TACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. 4, pp. 195-212. DOI:10.46586 /tosc.v2020.i4.195-212

Tightness of the Suffix Keyed Sponge Bound

Christoph Dobraunig!? and Bart Mennink?

! Graz University of Technology, Graz, Austria
christoph.dobraunig@iaik.tugraz.at
2 Radboud University, Nijmegen, The Netherlands

b.mennink@cs.ru.nl

Abstract. Generic attacks are a vital ingredient in the evaluation of the tightness of
security proofs. In this paper, we evaluate the tightness of the suffix keyed sponge
(SuKS) bound. As its name suggests, SuKS is a sponge-based construction that
absorbs the key after absorbing the data, but before producing an output. This
absorption of the key can be done via an easy to invert operation, like an XOR, or a
hard to invert operation, like a PRF. Using SuKS with a hard to invert absorption
provides benefits with respect to its resistance against side-channel attacks, and such
a construction is used as part of the authenticated encryption scheme Isap. We derive
two key recovery attacks against SuKS with easy to invert key absorption, and a
forgery in case of hard to invert key absorption. The attacks closely match the terms
in the PRF security bound of SuKS by Dobraunig and Mennink, ToSC 2019(4), and
therewith show that these terms are justified, even if the function used to absorb the
key is a PRF, and regardless of whether SuKS is used as a PRF or a MAC.

Keywords: generic attacks - symmetric cryptography - permutation-based cryptog-
raphy - SuKS

1 Introduction

The sponge construction [BDPV07] and its closely related duplex construction [BDPV11b]
are very flexible and popular design strategies based on unkeyed cryptographic permuta-
tions. They allow us to provide many cryptographic functionalities like hashing, encryption,
authentication, and authenticated encryption, in a wide range of use cases. Prominent
examples following the sponge/duplex construction are the SHA-3 hash function fam-
ily [Nat15,BDPV11d] and the first choice for lightweight application of CAESAR, called
Ascon [DEMS19).

Given their practical importance, the sponge and duplex construction have faced
extensive scientific research over time. Originally, Bertoni et al. [BDPV08] proved security of
the unkeyed sponge construction in the indifferentiability framework [MRHO04]. Such proof
provides additional evidence for the structural soundness of the construction. This result
appeared to be suitable to argue security of the keyed versions of the sponge [BDPV11¢]
and the duplex [BDPV11b], but it was quickly recognized that the bound was not strong
enough and more dedicated security proofs arose that yielded stronger bounds for various
refinements of the keyed sponge/duplex [CDH12,ADMV15,NY16,JLM14,GPT15,MRV 15,
MRV15,DMV17,Menl18]. However, it appears that with the rise of the more dedicated
security proofs, the bounds became more complex, and it is not always clear if the bounds
are tight, or can be improved further.

Licensed under Creative Commons License CC-BY 4.0. (@) |
Received: 2020-09-01 Accepted: 2020-11-01 Published: 2020-12-10

https://doi.org/10.46586/tosc.v2020.i4.195-212
mailto:christoph.dobraunig@iaik.tugraz.at
mailto:b.mennink@cs.ru.nl
http://creativecommons.org/licenses/by/4.0/

196 Tightness of the Suffix Keyed Sponge Bound

1.1 Generic Attacks

A crucial counterpart of proofs of security are so-called generic attacks. The goal of generic
attacks is to give the (complexity wise) best possible attack on a construction assuming
ideality of the underlying primitive. Only by having generic attacks with a complexity
matching the bounds of the proof, we can assure that the bounds given by the proof are
tight. If this is not the case, we have an unclear situation not knowing if the gap between
proof and best generic attack is an artifact of the proof, and hence, the proof can be
improved, or if better generic attacks exist.

Finding and improving generic attacks has a very rich tradition in cryptography. Only
in the context of MAC security, notable results are the generic attack of Preneel and
van Oorschot [Pv95], generic attacks on various novel MAC constructions by Leurent et
al. [LNS18], and generic attacks on hash-based MACs by Leurent et al. and Dinur et
al. [LPW13,DL14]. Recently, the quest to understanding security bounds better has lead to
work that re-evaluates constructions with matching attacks like counter mode encryption
to provide stronger attacks like message recovery [LS18].

We focus on generic attacks for serial permutation-based constructions. For the unkeyed
sponge, generic attacks were already discussed by Bertoni et al. [BDPV07]. As already
mentioned, in the keyed case, for duplex-based and related constructions far more work
exists giving improved bounds. In some cases, e.g., for the transform-then-permute
construction [CIN20], matching generic attacks are given. Apart from that, generic attacks
have been published, e.g., on the permutation-based constructions Oribatida [RS19] and
Orange [DMM20], that point out flaws in the constructions.

