Boolean function with p(t) and
q(t) as its coordinate functions. Therefore, the complexity for this part should be analyzed
on a case by case basis.
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5 Key-Recovery Attack on 7-Round Ascon
In this section, we explain our key-recovery attack procedure on 7-round Ascon. Our
attack is divided into two phases: an offline phase where we recover the superpolies of a
64-degree cube based on the partial polynomial multiplication technique and an online
phase where we recover the secret key. We first describe the configuration of the initial
state and some core observations related to our attack and then give details of the offline
and online phases.

5.1 Initial State Configuration
We start with the initial state as depicted in Figure 8, where the 64 cube variables are set
in X0

4 and shown in green, and X0
0 is filled with the constant IV = 0x80400c0600000000.

The key bits (k0, · · · , k63) and (k64, · · · , k127) are loaded in X0
1 and X0

2 , respectively.
Throughout this section, X0

3 is fixed to an arbitrary constant and here we set it to
(0, · · · , 0) for the sake of simplicity. In this setting, the key bits are treated as symbolic
secret constants and the 64 bits of X0

4 are treated as Boolean variables x = (x0, · · · , x63).
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Figure 8: Initial state with cube variables in X0
4

With this configuration, every state bit Xr
i [j] (also denoted as Xr[64i+ j] hereafter) can

be regarded as a keyed Boolean function f(x,k) whose algebraic normal form is

f(x,k) =
∑

u∈Fn
2

au(k)xu,x ∈ F64
2 ,k ∈ F128

2 ,

where the coefficient of xu is symbolically represented as a Boolean function au : F128
2 → F2.

We now give the core observations based on which our superpoly recovery is performed.
Note that some observations have been used in [DEMS15], but for the convenience of
reference, we still state them as lemmas.

Lemma 6. For any r ∈ {1, · · · , 7}, i ∈ {0, · · · , 4}, and j ∈ {0, · · · , 63}, the degree of Xr
i [j]

is upper bounded by 2r−1.

Proof. The round function is quadratic and X1
i [j] is affine with respect to the initial

configuration given in Figure 8.

Lemma 7 (Adapted from [DEMS15]). For 1 ≤ r ≤ 7 and I = {i0, i1, . . . , i2r−1−1} ⊆
{0, 1, . . . , 63}, the coefficient of the monomial xI =

∏
i∈I xi in Xr[i] for any i ∈ {0, · · · , 319}

can be fully determined by the 2r−1 key bits in {ki0 , · · · , ki2r−1−1
}.

Proof. We prove it by induction on r. When r = 1, I = {i0}, 0 ≤ i0 < 64. According to
Property 1 and Lemma 6, the coefficient of xI = xi0 in the polynomial X1[i], 0 ≤ i < 320,
is either ki0 or ki0 + 1. Assuming that this lemma holds for r = l < 7, we are going to
show that it also holds for r = l + 1.

For I = {i0, i1, . . . , i2l+1−1}, we consider the coefficient of monomial xi0 · · ·xi2l+1−1
in

X l+1[j]. X l+1[j] can be expressed as a quadratic function g of the bits of X l. Let

D = {(i, j) : 0 ≤ i < j < 320 and X l[i]X l[j] is a term of g}.
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Since deg(X l[s]) ≤ 2l for 0 ≤ s < 320, and deg(xi0 · · ·xi2l+1−1
) = 2l+1, we have

CoeXl+1[j](xi0 · · ·xi2l+1−1
) =

∑
(s,t)∈D

∑
J⊆I

CoeXl[s](xJ)CoeXl[t](xI−J).

According to the induction hypothesis, CoeXs[t](xJ ) and CoeXs[t′](xI−J ) can be fully deter-
mined by {kj : j ∈ J} and {kj : j ∈ I−J} respectively. Therefore, CoeXl+1[j](xi0 · · ·xi2l+1−1

)
is a function of variables in {ki : i ∈ J ∪ (I − J) = I}.

5.2 Offline Phase: Superpoly Recovery
Before going any further, we emphasize that this process is completely offline and is done
once for all (secret keys). Let I = {0, 1, . . . , 63} then xI =

∏63
i=0 xi. We are going to recover

the superpolies of the cube term xI for Y 6[i] (recall that we can ignore Σ0 at the 7-th round
of Ascon). For the sake of concreteness, we present the detailed procedure for recovering
the superpoly of xI for X6[0], which is equally applicable to X6[i] for all i ∈ {0, · · · , 319}.
As Lemma 4 shows, if we choose xI as the cube term, then CoeX6[0](xI) is just the
superpoly of the cube term xI . To recover the algebraic normal form of CoeX6[0](xI),
we apply the method presented in Section 4 to the following equation derived from the
algebraic normal forms of the Ascon Sbox given in Equation 2:

