
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2021, No. 1, pp. 78–129. DOI:10.46586/tosc.v2021.i1.78-129

MOE: Multiplication Operated Encryption
with Trojan Resilience

Olivier Bronchain∗, Sebastian Faust†, Virginie Lallemand?,‡, Gregor
Leander‡, Léo Perrin� and François-Xavier Standaert∗

∗ Crypto Group, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium.
fstandae@uclouvain.be, olivier.bronchain@uclouvain.be

† Chair of Applied Cryptography, TU Darmstadt, Darmstadt, Germany.
sebastian.faust@gmail.com

? Université de Lorraine, CNRS, Inria, LORIA, Nancy, France. virginie.lallemand@loria.fr
‡ Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Bochum, Germany.

gregor.leander@rub.de
� Inria, Paris, France. leo.perrin@inria.fr

Abstract. In order to lower costs, the fabrication of Integrated Circuits (ICs) is
increasingly delegated to offshore contract foundries, making them exposed to mali-
cious modifications, known as hardware Trojans. Recent works have demonstrated
that a strong form of Trojan-resilience can be obtained from untrusted chips by
exploiting secret sharing and Multi-Party Computation (MPC), yet with significant
cost overheads. In this paper, we study the possibility of building a symmetric cipher
enabling similar guarantees in a more efficient manner. To reach this goal, we exploit
a simple round structure mixing a modular multiplication and a multiplication with
a binary matrix. Besides being motivated as a new block cipher design for Trojan
resilience, our research also exposes the cryptographic properties of the modular
multiplication, which is of independent interest.
Keywords: symmetric encryption · modular multiplication · Trojan-resilience.

1 Introduction
Most modern cryptographic systems rely on the fundamental assumption that the hardware
on which they are implemented is trustworthy. This assumption is, however, violated when
the hardware manufacturer becomes malicious, and can mount attacks at the hardware-
level, including hardware Trojans or hardware counterfeiting. Perhaps most devastating are
hardware Trojans [TK10, BHBN14, XFJ+16], which are stealthy malicious modification
of the integrated circuits – the heart of any electronic hardware. Hardware Trojans may
have catastrophic consequences for security, including deliberately weakened cryptographic
devices or malfunction of control systems in nuclear power plants.

Unfortunately, the dangers resulting from malicious hardware have drastically escalated
due to the inherent distributed nature of modern hardware manufacturing. Since setting
up top-notch foundries that can produce integrated circuits at 14nm or beyond is very
costly – estimates suggest almost US $15 billion to setup the next generation fabs [Rib14]
– the majority of ICs are produced offshore by untrusted foundries. Currently only 13
foundries control more than 90% of the global IC production market, and none of them is
located within the EU [Ins14]. In this situation, as little as a single malicious foundry can
have major negative impact on a large fraction of modern security systems.

In view of this, various types of countermeasures have been introduced in order to
mitigate the threats arising from hardware Trojans. At a high-level these countermeasures

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-06-01 Revised: 2020-11-23 Accepted: 2021-01-23 Published: 2021-03-19

https://doi.org/10.46586/tosc.v2021.i1.78-129
mailto:fstandae@uclouvain.be
mailto:olivier.bronchain@uclouvain.be
mailto:sebastian.faust@gmail.com
mailto:virginie.lallemand@loria.fr
mailto:gregor.leander@rub.de
mailto:leo.perrin@inria.fr
http://creativecommons.org/licenses/by/4.0/

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 79

can be classified into two main types. The first type are detection-based solutions which
aim at spotting the presence of a Trojan through device inspection [ABK+07, AARP10].
Unfortunately, the effectiveness of Trojan inspection significantly decreases with the
growing complexity of the IC, and in most cases becomes infeasible for practically deployed
devices. The second type of countermeasures are the so-called prevention-based methods
which aim at making the insertion or exploitation of a hardware Trojan more difficult.
Examples of preventive countermeasures include split manufacturing [IEGT13], or input
scrambling [WS11], but up to now both their design and analysis have been ad-hoc and
only allows for protection against weak types of Trojans.

Recently, several papers have initiated a more formal approach to designing and studying
the security of Trojan countermeasures, see in particular [DFS16, MCS+17, AKM+18].
These works formally define security models, propose novel countermeasures and prove their
security against broad and well-defined classes of Trojan attacks. In order to achieve Trojan
resilience, their main ingredient is to rely on techniques from Multi-Party Computation
(MPC), where the IC internally runs an MPC protocol thereby preventing the adversary
from deliberately activating the hardware Trojan. While at a technical level these works use
similar ideas (i.e., relying on MPC techniques), the concrete constructions and the level of
security that they can achieve are quite different. In particular, while [MCS+17, AKM+18]
aim at preventing an adversary from breaking the underlying cryptographic primitive (e.g.,
by extracting the secret key from the device), in [DFS16] Dziembowski et al. consider a
much stronger security definition called robustness. The robustness property guarantees
that the device under attack behaves correctly (i.e., it still executes its specification) even
when run in an adversarial environment. The latter means that the adversary has full
input/output control over the device under attack.

In this paper, we focus on the approach given in [DFS16] as it gives a stronger security
guarantee under the reasonable condition that the number of times the device is used in
real life is bounded.1 To illustrate the strength of the model of [DFS16] let us consider a
simple example, where a device is implementing an authentication protocol for controlling
an aircraft. The security property of [MCS+17, AKM+18] guarantees that a potential
hardware Trojan inside the device does not allow an external adversary to take over
the control of the aircraft (since even in the presence of the Trojan the authentication
device retains its security). However, their security notion does not protect against
malfunction, i.e., a malicious manufacturer may plant a Trojan that when activated makes
the authentication device always fail. Clearly, such malfunctioning can have devastating
consequences for our aircraft example. On the contrary, the countermeasure proposed
in [DFS16] prevents such denial-of-service attacks. Our example also illustrates that a
security guarantee that holds for a bounded number of executions is meaningful in practical
settings, as there is a natural bound on how often the aircraft is going to be used.

In [DFS16] the authors present a general countermeasure based on a passively secure 3-
party computation protocol. A general purpose countermeasure allows to protect arbitrary
computations implemented on a device against Trojan attacks. Dziemboski et al. achieve
this by relying on general purpose MPC techniques, which unfortunately leads to several
drawbacks. First, they require a so-called testing phase where prior to using the device,
the input/output behaviour of each individual component of the system is intensively
tested. For standard block ciphers, this results into rather involved testing, where the
entire communication between the parties running a 3-party computation protocol is tested.
Second, the increase of the overall circuit size and the computational overheads needed for
the Trojan countermeasure of [DFS16] compared to an unprotected device is significant.
In this work, we investigate whether these two shortcomings can be addressed. To this
end, we focus on one of the most important primitives of cryptography, and design an
efficient Trojan-resilient block cipher, which combines small computational overheads with

1As shown by Dziembowski et al. this is unavoidable for such a strong security guarantee.

80 MOE: Multiplication Operated Encryption with Trojan Resilience

minimal requirements on the testing phase.

1.1 Our contributions
Our main contribution is the design and the security analysis of MOE, a new block
cipher with an innovative structure that allows for efficient computation on secret shares
by mostly relying on linear operations. Obviously, if the cipher only consists of linear
operations for the xor, we cannot hope its construction to be secure, so our design
idea is to mix linear operations over various different underlying groups. After in-depth
analysis of the possible choices, we picked two groups, that are (Z/2Z)n and (Z/2nZ).
The latter corresponds simply to a modular multiplication, an operation that was used
back in the 1990s for the design of IDEA [LM91] and inspired the design of ciphers such
as MESH [NRPV04], MMB [DGV93] and WIDEA-n [JM09]. We provide an extended
analysis of the cryptographic properties of the modular multiplication by 3 by evaluating
its algebraic degree together with its differential and linear properties. We next study how
the modular multiplication behaves when associated with the binary matrix multiplication
to form one round of encryption. By introducing the notion of change branch number,
we are able to compute bounds on the probability of differential characteristics. We also
discuss other attacks and evaluate the security of a small scaled version, and conclude that
MOE seems resistant against basic attacks.

In addition to this, we show that our design decisions lead to the desired outcome in
regard to the implementation of MOE as a Trojan-resilient cipher. More precisely, we
consider the methodology introduced in [DFS16] and compare the performances of MOE
with the one obtained in [BDFS18] for the AES and Mysterion, a bitslice-oriented cipher.
The first notable advantage of our cipher is that it allows a simplified testing phase: only
the input/output behaviour of the shared circuits implementing MOE must be tested
(which can be done with a single plaintext/ciphertext pair) while when implementing
the other ciphers all the intermediate computations must be verified (which requires a
large dictionary of plaintext/ciphertext pairs).2 This improvement represents a significant
step in the direction of Trojan-resilient block ciphers that can be deployed and tested
on-the-fly, as it avoids the previous situation where one either needs a way to monitor
all the communications (which will make the test much more expensive in time) or use a
dedicated board with all circuits trusted but one (which allows testing only the output
result, but requires to plug/unplug the circuits to test on this dedicated board). The
second improvement brought about by our design is a decrease in the communication
complexity, resulting in an increased throughput and better robustness guarantees. The
gain is significant compared to the AES, a bit less compared to ciphers that are already
optimized for multiplicative complexity (for other applications like masking). This last
point seems to indicate that in terms of communication complexity, the limits that one
can reach are similar for block ciphers designed according to very different principles.
Finally, a last drawback of [DFS16] was the need of a 3-party protocol. The structure
of MOE, and more precisely the linear nature of its round operations, enables a much
simpler 2-party protocol which reduces the overall hardware cost. Similar to [DFS16] our
construction requires a small trusted circuitry. The only downside of our result is that
this trusted circuitry increases in complexity – albeit only by a small factor. We believe it
is an important direction for future work to improve on the design of MOE (or provide
alternative block cipher designs) that minimize the size of the trusted master.3

We finally emphasize that our design goals are different than the ones used for MPC-
friendly or masking-friendly ciphers, see e.g., [GLSV15, ARS+15, GRR+16, DEG+18,

2This is because despite the parties of [DFS16] always communicate through the master, these commu-
nications are not randomized (which would result in even more prohibitive overheads).

3As proven in [DFS16] some trusted circuitry is needed in order to achieve strong Trojan-resilience.

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 81

AAB+20, GLR+20]. While the latter mostly focus on minimizing the number of non-linear
operations, the use of a small trusted master (responsible for the sharing operations) in
our Trojan-resilient circuits implies that we rather focus on minimizing the number of
transitions from one group to another. Yet, again, the (pseudo) multiplicative depth of our
cipher (defined as the number of such transitions) is close to the actual multiplicative depth
in these other ciphers, suggesting that both proposals are close to the minimum required.
The latter observation, together with the in-depth investigation of the cryptographic
properties of the modular multiplication, is of independent interest.

Structure of the paper. We first describe our new approach to Trojan-resilient block
ciphers in Section 2 and compare it with the generic solution of Dziembowski et al. Based
on this, we design a new block cipher named MOE that we describe in Section 3. One
peculiarity of MOE is the use of modular multiplication as a block cipher ingredient, a
choice that we carefully justify in Section 4 by discussing its cryptographic properties. We
start by looking at the algebraic degree of this operation and then give an extensive (and
to the best of our knowledge, the first) analysis of the differential and linear properties of
a special case, that is the multiplication by 3. We then provide a security analysis of our
cipher (Section 5), and in particular our analysis of the modular multiplication allows us to
prove that no high-probability differential characteristics exist. We conclude by discussing
the implementation of MOE on a prototype Printed Circuit Board (PCB) combining four
commercial FPGAs and compare the obtained performances with the ones reached with a
generic MPC implementation of both the standard AES and a bitslice-oriented cipher.

2 Our approach to Trojan-resilience
In this section we start by recalling the framework of Dziembowski et al. [DFS16], provide
a high-level description of our construction and develop a formalization for analyzing its
security. Notice that for now we view the underlying round operations of the MOE cipher
as a black-box, and do not dive into the details of our concrete instantiation.

2.1 Trojan attack setup
We follow the work of Dziembowski et al. [DFS16] and consider a setup involving three
parties: the trusted designer of the device, a trusted tester and a malicious manufacturer.
In this setting the designer of the IC sends the IC’s specification (in some hardware
description language) to the manufacturer who produces the hardware and delivers it
for testing and final assembly. The testing is carried out in a trusted environment by a
special party called the tester, which checks whether the devices operate according to their
intended specification. We only consider black-box testing, i.e., testing if the input/output
behavior of the devices match with their specification. Such a setting of outsourcing the
manufacturing process is very common and widely used in modern IC production due to
the high financial cost for setting up state-of-the-art chip foundries.

While a vast number of different hardware Trojan attacks has been discussed in the
literature, we focus on a well-defined (yet still broad) class of possible attacks that informally
can be described as “logical attacks”. More concretely, recall that a hardware Trojan
consists of a triggering mechanism and a payload. The triggering mechanism activates
the hardware Trojan, while the payload describes the malicious behavior that is carried
out by the Trojan (e.g., revealing secret keys or malfunctioning of the device). At a very
high-level one can distinguish between “physical” and “logical” Trojans. In the first case,
the triggering and payload are carried out in some physical way. This may for instance be
an activation of the Trojan by running it in an environment of higher temperature, and/or
leaking the secrets via physical side-channels. On the other hand, logical Trojans assume
that the Trojan triggering is carried out via logical inputs delivered to the device, and

82 MOE: Multiplication Operated Encryption with Trojan Resilience

the payload is received by the adversary via a logical output. As in [DFS16], we focus in
this work on logical Trojans. Logical Trojans include many natural Trojan attacks such as
cheat codes (activation is triggered by a hard-to-guess input) and time bombs (activation
is triggered after a certain number of executions) [WS11, DFS16].

Let us now describe the framework of Dziembowski et al. in general terms. First,
a single malicious manufacturer produces a set of mini-devices Dji , where every triple
Dj := (Dj1,D

j
2,D

j
3) aims to compute a 3-party protocol and is denoted as a sub-device.

These devices supposedly implement the desired functionality and are delivered back to the
designer for testing. In the testing the designer checks if the produced mini-devices have
the same input/output behavior as the desired functionality that the devices are supposed
to implement. After the testing of these sub-devices has been completed successfully, they
are assembled together with a so-called trusted master to build the final device D. One
may think of the trusted master as a coordinator that controls the computation among
the different mini-devices and carries out some simple computations. Naturally, we want
that these computations are as simple as possible as otherwise the full circuit can directly
be implemented using the technology used for building the trusted master. Dziembowski
et al. show however that some minimum trusted computations are necessary when we aim
to achieve strong Trojan-resilience guarantees (i.e., robustness).

2.2 Trojan countermeasure and cipher design
2.2.1 Multiparty computation as a Trojan countermeasure

Let us consider cheat codes as one particularly dangerous Trojan attack. In a cheat code
the Trojan gets activated by running the device on a certain hard-to-guess input (the
“cheat code”). Once this input is provided the Trojan delivers its payload and the device
starts to malfunction. Cheat codes are dangerous because they are nearly impossible to
detect by functional testing. This is due to the fact that they are hard-to-guess by design.
To effectively prevent cheat codes we may however use techniques from MPC and secret
sharing. Consider a setting with 3 parties denoted by P1, P2 and P3, where each party
holds its input x1, x2, respectively x3. A secure MPC protocol for a function f allows
P1 . . . P3 to securely evaluate f(x1, x2, x3) such that nothing is revealed about the parties’
individual inputs except for what is implied by the evaluated output f(x1, x2, x3).

The high-level idea of using multiparty computation to protect against cheat codes is
the following. Before the adversarially generated input x enters the device it is shared
using a secret sharing scheme (e.g., Shamir’s secret sharing) into shares x1, x2 and x3. This
secret sharing is done on a trusted master device, and hence is done without influence from
the malicious circuit manufacturer. Each of the shares xi is then given to a mini-device
Dji that was produced by the manufacturer and supposedly implements the functionality
computed by party Pi in the MPC protocol. The devices then emulate a secure function
evaluation of f . From the security guarantee of the secret sharing scheme and the multiparty
computation protocol, it is guaranteed that the mini-devices do not learn anything about
the shared input x. Thus, this approach takes away the adversary’s control over the inputs
x, thereby preventing targeted activation by a cheat code.

The above description gives the high-level idea of the basic construction outlined
in [DFS16]. Dziembowski et al. observe however that the MPC approach alone does
not suffice to protect against more powerful Trojan attacks. For instance, multiparty
computation by itself cannot protect against time-bombs (i.e., Trojans that get activated
after a certain number of executions). This is the case because the Trojan activation is
now not triggered via an input but just once a certain threshold of activation is reached.
Even worse, standard MPC does not protect against malicious devices undoing the effect
of secret sharing by just reconstructing the shares via subliminal channels. This motivates
the approach of [DFS16] to combine MPC with testing, where the individual devices are

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 83

tested for correct computation, thereby preventing subliminal channels and time-bombing
attacks. Let us continue by providing more details on the approach of [DFS16].

Consider a stateful arithmetic circuit Γ describing the desired functionality that we
want to outsource to a (possibly) malicious manufacturer A for production. One may
think of Γ as a specification of an AES block cipher, where the state corresponds to the
secret key of the AES. To protect against Trojans, instead of letting A produce a device D
that implements Γ, we first transform Γ into a new algorithm Γ′ that is hardened against
Trojan attacks. At a high-level, Γ′ consists of two components. First, a set of mini-circuits
Γji , and second a specification of the master circuitM. As discussed above, the role of the
master circuit is to manage the communication between the mini-circuits and carry out
some simple trusted computation (e.g., the secret sharing of the inputs). Every triple of
mini-circuits (Γj1,Γ

j
2,Γ

j
3), with 1 ≤ j ≤ λ and λ the number of sub-circuits, performs a

3-party computation of the target functionality. In the computation the trustedM takes
the role of carrying out the communication between the parties, and additionally runs
some simple trusted pre- and post-processing (essentially secret sharing the inputs and
reconstructing the outputs). Looking again at the AES example from above, each of the
λ sub-circuits would implement a 3-party computation protocol securely evaluating the
AES on shared inputs corresponding to the adversarially chosen plaintext. The set of
circuit specifications {Γj1,Γ

j
2,Γ

j
3}j∈[λ] is then given to the malicious manufacturer A who

produces devices Dji that implement the corresponding mini-circuits Γji . For completeness,
Appendix A recalls the 3-party protocol used in [DFS16].

When the designer receives the devices back from the manufacturer, he first carries out
some functional testing of each Dji . This is done by a tester TDSF which runs each Dji and
interacts with it through its interface by providing as inputs some values that Dji would
expect when it is run in the real environment. If the input/output behavior of each Dji
matches with the corresponding specification of Γji , then the designer assembles the final
device D by combining the mini-circuits Dji with the trusted master M. Dziembowski
et al. then show that the input/output behavior of this final assembled device D is with
overwhelming probability identical to the input/output behavior of the trusted specification
Γ for a limited number of executions, even for adversarially chosen inputs. This security
notion on which we focus is called Trojan robustness in [DFS16].

2.2.2 High-level idea of our efficient Trojan resilient block cipher

Our block cipher design follows a very similar approach as the one described above. The
main difference however is that due to our novel design of the round function we do not
need to apply general purpose protocols for secure 3-party computation. Indeed, since
all the operations inside a round of the block cipher are linear and the trusted master
carries out the secret sharing and the reconstruction, we can evaluate the round operations
directly on secret shares without any interactions between the components. This is possible
because for linear secret sharing schemes, linear operations are easy to compute on shared
data. Let us now take a closer look at our high-level design shown in Figure 1.