1.2 QOur Contribution

In this paper, we will focus on the suffix keyed sponge construction, SuKS. The idea of the
suffix keyed sponge was proposed by Bertoni et al. [BDPV07,BDPV11a], and a security
proof for a generalized construction was given by Dobraunig and Mennink [DM20b]. SuKS
structurally differs from the “typical” keyed sponge/duplex in that the key is inserted after
the message has been processed. Furthermore, the absorption of the key is done by mixing
the outer part of the state with the key by using a function G. More specifically, this
function G can be different from the XOR that is used to absorb the message.

For example, SuKS is an integral part of the authenticated encryption schemes
Isap [DEMT17] and Isap v2.0 [DEM™19, DEM*20], which is participating in the sec-
ond round of the NIST lightweight cryptography standardization process. In Isap, the
function G itself is a sponge construction that is hard to invert.

The choice of G has huge implications for the meaning of generic attacks on the suffix
keyed sponge. In detail: generic attacks on the regular sponge/duplex do not carry over in
general, since G might be hard to invert. Interestingly, the bound on the security of SuKS
given by Dobraunig and Mennink [DM20b] is invariant of whether G is easy or hard to
invert. One reason for this is that the bound is derived for PRF security, but it does not
clearly demonstrate the cost of recovering the key or making a forgery against SuKS as a
MAC.

In this work, we perform a detailed investigation of the tightness of the security bound of
Dobraunig and Mennink [DM20b] on SuKS working, as the proof, in the ideal permutation
model. The focus is not on distinguishability in the PRF setting, but rather on mounting
forgery attacks on SuKS as a MAC. In the analysis, we separate between easy to invert
and hard to invert functions G, meaning that from its input and output the key K can
or cannot be easily deduced. In both settings we derive generic attacks that come close
to the complexities given by the dominating terms in the PRF security bound, but the
attacks are rather different in nature depending on how easy it is to invert G.

In case of easy to invert key absorption, we present a key recovery attack based on

Christoph Dobraunig and Bart Mennink 197

multi-collisions on the tag, as well as a key recovery attack based on multi-collisions on the
inner part of the state at evaluation of G. For a typical instantiation of the construction for
128-bit security, the former attack needs around 224! online queries to the construction
and around 2'2%8 queries to the underlying primitive, and the latter attack needs around
6 queries to the construction and around 2'2° queries to the underlying primitive. The
two attacks closely match two of the terms in the security bound of SuKS by Dobraunig
and Mennink [DM20b].

In case of hard to invert key absorption, the situation is much more complicated, and
a key recovery is hard to mount due to the fact that G is hard to invert. Nevertheless, we
manage to mount a forgery attack on SuKS in this setting. The attack is inspired by the
second attack of the case of easy to invert key absorption, although some technicalities
occur and a more involved multi-collision structure must be targeted. For a typical
instantiation of the construction for 128-bit security, the attack needs 5 online queries to
the construction and around 22583 queries to the underlying primitive. As before, the
attack closely matches the dominating term in the security bound of SuKS by Dobraunig
and Mennink [DM20b)].

1.3 OQutline

We start the paper by giving some preliminaries in Section 2. A description of SuKS is
given in detail in Section 3. Here, we also specify and discuss the bound of Dobraunig
and Mennink. Attacks in the case of easy to invert absorption are derived in detail in
Section 4; attacks in the case of hard to invert absorption are derived in Section 5. These
sections also include applications of the attacks for concrete parameter choices. Finally,
we conclude in Section 6.

2 Preliminaries

Let m,n € N. The set of n-bit strings is denoted {0,1}" and the set of arbitrarily
long strings is denoted {0,1}*. The set of n-bit permutations is denoted perm(n). For
X € {0,1}™ and if m < n, we denote by left,,(X) (resp., right,, (X)) the m leftmost (resp.,
rightmost) bits of X. For a finite set X', X & X denotes the uniformly random drawing of
an element X from X

By Stirling’s approximation (see [Sti30, DM56]), A! > (A/e)?, we know that

A" A Ae\ "
(5) =()=(5) <”
2.1 PRF Security

Let k,b,t € N, and let F? : {0,1}* x {0,1}* — {0,1} be a function that internally uses a
permutation p € perm(b). The pseudorandom function (PRF) security of F against an
adversary A is defined as

AdvPT(A) = ‘Pr (1 “ AF?P) —Pr (1 “ A“) , 2)

where p < perm(b), K & {0,1}*, and where $ is a function that returns a uniformly
random ¢-bit string for each new input. The adversary has bi-directional query access to
p. Its complexity is usually measured in the number of queries g to the construction and
in the number of primitive evaluations N. The latter accounts both for direct queries to
p and its inverse, as well as the cost of construction queries as if A were communicating
with Ff.