Y 6
0 [0] = X6

4 [0]X6
1 [0] +X6

3 [0] +X6
2 [0]X6

1 [0] +X6
2 [0] +X6

0 [0]X6
1 [0] +X6

1 [0] +X6
0 [0]. (7)

Since deg(Y 6
0 [0]) ≤ 64 and deg(X6

4 [0] + X6
2 [0] + X6

0 [0]) ≤ 32 due to Lemma 6, applying
Equation 6 to Equation 7 gives

CoeY 6
0 [0](xI) = α+ β + γ, (8)

where


α =

∑
J⊆I,|J|=32

CoeX6
4 [0](xJ )CoeX6

1 [0](xI−J ) =
∑

J⊆I,|J|=32

CoeX6[256](xJ )CoeX6[64](xI−J )

β =
∑

J⊆I,|J|=32

CoeX6
2 [0](xJ )CoeX6

1 [0](xI−J ) =
∑

J⊆I,|J|=32

CoeX6[128](xJ )CoeX6[64](xI−J )

γ =
∑

J⊆I,|J|=32

CoeX6
0 [0](xJ )CoeX6

1 [0](xI−J ) =
∑

J⊆I,|J|=32

CoeX6[0](xJ )CoeX6[64](xI−J )

. (9)

Therefore, to recover the algebraic normal form of CoeY 6
0 [0](xI) (regarded as a Boolean

function with variables ki, 0 ≤ i < 64 ), we need to recover the algebraic normal forms of α,
β, and γ, which in turn can be derived from the algebraic normal forms of the coefficients
of all degree-32 terms of X6

i [j].

Step 1: Computing the ANFs of α, β, and γ. For a given J = {i0, · · · , i31} ⊆ I =
{0, · · · , 63}, Lemma 7 tells us that the coefficient of xJ in X6[j] is a Boolean function in
variables {ki0 , · · · , ki31} rather than {k0, ..., k63, k64, · · · , k127}.

The truth table of this Boolean function can be obtained after 232×232 = 264 evaluations
of the 6-round Ascon permutation, where for each possible value of (ki0 , · · · , ki31) ∈ F32

2 , we
evaluate the coefficient value of xI based on Lemma 1. Since one evaluation of the 6-round
Ascon permutation gives X6[j] for all j ∈ {0, · · · , 319}, after 232 × 232 = 264 evaluations
of the 6-round Ascon permutation we get the 320 truth tables for the coefficients of xJ in
{X6[j] : 0 ≤ j < 320}.

By applying the fast Möbius transform given in Lemma 2 to the 320 truth tables,
we obtain the algebraic normal forms of CoeX6[j](xJ) for all j ∈ {0, · · · , 319} with about
320×32×232 XOR operations. In summary, the time complexity of recovering the algebraic
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normal forms of CoeX6[j](xJ) for all j ∈ {0, · · · , 319} is dominated by 264 evaluations
of the 6-round Ascon permutation. Since there are totally

(64
32
)
≈ 260.7 different J ⊆ I

with |J |= 32, it takes 260.7+64 ≈ 2124.7 calls to the 6-round Ascon permutation to obtain
the algebraic normal forms of CoeX6[j](xJ) for all possible J ⊆ I with |J |= 32 and all
j ∈ {0, · · · , 319}. Then we store each CoeX6[j](xJ) as a 232-bit string into a table Tj at
address addr(xJ) ∈ F64

2 as described in Section 4. Finally, we obtain 320 tables T0, · · ·,
T319 which requires about 320× 260.7 × 232 = 2101 bits of memory.4 Using these tables, α,
β, γ, and thus CoeY 6

0 [0](xI) can be computed with a complexity of 3×
(64

32
)
×22×32 ≈ 2126.3

memory accesses according to the analysis of Section 4. For 64 superpolies, the complexity
would be 2132.3 memory accesses. In Section 6.1, we will further show several techniques
to reduce this complexity to 2123.28 7-round Ascon.

Step 2: Generating the comparison tables for key candidates. With the 64 recovered su-
perpolies CoeY 6

0 [0](xI),CoeY 6
0 [1](xI), . . . ,CoeY 6

0 [63](xI), we can define a vectorial Boolean
function F : F64

2 → F64
2 mapping (k0, k1, . . . , k63) to (CoeY 6

0 [0](xI), . . . ,CoeY 6
0 [63](xI)).

Then, we store each (k0, k1, . . . , k63) ∈ F64
2 into a hash table H at address F (k0, k1, . . . , k63),

which requires about 264 × 64 = 270 bits of memory.