Let MOE denote the cipher that we will detail in the later sections. For now it will
only be important that MOE requires operations which are linear over some group. To
this end, we have chosen two distinct groups in which this linearity is described. After
a study of the different possibilities which we provide in Appendix B, we settled for the
following two types of round operations: the multiplication by a matrix of GLn(F2), and
the multiplications by an odd integer α modulo 2n.4 To simplify notation we denote these
two operations by � and , and will write ∗ ∈ {�, } as a placeholder for one of them.
Moreover, we let share∗ denote the secret sharing operation over group operation ∗, and

4The decision to apply these operations on the full state (instead of using a construction that could
benefit from the wide trail strategy) is explained in Section 4.5.

84 MOE: Multiplication Operated Encryption with Trojan Resilience

let reconstruct∗ denote the corresponding reconstruction operation. The specification of

K
L

P

· · ·

C

L

M

M

K
L

· · ·
L

M

M

· · ·

K
L

· · ·
L

M

M

Maj

1 round of encryption

sharing
reconstruction

sharing

X1
0

X1
1

Y 1
0

Y 1
1

sub-circuit Γ 1

sub-circuit Γ λ

sub-circuit Γ 2

mini-circuit Γ1,0
mini-circuit Γ1,1

mini-circuit Γ2,0
mini-circuit Γ2,1

reconstruction

Figure 1: High-level view of the Trojan-resilient specification of our block cipher. The
devices L and M are produced by the untrusted manufacturer and are assembled together
by a trusted master that takes care of the required sharings and reconstructions. The
ciphertext is obtained by computing the majority over the output of the λ sub-circuits.

MOE consists of λ sub-circuits, where each sub-circuit Γj has exactly the same structure
(hence we will sometimes abuse notation and omit the parameter j). Each sub-circuit Γ
consists of 2κ mini-circuits ((Γ1,0,Γ1,1), . . . , (Γκ,0,Γκ,1)), where each pair of mini-circuits
represents a field operation of MOE computed in the shared-domain. Note that these 2κ
mini-circuits can be implemented with only 2 physical devices. More precisely, denote by
Xi the input to the i-th operation of MOE and with Y i the corresponding output. Let
(Xi

0, X
i
1) be a secret sharing according to the underlying group used by this operation,

i.e., (Xi
0, X

i
1)← share∗(Xi). We have Y ib ← Γi,b(Xi

b) with b ∈ {0, 1}. Notice that due to
the linearity of the operation, it holds that Y i = reconstruct∗(Y i0 , Y i1). This completes the
description of the computation carried out by the (untrusted) mini-circuits {(Γi,0,Γi,1)}i.
The specification of these mini-circuits will be outsourced for production to the malicious
manufacturer A, who will return a set of devices {(Di,0,Di,1)}i. The latter will be used
together with the trusted master during the assembly of the final device D.

As part of each of the λ sub-devices Dj (this corresponds essentially to the computation
of Γj) the masterM will carry out share∗ and reconstruct∗ for each of the 2κ operations.
Since share∗ is a randomized algorithm this means that the master M has access to a
trusted source of randomness. This is a strong assumption, but as explained in [DFS16] this
randomness can be generated by the untrusted devices thanks to an efficient Trojan-resilient
PRG. Moreover, as in [DFS16] the master computes a final majority of the output produced
by the λ sub-devices. Majority is here defined by computing the majority bitwise which,
as discussed in [BDFS18] is necessary to keep the cost of the master low, and is possible
because after the testing phase the output of all the sub-circuits is equal to the output of
the trusted specification. We finally need to handle the key addition. The simplest option
for this purpose is to handle it in the trusted master. In this case a small trusted memory
is required. To minimize the complexity of the master, we may, however, also carry out
the key addition by distributing key shares among the untrusted mini-devices, and let
them carry out the key addition. In this case a secure provisioning phase must distribute
the shares of the key to the mini-devices during deployment. The master circuitry M
implemented on trusted hardware controlling the mini-devices {(Di,0,Di,1)}i which were

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 85

produced by the malicious manufacturer A, form the final device D. In the following, we
will sometimes write C ← D(K,P) for running the final device D with input key K and
plaintext P producing ciphertext C. Similarly we will use the notation C ← Dj(K,P)
for the execution of the j-th sub-device of D. Notice that the latter does not involve the
computation of the majority that is part of the trusted master circuitry.

2.2.3 Comparison with the generic proposal of Dziembowski et al.

While the construction of Dziembowski et al. has the important advantage of offering a
general purpose countermeasure (i.e., a compiler that can protect any computation against
Trojan attacks), our construction has the following main advantages making it particular
appealing for real-world implementations.

• Simplified testing phase: One fundamental limitation of the generic solution of
Dziembowski et al. is that the testing phase must verify the correctness of all the
intermediate results of the computation (including their communication). The latter
is critical to prevent subliminal channels between the mini-devices. For instance,
in [DFS16] if we do not test the necessary communication between the parties running
the 3-party computation, then the mini-devices may just exchange their secret shares
that they have received from the master. This would enable an adversary to easily
exploit cheat codes. The main advantage of our construction is that the testing
phase is significantly simpler than the one used in [DFS16]. The main reason for this
is that we only need to test correctness of the input/output behavior of the entire
block cipher instead of testing all individual components produced by the malicious
manufacturer. Since the sub-circuits are shared, this further means that the test can
be done by storing a single correct plaintext/ciphertext pair.5

• Reduced communication complexity: Our construction provides Trojan-resilience with
a reduced number of communication rounds between the trusted master and the
mini-circuits, which is the main factor limiting the implementation throughput.

• Reduced hardware cost: Our construction can provide Trojan-resilience with two
untrusted mini-circuits per sub-circuit while the construction in [DFS16] requires
three mini-circuits per sub-circuit as it relies on general MPC techniques.

2.3 Protecting against Trojans: robustness vs. security
As discussed in the introduction, in this work we aim to achieve the stronger security
guarantee of robustness introduced in [DFS16]. Informally, robustness guarantees that
after the testing phase is completed successfully, with high probability the final assembled
device D operates according to its specification. This is formalized via a robustness game
in Figure 2 that we tailored to the case of a block cipher.

The robustness game considers a setting where the untrusted mini-devices {(Di,0,Di,1)}i
are produced by a malicious manufacturer A. The manufacturer is allowed to arbitrarily
change the logical description of these mini-devices. This means that they can implement
an arbitrary circuitry (Γ̃i,0, Γ̃i,1), which deviates from the intended specification (Γi,0,Γi,1).
Similar to [DFS16] we only consider Trojans that are triggered via logical inputs and
payloads that are delivered through the logical outputs. Let us now take a closer look at
the robustness game ROBMOE(T,A, η, t, λ,K).

Let A denote a malicious manufacturer, and T be a trusted testing algorithm that
will be defined in more detail below. The purpose of T is to test whether the potential

5Technically, this is made possible because a reconstruction/resharing operation is preformed by the
trusted master each time we switch from one group to another, which prevents mini-circuits to exchange
information. One could possibly apply this strategy to the generic compiler of Faust et al. but it would
cause prohibitive overheads to an already expensive solution.

86 MOE: Multiplication Operated Encryption with Trojan Resilience

Game ROBMOE(T,A, η, t, λ,K):
Let {(Dji,0,D

j
i,1)}i,j ← A(1k,MOE);

If TD1(K,.),...,Dλ(K,.)(1k, λ, t,K) = false, then return 0;
Let P1 ← A(1k);
For i = 1 to η repeat:

Compute Ci ← D(K,Pi);
Evaluate C ′i ← MOE(K,Pi);
If Ci 6= C ′i then return 1;
Let Pi+1 ← A(1k, Ci);

Return 0.

Figure 2: The formal robustness game ROBMOE.

malicious devices {(Di,0,Di,1)}i satisfy their corresponding specification. Further, let MOE
denote a trusted reference implementation of our cipher and K be a secret key. In addition,
the robustness definition is parameterized by the following two parameters: η denotes
the number of executions for which we want the final assembled implementation to work
correctly after testing, and t is the maximal number of tests that we carry out during the
testing phase. In [DFS16] it was proven that we can guarantee the implementation D to
work correctly for η executions, and that we require η � t.

At a high-level the robustness game as shown in Figure 2 proceeds in three phases. In
the first phase, the adversary produces the untrusted mini-devices {(Dji,0,D

j
i,1)}i,j which are

then assembled together with the trusted master to build the λ implementations D1, . . . ,Dλ.
Notice that each Dj is built from a set of mini-devices {(Di,0,Di,1)}i and uses parts of the
trusted masterM for secret sharing and reconstruction of the intermediate values. In the
testing phase, the tester algorithm T checks the correctness of each implementation Dj
with respect to a reference implementation MOE. The tester T has oracle access to the
partial assembled devices Dj initialized with key K and will be discussed in more details
below. In the last phase, the final device D (see Figure 1, where we essentially add the
majority computation as part of the trusted master) is executed η times. In each such run,
the adversary A is allowed to provide inputs for D in order to, e.g., trigger the hardware
Trojan. We say that the adversary A wins the game ROBMOE if the game outputs 1. This
happens if A manages to activate the hardware Trojan during one of the η executions
despite the testing phase being completed successfully. The hardware Trojan is considered
activated if the device DMOE outputs a value that differs from the value that would have
been produced by the trusted reference implementation of MOE. Otherwise the game
outputs 0 indicating that the adversary lost the game.

2.3.1 Simplified testing via T

One key feature of our Trojan-resilient cipher is that it allows for a simplified testing, where
only the cipher’s final input/output pairs must be tested.6 This is in contrast with [DFS16]
where all the communication between the mini-devices produced by A need to be tested
for correctness. Our construction achieves this beneficial property due to the fact that
there is no direct communication between the mini-devices Di,0 and Di,1. This can be
obtained because the round operations are linear over some group and hence they can
compute on secret shared values without communication between Di,0 and Di,1. In addition,
communication between (Di,0,Di,1) and (Di+1,0,Di+1,1) has to go via a fresh secret sharing
(i.e., via the trusted master), and hence (Di,0,Di,1) cannot directly communicate with

6As already mentioned, since the inputs to the cipher are always freshly secret shared, it even means
that a single plaintext/ciphertext pair is sufficient to test this part of the circuit.

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 87

Tester TD1(K,.),...,Dλ(K,.)(1k, λ, t,K):
Let P ∗ be some plaintext in the plaintext space and C∗ = MOE(K,P ∗).
For j ∈ [λ] repeat the following:

Sample tj ← [t] uniformly at random and repeat tj times:
Query P ∗ to the oracle Dj(K, .) and denote by C the returned value.
If C 6= C∗ return false.

Return true.

Figure 3: The tester T of the MOE construction.

Tester TD
1(.),...,Dλ(.)

DSF (1k, λ, t):
Set the initial state of the devices {Di}i to ~0 % E.g., sets the key of the devices
For j ∈ [λ] repeat the following:

Sample tj ← [t] uniformly at random and repeat tj times:
Sample random 2-out-of-2-sharing ~r,~s representing the shared input
If View(Dj(~r,~s)) 6= View(Γj(~r,~s)) return false.

Return true.

Figure 4: The tester TDSF from [DFS16] slightly adjusted to our notation. View(Dj(~r,~s))
and View(Γj(~r,~s)) denote the random variable of the input/output behavior of Dj , respec-
tively Γj when run on inputs ~r,~s and mini-circuits communicate throught the master.

(Di+1,0,Di+1,1) as well. We formalize our testing procedure via the tester T presented in
Figure 3, where we focus on the case when the key is stored on the trusted master. It is easy
to extend the testing algorithm to the case when the key is stored on the untrusted devices.
For comparison, the tester TDSF from [DFS16] is given in Figure 4. The main differences
between these two testing algorithms are in the inner part of the for loop. While our
simplified tester T only needs to compare whether the plaintext/ciphertext pair matches
with input/output produced by an honest evaluation of MOE cipher (i.e., via comparison
with the pair (P ∗, C∗)), the original tester TDSF from [DFS16] is significantly more
complicated. In particular, in TDSF we require that the entire input/output communication
of the devices Dj matches with the corresponding ideal specification Γj . To this end, in
Figure 4, TDSF uses the check View(Dj(~r,~s)) 6= View(Γj(~r,~s)).

2.3.2 Trojan robustness of MOE

We are now ready to prove the Trojan robustness of our construction MOE, which is
summarized in the theorem below.

Theorem 1. Let t, η, λ, k ∈ N>0 with η < t be natural numbers. For any malicious
manufacturer A, K ← {0, 1}k chosen uniformly at random we have:

Pr [ROBMOE(T,A, η, t, λ,K) = 1] ≤
(

4η
t

)dλ/2e
,

where the randomness is taken over the randomness of the ROBMOE game.

Proof. We follow the proof approach of [DFS16]. To this end we first argue that the inputs
that the mini-devices {Dji,b}i∈[κ],j∈[λ],b∈{0,1} receive in the testing phase are identical to
what they receive when run as part of the fully assembled device D. More precisely,
we denote by viewji,b(K,P) the random variable that represents the inputs taken by the
mini-device Dji,b when D is run with input plaintext P and secret key K. The randomness

88 MOE: Multiplication Operated Encryption with Trojan Resilience

of viewji,b(K,P) is taken over the randomness of the secret sharing done by the trusted
master. The next lemma follows from the fact that the mini-devices only receives inputs
that went through a secret sharing gate using uniform randomness for the sharing function,
with ≡ denoting equivalence of the distributions.

Lemma 1. For any i ∈ [κ], j ∈ [λ], b ∈ {0, 1}, for any plaintext inputs P, P ′ and any
secret key K, we have viewji,b(K,P) ≡ viewji,b(K,P ′).

This lemma implies that the view of each mini-device is independent of the plaintext P .
Hence, the distribution of inputs that Dji,b receives in the testing phase is indistinguishable
from the view that it receives in the online phase. Given the above the proof of the theorem
follows the proof of Theorem 1 in [DFS16] using a series of hybrid games.

1. Game ROB1
MOE(T,A, η, t, λ,K): This is the same as the robustness game defined

in Figure 2 except for the difference that we replace the mini-devices Dji,b by some
abstract circuit specification Γ̃ji,b with the same input/output behavior as Dji,b. Hence,
we directly get that the probability that A wins in this game is identical to the
probability that A wins in ROBMOE(T,A, η, t, λ,K).

2. Game ROB2
MOE(T,A, η, t, λ,K): Denote by Γ̃j the specification of the j-th com-

ponent consisting of (Γ̃j1,0, Γ̃
j
1,1), . . . , (Γ̃jκ,0, Γ̃

j
κ,1) and the corresponding parts of the

master circuits M that controls these mini-circuits. ROB2 differs from ROB1 as
follows. While in ROB1 the game outputs 1 when for some of the η iterations Ci 6= C ′i,
in ROB2 we output 1 when for more than λ/2 of the λ components Γ̃j the ciphertext
output by this component differs from the execution of the correct specification Γj .
Since the output is part of the views, we get that:

Pr[ROB2
MOE(T,A, η, t, λ,K) = 1] ≥ Pr[ROB1

MOE(T,A, η, t, λ,K) = 1].

3. Game ROB3
MOE(T,A, η, t, λ,K): In this game we replace the malicious input plain-

text P provided by A with some fixed plaintex P ′. By Lemma 1 we get:

Pr[ROB3
MOE(T,A, η, t, λ,K) = 1] = Pr[ROB2

MOE(T,A, η, t, λ,K) = 1].

Using Lemma 4 in [DFS16] we can show that for η < t:

Pr[ROB3
MOE(T,A, η, t, λ,K) = 1] ≤

(
4η
t

)dλ/2e
,

which concludes the proof of the theorem.

2.3.3 Eliminating the randomness from the master M

The need for trusted randomness in the master may sound contradictory with the require-
ment of only using a very limited number of trusted gates. Trojan-secure randomness can
however be obtained via a Trojan secure PRG as discussed in [DFS16]. To this end, a
Trojan secure PRG can be constructed by XORing the output of multiple untrusted PRGs.
As long as one of the PRGs works correctly, the result of the XORing is guaranteed to
be pseudorandom, and hence is sufficient to be used as randomness for internal protocol
computations, i.e., for the sharing of intermediate values before entering the mini-devices.
Concretely, for our use case we just xor the result of dλ/2e cryptographic PRGs which
achieves a security bound of

(
η
t

)dλ/2e, similar to the one we target for robustness. Since
these PRGs do not need to have randomized inputs, their testing is also simple as we only
need to verify their final outputs rather than their intermediate computations.

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 89

The main impact of replacing trusted randomness for sharing by randomness generated
by a Trojan-resilient PRG is that we move to the computational setting. This means
that in Theorem 1 we only consider PPT adversaries and obtain an additional loss in the
robustness bound compared to Theorem 1 of negl(k), where k is the security parameter.
More precisely, we obtain the following corollary:

Corollary 1. Let t, η, λ, k ∈ N>0 with η < t be natural numbers. For any malicious PPT
manufacturer A, K ← {0, 1}k chosen uniformly at random we have:

Pr [ROBMOE(T,A, η, t, λ,K) = 1] ≤
(

4η
t

)dλ/2e
+
(η
t

)dλ/2e
+ negl(k),

where the randomness is taken over the randomness of the ROBMOE game.

3 Specification of MOE
3.1 Description of MOE
In this section, we introduce a concrete instance of the approach introduced in Section 2
and propose a new block cipher called MOE. Its name stands for Multiplication Operated
Encryption to reflect that all round operations are based on multiplication, namely a
multiplication by a binary matrix and a modular multiplication by a constant. In order
to mimic the API of the AES, it encrypts blocks of 128 bits using a 128-bit key. The
encryption routine consists in iterating 4 times a step function made of 6 operations:

stepi = M ◦A3 ◦ K2i+1 ◦M ◦A−1
3 ◦ K2i i ∈ {0, 1, 2, 3}.

The different operations, all working on the full 128-bit state, are as described below. A
graphical representation of one step can be found in Figure 5.

Kj is the key addition, i.e., the function Kj : x 7→ x ⊕ K ⊕ cj , where K is the 128-bit
master key and the {cj}0≤j<9 are 128-bit round constants.

A3 interprets the 128-bit internal state as the binary representation of an element of
Z/2nZ and multiplies it by 3 modulo 2n.

M interprets the 128-bit internal state as an element of Fn2 and multiplies it with the
128× 128 binary matrix M .

A−1
3 is the compositional inverse of A3 (the multiplication by the inverse of 3 modulo 2n).

A−1
3 A3M M

K ⊕ c2i K ⊕ c2i+1

Figure 5: The step function number i.

Note that unlike in many ciphers such as the AES, the last call to M is not omitted.
Another key addition (K8) finishes the evaluation of the cipher.

To fully specify our proposal, we need to describe the round constants cj together
with the binary matrix M . Since as we will prove later a random matrix M has the
necessary properties, we do not impose any specific structure on M beyond its invertibility
and we simply generate a random matrix and check if it has full rank. To do so, we
suggest to follow the approach proposed by the designers of LowMC [ARS+15] which

90 MOE: Multiplication Operated Encryption with Trojan Resilience

uses a self-shrinking generator [MS95] based on the LFSR of the Grain cipher [HJMM08].
The bits produced are used to fill the matrix row by row. We check the invertibility of
the matrix once it is fully specified. If it is not, we repeat the process using the next
keystream bits until it is invertible. Once the matrix is produced, we use the next bits of
the keystream to form the nine 128-bit round constants c0 · · · c8.