198 Tightness of the Suffix Keyed Sponge Bound

2.2 Uniformity and Universality

In contrast to the original definition of the (keyed/unkeyed) sponge [BDPV07, BDPV0S]
and duplex [BDPV11b] constructions, the suffix keyed sponge construction of Section 3
uses a function G to absorb the secret key. The security of the suffix keyed sponge is in
part determined by the uniformity and universality of this function G.

Let k,s € N. Analogue to [DM20b], we consider G : {0,1}* x {0,1}* — {0,1}* to be
2~ %-uniform (for ¢ € [0,00)) if any X,Y € {0,1}* give

Pr(G(K,X)=Y)<27°

for a randomly drawn K < {0,1}*. Similarly, we consider it to be 2 -universal (for
€ € [0,00)) if any distinct X, X’ € {0,1}* give

Pr(G(K,X) = G(K,X') < 2~

for a randomly drawn K < {0, 1}

2.3 Multi-Collisions

In many proofs of sponge-like constructions, the bounding of the probability of multi-
collisions appearing plays a central role. For instance, the works on the full-state keyed
duplex [DMV17] and the suffix keyed sponge [DM20b] use a parameter called the multi-
collision limit function. Let us consider b,c,q € N with ¢ < b. The multi-collision limit
function pf ., serves to limit probabilistically the maximum number of identical (b— c)-bit
elements 1 one gets when drawing ¢ (b — ¢)-bit elements uniformly from random. Clearly,
the probability that the maximal number of elements remains smaller than pf . depends
on the concrete choice of p1f cp- Therefore, i b 18 defined to be the smallest natural
number z that
Pr(p>ux) < % .

Daemen et al. [DMV17] provide an in-depth analysis of ug_qb with the conclusion that
14, behaves roughly like

2b—c
s (5). s
q <
/’Lbfc,b ~ q b
b- F y for q z 20—¢,

Comparable bounds have appeared in the context of cryptography in works of Jovanovic
et al. [JLMT19] and Choi et al. [CLL19].

Since we consider multi-collisions from an attack point of view in this work, however,
we are more interested in the maximal p-collision we get in the average case after q queries.
For values uniformly randomly drawn with replacement, we can resort to a result of Suzuki
et al. [STKTO06] that says that for

q~ (u! . Q(b—C)(u—l))l/u

a p-collision on a (b — ¢)-bit value is found with probability around 1/2. In our case,
however, we are concerned with p-collisions on truncated permutation outputs. Therefore,
we will derive a slightly different estimation.

First, consider any set of u < ¢ evaluations, and assume that we draw p values
U, ..., U, without replacement from a b-bit uniform distribution. These 1 evaluations all

Christoph Dobraunig and Bart Mennink 199

have colliding right,_.(U;) with probability (here, assume p < 2°):
201 262 2¢ — (u—1)

201 202 20— (u—1
2¢_
- @-p _ (o)

@@ -0)

p—1

Pr (p-collision after p draws) =1 -

Hence, the expected number of p-collisions on the inner b — ¢ bits of the state U;, among
all g values, equals

2¢—1
(ufl)
201\
(ufl)
Typically, we want to find at least one pu-collision, so we require

p—1

(=5

pn—1

Ex (#u-collision after ¢ draws) = <q> (3)
o

or equivalently,

Our goal is to derive a lower bound for ¢ as function of u, using that 2° > 2¢ > ¢ >> pu.

Using (1), we can further get
g#> (2" —1)e ”717
7 - 2¢—1

‘> \/ - (20" (@)

which is quite close to Suzuki et al’s [STKTO06] approximation, and sufficient for our
purposes.

or equivalently,

3 The Suffix Keyed Sponge

3.1 The Construction

Let k,b,c,r,s,t € N. The suffix keyed sponge (SuKS) is a PRF construction that takes
as input a k-bit key and an arbitrarily long plaintext, and outputs a t-bit tag. Internally,
it operates on a b-bit state and is built on top of a b-bit permutation. The suffix keyed
sponge construction is depicted in Figure 1. As the name suggests, the secret key K is the
last element that is absorbed, while the plaintext blocks get absorbed before.