5.3 Online Phase: Key Recovery
For a cube set {x = (x0, x1, . . . , x63) ∈ F64

2 } set as Figure 8, we choose one random 64-bit
plaintext P , call the Ascon to encrypt P and obtain the corresponding C. Then the
first 64-bit output of 7-round Ascon can be evaluated as P + C. Summing all P + C
under all x ∈ F64

2 , we get the 64-bit cube sum, denoted as (z0, z1, . . . , z63). Then the
key candidates are just obtained from H[(z0, z1, . . . , z63)]. On the average only one key
candidate is suggested. The complexity of this step is 264 queries of Ascon. The remaining
64-bit key (k64, k65, . . . , k127) can be obtained by an exhaustive search, which requires
another 264 queries. The total complexity in online phase is then 265 7-round Ascon
permutations queries.

6 Improved Key-Recovery Attacks
In this section, we present some techniques (specific to Ascon only) which can reduce the
number of memory accesses and give the complexity analysis of key-recovery in 7-round
Ascon permutations.

6.1 Techniques for Improving the Superpoly-recovery Complexity
Combine the Similar Monomials. Our first technique is based on combining the common
terms in the degree-2 homogeneous part of Y 6

0 [j]. Recall Equations 8 and 9, where we have
computed α, β and γ separately. However, we can rearrange X6

4 [0]X6
1 [0] +X6

2 [0]X6
1 [0] +

X6
0 [0]X6

1 [0] as X6
1 [0]

(
X6

4 [0] +X6
2 [0] +X6

0 [2]
)
, which simplifies Equation 8 as

CoeY 6
0 [0](xI) = CoeX6

4 [0]+X6
2 [0]+X6

0 [0])X6
0 [0](xI)

=
∑

J⊂I,|J|=32

CoeX6
4 [0]+X6

2 [0]+X6
0 [0](xJ)CoeX6

1 [0])(xI−J). (10)

This reduces the time complexity of recovering all 64 superpolies by a factor of 3.
4The actual memory is 256×260.7×232 = 2100.7 as the quadratic term involving X6

3 [j] does not appear
in Y 6

0 [j] for all j ∈ {0, · · · , 63}. This means we do not need to compute the tables T192, · · ·, T255.
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Choose New Initial State. Our second technique utilizes Property 2 of the Sbox (related
to X0

3 rather than X0
4 ) and algebraic degree bounds of the superpolies. The new initial

state is depicted in Figure 9 where we regard X0
3 [i], 0 ≤ i < 64 as the cube variables and

set X0
4 as the zero constant. From Property 2, the following lemma could be deduced

(previously used in [DEMS15] to attack 5- and 6-round Ascon). We state it here for
completeness.
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Figure 9: Initial state with cube variables in X0
3

Lemma 8. (Adapted from [DEMS15]) For 1 ≤ r ≤ 7 and I = {i0, i1, . . . , i2r−1−1} ⊆
{0, 1, . . . , 63}, the coefficient of the monomial xI =

∏
i∈I xi in Xr[i] for any i ∈ {0, · · · , 319}

can be fully determined by the 2r equivalent key bits in {ki0 + ki0+64, · · · , ki2r−1−1
+

ki2r−1−1+64}.

In the following, we always denote κi = ki + ki+64. Given I = {0, 1, . . . , 63} and
xI =

∏63
j=0 xj , the CoeY 6

0 [i](xI) is a polynomial of {κ0, κ1, . . . , κ63} (follows from Lemma 8).
According to Equation 10, we need to compute CoeX6

4 [0]+X6
2 [0]+X6

0 [0])(xJ )CoeX6
1 [0])(xI−J )

for certain J ∈ I, |J |= 32, each of which requires 232 6-round Ascon permutations.
However, if the upper bound on the degree of CoeX6[i](xJ) is d, then the number of
monomials in CoeX6[i](xJ ) is at most

∑d
i=0
(32
i

)
≤ 232. Thus, we only need to consider the

keys with Hamming weight at most d. The complexity of constructing the truth table for
CoeX6[i](xJ ) then reduces to 232 ·

∑d
i=0
(32
i

)
. For d < 32, this complexity can be reduced.