3.2 Security claim
We claim 127 bits of security as long as the amount of plaintext/ciphertext pairs the
attacker has is smaller than 264. The claimed security level of MOE is thus reminiscent
of the one for FX constructions like PRINCE [BCG+12] or QARMA [Ava17]. For such
ciphers, a generic attack with complexity 2k−d exists when 2d plaintext/ciphertext pairs
are available, so that attacks are expected to become practical as d gets closer to n/2. Our
claim is stronger in that we claim 127 bits of security for all d < 64 rather than 127− d.
The reason for bounding the data complexity is two-fold. First, the Trojan resilience can
only be ensured for a limited number of encryptions, namely the number of tests that have
been performed. In this context, it does not make sense to provide full codebook security.
Second, limiting the data complexity means we can use fewer rounds to prevent attacks
faster than brute-force. It thus improves the performance of our algorithm. Besides, MOE
is intended to run on devices with a low throughput (see for example Table 5 in Section 6).
Thus, in practice, we do not expect manufacturers to actually enforce this data limitation
“manually”, it will instead be a side-effect of the speed of the intended platforms.

3.3 Comparison with recent design strategies
Especially in the last few years, we have witnessed an increasing number of innovative
designs focusing on efficiency in MPC and FHE settings as well as proof-friendly design
strategies to be deployed, e.g., in smart contracts. Those designs on the one hand try to
minimize the number of AND operations, and, more deviating from traditional symmetric
primitives, are often defined over vector spaces over fields of odd characteristic and in
particular over prime fields for odd primes.

Minimizing the number of AND-gates (which can be the number of AND operations
per encrypted bit or the AND-depth) is the aim of designs like LowMC [ARS+15] and
RASTA [DEG+18]. While RASTA achieves this by making large part of the design nonce-
dependent, LowMC uses partial non-linear layers (used previously in Zorro [GGNS13] for
efficient masking), and fixed but randomly generated binary linear layers.

Working over larger fields has been brought forward by MiMC [AGR+16], a cipher that
uses a block-wide (or half-block wide in the case of the Feistel-variant) S-boxes defined as
the cube mapping over the binary extension field. Actually, even though the motivation
was very different, MiMC can be seen as an iterated version of the KN-cipher [NK95]
which to our knowledge is the first cipher to use a large finite field for its design. MiMC
was further generalized to GMiMC, deploying a generalized Feistel structure with the cube
mapping as the round function [AGP+19]. Such ciphers all have in common the fact that
their round function has a simple univariate representation over the relevant finite field.

The idea of working over non-binary fields was used, e.g., in the cipher Rescue [AAB+20].
Here, S-boxes are defined as power mappings over prime fields and the linear layer deploys
MDS matrices over vector spaces over the prime field.

Combining the idea of partial non-linear layers with making use of larger and potentially
non-binary fields is the core of the Hades design strategy [GLR+20] (and of its Hash
instantiation Poseidon [GKK+19]). Here, the idea is to use some full S-box layer in the
first and last rounds to ensure good statistical properties together with a number of partial
S-box layers in the middle rounds to ensure diffusion and good algebraic properties.

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 91

Recall that the KN-cipher, that was designed to be provable secure against several
statistical attacks, was broken with the invention of the interpolation attack [JK97] making
use of its simple algebraic structure. This is a fate shared by some of its successors.

It turns out that it is non-trivial to analyse the new designs, in particular the ones
defined over non-binary prime fields . Interestingly, some of those ciphers could be broken
with algebraic attacks (e.g., Jarvis, Friday [ACG+19]) due to the simplicity of their
algebraic structure. For others, it turns out that more care has to be taken with respect
to the components, e.g., the MDS matrices used in Hades designs have to fulfill additional
properties as described in [BCD+20, KR20].

Our approach has some resemblance to the one used for LowMC in that MOE also relies
on a large binary matrix generated randomly. However, unlike LowMC, the non-linear
transformations we use are dense and have a very high algebraic degree, meaning that
algebraic attacks over F2 are not a threat. On the other hand, MOE differs significantly
from algorithms like MiMC or Rescue: in those ciphers, all operations are defined in the
same finite field in such a way as to allow the round function to have a simple univariate
representation. It is not the case in MOE as the two main operations are defined over
different mathematical structures (Fn2 and Z/2nZ).

4 Justification of our design decisions: cryptographic prop-
erties of modular multiplication and general structure

The aim of this section is to evaluate the cryptographic properties of the multiplication by
a constant modulo 2n (in particular when the multiplier is equal to 3) in order to prove
that its use in our proposal leads to a cipher that resists basic attacks.
We introduce the notation Aα given as follows:

Definition 1. Let α be some element of the modular ring Z/2nZ. We denote Aα the
following function:

Aα : Z/2nZ → Z/2nZ
x 7→ α× x

Note that Aα is a permutation if and only if α is odd.

We start by surveying the use of modular multiplication in previous designs (Section 4.1).
We next discuss several cryptographic properties of Aα, namely the algebraic degree for
any odd α (Section 4.2), and, for α = 3, the differential and linear properties (Section 4.3
and Section 4.4). Beyond their significance for our design MOE, these analyses are also of
independent interest. The only work formally treating of the cryptographic properties of
the multiplication modulo 2n we are aware of is the study of the so-called S-functions by
Mouha et al. in [MVDP11] which focuses only on their differential properties.

4.1 A Brief History of Modular Multiplication in Cryptography
The use of modular multiplication in symmetric cryptography is not new: already in
the 90s, it was used to build symmetric algorithms. Most prominently, the 64-bit block
cipher IDEA [LM91] uses multiplications modulo 216 + 1 to mix subkeys with the internal
state. The other operations it uses are the bitwise xor and the addition modulo 216.
Its authors used operations belonging to different algebraic groups in order for them to
be incompatible—that is, no pair of operations satisfies a distributive or associative law.
This design principle was meant to increase the cryptographic strength. To the authors’
credit, no attack against IDEA significantly improving upon brute-force has been found in

92 MOE: Multiplication Operated Encryption with Trojan Resilience

the single key model. IDEA inspired various other constructions, namely MESH, MMB,
WIDEA-n and MARS [NRPV04, DGV93, JM09, BCD+98]. Modular multiplication also
appeared in other (now broken) ciphers, that used it to mix the key with the internal
state: Nimbus, MultiSwap and xmx [Mac00, Scr01, MNSV97]). It was also employed in
the SHA-3 candidate Shabal [BCCM+08]. An overview of some characteristics of these
different algorithms is given in Table 1.

Table 1: Some cryptographic primitives using modular multiplication. n is the block size
and k the key size (in bits). MultiSwap also uses a 64-bit initialization vector.

Name Ref. n k Operand Modulus Vulnerabilities

IDEA [LM91] 64 128 key 216 + 1 weak keys [DGV94, BNPV02]
MARS [BCD+98] 128 128–1248 key 232 ∅
MESH [NRPV04] 64/96/128 128/192 key/state 216 + 1 ∅
MMB [DGV93] 128 128 constants 232 − 1 differential attack [WNS09]

WIDEA-m [JM09] 64 × m 128 × m key 216 + 1
diff./lin. under weak keys, free-
start collisions [Nak12, MRTV13]

Nimbus [Mac00] 64 128 key 264 (xor) differential [Fur02]
MultiSwap [Scr01] 64 374 key 232 multiplicative diff. [BCJW02]

xmx [MNSV97] flexible flexible key 2` + 1
multiplicative diff., complementa-
tion property, weak keys [BCJW02]

Shabal [BCCM+08] 1408 – constants 232 ∅

Note that the multiplicative differential is a variant of differential attack introduced
in [BCJW02]. It studies the propagation through the cipher of pairs of the form (x, αx).
It allowed attacks against Nimbus, MultiSwap and xmx.

We can learn some lessons from the previous uses of modular multiplication. On one
hand, using this operation to mix the key with the internal state may lead to weak keys
as in IDEA, WIDEA-n, and xmx. On the other hand, the multiplication with a constant
provides interesting cryptographic properties, such as an algebraic degree and non-linearity
increase, for a cost which may be as low as a single processor instruction.

4.2 Sum representation and algebraic degree
The computation of Aα(x) can be represented using the binary representations of its
operands as the following sum modulo 2n.

xn−1 ... x2 x1 x0 ×α0

� xn−2 ... x1 x0 0 ×α1

� ... · · ·

� x0 ... 0 0 0 ×αn−1

We call it the sum representation. This tool is the core of our proof of the next theorem.

Theorem 2. The maximum degree that Aα can take is equal to n− 1 and it is reached if
α is congruent to 3 modulo 4.

Proof. By referring to the sum-representation, we can easily see that bit number i of
Aα(x) depends linearly on bits xi and non-linearly (in a broad sense) on x0 to xi−1 so its
maximum degree is equal to i. Hence, the most significant bit is at most of degree n− 1.

We now consider the modular multiplication by an integer α of the form α = 3 + 4k
with k ∈ Z. We start by treating the case k = 0 and then move to the general case.

We introduce the function µi(x) that corresponds to the value of the carry of bit number
i. Namely, the function µ : Fn2 → Fn2 is given by: µ : x 7→ (3× x mod 2n)⊕ x⊕ (2× x)
and in particular we have: yi = µi ⊕ xi ⊕ xi−1.

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 93

It is easy to see that the coordinates of µ(x) follow the recurrence formula:
µ0(x) = 0,
µ1(x) = 0,
µi(x) = maj (xi−1, xi−2, µi−1(x)) if i > 1 ,

where maj(a, b, c) = ab⊕ bc⊕ ac denotes the majority function. We observe that the first
non-zero carry is µ2(x) and is equal to x0x1, and in particular deg (µ2(x)) = 2. We also
have that: {

deg (µ0(x)) = deg (µ1(x)) = −∞,
deg (µi(x)) = max (2,deg ((xi−1 + xi−2)µi−1(x))) if i > 1 .

Since µi−1(x) does not depend on xi−1, we have that the degree of (xi−1 + xi−2)µi−1(x)
is equal to 1 + deg(µi−1(x)) and we obtain that:{

deg (µ0(x)) = deg (µ1(x)) = −∞,
deg (µi(x)) = max (2, 1 + deg (µi−1(x))) = i if i > 1 .

This gives the following relations linking the degrees of the bits of Aα:{
deg(y0(x)) = 1,
deg(yi(x)) = i, if i ≥ 1 .

This proves that the maximal degree is reached for α = 3. We remark that yi contains
only one monomial of degree i (the product of x0 to xi−1) so we can write yi(x) as yi =
xi + x0x1x2...xi−1 + fi(x0, x1, x2, ..., xi−1) where fi is a Boolean function of degree i− 1.

Let n > 1. We now consider the case k > 0. The mapping Aα can be expressed as
Aα : x 7→ (3 × x) � (4k × x). As previously we denote y = 3 × x, and we also use the
notation t = 4k × x and ` = Aα(x) = y � t. We also let h = mini>1{αi = 1}.

Using these notations, the value of Aα(x) is given by the following modular sum:

yn−1 ... y2 y1 y0

� tn−1 ... t2 t1 t0

`n−1 ... `2 `1 `0

Similarly to the case α = 3, the bit with index i in ` is given by `i = yi ⊕ ti ⊕ δi where
δi denotes the carry and follows the relation:{

δi(x) = 0, if i ≤ h
δi(x) = maj(yi−1, ti−1, δi−1(x)), otherwise .

We observe that deg(δh+1) = deg(yh) = h, and this is our base case. We make the
induction hypothesis that for all j < i we have deg(δj) ≤ j − 1. To show that the property
holds for bit number i, we make the following additional remarks, deduced from the
sum-representation:

• deg(ti) ≤ i− 2 since it depends linearly on xi−2 and non-linearly on x0 to xi−3,

• δi(x) is a function of x0 to xi−1.

94 MOE: Multiplication Operated Encryption with Trojan Resilience

We look at δi(x) = yi−1ti−1 + yi−1δi−1(x) + δi−1(x)ti−1. The last term depends only
on x0 to xi−2 so its degree is lower than or equal to i− 1. We then focus on the first two
terms. With the remark made previously, we can rewrite them as:

yi−1(ti−1 + δi−1(x)) = (xi−1 + x0...xi−2 + fi−1(x0, ..., xi−2)) (ti−1︸︷︷︸
deg≤i−3

+ δi−1(x)︸ ︷︷ ︸
deg≤i−2

) ,

where fi−1 is of degree i− 2 and where ti−1 and δi−1(x) depend respectively on x0, ..., xi−3
and x0, ..., xi−2. This new expression makes clear that the first two terms of δi(x) are at
most of degree i− 1 and so is δi(x). Thus, `i = yi ⊕ ti ⊕ δi contains the degree i monomial
x0x1x2...xi−1 (present in yi) that is not canceled since the other terms are of smaller
degree. This concludes the proof.

4.3 Differential properties
An algorithm for DDT coefficients. The following theorem allows an efficient computa-
tion of any ddt coefficient of the multiplication by 3. The full proof is in Appendix C.1
but we also provide a proof sketch below.

Theorem 3. Let A3(x) = 3 × x mod 2n for n ≥ 2 and let DnA (a, b) be a coefficient of
the Difference Distribution Table (DDT) of A3, i.e. the number of solutions of A3(x)⊕
A3(x⊕ a) = b. This quantity can be evaluated in time O(n) using that:

DnA (a, b) = λ0
n−1(a, b) + λ1

n−1(a, b) ,

where the sequence λzn−1(a, b) is defined by:

λz1(a, b) = 2× (1⊕ a0 ⊕ a1 ⊕ b1)× (1⊕ a0 ⊕ b0)

and by the following induction rule for i ≥ 2, where di(a, b) = 2× (bi ⊕ ai)� (bi−1 ⊕ ai−1):

di(a, b) = 0 =⇒
{
λ0
i (a, b) = 2λ1

i−1(a, b) + λ0
i−1(a, b)× (1⊕ ai−1 ⊕ ai−2)

λ1
i (a, b) = λ0

i−1(a, b)× (1⊕ ai−1 ⊕ ai−2)

di(a, b) = 1 =⇒
{
λ0
i (a, b) = λ0

i−1(a, b) + λ1
i−1(a, b)

λ1
i (a, b) = 0

di(a, b) = 2 =⇒ λ0
i (a, b) = λ1

i (a, b) = λ0
i−1(a, b)× (ai−1 ⊕ ai−2)

di(a, b) = 3 =⇒ λ0
i (a, b) = λ1

i (a, b) = λ0
i−1(a, b) .

Note that λ0
i−1 = λ1

i−1 = 2−1 ×DiA ((a0...ai−1), (b0...bi−1)) if di(a, b) ∈ {1, 3}.

Sketch. We study µ : x 7→ A3(x) ⊕ x ⊕ A2(x) which is extended-affine equivalent to A3
rather than A3 itself. We denote its i-th coordinate µi . The proof works inductively over
the index of the coordinate considered, from the lowest weight to the highest weight. At
step i, we count the number of solutions of µi(x + a) + µi(x) = b as a function of the
number of solutions of µi−1(x+ a) + µi−1(x) = b. The key trick in our proof is to separate
the solutions of µi(x+ a) + µi(x) = b where µi(x) = 0 from those where µi(x) = 1. We
deduce an inductive formula for computing any coefficient in the ddt of µ. We finally use
the extended-affine equivalence of µ and A3 to obtain a similar algorithm for A3.

Sierpinski triangles. The induction described in Theorem 3 has a surprising consequence:
the indicator function of the ddt of η(x) = A3(x) ⊕ x forms a pattern similar to the
Sierpinski triangle, as can be seen in Figure 6. We provide more details in Appendix C.2.

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 95

0 50 100 150 200 250

0

50

100

150

200

250

Figure 6: The indicator function of the ddt of η(x) = A3(x)⊕ x for n = 8.

Bounding the DDT coefficients. Theorem 3 will also allow us to bound DnA (a, b) using
only the value of a. To prove this, we first need the following lemma.

Lemma 2. The coefficient DnA (a, b) can be bounded by:

DnA (a, b) ≤ 21+
∑n−1

i=1
νi(a,b) ,

where νi (a, b) is equal to either 0 or 1 and is given by:{
ν1 (a, b) = (1⊕ b0 ⊕ a0)× (1⊕ b1 ⊕ a1 ⊕ a0) if i = 1,
νi (a, b) = (1⊕ bi−1 ⊕ ai−1)× (1⊕ bi ⊕ ai ⊕ ai−1 ⊕ ai−2) otherwise .

Sketch. Theorem 3 provides us with a way of computing DnA (a, b) for any a, b. It works by
scanning the bits of a and b from lowest weight to highest weight and updating a starting
value by either:

1. setting it to zero,

2. leaving it unchanged, or

3. increasing it, in which case it is at most doubled.

A careful study shows that this case 3 only occurs when νi (a, b) = 1. The bound follows.

As before, the details of the proof of Lemma 2 are in Appendix C.3. This bound can
be exploited via a simple observation stated in the following lemma.

Lemma 3. The following implication always holds for i > 1:

ai−1 6= ai−2 =⇒ νi (a, b) + νi+1 (a, b) ≤ 1 .

Proof. If νi (a, b) + νi+1 (a, b) = 2, then{
bi−1 ⊕ ai−1 = 0
bi ⊕ ai ⊕ ai−1 ⊕ ai−2 = 0

and
{
bi ⊕ ai = 0
bi+1 ⊕ ai+1 ⊕ ai ⊕ ai−1 = 0 .

If we add the bottom equation from the left and the top one from the right, we obtain
ai−1⊕ ai−2 = 0. Thus, if ai−1 6= ai−2, it is impossible for both systems to be satisfied.

A naive combination of this lemma with Lemma 3 would give that log2DnA (a, b) ≤
1+n−|{i ≤ 1, ai 6= ai−1}|. Indeed, for each position in which ai 6= ai−1, Lemma 2 imposes
that the maximum value of the sum of νi (a, b) is decreased by 1. However, this approach
does not work out of the box. If ai−2 6= ai−1 and ai−1 6= ai, then it is always true that
νi (a, b) + νi+1 (a, b) ≤ 2 and that νi+1 (a, b) + νi+2 (a, b) ≤ 2 but it is not always true that

96 MOE: Multiplication Operated Encryption with Trojan Resilience

νi (a, b) + νi+1 (a, b) + νi+2 (a, b) ≤ 1. Thus, bounding the maximum value of the sum by
n minus the number of i such that ai−1 6= ai is wrong.

Nevertheless, we can write a similar bound if we add the condition that if ai−1 6= ai
then we do not take into account whether ai 6= ai+1. We then take into account the
quantity aw(a) defined as:

aw(a) =
n−1∑
i=1

ci(a) ,

where: {
c1(a) = (a1 ⊕ a0)
ci(a) = ci−1(a)× (ai ⊕ ai−1) if i > 1

and it then holds that:
DnA (a, b) ≤ 2n+1−aw(a)

when DnA (a, b) is a coefficient of the ddt of A3 : x 7→ 3× x mod 2n for n > 2. Informally,
aw(a) captures the number of changes occurring in a, i.e. the number of times where a
run of 0 is interrupted by a 1 and vice-versa. In fact, the induction defining aw(a) is the
exact same used to compute the arithmetic weight as introduced in [MG72].