In more detail, during absorption of the plaintext, the b-bit state is split into an r-bit
outer part and a c-bit inner part. The arbitrarily long plaintext is first injectively padded
and split into 7-bit blocks P?. These blocks are absorbed by XORing them with the outer
part of the state. After the absorption of each single plaintext block, the permutation p is
applied to the state. After the last plaintext block is absorbed, the sizes of the inner and
outer part are re-defined as b — s and s, and the k-bit key is absorbed via a function G
into the s-bit outer part. Finally, the permutation is applied a last time to the state, and
t bits from the state are squeezed to produce the tag T'. An algorithmic description can
be found in Algorithm 1.

200 Tightness of the Suffix Keyed Sponge Bound

p? P? Pt K T
T T an . r [s G s t
p p p p
O c c c b—s
N N

Figure 1: The suffix keyed sponge. The plaintext P is first injectively padded into r-bit
blocks P! ... P*.

Algorithm 1 Algorithmic description of the suffix keyed sponge (SuKS)

Input: (P, K) € {0,1}* x {0,1}*
Output: T € {0,1}*

1: P, P!+ P|1]|o*

2: S+ 0P
3: fori=1,...,/do
4 S« S@ PYo°
5: S <—p(S)
6
7
8

. S+ G(K,lefts(S))|right,_4(S)
2 S p(S)
: return left;(S)

3.2 The Bound

Dobraunig and Mennink [DM20b] give a security proof for SuKS in the leakage-resilient
setting as well as in the black-box setting. Since we focus on generic attacks against this
construction, we will stick to the bound in the black-box setting [DM20b, Theorem 2],
which we restate in Theorem 1.

Theorem 1 (Dobraunig and Mennink [DM20b, Theorem 2]). Let k,b,c,r,s,t € N with
c+r =2>band k,s,t <b. Consider the suffix keyed sponge shown in Figure 1. The
suffix keyed sponge invokes a random permutation p & perm(b), and a function G :
{0,1}* x {0,1}* — {0,1}* that is 27 -uniform and 2~¢-universal for some d,¢ € [0, 00).
For any adversary A making q > 2 queries to the construction oracle (SuKS based on p
and instantiated with secret key, or a random function $) and a total amount of N < 20~!
queries to the primitive p,

2(N—q) q
rf 2N2 lubfs,s N lut,bft N
Adv% (A) =< 9c + 2min{5,s} + 2b—t ' (5)

3.3 Interpretation of the Bound

The security bound of Theorem 1 consists of three terms.

The first term 22ch of (5) corresponds to inner collisions on the plaintext absorption.
This is a common term for keyless sponges (noting that, prior to the absorption of the
key, SuKS is a keyless sponge), and is inevitable. The term implies that security of SuKS
degenerates with the square of the number of calls IV to the underlying primitive only in
the first term, and that for a k-bit security level, the condition ¢ 2 2k must be fulfilled.

In the second and third term of (5), security degenerates with the product of the
multi-collision limit function (either ,ui(_AS[;q) or uf, ,) and N. As these multi-collision
terms are typically small, one might get éway with inner parts b — s and b — t that are

Christoph Dobraunig and Bart Mennink 201

smaller than 2k. As a matter of fact, it appears that for prominent choices of ¢, r, s, and
2(N—a) pr
t, the dominant term in (5) is either 2§£2 or %
Consider for example the usage of SuKS in the Isap authenticated encryption scheme [DEM ™17,
DEM™'19,DEM™20]. If it is instantiated with the 400-bit variant of the Keccak permutation,

it is parameterized as ¢ = 256, r = 144, s = 128, and t = 128, and we obtain [DM20b]:

2N? 3N 80N
rf
Advy (A) < 9256 ' 9i28 ' 9272

Alternatively, if it is instantiated with the 320-bit Ascon permutation, it is parameterized
as ¢ = 256, r = 64, s = 128, and t = 128, and we obtain [DM20b]:

. 2N? 5N 67N
AdvP(A) < 5755 + 518 + g - (6)

MQ(N_Q)»N
In both cases, we see that the second term of (5), ;;SW, is the dominating one.
However, we stress that the result of Theorem 1 considers PRF security. In the next
sections, we will explore if the terms of (5) including the multi-collision limit function
(either ui(_j\;:n or ,uf}b_ ,) are mere proof artifacts in the concrete use-case of a MAC, or if
we can find generic attacks on SuKS as a MAC coming close to the bound. More detailed,
in the remainder of this article, we will examine SuKS in the use case of a MAC with the
goal to craft a forgery. We will distinguish between two cases: in Section 4 we will consider
the case that G is relatively easy to invert, and in Section 5 we will consider the case that

G is hard to invert.