To compute the values of d, we use the division property method similar to [WHT+18].
Since CoeX6[i](xJ ) is a polynomial of {κj : j ∈ J}, it is not trivial to model κj , i ∈ J into
the MILP model. However, we can write each monomial in CoeX6[i](xJ) as

∏
j∈J

κj =
∏
j∈J

(kj + kj+64) =
∑
J′⊆J

 ∏
j′∈J′

κj′
∏

j′′∈J−J′
κj′′+64

.
The above equation shows that the degree of

∏
j∈J κj is equivalent to the degree of∏

j′∈J′ κj′
∏
j′′∈J−J′ κj′′+64. The later can be modeled easily in MILP. The upper bound

returned by the division property algorithm on the degrees of CoeX6[i](xJ ) for all J, |J |= 32
and 0 ≤ i < 320 is 15. Thus, the time complexity to compute CoeX6[i](xJ) is given by∑15
i=0
(32
i

)
· 232 ≈ 230.78+32 = 262.78. Accordingly, the complexity of computing the degree-

32 terms of X6[i], 0 ≤ i < 320 is then reduced to 260.7+62.78 = 2123.48 6-round Ascon
permutations.

In the superpoly recovery of Y 6
0 [0] (Equation 10), we have assumed that there are

232 monomials in both CoeX6
4 [0]+X6

2 [0]+X6
0 [0](xJ) and CoeX6

1 [0](xI−J) for each J . As a
result, the complexity of computing CoeX6

4 [0]+X6
2 [0]+X6

0 [0](xJ)CoeX6
1 [0](xI−J) is roughly

estimated as 232+32 = 264 memory accesses. Now we know that both of them have at
most

∑15
i=0
(32
i

)
≈ 230.78 monomials. Hence, the time complexity is reduced to at most

261.56. Finally, the time complexity of computing Equation 10 is reduced to 2122.26 memory
accesses. In other words, it takes 2122.26 memory accesses to recover one superpoly.
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Computing 64 Superpolies in a Parallel Fashion. For all 64 superpolies CoeY 6
0 [i](xI), 0 ≤

i < 64, the complexity would be 2128.26 memory accesses if we recover them one by one.
However, we can recover the 64 superpolies in a parallel way. For each J in Equation 10,
we can represent CoeX6

4 [0]+X6
2 [0]+X6

0 [0](xJ ) and CoeX6
1 [0])(xI−J ) in two bit strings of length

230.78, denoted by S and S′, respectively. For 0 ≤ i < 230.78, S[i] and S′[i] are the
coefficients (0 or 1) of the monomials in CoeX6

4 [0]+X6
2 [0]+X6

0 [0](xJ) and CoeX6
1 [0])(xI−J),

respectively, which are ordered by the lexicographic order of the monomials. Then the
coefficient of the corresponding monomials of CoeX6

4 [0]+X6
2 [0]+X6

0 [0](xJ)CoeX6
1 [0])(xI−J)

can be computed as S[i] · S[j] for all 0 ≤ i, j < 230.78. For the 64 superpolies, we can
process 64 different pairs of (S, S′) at the same time by arranging 64 different S’s and S′’s
in the bit-slicing fashion. Then recovering the 64 superpolies still takes 2122.26 memory
accesses.

The online phase differs slightly now as we set cube variables in X0
3 instead of X0

4 .
After the offline phase, we recover 64-bit equivalent keys {κ0, κ1, . . . , κ63}. To recover the
remaining 64-bit key information, we do an exhaustive search over the 64-bit key space
{k0, k1, . . . , k63}. For each guess of {k0, k1, . . . , k63}, we first compute k64+i = ki + κi for
i ∈ {0, 1, . . . , 63} and then determine the right key by testing a plaintext and ciphertext
pair.

Discussion about the Recovered Superpolies. Since the superpolies are too large to be
practically recover, our attacks are actually based on an assumption that the superpolies for
7-round Ascon are (almost) balanced Boolean functions. Such an assumption is common
and also used in the conditional cube attacks on 7-round Ascon [LDW17].

If the superpolies are highly biased, then we cannot extract 64 keys in the online phase
because many different keys will lead to the same cube sum. To reflect some behaviors of
the 7-round superpolies, we tested 161827 superpolies for 5-round Ascon with randomly
selected 16-dimensional cubes and computed the truth tables of the superpolies, among
216 different key values (According to Lemma 7, only 16 key bits are involved) there are
averagely 32591 entries with value 1 and 32945 entries with value 0. In other words, many
superpolies for 5-round Ascon are almost balanced functions. So we expect the 7-round
superpolies to have the same behavior.

In an extreme case, the superpolies may be constant then our key-recovery attack will
degenerate to a distinguisher. There are some key-recovery attacks (based on superpolies
recovery) on stream ciphers like Trivium [CP08], Grain-128a [ÅHJM11] and Acorn [Wu16b]
that have proven to be distinguishing attacks only [YT19, HLM+20]. However, for Trivium
and Acorn, the degeneration happens as the degree upper bound of recovered superpoly
is 1. For the degeneration case of Grain-128a, the degree upper bound is 14 and at most
21 key bits are involved in the supperpoly. In case of 7-round Ascon, the degrees are
upper bounded by 30, and 64 equivalent key bits are involved. Also, note that currently all
degradations are observed in NLFSR-based stream ciphers. For SPN ciphers with much
stronger diffusion and confusion, intuitively the risk of degeneration should be low.