Definition 2 (NAF and Arithmetic Weight). Let a be an element of Z/2nZ. The non-
adjacent form (NAF) of a is the tuple (en−1, ..., e0) of elements in {−1, 0, 1} such that
a =

∑n−1
i=0 ei2i and such that the number of non-zero coefficients ei is minimal. It is unique.

The number of non-zero coefficients in the NAF of a is called the arithmetic weight of a
and is denoted aw(a). For a ∈ Fn2 , aw(a) is the arithmetic weight of the integer with a as
its binary representation.

We have shown that is possible to bound DnA (a, b) using the arithmetic weight of a.
We formalize this result into the following theorem.

Theorem 4 (Main Bound). Let a be an element in Fn2 and let DnA (a, b) be a coefficient
of the ddt of A3 : x 7→ 3× x mod 2n for n > 2. Then, it holds that:

DnA (a, b) ≤ 2n+1−aw(a) .

In particular, it is possible to bound DnA (a, b) independently from b.

This bound is illustrated in Figure 7(a) where:

• the first curve was obtained by actually computing the ddt of A3 to find the
maximum coefficient in each row, and

• the second curve was obtained using Theorem 4.

As we can see, the actual maximum is indeed lower than the bound of Theorem 4. Though
coarse, this bound is sufficient in practice to serve as the basis for the design of a block
cipher as we show in Section 5.1.

4.4 Linear properties
Theorem 5. Let (a, b) be a pair of input and output masks. Furthermore, let: i be such
that 2i ≤ int(b) < 2i+1 so that b = (b0, ..., bi, 0, ..., 0) and:

Li : x 7→ (x0, ..., xi−3, xi−2 + xi−1, 0, .., 0)

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 97

0 50 100 150 200 250
Input difference

0

50

100

150

200

250

300
D

D
T
 r

o
w

 m
a
x
im

u
m

Experimental
Theoretical

(a) An experimental illustration of Theorem 4.
0 50 100 150 200 250

0

50

100

150

200

250
0

30

60

90

120

150

180

210

240

(b) The lat of A3.

Figure 7: Some properties of A3 for n = 8. Figure (a) is a visual representation of the
LAT[a][b] of A3, where the x axis corresponds to a and the y axis corresponds to b.

be a linear function. The Walsh coefficient WA (a, b) =
∑
x∈Fn2

(−1)〈a,x〉+〈b,A3(x)〉 is equal
to 0 if a < 2i or a ≥ 2i+1. Otherwise, it can be deduced from values of WA (., .) for smaller
masks using:

a′ = Li(a)⊕ (2i−2 + 2i−1)bi−1 ,

b′ = (b0, ..., bi−1, 0, ..., 0) ,

WA (a, b) = WA (a′, b′)
2 + (−1)ai−1+bi−1+1WA

(
a′ ⊕ 2i−1, b′ ⊕ 2i−1)

2 .

The proof consists purely in computations given in Appendix C.5.

4.5 On the unsuitability of SPN constructions
Our aim is to design a 128-bit cipher where all operations are linear (in different groups)
to ease the implementation of secret sharing inside each round. The most costly part
in such an implementation is the secret sharing itself, so we want our cipher to require
as few sharing/recombinations as possible while remaining secure. A natural approach
would consist in using the wide trail strategy to design a secure Substitution-Permutation
Network (SPN). However, we demonstrate here that this approach would require a high
number of sharing and recombinations to give a secure cipher. By contrast, our proposal
relying on applying both a multiplication by 3 and a binary matrix on the full state of the
cipher can be proven resistant to differential attacks with a reasonable complexity.

The wide trail argument was introduced by Daemen and Rijmen who famously used it
to design the AES [AES01]. It allows to prove a simple bound on the maximum expected
probability of a differential trail covering r rounds of an S-Box-based cipher in two steps.
First, we show that the maximum probability of a differential for the S-Box used is upper
bounded by a certain quantity:

Pr [S(x⊕ a)⊕ S(x) = b] ≤ u× 2−n ,

where u is the differential uniformity [Nyb94] of S. Then, we show that any differential
trail covering r rounds activates at least a(r) S-Boxes and conclude that the expected
probability of any single trail covering r rounds is at most (u2−n)a(r). When the cipher is
a SPN, we can use the branching number b of the linear layer to have that a(2) = b.

We could build an n-bit block cipher using multiplication-based S-Boxes operating on
m bits, where m divides n. As we allow ourselves arbitrarily complex linear layers, we can
have the optimal bound a(2) = n/m+ 1 by building the linear layer from an MDS code.

As we need to be able to compute the DDT of the S-Boxes considered and since we
need that m divides n = 128, m = 16 is the maximum size of the S-Boxes we consider.

98 MOE: Multiplication Operated Encryption with Trojan Resilience

4.5.1 Using multiplications as S-Boxes.

The simplest approach would consist simply in using multiplications by constants mod-
ulo 2m as S-Boxes. The non-linear operation would then correspond to the multipli-
cation by a diagonal matrix of elements in Z/2mZ. However, for any α ∈ Z/2mZ,
Pr
[(
α× (x⊕ 2m−1)

)
⊕ (α× x) = 2m−1] = 1, meaning that the differential uniformity of

a multiplication by a constant is always maximum. As a consequence, a wide trail argument
cannot work; it would only bound the maximum expected differential probability with 1.

4.5.2 Building S-Boxes with several multiplications.

A simple fix for this issue is to build the S-Boxes by combining two multiplications
modulo 2m interleaved with a multiplication with a binary matrix of size m ×m. The
multiplication coefficients and the binary matrix could further be optimized to lower the
differential uniformity of the whole construction as much as possible. However, while such
an approach could be used to build a secure block cipher, it would lead to a higher number
of sharing/recombinations than the design strategy we describe in Section 3.

Indeed, as first shown by the attacks targetting SPNs with a “SASAS” structure [BS01,
BS10] which were later generalized to more rounds [BKP16], at least 4 S-Box layers
are needed to prevent integral attacks. Precisely, the structural attack against SASAS
from [BS01, BS10] only needs 22m plaintext/ciphertext pairs which, for m ≤ 16, is well
under our cap of 264 plaintext/ciphertext pairs.

Furthermore, each such round would contain four secret sharing and recombinations as
each round would consist in a key addition, a multiplication in (Z/2mZ)n/m, a multiplication
by a binary matrix of size n × n, another multiplication in (Z/2mZ)n/m to finalize the
evaluation of the S-Box layer and, finally, another multiplication by a binary matrix of
size n× n to provide diffusion between the S-Boxes.

On the top of this, several more rounds would need to be appended to this construction
to take into account the fact that a parallel layer of S-Boxes lends itself to an efficient key
recovery over several rounds. Indeed, the key material at the input/output of each S-Box
can be brute-forced separately and then recombined in a second step as done, e.g., with
the partial sum technique introduced in [FKL+01].

Thus, each round requires 4 sharing/recombinations, at least 3 are needed to prevent
distinguishers and then at least another 2 such rounds to prevent key recoveries. The total
number of sharing/recombinations in each cipher evaluation is thus at least equal to 20.
On the other hand, while our proposal requires 2 sharing/recombinations per round and
6 rounds to prevent distinguishers, the full diffusion of its round function implies that 2
additional rounds are sufficient to prevent key recovery. Thus, it needs a total of only 16
sharing/recombinations per encryption.

5 Security analysis of MOE

In this section, we list the results of our attempts at attacking MOE as well as the
justification of its security against various attacks. Our best distinguishers are listed in
Table 2. Key recovery attacks are made extremely difficult by the strong diffusion of
the M layer and the fact that A3 operates on the full state. We leave the description of
such attacks as an open problem. We additionally assessed experimentally the security of
small-scale variants of MOE against differential and linear attacks. The results we obtained
are consistent with the argument outlined below and give us confidence in the sanity of
our design approach. These experiments are described in Section 5.2.

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 99

Table 2: Our best distinguishers against round-reduced MOE. Time is measured in number
of encryptions, data is measured in number of plaintext/ciphertext pairs; s is any integer
such that 2 ≤ s < n.

Description Complexity
Type # rounds Time Data Memory

differential 2 222 222 negligible
0-sum 2 2s 2s negligible
impossible diff. 3 2128 2128 negligible

5.1 Proof of security against single-trail differential attacks
In this section, we bound the probability of differential trails in MOE. We show that
the majority of binary matrices lead to a cipher that does not have high-probability
characteristics after only a few rounds. The starting point of our reasoning is the bound
established in Theorem 4: informally, the more changes in the input difference, the lower
the probability of the characteristic. Consequently, a lower bound on the number of
changes in the vectors in each differential trail implies a lower bound on the probability
of all characteristics. This observation made us opt for a step function that alternates
A3 and its inverse for the non-linear layer. In this way, the probability that a differential
characteristic covers the 3 operations A−1

3 , M and A3 can be bounded by a quantity
depending on the arithmetic weights of the output of A−1

3 and the input of A3. Since these
two vectors are related by M , we can reformulate our problem as finding the minimum
number of changes present in the input and output of the binary matrix M . Given the
similarities of this notion with the one of differential branch number, we denote this as the
Change Branch Number (CBN) of M . We denote by Ckn the number of n-bit vectors with
an arithmetic weight of k. Its value is given by the following theorem.

Theorem 6. Let n be a positive integer. The number of n-bit vectors with exactly an
arithmetic weight of k is given by:

Ckn =
(
n− 1− k

k

)
× 2k+1 +

(
n− 1− k
k − 1

)
× 2k

Proof. To ease our enumeration, we split the solutions in two sets, depending if a change
is present in the last 2 bits or not. If not (first set), it means that exactly k changes start
in the n− 2 first bits of the vector. In case a change is positioned in the last 2 bits (second
set), we have k− 1 changes in the first n− 2 bits, and the last change of this smaller vector
must start at the n− 3th bit at the latest.7

In the following, we denote by P ηκ the number of possibilities for choosing a valid set of
starting indexes of κ changes among η index possibilities.

Let us next consider the first set. To build a solution in this set we start by choosing
the positions of the k changes in the n− 2-bit vector (Pn−2

k possible choices) and then fix
their values ("01" or "10"). It is easy to see that once these elements are fixed, all the bits
between two changes are uniquely determined: indeed, there is only one solution that does
not contradict either the total number of changes or their starting positions. However, the
bits following the last change are less constrained and can take 2 values: either all-zero or
all-one. This implies that the size of the first set is equal to Pn−2

k × 2k × 2.
We now consider the second set. A change is present in the last 2 positions, so after

positioning the other k − 1 changes only one solution is possible for the other bits. There
are Pn−3

k−1 possibilities for positioning the k − 1 changes, and each of the k changes can
take 2 values. Consequently, the size of the second set is Pn−3

k−1 × 2k.
We finally have to determine the value of P ηκ . The problem of positioning the start

indexes of κ changes in a vector of η bits can be seen as partitioning η − κ bits with
7All along the proof, we focus on the position of the first bit of the pair creating a change.

100 MOE: Multiplication Operated Encryption with Trojan Resilience

the following conditions, where the xi are integers corresponding to the number of bits
separating two change starts:

x0 + x1 + · · ·+ xκ = η − κ,
x0, xκ ≥ 0,
xi > 0 for 0 < i < κ,

where x0 and xκ represent the number of bits before the first change and after the last
change, respectively, so can be null, whereas the other xi are at least equal to 1 as a
change is made of 2 bits. By subtracting 1 to all the xi, 0 < i < k, the conditions can be
reformulated as follows: {

y0 + y1 + · · ·+ yκ = η − 2κ+ 1,
yi ≥ 0.

The number of solutions of this equation is given by a famous combinatoric theorem and
is equal to

(
η−κ+1
η−2κ+1

)
=
(
η−κ+1
κ

)
. This concludes the proof as it shows that the number of

n-bit vectors with exactly k changes is:

Ckn =
(
n− 1− k

k

)
× 2k+1 +

(
n− 1− k
k − 1

)
× 2k.

5.1.1 From the CBN of a random permutation to the one of M

To estimate the expected CBN of a random linear permutation, we first compute the
distribution of the CBN of random (non-linear) permutations using Theorem 6. In a
second step, we checked experimentally that this distribution is unchanged when we restrict
ourselves to random linear permutations.

Recall that aw(x) is the arithmetic weight of x ∈ Fn2 and we denote the change branch
number of a transformation T as CBN(T). The CBN of a random permutation S verifies
the following:

P[CBN(S) ≤ t] =1− P[CBN(S) > t]
=1− P[aw(x) + aw(S(x)) > t ∀x 6= 0]

≈1− (
t−1∏
s=1

(P[aw(S(x)) > t− s])|{x|aw(x)=s}|)

≈1− (
t−1∏
s=1

(P[aw(x) > t− s])|{x|aw(x)=s}|). (1)

The approximations stems from the assumption that the input and the output of S
are independent. The inequality aw(x) + aw(S(x)) has to hold for all x, so assuming
independence, it is the product of the probabilities that it holds for a specific x. Those
values are then grouped into x values of a given aw(x) = x. The expression of the probability
that the change branch number is equal to t is easily deduced. We experimentally checked
this result. Table 3 shows the distribution of the CBN of 500 matrices picked at random
from GL(24,F2) along with the expected distribution deduced from Formula 1. The two
distributions are very close. We found similar results for values of n up to 28.

Consequently, Formula 1 gives an accurate estimate of the CBN one can expect for
a random matrix of GL(n,F2). Further, we observe that the distribution reduces to two
values when we increase n, as illustrated in Figure 8. For instance, for n = 64, only the

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 101

Table 3: Comparison of the CBN distribution deduced from Formula 1 with the experi-
mental distribution obtained with 500 random matrices of GL(24,F2).

CBN 1 2 3 4 5 6 7

experiment 0 1 8 175 315 1 0
predicted 0.0 0.2 9.5 161.6 327.5 1.1 0.00

	0

	200

	400

	600

	800

	1000

	0 	10 	20 	30 	40 	50 	60

nu
m
be

r	o
f	m

ap
pi
ng

s

CBN

Distribution	of	the	CBN	of	1000	mapping	for	different	n

n=16
n=32
n=64

n=128
n=256

Figure 8: Distribution of the CBN of 1000 mappings for different n obtained with
Formula 1.

values of the CBN equal to 11 and 12 have a meaningful probability. For n = 128, which
is the case we are interested in, we have a change branch number equal to 24 roughly 80%
of the time and a change branch number equal to 23 for the remaining 20%. Overall, most
mappings share the same (or very close) branch number and that for high values of n the
distribution reduces to 2 values. Note that the CBN is upper bounded by the minimal
distance. For n = 128, the Gilbert-Varshamov bound gives that a random linear code has
with high probability a minimum distance of 31, while we found that the CBN will be of
24: our results are consistent with this bound.

5.1.2 From the CBN to a bound on differential characteristics

By combining this CBN bound with Theorem 4, we obtain a bound on the probability of
any differential characteristic on one step of MOE.

We denote by δ1, δ2 and δ3 the differences at the input of A−1
3 , M and A3 respectively

and δ4 the difference at the output of A3:

Pr
[
δ1

A−1
3−−−→ δ2

M−→ δ3
A3−−→ δ4

]
= Pr

[
δ2

A3−−→ δ1

]
× 1(δ3=M×δ2) × Pr

[
δ3

A3−−→ δ4

]
≤ 21−aw(δ2) × 21−aw(δ3)

≤ 22−(aw(δ2)+aw(δ3)) ≤ 22−CBN(M) ≤ 2−22

By iterating the 4 operations A−1
3 , M , A3 and M three times, we obtain a succession

of operations for which we can prove that there are no differential characteristics with
probability greater than 2−66. Given the cap on the data complexity we consider, this is
sufficient to prevent the existence of distinguishers based on differential characteristics.
It appears that a reasonable choice would be to fix the number of non-linear layers to 8:

102 MOE: Multiplication Operated Encryption with Trojan Resilience

6 to be safe against differential characteristics, plus 2 as a security margin.8 Recall that
M is dense so that inverting 1 round, even if only partially, will require substantial key
guessing, which makes us believe that our choice is sensible.

Furthermore, while we proved that there exists no exploitable differential characteristics
covering 6 rounds of MOE, whether there are in fact such characteristics covering only 4
rounds is an interesting open problem. Indeed, in light of our experiments in Section 5.2,
such characteristic may not even exist.

So-called Multiplicative differentials [BCJW02] have been used to easily find differential
trails in some ciphers using modular multiplications. As we prevent the existence of any
high probability differential trail, we are in particular safe from those found in this way.

5.2 Experimental results on small scale variants of MOE
Unfortunately, we were not able to find a clean argument proving the security of our
algorithm against linear attacks as we did for differential attacks. However, due to the
fact that all of the operations of MOE operate on the full state, it is very easy to design
variants of MOE operating on smaller blocks.

As detailed below, we seized this opportunity and conducted experiments on variants
of our cipher with block sizes from 8 to 16. In short, we experimentally computed the
maximum coefficient in the DDT and in the LAT of MOEn (n being the block size) for
different keys, matrices M and round constants. Note that while cryptographers usually
work on differential trails—it is what our security argument against differential attacks
relies on as well— this approach deals with differentials and linear approximations directly.
To put it differently, such experimental results are not directly based on the study of
patterns propagating throughout the rounds. Therefore, it has the advantage of taking
into account the possible clustering of differential or linear trails. In what follows, we
describe our approach in more details.

Recall that we limit the data complexity of attacks we want to prevent to 2n/2. The
number of plaintext/ciphertext pairs needed to mount a differential distinguisher for a
block cipher instance Ek is essentially:

Ddifferential = 1
maxa 6=0(Pr [Ek(x⊕ a)⊕ Ek(x) = b])

, (2)

and, for a linear attack:

Dlinear = 1
2
(
maxa6=0,b

(
Pr [〈a, x〉 = 〈b, Ek(x)〉]− 1/2

))2 . (3)

Both probabilities are taken over all possible keys. In the differential case, we have:

max
a 6=0,b

(Pr [Ek(x⊕ a)⊕ Ek(x) = b]) = 2−n max
a6=0,b

∑
k∈Fn2

ddtEk [a, b]
2n


≤ 2−n max

a 6=0,b

(
max
k∈Fn2

(ddtEk [a, b])
)

≤ 2−n max
k∈Fn2

(
max
a 6=0,b

(ddtEk [a, b])
)
,

so that we can estimate a bound on the maximum of this probability by computing the
maximum coefficient in the ddt of several keyed instances MOEnki for ki ∈ K,K ⊂ Fn2 , and

8This choice is also reasonable if the CBN of M is “only” equal to 23 (according to Formula 1 this occurs
for 20% of random mappings) since 6 non-linear layers ensure the absence of differential characteristics
with probability greater than 2−63.

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 103

looking at the maximum of these quantities which we denote qd:

qd(K) = max
ki∈K

(
max
a 6=0,b

(
ddt(MOEnki)[a, b]

))
,

where maxa6=0,b(Pr [Ek(x⊕ a)⊕ Ek(x) = b]) ≤ 2−nqd(Fn2). As we cannot consider all
possible keys, we assume qd(Fn2) ≈ qd(K) for the subset K we experimentally consider.