4 Attacks with Easy to Invert Absorption

In this section, we discuss generic attacks on SuKS, where G(K, X) =Y is a function that
is easy to invert. This means that knowledge of a single pair (X,Y") allows for the efficient
computation of K.

A typical example of such a function is G(K, X) = K @ X, which is 2~ *-uniform and
O-universal for k-bit values. For this function, a single pair (X,Y") allows one to deduce
Kas K=G 1Y, X)= X @Y. For all attacks in this section, we set s = k. At first, in
Section 4.1 we show how to exploit multi-collisions on the tag T'. This attack corresponds
to the third term of (5). Then, in Section 4.2 we discuss how to use multi-collision on the
(b — k)-bit value during the absorption of the key. This attack corresponds to the second
term of (5).

Note that there is some stretch in the meaning of “efficient computation” of K. Suppose
a single pair (X,Y") allows for the efficient computation of K with probability 7 only. In
this case, the attacks of this section would only succeed with a probability 7, and one
would have to do at least the computation of G on average 1/7 times. If 7 becomes too
small, this will have a similar cost as a brute force search for the key; in such a case, i.e., if
the probability of computing the key from a single pair becomes too small, we talk about
hard to invert absorption. This will be the topic in Section 5.

4.1 Multi-Collision on the Tag

The following attack is a key recovery attack that exploits multi-collisions on the tag T and
exploits the fact that the secret key is absorbed at a single point in SuKS, while all used
operations are easy to invert. The key recovery attack on SuKS is performed as follows:

(1) Make g construction queries for different plaintexts P; to get tags T; and corresponding
U; (see Figure 1).

202 Tightness of the Suffix Keyed Sponge Bound

(2) Find a p-fold collision in the tags, i.e., such that p values i satisfy T; = T* for some
T*.

(3) Make N; primitive queries p~!(T*||Z;) for varying Z;. If the outcome is of the
form Y|right,_,(U;) for some of the i’s in the p-fold collision, compute the key
K = G7Y(Y, lefty(U;)). Verify K by making one more encryption query.

4.1.1 Application

The complexity of above attack depends on the sizes chosen for b and ¢. For simplicity,
assume that we set t = k, and ¢ = 2k as imposed by the first term of (5). Then,
for b = 256 and k = 128, we can argue that above attack is expected to succeed for
(g, N) ~ (21241 21258) This is because, by (4), one requires

92256 _ 1 p—1
q= ‘\L/ () - <(2128_1)e) .
to obtain a u-fold collision on the 128-bit tag with high probability. Concretely, for p = 14
and ¢ ~ 2'2%1 a 14-fold collision can be obtained. From this, the key recovery in step
(3) takes 2128 /14 ~ 2'242 primitive queries. Since we can assume that each construction
query needs at least two primitive queries, we get N = 21242 4 2. 21241 & 21258 pyripitive
queries in total.

Note that, acknowledgedly, the attack suffers from a rather high data complexity.
Furthermore, in the case of SuKS, we would require ¢/2 > 128 to be able to achieve
128 bits of security. Hence, an instance of SuKS using a 128-bit key will likely use a b
larger than 256 bits, such as b = 272 as used in Spongent-256 [BKL*11]. However, a
rising b makes step (3), that requires to guess a (b — t)-bit value, quickly very expensive.
This means that attacks corresponding to the other terms in (5) are typically much more
efficient.

4.1.2 Remark

The attack mostly exploits the fact that the key is absorbed at a single position using
an easy to invert mechanism. As such, the attack is not just for restricted use against
SuKS, but variants of the attack also work on other permutation-based MACs and
authenticated encryption schemes that absorb the key at a single position relying on easy
to invert mechanisms of absorption of the data. For example, the attack is comparable to
the multi-collision attack [DM20a] recently mounted against PHOTON-Beetle, a second
round candidate of the NIST lightweight cryptography standardization process [BCDT19].
A comparable attack was mounted on sponge-based AE schemes by Chakraborty et
al. [CIN20].

4.2 Multi-Collision on the Inner Part During Key Absorption

The attack from Section 4.1 aims to speed up the guess of a (b — t)-bit value with the help
of multi-collisions. As explained, however, this becomes quickly no threat for practical
values. In addition, this attack suffers from a rather high complexity in construction
queries, often also referred to as online complexity. These problems are mitigated in an
attack that focuses on multi-collisions targeting the inner part during key absorption. The
attack works as follows:

(1) Use N, primitive queries to compute SuKS on N, different plaintexts P; up to the
state value U; (see Figure 1). Since there is no key involved up to this point, these
only count as primitive queries.