6.2 Evaluation of the Attack Complexities
Time Complexity. Firstly, we analyze the complexity in the offline phase, which is
dominated by the step 1 obviously. With the techniques in Section 6.1, the complexities
of step 1 are reduced to 2123.48 6-round Ascon permutations for computing degree-32
part of X6[i], 0 ≤ i < 320 and 2122.26 memory accesses for the multiplication of the partial
polynomials, respectively.

But the final complexity should be evaluated in 7-round Ascon permutations. One
6-round Ascon permutation is about 6

7 ≈ 2−0.2 7-round Ascon permutation. Then the
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complexity of computing degree-32 part of X6[i], 0 ≤ i < 320 is about 2123.28 7-round
Ascon permutations.

To estimate the complexity of the multiplication of the partial polynomial, we need to
compute the scale factor between the memory access (denoted by Nmem) and the 7-round
Ascon permutations (denoted by TAscon). Therefore, to compute TAscon from Nmem, we
define the scale factor η, satisfying TAscon ≈ η × Nmem.

In a conventional method, we can regard an Sbox operation as one memory access and
ignore the cost of the linear layer. Thus one round Ascon equals approximately 64 memory
accesses and 7-round Ascon equals 64× 7 ≈ 28.8 memory accesses, i.e., η = 2−8.8. Then
the complexity of computing Equation 10 phase is equivalent to about 2122.26−8.8 = 2113.46

7-round Ascon permutations.
Since that Ascon is designed for bit-sliced implementation, we still use another scale

for the transformation. Note that the bitsliced implementation of Ascon has eleven 64-bit
XORs for the Sbox layer (Figure 4) and ten 64-bit XORs for the linear layer (Equation
3). Thus, there are 7× (11 + 10) ≈ 27.2 64-bit XORs in total for 7 rounds. We ignore the
ANDs and NOTs because the XORs are heavier in general. Since all memory operations
in our attack are 64-bit vector, we assume one memory access equals one 64-bit XOR
operation. Accordingly, we have η = 2−7.2. Then the complexity of computing Equation 10
in the offline phase is about 2115.06 7-round Ascon permutations. At last, comparison
between different operations is always a difficult task. We can also compare a memory
access to one single encryption, then the time complexity for computing Equation 10 is
about 2122.26 encryptions. Note the complexity of the multiplication is considered in the
worst case where we always assume that the monomials in CoeX6

4 [0]+X6
2 [0]+X6

0 [0](xJ) and
CoeX6

1 [0](xI−J) will appear if we cannot make sure that they do not appear.
Overall, the time complexity in the offline phase is dominated by computing the

degree-32 part of X6[i], 0 ≤ i < 320, i.e., 2123.28 7-round Ascon permutations.
The complexity in the online phase is 265 which consists of one evaluation of the cube

sum and the exhaustive search on 64 key bits. In the end, the overall time complexity is
dominated by 2123.28 7-round Ascon permutations.

Memory Complexity. The memory complexity is dominated by the 320 tables T0,T1,
. . . ,T319. Each Ti, 0 ≤ i < 320 contains 260.7 232-bit strings, so the memory complexity is
about 320× 260.7 × 232 ≈ 2101 bits.

Remark. In this paper, we regard one memory access to a big table as one 64-bit XOR
operation, which is sometimes controversial. However, even we compare a memory access
to one single encryption, the time complexity is still less than exhaustive search, though
marginal. We hope the technique of partial polynomial multiplication can inspire further
improvements.

7 Distinguishers for Round-reduced Ascon Based on Divi-
son Property

In this section, we present several distinguishers on round-reduced Ascon by exploiting
the properties of Sbox and using the three-subset bit-based division property (3SBDP)
[HLM+20]. We first give an efficient MILP model for the 3SBDP propagation rules of
Ascon by adopting the arithmetic circuit approach. Next, we use this model to find cubes
whose superpolies are constant zero.
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7.1 Efficient MILP Modeling of Ascon
Let x, y1, y2, · · · , yn be binary variables. The 3SBDP propagation of a cipher can be
modeled with three basic operations, namely bitwise COPY, bitwise AND and bitwise
XOR [HLM+20]. To model these operations in MILP, the following linear inequalities are
sufficient.