We want to have Ddifferential > 2n/2. We deduce from Equation (2) that it is equivalent
to having the inequality maxa 6=0,b(Pr [Ek(x⊕ a)⊕ Ek(x) = b]) < 2−n/2. Using what we
just established, it holds that:

max
a 6=0,b

(Pr [Ek(x⊕ a)⊕ Ek(x) = b]) ≤ 2−nqd(Fn2) ≈ 2−nqd(K) .

In order to prevent the existence of differential distinguisher using less than 2n/2 plain-
text/ciphertext pairs, it is thus sufficient to have 2−nqd(K) < 2−n/2 or, equivalently;

log2 (qd(K)) 2
n
< 1 .

Similarly, for the linear case, we look at the maximum coefficient in the LAT of several
instances MOEnki and then keep the maximum of those quantities. We denote the result q`:

q`(K) = max
ki∈K

(
max
a 6=0,b

(
WMOEn

ki
(a, b)

))
,

where maxa6=0,b(Pr [〈a, x〉 = 〈b, Ek(x)〉] − 1/2) ≤ 2−n−1q`(Fn2) and we assume q`(Fn2) ≈
q`(K) for the subset K we experimentally consider.

Again, our aim is to have Dlinear > 2n/2. We deduce from Equation (3) that it is
equivalent to having:

2
(

max
a6=0,b

(
Pr [〈a, x〉 = 〈b, Ek(x)〉]− 1/2

))2
< 2−n/2 ,

a condition which we re-write:

max
a6=0,b

(
Pr [〈a, x〉 = 〈b, Ek(x)〉]− 1/2

)
< 2−n/4−1/2 .

We have established that an estimate of the maximum of this probability can be bounded
with 2−n−1q`(Fn2) ≈ 2−n−1q`(K), it is therefore sufficient to have:

2−n−1q`(K) < 2−n/4−1/2,

which is equivalent to:
log2 (q`(K)) 4

3n < 1.

To experimentally assess the security of MOEn for smaller values of n, we thus proceed
as follows. For each n, we looked at 20 different matrices Mi and sets of round constants
and, for each such instance, at a set of 20 different master keys denoted Ki. We computed
the maximum coefficient in the DDT and the LAT of the corresponding permutations
and deduced qd(Ki) and q`(Ki). We then plotted the average, minimum and maximum of
log2 (q`(Ki)) 4

3n and log2 (qd(Ki)) 2
n in Figures 9 and 10 respectively.

As we can see, for 3-round MOEn, some linear and differential distinguishers with a
data complexity under 2n/2 may exist as neither log2 (q`(K)) 4

3n nor log2 (qd(K)) 2
n are

consistently under 1 for the values of n considered. Furthermore, they seem to stabilize
just above this number as n increases. Still, we can deduce that any differential or linear

104 MOE: Multiplication Operated Encryption with Trojan Resilience

Block size n
18

Figure 9: Experimental resilience of MOEn against linear attacks for small block sizes n.

Figure 10: Experimental resilience of MOEn against differential attacks for small n.

distinguisher covering 3 rounds would need an amount of data close to 2n/2. We stress
that such distinguishers could not be improved using a cluster of differential (or linear)
trails as their effect is already taken into account by these experiments.

We also see that no linear or differential distinguisher will cover 4 rounds with a data
complexity under 2n/2. Indeed, the two quantities we consider are mostly under 1 for the
small block sizes n we experimentally investigated. Further, they decrease as n increases.
We can thus expect that a differential or linear distinguisher covering 4 rounds needs much
more than 2n/2 plaintext/ciphertext pairs. This result is consistent with the bound we
have put on the differential probability of 6-round MOE when n = 128 as we have shown
that no differential trail covers 6 rounds with a probability higher than 2−66. In fact, it
seems like our bound is rather loose and 4 rounds may actually be sufficient.

5.3 Other attacks

While our proof and experimental results cover both differential and linear attacks, other
types of attacks exist. We summarize our corresponding results below.

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 105

5.3.1 Variants of differential and linear Attacks

As evidenced by our experiments, the clustering of differential or linear trails are not a
threat to MOE. The diffusion is both very fast (due to the M layer), and does not interact
in any particular way with the non-linear operation. As a consequence, this experimental
observation is not surprising. These properties of M are also behind the security of MOE
against truncated differential attacks.

5.3.2 Impossible differentials

Impossible differential cryptanalysis [Knu98] is a natural attack strategy given that our
non-linear layer admits a probability one differential characteristic and that the cipher uses
few rounds compared to most algorithms in the literature. In addition, this technique was
proven efficient to break up to four and a half rounds of the multiplication-using cipher
IDEA [BBS99], a result that was for long the best attack.

In the following, we present an impossible differential that covers the 7 transformations
M,A3,M,A−1

3 ,M,A3,M , that is 3 rounds out of the 8 that define the cipher. We will see
that turning this differential into an efficient attack seems complicated, which shows that
impossible differential attacks are not a concern for MOE.

As a starting point, remark that for any choice of α (odd) and for α = 3 in particular, a
1-bit difference standing in the most significant bit gives the same difference after Aα. By
extending this characteristic through the linear layer, we obtain a differential that covers the
3 steps M,A3 and M and goes from M−1(0 · · · 01) to M(0 · · · 01). To build the impossible
differential from this, we connect two such differentials by a non-linear step A−1

3 . Given
the structure of the ddt of Aα (see Appendix C.4) it is easy to see that more than 3/4 of
the transitions are impossible. Consequently, with a high probability, the differential going
from ∆X = M−1(0 · · · 01) to ∆Y = M(0 · · · 01) over the steps M,A3,M,A−1

3 ,M,A3,M is
impossible. Note here that the construction of the impossible differential holds for any
choice of M and regardless of the non-linear layer, as soon as this layer has probability one
(non-trivial) characteristics. However, the non-linear layer impacts the probability that the
transition from a probability one characteristic to the other is impossible. A good point
(for the attacker) is that our previous discussion on the ddt (see Section 4.3) implies that
checking if the transition is impossible can be done efficiently.

A possible idea to use this differential to mount an attack would be to consider a
reduced version of MOE with 4 non-linear steps, with the previous impossible differential
positioned at the beginning (see Figure 11).

M CP A3 A−1
3 M MA3

K K K K

A−1
3 M

K

M

K

Probability 1 Probability 1Contradiction

∆X ∆Y ∆out

Figure 11: Impossible differential on a reduced version of MOE with 4 non-linear steps.

The idea would then be to ask for the encryption of pairs of messages with the input
difference ∆X = M−1(0 · · · 01). We could test a key by inverting the last linear and non-
linear layer from the ciphertext and check if the difference is equal to ∆Y = M(0 · · · 01).
The good point (again for the attacker) is that the definition of A3 allows to make guesses
with a reduced cost: indeed, τ consecutive output bits of A3 can be computed with the
knowledge of τ + 1 consecutive input bits and one bit of carry (this property can be seen
on the sum representation of A3). If this property offers the possibility to make partial

106 MOE: Multiplication Operated Encryption with Trojan Resilience

independent key guesses and to combine them later, the total time complexity would still
be prohibitive. Since we don’t have a strong filter on the ciphertext difference, we would
have to roughly examine all the pairs. Each of them would allow to cancel one key. Taking
into account the data limitation of 264 plaintext/ciphertext pairs, we conclude that the
impossible differential is hard to exploit. Indeed, even as a simpler 3-round distinguisher it
would require the full code-book (and thus the time needed to compute it) and a negligible
amount of memory: for each pair, if the impossible output difference is observed then the
permutation observed cannot be 3-round MOE. It is thus impossible to exploit given the
limitation we impose on the data complexity.

5.3.3 Invariant subspaces and 0-sums

Multiplications by constants in Z/2nZ exhibit many invariant subspaces in the sense
of [LAAZ11] (see below). However, the permutation M very thoroughly disrupts this
pattern and it is thus impossible to use such spaces for an invariant subspace attack. It is
nevertheless possible to exploit this property along with the low algebraic degree of the
low weight bits of A−1

3 to obtain a wide array of 0-sum distinguishers against 2-round
MOE (where the last call to M has been removed).

Let us show how such distinguishers would work. Let s ≤ n be an integer, let a ∈ Fn−s2
be a constant, and let Ss(a) = {x||a, x ∈ Fs2} be an affine subspace of Fn2 of dimension
s where the s bits of highest weight take all possible values and where the n− s bits of
lowest weight are set to a. Such sets have the following properties:

• Kj(Ss(a)) = Ss(a′), where a′ is the n− s bits of lowest weight of a⊕K ⊕ cj ,

• A3(Ss(a)) = Ss(a′) where a′ is the n− s bits of lowest weight of A3(a), and

• A−1
3 (Ss(a)) = Ss(a′) where a′ is the n− s bits of lowest weight of A−1

3 (a).
Using the terminology first introduced in [LAAZ11], these sets are invariant subspaces.
However, such structures are completely broken by the F2-linear layer M and are thus
impossible to use to build an invariant subspace attack.

Nevertheless, they yield a powerful 0-sum distinguisher for 2-round MOE, i.e., for
R = K2 ◦M ◦ A3 ◦ K1 ◦M ◦ A−1

3 ◦ K0. Indeed, as we have established in the proof of
Theorem 2, the bit at position i in the output of Aα is a function of degree i. This holds
in particular for A−1

3 . The sum of a function of algebraic degree d over any affine space of
dimension strictly greater than d is equal to 0. As the image by M of Ss(a) is an affine
space of dimension s, it holds that:

0 =
⊕

P∈Ss(a)

〈
ei,
(
M−1(K2) ◦A3 ◦ K1 ◦M ◦A−1

3 ◦ K0
)

(P)
〉

=
⊕

P∈Ss(a)

〈
ei, (M−1 ◦R)(P)

〉
,

where i < s and (e0, ..., en−1) is the canonical basis of Fn2 . As a consequence, the
permutation R corresponding to MOE reduced to 2 rounds exhibits a wide-array of
0-sum distinguishers where the sum over an affine space of dimension s yields a 0-sum over
s− 1 bits. Due to good diffusion of M , it is hard to turn this distinguisher into an attack
faster than brute-force. Still, these observations lead to the existence of simple 0-sum
distinguishers needing 2s chosen plaintexts, a time corresponding to the corresponding
encryption and a negligible amount of memory as only the sum needs to be stored.

5.3.4 Slide attacks

This type of attack, introduced in [BW99], targets ciphers using identical round functions.
Given that different round constants are added during each round, MOE resists slide

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 107

attacks. Besides, even in the absence of round constants, distinguishing a slid pair covering
M , A−1

3 , M , A is hard because all operations operate on the full state. The resulting key
recovery would also have a high complexity.

5.3.5 Notes on the key-schedule

The key-schedule we use is trivial as it simply adds the round key every time along with
some round constants. This leads to a complementation-like property that can speed up an
exhaustive search of the key by a factor of 2, much like in the DES. It is the reason why
we only claim 127 bits of security against brute-force. Recall also that we do not make
any security claim in the related-key setting. We detail this property below.

Consider the encryption of a plaintext P with a key K. We compare this result with
the encryption of (P ⊕M(∆)) under the key (K ⊕∆⊕M(∆)) where ∆ represents the
difference with only one bit set to 1, positioned in the MSB. As can be seen in Figure 12,
the difference between the two executions is equal to ∆ at the input of the first non-linear
layer. Since any modular multiplication sends ∆ to ∆ with probability one, the difference
remains constant after this step. The obtained characteristic is iterative on the 3 steps
of key addition, linear layer and modular multiplication, and we can see that it spreads
with probability one through the whole cipher. Consequently, regardless of the number of
rounds, the difference between the two executions can be predicted with probability 1:

MOEK(P) = MOEK⊕M(∆)⊕∆(P ⊕M(∆))⊕∆ .

As for the DES, we can use this property to speed-up a brute force attack. The attacker
starts by asking for the ciphertexts C and C ′ corresponding to a random plaintext P
and to P ′ = (P ⊕M(∆)). She then exhaustively considers one key out of each pair
(K,K ⊕∆⊕M(∆)) and encrypts P with it. If the obtained ciphertext is equal to C, she
concludes that her guess is correct. In case she obtains C ′ ⊕∆, she concludes that the key
used in the cipher differs from her guess of (∆⊕M(∆)). If none of these relations holds,
she continues browsing the keys. The speed-up factor is of one half. Note that this attack
works for any choice of α used in the modular multiplication, for any choice of M and for
any number of rounds. However, we could easily fix this by choosing a key schedule, or by
using different M matrices in each round.

A−1
3

A3 A−1
3 · · ·M M MP C

K K

A−1
3

A3 A−1
3M M MP’ C’

K ′ K ′

A3 M
K

A3 M
K ′

M(∆) ∆∆ M(∆) ∆ ∆∆

K

K ′

· · ·

Figure 12: Complementation-like property of MOE: if we denote ∆ = (0 · · · 01), the
differential characteristic depicted here holds with probability 1.

5.3.6 Algebraic attacks

As discussed in Section 3.3, multiple ciphers have been recently designed to be used in
specific settings where operation over fields of large degree are desirable. Many of these
algorithms have been targeted with efficient algebraic attacks that leveraged the low
univariate degree or the simple algebraic structure of the round function over the field
used. We expect MOE to be safe from such attacks. Indeed, it relies on operations that
are defined over different structures, namely Fn2 and Z/2nZ. Thus, its round function does

108 MOE: Multiplication Operated Encryption with Trojan Resilience

not have a simple representation using polynomials with coefficients in either structure
(an argument, e.g., found in [BIP+18]). Such polynomials would be both dense and with a
high degree, and thus would be unusable to mount an attack against MOE.

6 Performance evaluation
We conclude the paper with an investigation of the performances reached by MOE in a
Trojan-resilient setting, based on prototype Printed Circuit Board developed in [BDFS18]
implementing traditional block ciphers based on the Trojan-resilient compiler of [DFS16].
In that work, the authors implemented the AES Rijndael and the bitslice cipher Myste-
rion [JSV17] thanks to the MPC protocol in [AFL+16] and performed an analysis of the
performances in two steps. First, they confirmed the reduction of the trusted area that
such Trojan-resilient circuits allow; second, they quantified the throughput that can be
reached for both ciphers, and its impact on the robustness bounds. In this section, we
follow the same steps for the analysis of MOE, and use the same hardware as [BDFS18].

A−1
3

sharing reconstruction

sharing

reconstruction

P

repeat 4 times

K ⊕ c1

C

UntrustedTrusted Trusted Untrusted

M

MA−1
3

A3sharing

reconstruction

sharing

reconstruction

K

UntrustedTrusted Trusted Untrusted

M

M

Trusted

A3
K ⊕ c2

· · ·
K ⊕ c0

Figure 13: General idea of the Trojan-resilient implementation. To reduce the trusted
area, the key additions can be performed in a shared manner. To reach better performance,
one can compute the A3 function in the trusted part.

6.1 Trusted area requirements
The key hypothesis of the previous Trojan-resilient architecture is that the trusted area is
small (and at least, significantly smaller than the one of the functionality to implement).
The rationale behind this hypothesis is that it should be easier to apply heuristic methods
for hardware Trojan detection on the trusted master than on a complex circuit. Concretely,
this reduction of the trusted area is achieved in two main directions. Firstly, an unprotected
implementation needs trusted memories which takes a large proportion of the design area.
For example, storing the key and the state in a low-area PRESENT implementation repre-
sents half of it [BKL+07]. Our hardware Trojan architecture gets rid of this requirement
by storing shares in untrusted components. Secondly, the logic used for the computations
(i.e., S-boxes, matrix multiplications, etc.) is also outsourced to untrusted components
leaving only sharing logic in the trusted design. This has the advantage of making the
trusted area (per sub-circuit) independent of the target computation (which, for example,
would come in handy if a cipher suite had to be implemented in a trusted manner).

Compared to the proposal of Dziembowski et al., the main variation in our case is that
the trusted part has to deal with two types of secret sharing operations, namely additions
in F2 and Z/2nZ. Considering a bit-serial interface (which is optimal w.r.t. the size of
the master [BDFS18]), the first operation requires a single XOR gate, while the second
operation requires a serial adder (composed of a full adder and a register for the carry).
As a result, the trusted area per sub-circuit which is worth 16[GE] when only Boolean
sharing is considered increases to 26[GE] in our case. One interesting additional feature of

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 109

MOE is that the constant multiplication A3 can also be performed by the trusted party,
hence saving a few communication rounds for a minimal additional area cost. Since this
operation can be executed based on an addition, the serial adder used for the sharing over
Z/2nZ can be recycled to compute A3, given that an additional register is used to shift
the serial bits, leading to a total trusted area of 31[GE] per sub-circuit.

For the rest, the majority vote can be implemented identically to the proposal
in [BDFS18] since for a given robustness bound, our Trojan resilient cipher requires
the same number of sub-circuits as the generic MPC solution.

Considering the variant of our architecture where the key addition is performed by
the mini-circuits, and the trusted party is responsible of the secret sharing/reconstruction
and A3 operations together with the majority vote among the sub-circuits, it leads to the
values in Table 6. Recalling that a state-of-the-art implementation of the AES requires
2400[GE] [MPL+11], our trusted area in MOE is still one order of magnitude smaller.

We mention that the cost of the multiplications in the untrusted FPGAs is not a
primary performance metric in our case. Indeed, since each separate mini-circuit only has
to implement a multiplication with a random Boolean matrix or with 3 in Z/2nZ they
only consume a small percentage of low-cost commercial FPGAs.

6.2 Throughput and Robustness Bounds
Data throughput is the most relevant metric to compare block ciphers in a Trojan-resilient
setting: increased throughput enables both to speed up the testing phase (potentially
improving the robustness bounds) and to encrypt data at a higher rate during the online
phase. For two algorithms running on the same physical support (and in particular,
relying on the same communication performances), the data throughput mainly depends
on the communication complexity and the majority vote circuit [BDFS18]. Hereunder, the
performances of MOE are compared to the ones of AES and Mysterion.

We first evaluate the communication complexity, which is the key factor influencing
the time spent in data transfer for a single encryption. For AES and Mysterion, the
communication complexity comes from the multiplicative depth of the algorithm to
implement. Thanks to the protocol of [AFL+16] used in [BDFS18], each multiplication
requires a single field element to be transferred between two untrusted parties (without
latency). Additionally to the multiplication, the initial sharing and final reconstruction of
the plaintext and ciphertext also add one communication round each.

In MOE, the communication complexity is mostly proportional to the number of times
one has to switch from F2 to Z/2nZ. Each time this happens, the shares are transferred
from the untrusted parts to the trusted ones, opened and reshared before being transmitted
to the untrusted parts again. The latter can be performed just as the sharing described
in [BDFS18], which is executed in a single cycle. It leads to a communication complexity
directly proportional to the number of bits to re-share. The overheads due to the initial
and final sharing are similar to the ones of AES and Mysterion.

Table 4: Block cipher’s communication complexities.
of

Com. rounds
of bit transfers

per round
of bit transfers

per enc.