Christoph Dobraunig and Bart Mennink 203

(2) Find a p-fold collision in the right, _, (U;), i.e., such that p values i satisfy right,_, (U;) =
U* for some U*.

(3) For all u plaintexts P; with the same right, ,(U;) = U*, make a construction query
to get the corresponding T;.

(4) Make Ny primitive queries p(Z;||U*) for varying Z;. If the outcome matches T; for
some of the 7’s in the p-fold collision, compute the key K = G~1(Z;, left(U;)). Verify
K by making one more encryption query.

4.2.1 Attack Complexity

We discuss the complexity of the attack. For simplicity, we assume that t = k. The number
N, of different plaintext we process determines the number of p-collisions we expect to
find on a (b — k)-bit value. From (4), we have

N, > \/ o (2)

Depending on the size of the rate » and the number N, of different plaintext we process,
we require more than one plaintext block to be processed, namely [log,(N,)/r] blocks.
Hence, the number of primitive queries N, made to the permutation p in this phase differs
from N, and is

[logy(N) /7] N,

orei

N, =
i=0

We have to make construction queries for all plaintexts belonging to our p-collisions, which
means that ¢ = p. Finally, we have to make additionally N; primitive queries for the
permutation p, which sum to Ny = 2%/ on average and also count the ([logy(N;)/r]+1)g
primitive queries made during the q construction queries. To sum up, we expect to need

[logy (Nz) /7]

N =2%/p+ (logy(N,)/r] + D+ >
1=0

Ny
2r-i

queries to p, or p~!, with N, being the term of (7), and
q=p
queries to the construction, which also gives the data complexity.

4.2.2 Application

Assume that we take parameters b = 272, k = 128, and t = ¢/2 = k. Then, we can get a
p-collision on a 144-bit value with (cf., (7))

. (2272 1)e p—l
Nx > \/(M)A . (9128 _ | .
Hence, we can find a (1 = 6)-fold collision with a complexity of 2123-%. However, since we
have a rate of 16 bits, we need to absorb 8 blocks to create 21238 values of U;, which needs

Np _ 2123.8 4 2107.8 + 291.8 + 275.8 + 259.8 4 243.8 =+ 227.8 < 211.8 ~ 212349

204 Tightness of the Suffix Keyed Sponge Bound

calls to p. Then, we need ¢ = 6 calls to the construction with the plaintexts that give the
u-collision to get 6 tags T;. This speeds up the search for a correct lefty (V;) by a factor of 6,
thus needing another Ny = 2128 /6 ~ 2125415 calls to p. For this parameter set, we need a
total of ¢ = 6 online construction queries and N = N, + N + ([log,(N,)/r] +1)q ~ 21259,

If we look at a different parameter set with b = 320, k = 128, and ¢t = ¢/2 = k, we see
that already a 3-collision on 192 bits is quite unlikely. However, it is easily possible to get
a 2-collision needing approximately 2°% permutation queries. Hence, a key recovery attack
with these parameters requires ¢ = 2 online construction queries and 2'27 permutation
queries.

5 Attack with Hard to Invert Absorption

The attacks of Section 4 aimed to recover lefty(V;) and then recover K from that. However,
for some prominent use-cases of SuKS, like Isap [DEM™17, DEM*19, DEM*20], G is
actually hard to invert so that the knowledge of an input-output tuple does not easily
allow for a key recovery. The question, thus, remains if generic attacks on SuKS using a
hard to invert G are possible that exploit the existence of multi-collisions.

In this section, we describe a forgery attack on SuKS as a MAC, even if a PRF is used
for G. The attack, to a certain extent, corresponds the second term of (5). This makes
sense: already for the case of easy to invert absorption the attack corresponding to the
second term was more efficient than the attack corresponding to the third term of (5).

5.1 Attack Description

The attack is significantly more involved than those of Section 4, and therefore we will
describe the steps in greater detail. As before, we use the notation of U, V, and W as
shown in Figure 1 for the state before G, after G, and after the last application of p,
respectively.

The attack consists of the following steps:

Finding multi-collisions. Use NV, primitive queries to compute SuKS on N, different
plaintexts P; up to the state value U; (see Figure 1). Since there is no key involved
up to this point, these only count as primitive queries. The goal is to find a u-fold
collision in the right,_,(U;), i.e., such that p values ¢ satisfy right,_ (U;) = U* for
some U™.

We will compute the expected number of p-collisions in these N, values U;. Analogue
to (3), the expected number of p-collisions on the inner (b — s) bits of the state Uj,
among all NV, values, equals

=)

&-h

N,
Ex (#p-collision after N, draws) = (:)

Denote this value by =.