• x
COPY−−−−−→ (y1, · · · , yn) : x ≥ yi for 1 ≤ i ≤ n, and y1 + y2 + · · ·+ yn ≥ x

• (y1, · · · , yn) AND−−−→ x : x = yi for 1 ≤ i ≤ n

• (y1, · · · , yn) XOR−−−→ x : x = y1 + y2 + · · ·+ yn

In Ascon, the state is initially loaded with an IV which has certain bits set as constant
1. Further, the constant 1 is XORed to part of state via round constant bits. Hence, to
model the division trails of XOR with constant 1, we propose a new propagation rule in
Proposition 1.

Proposition 1 (MILP model for XOR+1). Let x, y be binary variables and x XOR+1−−−−−→ y
be the three-subset division trail of y = x+ 1. Then the following inequality is sufficient to
describe the propagation of y = x+ 1.

y ≥ x.

We now proceed to model the 3SBDP of Ascon using the aforementioned rules.
Algorithm 1 describes the MILP model for Ascon reduced to r rounds. Below, we explain
the individual components of Algorithm 1 and give explicit linear inequalities in Appendix
A.

Modeling Sboxes. Ascon utilizes the same Sbox throughout multiple rounds. How-
ever, to have an accurate and efficient propagation of division trails, we model the
exact vectorial Boolean functions in each round. Let x0, · · · , x4 and y0, · · · , y4 be bi-
nary variables. We denote the Sbox modeling by SB([x0, x1, x2, x3, x4], [y0, y1, y2, y3, y4]),
and the corresponding inequalities can be generated with the convex hull computation
method [SHW+14]. Note that depending on xj = 0 or 1, the Sbox is modeled accordingly.
For instance, if x0 = 1, then we model the 4-bit to 5-bit vectorial Boolean function given
by SB([0, x1, x2, x3, x4], [y0, y1, y2, y3, y4]). This approach gives the flexibility to assign the
constant 0 or 1 to a state variable which in turn allows the precise modeling. Lines 6, 9,
19, and 22 in Algorithm 1 depict the Addition of constants and Substitution layer. The
exact modeling of SB(·) function is provided in Algorithm 3.

Modeling the Linear Layer. The linear layer takes the entire state as an input and mix
the 64-bit words by performing XOR operations (Equation 3). Thus, it can be simply
modeled with COPY and XOR rules. This is denoted by L([y0, · · · , y319], [x0 · · · , x319])
in Lines 13 and 26 of Algorithm 1. The exact modeling of L(·) function is provided in
Algorithm 4.

Verification. For verifying the correctness of our model, we computed the ANF of
each state bit and matched with the output of Sage. The source codes are available at
https://github.com/raghavrohit/ascon_cube_distinguishers in case reader wants
to verify the models.

https://github.com/raghavrohit/ascon_cube_distinguishers
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Algorithm 1: MILP model for 3SBDP of Ascon
1 Input: Rounds: r, IV , key variables: k0, · · · , k127, nonce variables: v0, · · · , v127

and empty MILP modelM
Output: MILP modelM

2 \\ Round 0
3 for i = 0 to 63 do
4 M.addV ar ← y0

i , y
0
i+64, y

0
i+128, y

0
i+192, y

0
i+256

5 if i ≤ 55 then
6 SB(M, [IV [i], ki, ki+64, vi, vi+64], [y0

i , y
0
i+64, y

0
i+128, y

0
i+192, y

0
i+256]) . Sbox

layer
7 else
8 SB(M, [IV [i], ki, rc0

i−56 + ki+64, vi, vi+64], [y0
i , y

0
i+64, y

0
i+128, y

0
i+192, y

0
i+256])

. Add constants and Sbox layer
9 end

10 end
11 M.addV ar ← x0

0 · · · , x0
319

12 L(M, [y0
0 , · · · , y0

319], [x0
0, · · · , x0

319]) . Linear layer
13 \\ Round 1 to r − 1
14 for j = 1 to r − 1 do
15 for i = 0 to 63 do
16 M.addV ar ← yji , y

j
i+64, y

j
i+128, y

j
i+192, y

j
i+256

17 if i ≤ 55 then
18 SB(M, [xj−1

i , xj−1
i+64, x

j−1
i+128, x

j−1
i+192, x

j−1
i+256], [yji , y

j
i+64, y

j
i+128, y

j
i+192, y

j
i+256])

. Sbox layer
19 else
20 SB(M, [xj−1

i , xj−1
i+64, rc

j
i−56 +

xj−1
i+128, x

j−1
i+192, x

j−1
i+256], [yji , y

j
i+64, y

j
i+128, y

j
i+192, y

j
i+256]) . Add

constants and Sbox layer
21 end
22 end
23 M.addV ar ← xj0, · · · , x

j
319

24 L(M, [yj0, · · · , y
j
319], [xj0, · · · , x

j
319]) . Linear layer

25 end

7.2 Finding Good Cubes for Ascon

Our aim here is to find cubes with dimension less than 64 whose superpolies are constant
zero. We restrict ourselves to at most 63 dimensional cubes as the prescribed data limit
by designers for a single key is 264. The best known cubes that satisfy this limit can reach
4, 5 and 6-round Ascon and have dimensions 9, 17 and 33, respectively [DEMS15]. To
the best of our knowledge, there are no distinguishers on 7-round Ascon. Thus, it is
worth investigating whether there exists cubes which can distinguish the output of 7-round
Ascon with data complexity less than 264 encryptions.