AES 12 320 3,456
Mysterion 14 128 1,792
MOE 13 128 1,664

Table 4 contains the communication complexity of each of the investigated block
ciphers (including plaintext sharing and ciphertext reconstruction). Taking advantage of
the optimizations in [MBPV05], the execution of the AES S-Boxes requires 320 bits to be

110 MOE: Multiplication Operated Encryption with Trojan Resilience

exchanged between untrusted parties while Mysterion and MOE only require 128 bits to be
transferred per round. Additionally counting the initial sharing and final reconstruction,
it leads to a total of 3, 456 bits to be exchanged on the communication bus for the AES.
Thanks to its efficient bitslice representation (with a multiplicative depth of one AND
gate per round), this number is reduced to 1, 792 bits for Mysterion. It is further reduced
to 1, 664 for MOE (thanks to the possibility to perform the operation A3 in the master,
which saves a few additional communication rounds).

We follow with evaluations of the data throughput, which not only depend on the
communication complexity but also on the ability to perform a majority vote in the trusted
party. The latter depends on the number of sub-circuits λ (the evaluations in [BDFS18]
set it at 940/λ[Mbps] using the high-speed communication interfaces of the FPGAs). Yet,
since this majority vote is only performed once, when producing the ciphertext, its negative
impact on the performances is amortized when increasing λ, as illustrated in Table 5. For
λ = 1, the majority vote can be skipped making the encryption throughput directly related
to the communication complexity from Table 4. For λ > 1, the reduced communication
complexity impact is decreased because of the larger time needed for the majority vote.

Table 5: Influence of λ on the encryption throughput ([Mbps]).
λ 1 2 4 8 16

AES 55.0 51.4 46.3 38.7 29.1
Mysterion 103.0 92.6 77.4 58.2 39.0
MOE 115.3 98.7 81.6 60.6 39.9

Putting things together, we can compare the robustness bounds that can be achieved
with the different ciphers. Namely, by fixing the number of online executions and the
time devoted to the testing phase, we can compute the number of sub-circuits λ required
to reach a certain robustness bound (say a probability of hardware Trojan attack lower
than 2−80), and therefore the size of the trusted master needed for this purpose.9 Table 6
contains the results for testing phases of one and seven days. It mostly confirms theoretical
expectations and illustrates the lower number of sub-circuits required by MOE compared to
the AES, at the cost of an increased trusted area. Gains over Mysterion are more limited
due to its throughputs that is quite comparable to MOE.

Note that thanks to its simplification, we can expect that the testing of MOE is
performed exactly at these throughputs. By contrast, it may not be the case of AES
and Mysterion. As mentioned in introduction, if all the intermediate values need to be
communicated to the tester, it may become the bottleneck of the testing phase. And if
a dedicated board is used for the testing (with all mini-circuits but one trusted), it still
requires the ability to plug/unplug each tested chip on/from this testing hardware. So in
general, we believe the simplified testing phase of MOE makes a significant step in the
direction of Trojan-resilient block ciphers that can be deployed and tested on-the-fly. The
cost reductions allowed by MOE are further highlighted by comparing the total number of
mini-circuits ` in the Trojan-resilient circuits, since one sub-circuit is made out of three
mini-circuits in the generic solution, and only two with MOE.

Note that despite using similar operations, ARX-based block ciphers would also
compare negatively with MOE in a Trojan-resilient setting, because of the larger number
of transitions between fields it requires (which is the limiting factor for the throughput).

9 We do not use the bound of Theorem 1 and rather compute Pr [ROB = 1] =
∑λ

i=dλ/2e

(
λ
i

)
· (η
t
)i ·

(1− η
t
)λ−i directly, which leads to tighter results [DFS16].

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 111

Table 6: Robustness guaranttes for different testing periods and trusted area requirements
for Trojan-Resilient implementations of the AES, Mysterion and MOE.

Testing Online enc.
AES Mysterion MOE

[days] [bits] λ ` ROB. Area [GEs] λ ` ROB. Area [GEs] λ ` ROB. Area [GEs]

1
103 5 15 2−92 152 5 15 2−94 152 5 10 2−94 222

106 7 21 2−82 198 7 21 2−84 198 7 14 2−85 298

109 17 51 2−87 430 15 45 2−81 383 15 30 2−82 606

7
103 5 15 2−100 152 5 15 2−102 152 5 10 2−103 222

106 7 21 2−93 198 7 21 2−95 198 7 14 2−96 298

109 13 39 2−89 337 11 33 2−80 291 11 22 2−80 452

7 Conclusion
In previous works, Trojan-resilience has been approached by adapting current ciphers to
fit this specific requirement. In this paper, we have shown that better performances can
be obtained if we design an algorithm from the ground up for this purpose. The gains are
substantial: a Trojan-resilient implementation of MOE can be up to 2 times faster than
one of the AES, and its testing is greatly simplified. Furthermore, MOE is the first cipher
of its kind, namely one where all operations are linear. While our aim was to design a
cipher optimized for a Trojan-resilient implementation, we can expect the solution we came
up with to have applications beyond this use-case. For example, its trivial implementation
with secret sharing may be useful in the context of multi-party computation and seems
also appealing in the context of masking. Another possible research direction could be
in using the scalability of the structure of MOE to design block ciphers with other block
sizes, sponge permutations or other primitives which would share MOE’s easy secret-shared
implementability. Finally, we leave as an open problem the further investigation of the
linear properties of the multiplication by 3 modulo 2n.

Acknowledgments
François-Xavier Standaert is a senior research associate of the Belgian Fund for Scientific
Research (FNRS-F.R.S.). This work has been funded in parts by the ERC project
724725 (acronym SWORD). Sebastian Faust was partly funded by the German Research
Foundation (DFG) through the Emmy Noether Program FA 1320/1-1. This work was
initiated while Virginie Lallemand was with the Horst Görtz Institute for IT Security at
the Ruhr-Universität Bochum and was funded by the DFG through LE 3372/4-1. Gregor
Leander’s work is partially funded by the DFG, under Germany’s Excellence Strategy -
EXC 2092 CASA - 390781972. Finally, we thank the ToSC reviewers for their comments,
as well as Pierre Karpman and Gaëtan Leurent for pointing out a flaw in an earlier version
of our security arguments.

References
[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan

Szepieniec. Design of symmetric-key primitives for advanced cryptographic
protocols. IACR Trans. Symmetric Cryptol., 2020(3):1–45, 2020.

[AARP10] Jim Aarestad, Dhruva Acharyya, Reza M. Rad, and Jim Plusquellic. Detecting
trojans through leakage current analysis using multiple supply pad iddq s.
IEEE Trans. Information Forensics and Security, 5(4):893–904, 2010.

112 MOE: Multiplication Operated Encryption with Trojan Resilience

[ABK+07] Dakshi Agrawal, Selçuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and
Berk Sunar. Trojan detection using IC fingerprinting. In 2007 IEEE Sympo-
sium on Security and Privacy, pages 296–310. IEEE Computer Society Press,
May 2007.

[ACG+19] Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich, Rein-
hard Lüftenegger, Christian Rechberger, and Markus Schofnegger. Algebraic
cryptanalysis of STARK-friendly designs: Application to MARVELlous and
MiMC. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part III, volume 11923 of LNCS, pages 371–397. Springer, Heidelberg, De-
cember 2019.

[AES01] Advanced Encryption Standard (AES). National Institute of Standards
and Technology (NIST), FIPS PUB 197, U.S. Department of Commerce,
November 2001.

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma
Ohara. High-throughput semi-honest secure three-party computation with
an honest majority. In Weippl et al. [WKK+16], pages 805–817.

[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Chris-
tian Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel
structures for MPC, and more. In Kazue Sako, Steve Schneider, and Peter
Y. A. Ryan, editors, ESORICS 2019, Part II, volume 11736 of LNCS, pages
151–171. Springer, Heidelberg, September 2019.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. MiMC: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 191–219.
Springer, Heidelberg, December 2016.

[AKM+18] Giuseppe Ateniese, Aggelos Kiayias, Bernardo Magri, Yiannis Tselekounis,
and Daniele Venturi. Secure outsourcing of cryptographic circuits manufac-
turing. In Joonsang Baek, Willy Susilo, and Jongkil Kim, editors, ProvSec
2018, volume 11192 of LNCS, pages 75–93. Springer, Heidelberg, October
2018.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 430–454. Springer, Heidelberg, April 2015.

[Ava17] Roberto Avanzi. The QARMA block cipher family. IACR Trans. Symm.
Cryptol., 2017(1):4–44, 2017.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Miss in the middle attacks on
IDEA and Khufu. In Knudsen [Knu99], pages 124–138.

[BCCM+08] Emmanuel Bresson, Anne Canteaut, Benoıt Chevallier-Mames, Christophe
Clavier, Thomas Fuhr, Aline Gouget, Thomas Icart, Jean-François Misarsky,
Marıa Naya-Plasencia, Pascal Paillier, et al. Shabal, a submission to NIST’s
cryptographic hash algorithm competition. Submission to NIST; available at
http://www.shabal.com/wp-content/uploads/Shabal.pdf, 2008.

http://www.shabal.com/wp-content/uploads/Shabal.pdf

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 113

[BCD+98] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gen-
naro, Shai Halevi, Charanjit Jutla, Stephen M. Matyas Jr., Luke O’Connor,
Mohammad Peyravian, David Safford, and Nevenko Zunic. MARS - a can-
didate cipher for AES. Submission to the AES competition, available at
http://cryptosoft.de/docs/Mars.pdf, June 1998.

[BCD+20] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander,
Gaëtan Leurent, María Naya-Plasencia, Léo Perrin, Yu Sasaki, Yosuke Todo,
and Friedrich Wiemer. Out of oddity - new cryptanalytic techniques against
symmetric primitives optimized for integrity proof systems. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume
12172 of LNCS, pages 299–328. Springer, Heidelberg, August 2020.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof
Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga
Yalçin. PRINCE - A low-latency block cipher for pervasive computing
applications - extended abstract. In Xiaoyun Wang and Kazue Sako, edi-
tors, ASIACRYPT 2012, volume 7658 of LNCS, pages 208–225. Springer,
Heidelberg, December 2012.

[BCJW02] Nikita Borisov, Monica Chew, Robert Johnson, and David Wagner. Multi-
plicative differentials. In Joan Daemen and Vincent Rijmen, editors, FSE 2002,
volume 2365 of LNCS, pages 17–33. Springer, Heidelberg, February 2002.

[BDFS18] Olivier Bronchain, Louis Dassy, Sebastian Faust, and François-Xavier Stan-
daert. Implementing trojan-resilient hardware from (mostly) untrusted com-
ponents designed by colluding manufacturers. In Chip-Hong Chang, Ulrich
Rührmair, Daniel E. Holcomb, and Jorge Guajardo, editors, ASHES@CCS
2018, pages 1–10. ACM, 2018. Available at https://perso.uclouvain.be/
fstandae/PUBLIS/208.pdf.

[BHBN14] Swarup Bhunia, Michael S. Hsiao, Mainak Banga, and Seetharam Narasimhan.
Hardware trojan attacks: Threat analysis and countermeasures. Proceedings
of the IEEE, 102(8):1229–1247, 2014.

[Bih97] Eli Biham, editor. FSE’97, volume 1267 of LNCS. Springer, Heidelberg,
January 1997.

[BIP+18] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu.
Exploring crypto dark matter: New simple PRF candidates and their applica-
tions. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II,
volume 11240 of LNCS, pages 699–729. Springer, Heidelberg, November 2018.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 450–466.
Springer, Heidelberg, September 2007.

[BKP16] Alex Biryukov, Dmitry Khovratovich, and Léo Perrin. Multiset-algebraic
cryptanalysis of reduced Kuznyechik, Khazad, and secret SPNs. IACR
Trans. Symm. Cryptol., 2016(2):226–247, 2016. http://tosc.iacr.org/
index.php/ToSC/article/view/572.

http://cryptosoft.de/docs/Mars.pdf
https://perso.uclouvain.be/fstandae/PUBLIS/208.pdf
https://perso.uclouvain.be/fstandae/PUBLIS/208.pdf
http://tosc.iacr.org/index.php/ToSC/article/view/572
http://tosc.iacr.org/index.php/ToSC/article/view/572

114 MOE: Multiplication Operated Encryption with Trojan Resilience

[BNPV02] Alex Biryukov, Jorge Nakahara Jr., Bart Preneel, and Joos Vandewalle. New
weak-key classes of IDEA. In Robert H. Deng, Sihan Qing, Feng Bao, and
Jianying Zhou, editors, ICICS 02, volume 2513 of LNCS, pages 315–326.
Springer, Heidelberg, December 2002.

[BS01] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. In Birgit
Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 394–405.
Springer, Heidelberg, May 2001.

[BS10] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. Journal
of Cryptology, 23(4):505–518, October 2010.

[BW99] Alex Biryukov and David Wagner. Slide attacks. In Knudsen [Knu99], pages
245–259.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand,
Gregor Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta:
A cipher with low ANDdepth and few ANDs per bit. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of
LNCS, pages 662–692. Springer, Heidelberg, August 2018.

[DFS16] Stefan Dziembowski, Sebastian Faust, and Francois-Xavier Standaert. Private
circuits iii: Hardware trojan-resilience via testing amplification. Cryptology
ePrint Archive, Report 2016/1004, 2016. https://eprint.iacr.org/2016/
1004.

[DGV93] Joan Daemen, Rene Govaerts, and Joos Vandewalle. Block ciphers based on
modular arithmetic. In Proc. of the 3rd Symposium on the State and Progress
of Research in Cryptography, W. Wolfowicz, Ed., Fondazione Ugo Bordoni,
pages 80–89, 1993.

[DGV94] Joan Daemen, René Govaerts, and Joos Vandewalle. Weak keys for IDEA.
In Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages
224–231. Springer, Heidelberg, August 1994.

[FKL+01] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael. In
Bruce Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 213–230.
Springer, Heidelberg, April 2001.

[Fur02] Vladimir Furman. Differential cryptanalysis of Nimbus. In Mitsuru Matsui,
editor, FSE 2001, volume 2355 of LNCS, pages 187–195. Springer, Heidelberg,
April 2002.

[GGNS13] Benoît Gérard, Vincent Grosso, María Naya-Plasencia, and François-Xavier
Standaert. Block ciphers that are easier to mask: How far can we go? In
Guido Bertoni and Jean-Sébastien Coron, editors, CHES 2013, volume 8086
of LNCS, pages 383–399. Springer, Heidelberg, August 2013.

[GKK+19] Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab Roy, Christian
Rechberger, and Markus Schofnegger. Starkad and Poseidon: New hash
functions for zero knowledge proof systems. Cryptology ePrint Archive,
Report 2019/458, 2019. https://eprint.iacr.org/2019/458.

[GLR+20] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Rotaru,
and Markus Schofnegger. On a generalization of substitution-permutation
networks: The HADES design strategy. In Anne Canteaut and Yuval Ishai,

https://eprint.iacr.org/2016/1004
https://eprint.iacr.org/2016/1004
https://eprint.iacr.org/2019/458

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 115

editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 674–704.
Springer, Heidelberg, May 2020.

[GLSV15] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem
Varici. LS-designs: Bitslice encryption for efficient masked software imple-
mentations. In Carlos Cid and Christian Rechberger, editors, FSE 2014,
volume 8540 of LNCS, pages 18–37. Springer, Heidelberg, March 2015.

[GRR+16] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and
Nigel P. Smart. MPC-friendly symmetric key primitives. In Weippl et al.
[WKK+16], pages 430–443.

[HJMM08] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. The
grain family of stream ciphers. In Matthew J. B. Robshaw and Olivier Billet,
editors, New Stream Cipher Designs - The eSTREAM Finalists, volume 4986
of Lecture Notes in Computer Science, pages 179–190. Springer, 2008.

[HR07] Christopher J. Hillar and Darren L. Rhea. Automorphisms of finite abelian
groups. The American Mathematical Monthly, 114(10):917–923, 2007.

[IEGT13] Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh V. Tripunitara.
Securing computer hardware using 3d integrated circuit (IC) technology and
split manufacturing for obfuscation. In Samuel T. King, editor, Proceedings
of the 22th USENIX Security Symposium, Washington, DC, USA, August
14-16, 2013, pages 495–510. USENIX Association, 2013.

[Ins14] IC Insight. Ic insights research bulletin. http://www.icinsights.com/
data/articles/documents/640.pdf, 2014.

[JK97] Thomas Jakobsen and Lars R. Knudsen. The interpolation attack on block
ciphers. In Biham [Bih97], pages 28–40.

[JM09] Pascal Junod and Marco Macchetti. Revisiting the IDEA philosophy. In
Orr Dunkelman, editor, FSE 2009, volume 5665 of LNCS, pages 277–295.
Springer, Heidelberg, February 2009.

[JSV17] Anthony Journault, François-Xavier Standaert, and Kerem Varici. Improving
the security and efficiency of block ciphers based on ls-designs. Des. Codes
Cryptography, 82(1-2):495–509, 2017.

[Knu98] Lars Knudsen. DEAL-a 128-bit block cipher. complexity, 258(2):216, 1998.

[Knu99] Lars R. Knudsen, editor. FSE’99, volume 1636 of LNCS. Springer, Heidelberg,
March 1999.

[KR20] Nathan Keller and Asaf Rosemarin. Mind the middle layer: The HADES
design strategy revisited. IACR Cryptol. ePrint Arch., 2020:179, 2020.

[LAAZ11] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. A cryptanalysis of PRINTcipher: The invariant subspace attack.
In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
206–221. Springer, Heidelberg, August 2011.

[LM91] Xuejia Lai and James L. Massey. A proposal for a new block encryption
standard. In Ivan Damgård, editor, EUROCRYPT’90, volume 473 of LNCS,
pages 389–404. Springer, Heidelberg, May 1991.

http://www.icinsights.com/data/articles/documents/640.pdf
http://www.icinsights.com/data/articles/documents/640.pdf

116 MOE: Multiplication Operated Encryption with Trojan Resilience

[Mac00] Alexis Warner Machado. The Nimbus Cipher. First Open NESSIE Work-
shop, see also https://www.cosic.esat.kuleuven.be/nessie/workshop/
submissions/nimbus.zip, 2000.

[MBPV05] Nele Mentens, Lejla Batina, Bart Preneel, and Ingrid Verbauwhede. A
systematic evaluation of compact hardware implementations for the Rijndael
S-box. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS,
pages 323–333. Springer, Heidelberg, February 2005.

[MCS+17] Vasilios Mavroudis, Andrea Cerulli, Petr Svenda, Dan Cvrcek, Dusan Klinec,
and George Danezis. A touch of evil: High-assurance cryptographic hardware
from untrusted components. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1583–1600.
ACM Press, October / November 2017.

[MG72] James L. Massey and Oscar N. García. Error-correcting codes in computer
arithmetic. In Julius T. Tou, editor, Advances in Information Systems
Science: Volume 4, pages 273–326. Springer US, Boston, MA, 1972.

[MNSV97] David M’Raïhi, David Naccache, Jacques Stern, and Serge Vaudenay. XMX:
A firmware-oriented block cipher based on modular multiplications. In Biham
[Bih97], pages 166–171.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 69–88. Springer, Heidelberg, May 2011.

[MRTV13] Florian Mendel, Vincent Rijmen, Deniz Toz, and Kerem Varici. Collisions for
the WIDEA-8 compression function. In Ed Dawson, editor, CT-RSA 2013,
volume 7779 of LNCS, pages 162–173. Springer, Heidelberg, February / March
2013.

[MS95] Willi Meier and Othmar Staffelbach. The self-shrinking generator. In Al-
fredo De Santis, editor, EUROCRYPT’94, volume 950 of LNCS, pages
205–214. Springer, Heidelberg, May 1995.