Filter for suitable tuples. For each of the = p-collisions that have matching inner parts
right,_.(U;), but in general differing outer parts left;(U;), we want to find for each
of the p different outer parts independently a collision with any of the NV, — 1 other
queried values. For a single p-collision, this happens with a probability of around

(3

We stress that these collisions need not be unique: it might for instance be that two
queries in the p-collision happened to collide on the entire state. The attack still

Christoph Dobraunig and Bart Mennink 205

works: looking ahead, the reason that we need to link each value in the p-collision
with another query through left,(U;) is because this query will be used to eventually
mount the forgery.

Stated differently, we wish to obtain a u-collision consisting of a set S of p different
plaintexts P; whose corresponding values U; satisfy right,_ (U;) = U* for some U*.
In addition, associated to this set is a second set S’ of u plaintexts P/ such that

P; # P! but left,(U;) = left,(U]) for all i. A visualization of the collision structure
is given in Figure 2.

Recovering derived keys. For all plaintext values Py, ..., P, in the set S, we make a query
to the SuKS oracle to get the corresponding tags T;. These are ¢ = p queries in
total.

Then, we guess the secret part Y corresponding to the inner part right,_,(V;) =
right, . (U;) = U* shared among all 1 queries (by design of S). In detail, we guess
the secret part Y and compute a guessed tag T* by computing p(Y||U*). This tag
matches one of the 4 tags T; with a probability 4/2¢. Hence, after Ny = 2" /11 guesses,
we expect one match. Therefore, for one of the plaintexts in the set S, say P;«, we
know the values

Uy = left, (U) ||righty,_ (Ui
V'i* — Y“I‘lghtb_é(Uz*) = Y||U*7
Ty =T*.

Forgery if G is a PRF. We will use these data, together with the colliding plaintext in
the set S’, to mount a forgery. In detail, recall that, by definition of S’, the plaintext
P/, € & satisfies left (U],) = lefts(U;+). By construction, this value will also have
colliding outer parts after evaluation of G: lefts(V).) = lefts(Vi») = Y. Therefore,

we can compute the tag for plaintext P/, as

Tl = left, (p(Y ||right,_, (UL))).

The pair (P}.,T/.) is a valid forgery.

K2

5.2 Attack Complexity

We discuss the complexity of the attack assuming that ¢t = k = s. In the first part of the
attack, we search for values of y and N, so that

<) CER

We will derive a lower bound for N, as function of u. Here, we remark that 2° > 2° >
N; > p. Clearly, above bound is satisfied if

() ()= i)

pn—1

Using (1), we obtain that the above holds provided that

(N)™ > (u2°)" - (95 1

206

Tightness of the Suffix Keyed Sponge Bound

p! pf
o o
r L s
p p
0 c . c b—s
Plfl - Plfl -
o o
r L s
p p
0 c . c b—s
))
Py Py
o o
r L s
p p
0 c . c b—s
P2/1 - PQ/Z -
o o
r L s
p p
0 c . c b—s
)))
P} P!
o o
r L s
p p
0 c . c b—s
P}il - P};Z —
o o
r r s
p p
0 c c b—s
))

Figure 2: Visualization of the required collision structure. Here, plaintexts P, ..

all distinct, and P! # P; for each i.

left, (U7)

right,, _,(U1)

match
left, (U7)
rightbfs(U{)
match
lefts (Uz)
right,, _,(U2)
match
left, (Us)
rightbfs(Ué)
match
lefts (Uy)
right,,_,(Uy)
match

lefts(U},)

rightbfs (UL)

., P, are

Christoph Dobraunig and Bart Mennink 207

or equivalently,

N> Ww (2" ®

[ogy (Na) /7]

This then accounts for

N
Np = i
=0

queries to the permutation p, noting that the absorption rate equals r. The online
construction query complexity, which equals the data complexity, equals ¢ = p. Finally,
we have to do Ny = 2% /11 queries on p before we can do a forgery on average. In total, we
make N = N, + Ny + ([logy(Nz)/r] + 1)g queries to the permutation.

5.3 Application
5.3.1 Spongent-256-like Instance

To compute the complexity of the attack, it is most convenient to consider a concrete
application. Let us assume the state geometry used in Spongent-256 [BKL*11], with
r = 16 and ¢ = 256, but with in addition a PRF G with k = s = 128 to insert the 128-bit
key. We consider tag size t = k as before. In this case, we have b — s = 144. Considering
(8) and p = 5, we should choose

272 _ 5-1
Nz > 2-§/(2128 . 5)5 . ((2212811)6) > 212344 .