To answer the above question, we first recall Property 3 of the Sbox. If we set X0
3 = X0

4
in Equation 2, then both Y 0

2 and Y 0
3 become independent of words X0

3 and X0
4 . This

means if we take N0 = N1, i.e., the nonce variables as vi = vi+64 for i = 0, · · · , 63 and use
them as cube variables, then after round 1, no cube variable vi is present in words X1

2 and
X1

3 . In words X1
0 , X

1
1 and X1

4 , the cube variables are linear. Since the algebraic degree of
round function is 2, the degree in cube variables is at most 64 after 7 rounds. The fact
that two words after round 1 are independent of cube variables suggests that the algebraic
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degree in cube variables may be less than 4, 8, 16, 32 and 64 after 3, 4, 5, 6 and 7 rounds,
respectively.

Upper Bounds of Degree. To compute the upper bounds of algebraic degree in cube
variables, we set N0 = N1 and model the 3SBDP of Ascon following Algorithm 1. We
then compute the degree upper bound of each state bit using Algorithm 2.

Algorithm 2: MILP model for computing the upper bound on degree
Input: Rounds: r, IV , key variables: k0, · · · , k127, nonce variables: v0, · · · , v127,

bit position target and empty MILP modelM
Output: degree upper bound of xr−1

i

1 Set vi = vi+64 for i = 0, · · · , 63 . Cube variables condition
2 Model r-round Ascon using Algorithm 1
3 for i = 0 to 319 do
4 if i == target then
5 M.addConstr(xr−1

i = 1)
6 else
7 M.addConstr(xr−1

i = 0)
8 end
9 end

10 M.setObjective(max
∑63
i=0 vi)

11 return Objective value

In Table 3, we list the obtained upper bounds for each state words till 7 rounds. For
7-round, the upper bound is 59 which means the superpoly of any 60 dimensional cube
(with N0 = N1) is constant zero. There exists

(64
60
)
≈ 219.27 such cubes. Further, we can

distinguish 4, 5 and 6-round with data 28, 216 and 231, respectively, which improves the
existing results.

Table 3: Upper bounds on the algebraic degree of Ascon in cube variables

Round r
Bits in word

Xr
0 Xr

1 Xr
2 Xr

3 Xr
4

2 2 1 1 2 2
3 3 3 4 4 3
4 7 8 7 7 6
5 15 15 13 14 15
6 30 29 29 30 30
7 59 59 60 60 58

Distinguisher for 4-round with complexity 25. Our previous distinguisher for 4-round
requires 28 data. However, we find that there exists a set of six cube variables {vi, vi+8, vi+16,
vi+17, vi+34, vi+63}5 which do not multiply with each other after round 2. Choosing any 5
out of 6 gives a cube distinguisher with 32 nonces.

Experimental Verification. We have experimentally verified all our distinguishers for 4,
5 and 6 rounds using the Ascon reference C code. The codes are also publicly available
at https://github.com/raghavrohit/ascon_cube_distinguishers.

5For i ≥ 1 indices should be taken modulo 64.

https://github.com/raghavrohit/ascon_cube_distinguishers
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8 Conclusion and Open Problem
In this work, we have presented the first cube-based key recovery attack on 7-round Ascon
without violating the data limit per key specified by the designers. The main technique
employed in this attack is the so-called partial polynomial multiplication, enabling the
recovery of superpolies by considering simplified versions of the target Boolean functions.
Our best attack can recover the 128-bit secret key with a time complexity of 2123 and
requires 264 data and 2101 bits memory. Moreover, based on division properties, we
identified the first 7-round misuse-free cube distinguishers for Ascon and some 4-, 5-, and
6-round distinguishers with reduced complexities. All our results are equally applicable to
Ascon-128a because of the same core permutation.