[MVDP11] Nicky Mouha, Vesselin Velichkov, Christophe De Cannière, and Bart Preneel.
The differential analysis of S-functions. In Alex Biryukov, Guang Gong, and
Douglas R. Stinson, editors, SAC 2010, volume 6544 of LNCS, pages 36–56.
Springer, Heidelberg, August 2011.

[Nak12] Jorge Nakahara Jra. Differential and linear attacks on the full WIDEA-n
block ciphers (under weak keys). In Josef Pieprzyk, Ahmad-Reza Sadeghi,
and Mark Manulis, editors, CANS 12, volume 7712 of LNCS, pages 56–71.
Springer, Heidelberg, December 2012.

[NK95] Kaisa Nyberg and Lars R. Knudsen. Provable security against a differential
attack. Journal of Cryptology, 8(1):27–37, December 1995.

[NRPV04] Jorge Nakahara Jr., Vincent Rijmen, Bart Preneel, and Joos Vandewalle.
The MESH block ciphers. In Kijoon Chae and Moti Yung, editors, WISA 03,
volume 2908 of LNCS, pages 458–473. Springer, Heidelberg, August 2004.

[Nyb94] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Tor
Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 55–64.
Springer, Heidelberg, May 1994.

https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/nimbus.zip
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/nimbus.zip

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 117

[Rib14] John Ribeiro. Samsung investing $14.7 billion in new chip fab-
rication facility. http://www.pcworld.com/article/2691992/
samsung-to-invest-147-billion-in-new-fab.html, 2014. PCWorld.

[Scr01] Beale Screamer. "Microsoft’s Digital Rights Management Scheme – technical
details", 2001.

[TK10] Mohammad Tehranipoor and Farinaz Koushanfar. A survey of hardware
trojan taxonomy and detection. IEEE Design & Test of Computers, 27(1):10–
25, 2010.

[WKK+16] Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors. ACM CCS 2016. ACM Press, October 2016.

[WNS09] Meiqin Wang, Jorge Nakahara Jr., and Yue Sun. Cryptanalysis of the
full MMB block cipher. In Michael J. Jacobson Jr., Vincent Rijmen, and
Reihaneh Safavi-Naini, editors, SAC 2009, volume 5867 of LNCS, pages
231–248. Springer, Heidelberg, August 2009.

[WS11] Adam Waksman and Simha Sethumadhavan. Silencing hardware backdoors.
In 2011 IEEE Symposium on Security and Privacy, pages 49–63. IEEE
Computer Society Press, May 2011.

[XFJ+16] Kan Xiao, Domenic Forte, Yier Jin, Ramesh Karri, Swarup Bhunia, and
Mark Mohammad Tehranipoor. Hardware trojans: Lessons learned after one
decade of research. ACM Trans. Design Autom. Electr. Syst., 22(1):6:1–6:23,
2016.

A Trojan robust construction from [DFS16]
For completeness we recall the construction of [DFS16] based on a passively secure 3-
party computation protocol. The formal construction is given in Figure 14 and taken
from [DFS16]. The construction works as a general compiler that can protect any com-
putation against Trojan attacks. To this end, the compiler takes a specification of an
algorithm modeled as an arithmetic circuit Γ as input, and outputs a protected circuit
Γ′. At a high-level Γ′ consists of multiple mini-circuits (Γ1,Γ2,Γ3) that take the role
of the parties in the passively secure 3-party computation protocol. Since the compiler
works gate-by-gate, Figure 14 presents transformations for each single arithmetic operation
in Γ. As usual, linear operations are almost for free and do not require any interaction
between the mini-circuits Γi. On the other hand the non-linear operations are costly
and in particular require interaction between the mini-circuits (the communication is also
illustrated in Figure 15). The high communication complexity of the non-linear gates is
also the reason for the high costs of the tester TDSF as essentially the entire communication
between the mini-circuits (Γ0,Γ1,Γ2) has to be tested for correctness.

B General theorems about the possible candidate groups
The first important thing we need to figure out is how to implement the linear operations,
that is, what are the computations made by the untrusted mini-circuits. This problem can
be reformulated as defining a finite Abelian group and selecting one of its automorphisms.
We hereafter refer to the paper Automorphisms of Abelian Groups [HR07] of Hillar and
Darren to figure out the possible options for implementing the linear operations.
The first well-know result that we use is the following:

http://www.pcworld.com/article/2691992/samsung-to-invest-147-billion-in-new-fab.html
http://www.pcworld.com/article/2691992/samsung-to-invest-147-billion-in-new-fab.html

118 MOE: Multiplication Operated Encryption with Trojan Resilience

Evaluating the gates g of Γ by (Γ0,Γ1,Γ2)

1. Transformation for field addition, i.e., ~a⊕̂~b = ~c: Γ1 holds the shares (a1, b1) that either were
received fromM via an in command, or resulted as an output from a previous gate. Similarly, Γ2
holds (a2, b2). Given these inputs Γ1 computes c1 = a1 ⊕ b1 and Γ2 computes c2 = a2 ⊕ b2.

2. Transformation for multiplication, i.e., ~a�̂~b = ~c: This involves the mini-circuits (Γ0, Γ1, Γ2) and
the master circuit to forward commands between the circuits Γi. To keep the description simple,
we will not explicitly describe the computation carried of by M as it only forwards commands.
Initially, Γ1 holds (a1, b1) and Γ2 has (a2, b2). They proceed as follows:

(a) Run jointly (u, v) ← MultShares(a1, b2) and (u′, v′) ← MultShares(b1, a2) (see description
below).

(b) Mini-circuit Γ1: Compute c1 = a1 � b1 ⊕ u⊕ u′ and output c1.
(c) Mini-circuit Γ2: Compute c2 = a2 � b2 ⊕ v ⊕ v′ and output c2.

Sub-circuit (u, v)← MultShares(x, y)

Initially, Γ1 holds x and Γ2 holds y. At the end Γ1 holds u and Γ2 has v such that v = x � y ⊕ u and
u ∈ F defined below.

1. Mini-circuit Γ0[~w]: Γ0 has memory cells to store the internal state of the PRG ~w. Notice that
Γ0 uses the contents of its memory cells ~w and computes (~w, (u1, u2, u3, u4)) = prg(~w), where
the output ~w represents the secret output. It then computes u = u3 ⊕ u4 	 u1 � u2 and sends
((send, 1), (u, u2, u3)) and ((send, 2), (u1, u4)) toM.

2. Mini-circuit Γ2: on receiving ((send, 2), (u1, u4)) fromM, compute z = y⊕u1 and send ((send, 1), z)
toM.

3. Mini-circuit Γ1: on receiving ((send, 1), (u, u2, u3, z)) from M, compute e = (z � x) ⊕ u3 and
f = x⊕ u2. Send ((send, 2), (e, f)) toM.

4. Mini-circuit Γ2: on receiving ((send, 2), (e, f)) fromM, compute v = u4 ⊕ e	 f � u1.

Figure 14: The computation of the gates by the mini-circuits (Γ0,Γ1,Γ2). All operations
are field operations in the underlying field F. The MultShares circuit is called in the field
multiplication operation, where the latter is also shown in Figure 15.

Theorem 7. ([HR07]) A finite Abelian group is isomorphic to a product of groups of the
form:

Hp = Z/pe1Z× · · · × Z/petZ

The next theorem defines the endomorphism of Hp:

Theorem 8. ([HR07]) An endomorphism of Hp corresponds to the multiplication by
a matrix A ∈ Rp on a vector of integer representatives, followed by a reduction by the
standard quotient mapping 10, where Rp is defined as:

Rp = {(aij ∈ Zt×t : pei−ej |aij for all i and j satisfying 1 ≤ j ≤ i ≤ n}).

Finally, the automorphisms are characterized as follows:

Theorem 9. ([HR07]) An endomorphism of Hp is an automorphism if and only if
A(mod p) ∈ GLt(Fp).

10i.e. coefficient i of the output vector is mapped to its corresponding class element in Z/peiZ.

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 119

Figure 15: MultShares with threee mini-circuits.

In the remaining of the paper, we focus on the two following extreme cases for p = 2:

• ∀i ∈ {1, · · · , t}, ei = 1. In this case, the automorphism group of H2 corresponds to
the set of invertible matrices GLt(F2).

• H2 = Z/2nZ. The automorphisms of H2 are the multiplications by an integer α so
that α mod 2 = 1. These are the modular multiplications by an odd integer.

C Differential and linear properties of the multiplication
by 3 modulo a power of 2

C.1 Proof of Theorem 3 (DDT Formula)
We consider the function η : x 7→ (3 × x mod 2n) ⊕ x which maps Fn2 to itself. It is
extended affine equivalent to the multiplication by 3. When η operates on n bits, we use
the following notation for its DDT coefficients:

Dnη (a, b) = #{x, η(x+ a) + η(x) = b} .

The coordinates of η are functions ηi(x) such that:
η0(x) = 0,
η1(x) = x0,

ηi(x) = (xi−1 + xi−2) (1 + ηi−1(x)) .

The last line is obtained using the facts that (x, y, z) 7→ xy + (x + y)z is the majority
function and that ηi(x) = xi−1 + maj (xi−1, xi−2, ηi−1(x) + xi−2). Note that ηi does not
depend on xj for j ≥ i, meaning that ηi has all of its inputs in Fi2.
The following notations are used throughout this proof:

• We let Dnη (a, b) be the DDT coefficients of η when it operates on n bits.

• We let Szi be defined for z ∈ F2 and i ≤ n− 1 as follows:

Szi =
{
x = (x0, ..., xi−1) ∈ Fi2 | ∀j ≤ i, ηj(x+ a) + ηj(x) = bj and ηi(x) = z

}
.

• We further denote λzi = |Szi | so that, in particular, Dnη (a, b) = λ0
n−1 + λ1

n−1.

• We let T be the function truncating the highest weight bit:

T :
{
Fn2 → Fn−1

2
(x0, ..., xn−1) 7→ (x0, ..., xn−2) .

120 MOE: Multiplication Operated Encryption with Trojan Resilience

Lemma 4. The size λzn−1 of Szn−1 can be obtained by applying the following rules:

bn−1 = 0, bn−2 = 0 =⇒
{
λ0
n−1 = 2λ1

n−2 + λ0
n−2 × (1⊕ an−2 ⊕ an−3)

λ1
n−1 = λ0

n−2 × (1⊕ an−2 ⊕ an−3)

bn−1 = 0, bn−2 = 1 =⇒
{
λ0
n−1 = λ0

n−2 + λ1
n−2

λ1
n−1 = 0

bn−1 = 1, bn−2 = 0 =⇒ λ0
n−1 = λ1

n−1 = λ0
n−2 × (an−2 ⊕ an−3)

bn−1 = 1, bn−2 = 1 =⇒ λ0
n−1 = λ1

n−1 = λ0
n−2 .

Proof. First of all, we observe that if bi = 1 then it must hold that |S0
i | = |S1

i | because
if x ∈ Szi then x + a ∈ S1⊕z

i . Suppose that |S0
n−2| and |S1

n−2| are known. We compute
|S0
n−1| and |S1

n−1| by separating the case bn−1 = 0 and the case bn−1 = 1. In each case,
we look at which values of ηn−1(x) actually allow the right output difference to occur and
link their number to Szn−2:

• bn−1 = 1. If ηn−1(x+ a) + ηn−1(x) = 1, then we must be in one of these two cases:{
ηn−1(x) = 0
ηn−1(x+ a) = 1

or
{
ηn−1(x) = 1
ηn−1(x+ a) = 0 .

Using that ηn−1(x) = (xn−2+xn−3)(1+ηn−2(x)), we deduce that, with an−2+an−3 =
α, one of the following two systems must hold:

ηn−2(x) = 1 or xn−2 + xn−3 = 0
ηn−2(x+ a) = 0
xn−2 + xn−3 + α = 1,

(4)

or: 
ηn−2(x) = 0
xn−2 + xn−3 = 1
ηn−2(x+ a) = 1 or xn−2 + xn−3 + α = 0 .

(5)

The remainder depends on whether bn−2 = 0 or bn−2 = 1.

– bn−2 = 0. Let (x0, .., xn−3) ∈ S0
n−2, so that ηn−2(x+ a) = ηn−2(x) = 0. Then

it is necessary and sufficient that both xn−2 + xn−3 = 0 and α = 1 for the
system in Equation (4) to have solutions. Similarly, it is necessary and sufficient
that α = 1 and xn−2 + xn−3 = 1 for (x0, ..., xn−2) to be a solution of the
system in Equation (5). Thus, xn−2 can be chosen freely to build a solution of
ηn−1(x+a)+ηn−1(x) = bn−1 if and only if α = 1, i.e., if and only if an−2 6= an−3.
Suppose now that (x0, .., xn−3) ∈ S1

n−2, so that ηn−2(x) = ηn−2(x + a) = 1.
Then none of the systems may have a solution. We conclude that:

bn−1 = 1, bn−2 = 0 =⇒ |S0
n−1| = |S1

n−1| = |S0
n−2| × (an−2 ⊕ an−3), (6)

where there is no simple link between |S0
n−2| and Dn−1

η (T (a), T (b)) as bn−2 = 0.
– bn−2 = 1. In this case, ηn−2(x+ a) = ηn−2(x) + 1 for any x in S0

n−2 ∪ S1
n−2.

If x ∈ S0
n−2, then the system in Equation (4) has no solution and the one in

Equation (5) has a unique solution. Similarly, if x ∈ S1
n−2, then the system

in Equation (5) has no solution and the one in Equation (4) has a unique

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 121

one. Thus, for each x ∈ S0
n−2 ∪ S1

n−2 we can build a unique xn−2 such that
(x0, ..., xn−2) ∈ S0

n−1 ∪ S1
n−1. We conclude that the following holds:

bn−1 = 1, bn−2 = 1 =⇒ |S0
n−1| = |S1

n−1| = |S0
n−2| , (7)

where |S0
n−2| = |S1

n−2|, so that:
bn−1 = 1, bn−2 = 1 =⇒ Dnη (a, b) = Dn−1

η (T (a), T (b)) .

• bn−1 = 0. If ηn−1(x+ a) + ηn−1(x) = 0, then we must be in one of these two cases:{
ηn−1(x) = 0
ηn−1(x+ a) = 0

or
{
ηn−1(x) = 1
ηn−1(x+ a) = 1 .

Using that ηn−1(x) = (xn−2+xn−3)(1+ηn−2(x)), we deduce that, with an−2+an−3 =
α, one of the following two systems must hold:

{
ηn−2(x) = 1 or xn−2 + xn−3 = 0
ηn−2(x+ a) = 1 or xn−2 + xn−3 + α = 0

or


ηn−2(x) = 0
xn−2 + xn−3 = 1
ηn−2(x+ a) = 0
xn−2 + xn−3 + α = 1.

The remainder depends on whether bn−2 = 0 or bn−2 = 1. Unlike in the previous
case, the two systems are no longer symmetric. The number of solutions of the
system on the right will give S0

n−1 while the number of solutions of the system the
left correspond to S1

n−1.

– bn−2 = 0. In this case, ηn−2(x+a) = ηn−2(x). The left system has a solution if:
∗ (x0, ..x,n−3) ∈ S1

n−2, in which case we can choose xn−2 freely, or
∗ (x0, ..x,n−3) ∈ S0

n−2 and xn−2 + xn−3 = xn−2 + xn−3 + α = 0, which has
a unique solution if and only if α = 0.

Thus, we obtain the following implication:
bn−1 = 0, bn−2 = 0 =⇒ |S0

n−1| = 2|S1
n−2|+ |S0

n−2| × (an−2 ⊕ an−3 ⊕ 1) .
The right system has a unique solution if and only if x ∈ S0

n−2 and α = 0, so:
bn−1 = 0, bn−2 = 0 =⇒ |S1

n−1| = |S0
n−2| × (an−2 ⊕ an−3 ⊕ 1) .

As a consequence, if an−2 = an−3 and if bn−1 = bn−2 = 0, then Dnη (a, b) =
2×Dn−η (a, b).

– bn−2 = 1. In this case, ηn−2(x+ a) = 1 + ηn−2(x) which implies that the right
system has no solutions. We deduce that:

bn−1 = 0, bn−2 = 1 =⇒ S1
n−1 = ∅ .

On the other hand, the left equation always has exactly one solution. If x ∈ S0
n−2

then the second equation is satisfied and setting xn−2 = xn−3 satisfies the first.
Identically, if x ∈ S1

n−2 then the first equation is satisfied and the second is
satisfied as well if and only if xn−2 = xn−3 + α. Thus, the following holds:

bn−1 = 0, bn−2 = 1 =⇒ |S0
n−1| = |S0

n−2|+ |S1
n−2| .

The last two implications show in particular thatDnη (a, b) is equal toDn−1
η (T (a), T (b)).

Theorem 3 is obtained directly from Lemma 4 using the extended-affine equivalence
between η and A3 which imposes that:

DnA (a, b) = Dnη (a, a⊕ b) .

122 MOE: Multiplication Operated Encryption with Trojan Resilience

C.2 On the Sierpinski triangle pattern of the DDT of η
The Sierpinski triangle is a fractal that is named after Wacław Sierpiński, who described
it in 1915. It can be seen as a full equilateral triangle with smaller triangle-shaped parts
removed. Among the various ways to build it, one consists in shrinking and duplicating
shapes. We starts with a full equilateral triangle, and shrink it to make it two times
smaller. We take 3 copies of this smaller triangle and position them so that they touch in
their corners. This newly formed figure is our new starting point: we shrink it, make 3
copies of it and assemble it, and so on.

When looking at the indicator function of the ddt of η (Figure 6 for instance), we can
observe a pattern that is very similar to a Sierpinski triangle, with some additional parts.
What’s more, the pattern of the ddt for a given value of n looks like a refined version
of the pattern obtained for n− 1, reminiscent of a version with more details that could
have been obtained by another iteration of the shrinking and duplicating algorithm (see
Figure 16 for an illustration of this phenomenon).

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28 32

(a) n = 5.

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 8 16 24 32 40 48 56 64

(b) n = 6.

Figure 16: Difference distribution table of η : x 7→ A3(x)⊕ x for different n.

We just give a very informal idea of this relation:

• From Lemma 4, we have that every coefficient Dnη (a, b) is a function of the coefficient
of Dn−1

η (T (a), T (b)) in the sense that if the function is non null (so if there is a motif
in the considered area of the ddt at n), then it looks like the one we have at n− 1.
Morally, this is the same as shrinking the motif to use it to build next iteration (like
in the Sierpinski triangle construction): the motif in the ddt at n− 1 is copied in
the ddt at n, but this one is twice bigger. Figure 17 depicts the maximum pattern
we would obtain if all the motifs of n− 1 would be present.

• The situation is made difficult by the additional parts (A and B in Figure 17) that

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 123

A

C

B

E

D

A

C

B

E

D

A

C

B

E

D

A

C

B

E

D

A

C

B

E

D

Figure 17: If we assume that the pattern of Dηn−1 is similar to the one on the left, then
from Lemma 4 we can deduce that the maximum pattern of Dηn is the one on the right.

mess with the pattern, and the obtained ddt does not look like a refined version of
the smaller instance. Hopefully, as seen in Lemma 4, some parts are erased (namely
a part of C in the left half, A and C in the right half), and thanks to that we obtain
something that meets our expectations (see Figure 18).