We believe that the partial polynomial multiplication technique can find applications
in other contexts too. Furthermore, in our key-recovery attacks, we have assumed the
worst case for the number of cube terms present in a state bit and their corresponding
number of monomials in the superpoly. Any improvement in both or either of these two
will reduce the time and memory complexities, and thus requires further investigation.
Finally, is there any key-recovery attack using less than 264 data? We hope to get the
answer in future.
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A MILP Models for Underlying Components of Ascon
In Algorithms 3 and 4, we give the exact inequalities for constructing the MILP model of
Ascon’s Sbox and linear layer, respectively.

Algorithm 3: MILP model for the SB function
Input: M, [x0, · · · , x4], [y0, · · · , y4]

1 \\ Binary variables
2 M.addV ar ← pi for 0 ≤ i ≤ 6
3 M.addV ar ← qi for 0 ≤ i ≤ 11
4 M.addV ar ← ri for 0 ≤ i ≤ 6
5 M.addV ar ← si for 0 ≤ i ≤ 7
6 M.addV ar ← ti for 0 ≤ i ≤ 7
7 M.addV ar ← ai for 0 ≤ i ≤ 10

8 \\ COPY operation
9 M.addConstr ← x0 ≥ pi, for i = 0 ≤ i ≤ 6 ;M.addConstr ←

∑6
i=0 pi ≥ x0

10 M.addConstr ← x1 ≥ qi, for i = 0 ≤ i ≤ 11 ;M.addConstr ←
∑11
i=0 qi ≥ x1

11 M.addConstr ← x2 ≥ ri, for i = 0 ≤ i ≤ 6 ;M.addConstr ←
∑6
i=0 ri ≥ x2

12 M.addConstr ← x3 ≥ si, for i = 0 ≤ i ≤ 7 ;M.addConstr ←
∑7
i=0 si ≥ x3

13 M.addConstr ← x4 ≥ ti, for i = 0 ≤ i ≤ 7 ;M.addConstr ←
∑7
i=0 ti ≥ x4

14 \\ AND and XOR operations
15 M.addConstr ← a0 = t0 ;M.addConstr ← a0 = q0
16 M.addConstr ← a1 = r0 ;M.addConstr ← a1 = q1
17 M.addConstr ← a2 = p0 ;M.addConstr ← a2 = q2
18 M.addConstr ← y0 = a0 + a1 + a2 + s0 + r1 + q3 + p1

19 M.addConstr ← a3 = s1 ;M.addConstr ← a3 = r2
20 M.addConstr ← a4 = s2 ;M.addConstr ← a4 = q4
21 M.addConstr ← a5 = r3 ;M.addConstr ← a5 = q5
22 M.addConstr ← y1 = a3 + a4 + a5 + t1 + s3 + r4 + q6 + p2

23 M.addConstr ← a6 = t2 ;M.addConstr ← a6 = s4
24 M.addConstr ← y2 ≥ a6 + t3 + r5 + q7

25 M.addConstr ← a7 = t4 ;M.addConstr ← a7 = p3
26 M.addConstr ← a8 = s5 ;M.addConstr ← a8 = p4
27 M.addConstr ← y3 = a7 + a8 + t5 + s6 + q8 + r6 + p5

28 M.addConstr ← a9 = t6 ;M.addConstr ← a9 = q9
29 M.addConstr ← a10 = p6 ;M.addConstr ← a10 = q10
30 M.addConstr ← y4 = a9 + a10 + t7 + s7 + q11
31 returnM
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Algorithm 4: MILP model for the L function
Input: M, [y0, · · · , y319], [x0, · · · , x319]

1 \\σ operation on each 64-bit word
2 σ(M, [y0, · · · , y63], [x0, · · · , x63], 19, 28)
3 σ(M, [y64, · · · , y127], [x64, · · · , x127], 61, 39)
4 σ(M, [y128, · · · , y191], [x128, · · · , x191], 1, 6)
5 σ(M, [y192, · · · , y255], [x192, · · · , x255], 10, 17)
6 σ(M, [y256, · · · , y319], [x256, · · · , x319], 7, 41)
7 returnM

Algorithm 5: MILP model for the σ function
1 Input: M, [y0, · · · , y63], [x0, · · · , x63],m, n
2 \\ Binary variables
3 M.addV ar ← ai for 0 ≤ i ≤ 63
4 M.addV ar ← bi for 0 ≤ i ≤ 63
5 M.addV ar ← ci for 0 ≤ i ≤ 63
6 \\ COPY operation
7 for i = 0 to 63 do
8 M.addConstr ← yi ≥ ai ;M.addConstr ← yi ≥ bi ;M.addConstr ← yi ≥ ci
9 M.addConstr ← ai + bi + ci ≥ yi

10 end
11 \\ XOR operation
12 for i = 0 to 63 do
13 M.addConstr ← xi = ai + b(64−m+i) mod 64 + c(64−n+i) mod 64
14 end
15 returnM
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