A

C

B

E

D

0

C

0

E

D

0

C

0

E

D

A

0

B

E

D

A

0

B

E

D

Figure 18: When we take into account the null parts, the pattern at n looks very similar
to the one at n− 1. The fractal structure is visible.

C.3 Proof of Lemma 2 (DDT bound)
Lemma 5. All the following propositions are true for any a, b in Fn2 and any i ≥ 2:

1. λ0
i ≥ λ1

i ,

2. if bi 6= ai, then λ0
i = λ1

i , and

124 MOE: Multiplication Operated Encryption with Trojan Resilience

3. it holds that λ0
i > λ1

i if and only if all the following conditions are satisfied:
λ0
i−1 + λ1

i−1 > 0
bi = ai

bi−1 6= ai−1 or
(
bi−1 = ai−1, bi−2 = ai−2 = ai−3

)
.

Proof. If bi 6= ai then x ∈ λ0
i is equivalent to x ⊕ a ∈ λ1

i , meaning that the first two
propositions hold in this case. If bi = ai then δi(a, b) ∈ {0, 1}. Let us consider those cases
separately:

• If δi(a, b) = 1, then λ1
i = 0 < λ0

i = λ0
i−1 + λ1

i−1, meaning that the strict inequality
holds if bi = ai and bi−1 6= ai−1.

• Otherwise, if δi(a, b) = 0, then λ0
i −λ1

i = 2×λ1
i−1, meaning that the general inequality

also holds in this last case. The strict inequality holds if and only if λ1
i−1 > 0. Since

δi(a, b) = 0, it holds that δi−1(a, b) ∈ {0, 1}. In this context, if bi−2 6= ai−2 then
λ1
i−1 = 0, meaning that the strict inequality does not hold. However, if bi−2 = ai−2,

then λ1
i−1 > 0 is equivalent to λ0

i−2 × (1⊕ ai−2 ⊕ ai−3) > 0, which is true if and only
if λ0

i−2 > 0 (which is indeed implied by λ0
i−1 + λ1

i−1 > 0) and if ai−2 = ai−3.

We deduce the lemma.

The following theorem tells us under which condition the sequence λ0
i + λ1

i increases.

Theorem 10. Let i ≥ 2 be some integer. Then the inequality:

λ0
i + λ1

i > λ0
i−1 + λ1

i−1

holds iiif the conditions in Equation (8) and Equation (9) are satisfied, that is if:

ai−1 = bi−1, (8)

and if: {
ai = bi

ai−1 = ai−2,
or


ai 6= bi

ai−1 6= ai−2

bi−2 6= ai−2 or bi−2 = ai−2, bi−3 = ai−3 = ai−4.

. (9)

Proof. If δi(a, b) = 1 or δi(a, b) = 3, then λ0
i + λ1

i = λ0
i−1 + λ1

i−1. Thus, in order for
the sequence to increase, it is necessary that δi(a, b) ∈ {0, 2} which is true if and only if
ai−1 = bi−1:

bi−1 6= ai−1 =⇒
(
λ0
i + λ1

i ≤ λ0
i−1 + λ1

i−1
)
.

We then consider the cases δi(a, b) = 0 and δi(a, b) = 2 separately.

• δi(a,b) = 0. As λ1
i ≤ λ0

i (Lemma 5), 2λ1
i ≤ λ0

i−1 + λ1
i−1, so the case ai−1 6= ai−2

cannot lead to an increase. However, if ai−1 = ai−2 then we have that λ0
i + λ1

i =
2(λ0

i−1 + λ1
i−1) > (λ0

i−1 + λ1
i−1). Thus, if δi(a, b) = 0, there is a strict increase in

λ0
i + λ1

i if and only if ai−1 = ai−2, so that:

ai−1 = bi−1, ai = bi =⇒
(
λ0
i + λ1

i > λ0
i−1 + λ1

i−1 ⇔ ai−1 = ai−2
)

• δi(a,b) = 2. In this case, λ0
i + λ1

i = 2 × λ0
i−1 × (ai−1 ⊕ ai−2). Thus, the sequence

is strictly increasing if and only if ai−1 6= ai−2 and λ0
i−1 > λ1

i−1. Using Lemma 5,
we obtain that this is the case if and only if bi−1 = ai−1 (which is already assumed
to be true) and if either bi−2 6= ai−2 or bi−2 = ai−2, bi−3 = ai−3 = ai−4. Thus, if
δi(a, b) = 2, the sequence strictly increases if and only if ai−1 6= ai−2 and either
bi−2 6= ai−2 or bi−2 = ai−2, bi−3 = ai−3 = ai−4.

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 125

The theorem follows.

This very general theorem is a bit complicated to use in practice. The following
corollary gives a simpler — though slightly coarser — interpretation.

Corollary 2. All values of a, b such that λ0
i + λ1

i > λ0
i−1 + λ1

i−1 are such that:

ai−1 = bi−1 and ai + ai−1 + ai−2 = bi .

As a consequence, the coefficient DnA (a, b) can be bounded by:

DnA (a, b) ≤ 21+
∑n−1

i=1
νi(a,b) ,

where:
νi (a, b) = (1⊕ bi−1 ⊕ ai−1)× (1⊕ bi ⊕ ai ⊕ ai−1 ⊕ ai−2),

and ν1 (a, b) = (1⊕ b0 ⊕ a0)× (1⊕ b1 ⊕ a1 ⊕ a0).

Proof. We prove the theorem by induction over i using the following induction hypothesis
for any i ≥ 1:

λ0
i + λ1

i ≤ 21+
∑i

j=1
νj(a,b).

Let us first consider i = 1. In this case, as given in Theorem 3, λz1 = 2 if and only if
a0 ⊕ a1 ⊕ b1 = 0 and a0 ⊕ b0 = 0; it is equal to 0 otherwise. Thus, the total number of
solutions is initialized with:

• 0 if ν1 (a, b) = 0, in which case the bound always holds, or

• λ0
1 + λ1

1 = 4 = 21+ν1(a,b) if ν1 (a, b) = 1.

The hypothesis thus holds for i = 1. We now assume that the induction holds for some
i ≥ 1. According to Theorem 10, if λ0

i + λ1
i > λ0

i−1 + λ1
i−1 then ai−1 = bi−1 and one of the

following two conditions must hold:

• ai = bi and ai−1 = ai−2, or

• ai 6= bi and ai−1 6= ai−2. We ignore the remainder of the condition in this case as we
are only interested in necessary conditions.

As a consequence, if νi (=) 0 then at least one of the conditions for λ0
i + λ1

i > λ0
i−1 + λ1

i−1
to be true fails to hold. As a consequence, λ0

i + λ1
i = λ0

i−1 + λ1
i−1 and the induction

hypothesis still holds. On the other hand, λ0
i + λ1

i ≥ 2(λ0
i−1 + λ1

i−1) is always true, so that
the induction hypothesis also holds in this case.

In the end, it is true that λ1
i + λ0

i ≤ 21+
∑i

j=1
νj(a,b) for all i ≥ 1 and in particular for

i = n− 1. Since DnA (a, b) = λ1
n−1 + λ0

n−1, we obtain the lemma.

C.4 On the shape of the DDT
In this section, we give a rough estimate of the proportion of impossible difference transitions
of the non-linear layer A3, and show that many of them can be easily characterized by
using an affine equivalent function.11 We denote by R the function reversing the order of
the bits in the binary decomposition, namely:

R : Fn2 → Fn2
x = xn−1, · · · , x2, x1, x0 7→ x0, x1, x2, · · · , xn−1

11Note that our reasoning can easily be generalized to Aα in general.

126 MOE: Multiplication Operated Encryption with Trojan Resilience

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 8 16 24 32 40 48 56 64

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 8 16 24 32 40 48 56 64

Figure 19: ddt of A3 : x 7→ 3x (left) and of x 7→ R(3×R(x)) (right), for n = 6.

By applying this function to both the input and output of A3, we obtain a function
that is affine equivalent and which ddt looks more organized: as depicted on Figure 19, it
shows wide ranges of null coefficients grouped into squares.

The patterns we observe on the example of Figure 19 seem to indicate that for any
n we have at least a fraction of 1

8 + 2
∑n
i=1(1

4)i impossible difference transitions. In the
following, we show that they can be easily understood and that we can deduce a same
amount of null coefficients in the ddt of A3.

We denote by y the output of R(A3(R(x))). In the sum representation, this gives:

x0 ... xn−3 xn−2 xn−1 ×α0 = 1

� x1 ... xn−2 xn−1 0 ×α1 = 1

= y0 ... yn−3 yn−2 yn−1

Which makes clear that the output bit number i of R(A3(R(x))) is linear in xi and
non-linear (in a broad sense) in xj for j > i, property that we rewrite as:

yi = xi ⊕ Ci(xi+1, · · · , xn). (10)

The following observations can be visualized on Figure 20 (for n = 6) but are valid
for any value of n. The two hatched squares numbered 1 on Figure 20 each cover one
fourth of the ddt and correspond to two types of impossible transitions: the down left
one illustrates that a transition from a (truncated) input difference with the MSB set to 1
never leads to an output difference with the MSB equal to 0 while the right top square
expresses the opposite situation (a difference with a null MSB never leads to an output
difference with the MSB set to 1). This impossibility is clear from the expression of the
MSB of the output: yn−1 = xn−1. Consequently, half of the transitions are impossible.
The other squares can be explained in a similar way just by referring to Equation (10):

• For two inputs that are equal on the first i − 1 MSB and different at position i,
Equation (10) implies that the output difference in bit i is equal to 1 while the output
difference in the bits of higher indices must be zero. Consequently, all the transitions
from such an input difference to an output difference with the i first MSB equal to 0
are impossible. In Figure 20, this corresponds to the leftmost squares.

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 127

• Likewise, two inputs that do not differ on the i first MSB cannot lead to an output
difference where the i− 1 first MSB are null while MSB i is set to 1. This case is the
symmetric of the previous one and defines squares of the same size.

For i varying from 1 to n, this defines a fraction of impossible transitions that is equal
to 2

∑n
i=1(1

4)i. To conclude and obtain the announced lower bond we remark that an
additional fraction of 1

8 of the transitions are impossible. They are deduced from the linear
equation yn−2 = xn−2 ⊕ xn−1 when xn−1 = yn−1 = 1 (squares denoted "a" on Figure 20).
Given that A3 is affine equivalent to R(Aα(R(x))), these observations translates into the
same number of impossible differentials for A3, with expressions that can be deduced.

1

1

2

2
3

3

· · ·

· · ·
a

a

Figure 20: The ddt of x 7→ R(3×R(x)) in Z/64Z. The hatched squares define impossible
transitions that can be easily explained.

C.5 Proof of Theorem 5 (LAT formula)

C.5.1 The case of µ

We consider the function µ : x 7→ (3× x mod 2n)⊕ x⊕ (2× x) which maps Fn2 to itself.
It is extended affine equivalent to the multiplication by 3. Its coordinates are functions
µi(x) such that: 

µ0(x) = 0,
µ1(x) = 0,
µi(x) = xi−1xi−2 + (xi−1 + xi−2)µi−1(x),

where (x, y, z) 7→ xy + (x+ y)z is the majority function. Note that µi does not depend on
xj for j ≥ i, meaning that µi has all of its inputs in Fi2.

Let i be the position of the highest 1 in n. Then Wµ (a, b) = 0 unless aj = 0 for all

128 MOE: Multiplication Operated Encryption with Trojan Resilience

j ≥ i as µi does not depend on xj for j ≥ i. We can write Wµ (a) b as:

Wµ (a, b) =
∑
x∈Fn2

(−1)〈a,x〉+〈b,µ(x)〉

= 2n−i
∑
y∈Fi2

(−1)x0a0+...+ai−1xi−1 + b0µ0(x)+...+bi−1µi−1(x)+µi(x)

= 2n−i
∑
y∈Fi2

(−1)x0a0+...+ai−1xi−1 + b0µ0(x)+...+bi−1µi−1(x)+
(
xi−1xi−2+(xi−1+xi−2)µi−1(x)

)
.

We write Fi2 as the following direct sum:

Fi2 = {(z0, z1, ..., zi−2, zi−2)∀z ∈ Fi−1
2 } ∪ {(z0, z1, ..., zi−2, zi−2 + 1)∀z ∈ Fi−1

2 } .

Furthermore, we remark that µi−1(x0, ..., xi−1) does depend on xi−1. Thus, Wµ (a, b) can
be expressed as:

2n−i
∑

z∈Fi−1
2

(−1)z0a0+...+ai−2zi−2+ai−1zi−2 + b0µ0(z)+...+bi−1µi−1(z)+
(
zi−2

)

+ 2n−i
∑

z∈Fi−1
2

(−1)z0a0+...+ai−2zi−2+ai−1(zi−2+1) + b0µ0(z)+...+bi−1µi−1(z)+
(
µi−1(z)

)
,

which is equal to:

2n−i
∑

z∈Fi−1
2

(−1)z0a0+...+ai−3zi−3+(ai−2+ai−1+1)zi−2 + b0µ0(z)+...+bi−1µi−1(z)

+ 2n−i(−1)ai−1
∑

z∈Fi−1
2

(−1)z0a0+...+(ai−2+ai−1)zi−2 + b0µ0(z)+...+bi−2µi−2(z)+(bi−1+1)µi−1(z) .

We deduce the following lemma.

Lemma 6. Recall that Li(a) = (a0, ..., ai−3, ai−2+ai−1, 0, .., 0) and Ti(a) = (a0, ..., ai−1, 0, ..., 0)
are linear functions. Then, for a < 2i and b < 2i+1:

Wµ (a, b) =
Wµ

(
L(a)⊕ 2i−2, Ti(b)

)
2 + (−1)ai−1

Wµ

(
L(a), Ti(b)⊕ 2i−1)

2 .

C.5.2 Deducing an induction for the multiplication

We have found a recursive formula for the Walsh spectrum of µ : (3× x)⊕ x⊕ (2× x) =
A(x) ⊕ u(x), where u(x) = x ⊕ (2 × x) is a linear function. The Walsh coefficients of
A : x 7→ 3× x mod 2n are given by:

WA (a, b) =
∑
x∈Fn2

(−1)〈a,x〉+〈b,A(x)〉

=
∑
x∈Fn2

(−1)〈a,x〉+〈b,µ(x)⊕u(x)〉

=
∑
x∈Fn2

(−1)〈a,x〉+〈b,u(x)〉+〈b,µ(x)〉

=
∑
x∈Fn2

(−1)〈a+uT (b),x〉〈b,µ(x)⊕u(x)〉

=Wµ

(
a+ uT (b), b

)
,

O. Bronchain, S. Faust, V. Lallemand, G. Leander, L. Perrin, F.-X. Standaert 129

where uT is obtained by transposing the matrix representation of u, so that uT (x) =
x⊕ (x/2). As before, we define i as the position of the 1 of highest weight in b. Then:

WA (a, b)
=Wµ

(
a⊕ uT (b), b

)
=
Wµ

(
L
(
a⊕ uT (b)

)
⊕ 2i−2, Ti(b)

)
2

+ (−1)ai−1+bi−1+biWµ

(
L
(
a⊕ uT (b)

)
, Ti(b)⊕ 2i−1)

2

=
WA

(
L
(
a⊕ uT (b)

)
⊕ 2i−2 ⊕ uT (Ti(b)), Ti(b)

)
2

+ (−1)ai−1+bi−1+biWA

(
L
(
a⊕ uT (b)

)
⊕ uT (Ti(b)⊕ 2i−1), Ti(b)⊕ 2i−1)

2 ,

where L(a⊕ uT (b)) is well defined because ai = bi = 1, so that the 1 of highest weight in
a⊕ uT (b) is at most at position i− 1. We simplify L

(
a⊕ uT (b)

)
⊕ uT (Ti(b)) into:

L
(
a⊕ uT (b)

)
⊕ uT (Ti(b)) = L(Ti(a))⊕ L

(
Ti(uT (b))

)
⊕ uT (Ti(b))

= L(Ti(a))⊕ L
(
Ti(b) + b/2)

)
⊕ (Ti(b) + Ti(b)/2).

For j ≤ i − 3, 〈ej , L(Ti(b) + b/2)〉 = bj + bj+1 = 〈ej , Ti(b) + Ti(b)/2〉 and, for j ≥ i,
〈ej , L(Ti(b) + b/2)〉 = 0 = 〈ej , Ti(b) + Ti(b)/2〉. Thus, we only need to consider i− 2 and
i− 1 as follows:

• For i − 2:
〈
ei−2, L

(
Ti(b) + b/2)

)〉
= (bi−2 + bi−1) + (bi−1 + bi) = bi−2 + bi and

〈ei−2, Ti(b) + Ti(b)/2〉 = bi−2 +bi−1, so that their sum is equal to bi+bi−1 = 1+bi−1.

• For i− 1:
〈
ei−1, L

(
Ti(b) + b/2)

)〉
= 0 and 〈ei−1, Ti(b) + Ti(b)/2〉 = bi−1 + 0, so that

their sum is equal to bi−1.

Furthermore, uT (2i−1) = 2i−1 + 2i−2. We deduce Theorem 5, namely that WA (a, b) can
be computed as the following sum:

WA

(
L(Ti(a))⊕ (2i−2 + 2i−1)bi−1, Ti(b)

)
2 +

(−1)ai−1+bi−1+1WA

(
L(Ti(a))⊕ (2i−2 + 2i−1)bi−1 ⊕ 2i−1, Ti(b)⊕ 2i−1)

2 .

Theorem 5 explains some visual patterns that we observe in the lat of A3 in Figure 7b.
First, the non-zero coefficients are in n different squares with indices i, each defined as
the set of points with coordinates (a, b) where 2i ≤ a < 2i+1 and 2i ≤ b < 2i+1. These
correspond to the condition that WA (a, b) = 0 unless 2i ≤ a < 2i+1 when 2i ≤ b < 2i+1.
Another implication of the theorem is that for a and b between 2i and 2i+1 we have
|WA(a, b)| = |WA(a+ 2i−1, b+ 2i−1)|. This can be visualized on Figure 7b: if we cut into
4 equal squares any of the non-zero squares of the figure, the top left one is equal to the
down right one, and the top right one has the same pattern as the down left one.

	Introduction
	Our contributions

	Our approach to Trojan-resilience
	Trojan attack setup
	Trojan countermeasure and cipher design
	Protecting against Trojans: robustness vs. security

	Specification of MOE
	Description of MOE
	Security claim
	Comparison with recent design strategies

	Justification of our design decisions: cryptographic properties of modular multiplication and general structure
	A Brief History of Modular Multiplication in Cryptography
	Sum representation and algebraic degree
	Differential properties
	Linear properties
	On the unsuitability of SPN constructions

	Security analysis of MOE
	Proof of security against single-trail differential attacks
	Experimental results on small scale variants of MOE
	Other attacks

	Performance evaluation
	Trusted area requirements
	Throughput and Robustness Bounds

	Conclusion
	Trojan robust construction from CCS:DziFauSta16
	General theorems about the possible candidate groups
	Differential and linear properties of the multiplication by 3 modulo a power of 2
	Proof of Theorem 3 (DDT Formula)
	On the Sierpinski triangle pattern of the DDT of
	Proof of Lemma 2 (DDT bound)
	On the shape of the DDT
	Proof of Theorem 5 (LAT formula)