Note, however, that this is a rather loose bound on the value of N,. For this concrete
instance, we observe that a slightly better choice of N, = 222> should be sufficient for
our attack with pu = 5.

If we consider = 5, we expect to find

_ <N$> (i:ll) _ (2122'5) (2152i11) A 9295
— b_ - 272 _ ~
w/ (o) 5 /(%50

p—1

[1]

5-collisions on the inner part of U by computing 2'22"° plaintexts P; up to state value Uj.

Such a single 5-collision also has independent outer part collisions in one of the other 2122
values with a probability of
o . 5
Nw _ 2122 5 _ 2_27.5
9s — \ 92128 =~ :

Hence, we expect to have at least one valid 5-collision (in the sense of Figure 2) in our
2295 candidates. To compute 2'22® values P; with a 16-bit rate, we need

Np — 2122.5 4 2106‘5 4 290.5 + 274.5 + 258.5 + 242.5 + 226.5 4 210.5 ~ 2122.5

evaluations of the permutation p.

Then, we query the construction oracle for those ¢ = 5 different plaintexts of the
5-collision to get 5 tags. We expect to get one matching value for the value lefts(V;)
after Ny = 2128 /5 = 2125-678 ¢4]ls to p. This match also gives us the ability to compute
one forgery. To sum up, the attack requires an online/data complexity of ¢ = 5 chosen
messages, needing a total evaluation of N = N, + Ny + ([logy(N,)/r] + 1)g ~ 212583
permutation calls.

208 Tightness of the Suffix Keyed Sponge Bound

5.3.2 MAC of Isap’s Ascon Instances

In the case of the MACs used in the instance of Isap based on the 320-bit Ascon permutation,
we have r = 64, ¢ = 256, k =s =1t =128, and b — s = 192. In contrast to the above, we
are only able to find many 2-collisions, e.g., 23¢9 2-collisions with after N, ~ 215 calls
to p. A single 2-collision is expected to have a collision with another of the 2! values
with a probability of 273°. Hence, we expect to have one valid 2-collision (in the sense of
Figure 2). Since we only have a 2-collision, we can only speed up the exhaustive search for
lefts(V;) by a factor 2. Hence, we have to make approximately Ny a 2!27 calls to p before
we find a match. A match in left;(V}) lets us compute one forgery. To sum up, this attack
requires an online/data complexity of ¢ = 2 chosen messages, needing a total evaluation of
N = N, + Ny + ([logy(N,)/r] + 1)q =~ 2'27 permutation calls.

5.4 Remarks

The advantage of 2'27 permutation calls in the case of the parameter set of the MACs of
Isap’s Ascon instances seems rather negligible if we compare it with a brute force key search.
For example, a brute force key search already succeeds with a probability of 0.5 after 2127
calls to the permutation p and the function G. However, note that the computation of
G can be equally expensive as a permutation call. A typical choice of G is for instance a
sponge-based PRF with a rate of 1 bit, e.g, using permutation pg. Hence, a brute force
key search needs in addition to the offline computation of 21?7 calls to p an additional
leiz (21277%) = 2128 calls to pg, while our attack does not count any offline evaluations
of G.

Furthermore, we remark that it is possible to turn the attack into an attack that
exploits multi-collisions in the tag, akin to the first attack of Section 4. However, in this
case the first phase of the attack, “finding multi-collisions”, becomes an online phase as
the adversary must make NN, construction queries. Therefore, we consider this variant of
the attack inferior to the one described above.

6 Conclusion

In this paper, we have shown generic attacks on the suffix keyed sponge, which come close
to the bounds given by Dobraunig and Mennink [DM20b]. While the bounds given by
Dobraunig and Mennink consider the PRF security of SuKS, our attacks are performed
when SuKS is considered as a MAC. Note that an attack against the MAC security can
easily be turned into an attack against the PRF security. We were able to show generic
attacks in this scenario for cases where the absorption of the key K by the function G
is easy to invert, e.g., by an XOR, or hard to invert, e.g., by a PRF. For the easy to
invert case, the shown attacks recover the key, while for the hard to invert case, we aim
to craft a forgery. Although the attack in case where G is hard to invert is significantly
more involved, the complexities for many parameter sets are close. For instance, for a
Spongent-256-like instance of SuKS, the computational complexity is about 2259 in both
cases. Also in the case of the MAC of Isap’s Ascon instances the difference is negligible
and in both cases approximately 2127,

Nevertheless, if we compare the complexities we get from the attacks with the advantage
we expect from the bound, the attack complexities are a bit higher. The provable security
approach basically aims to use an upper bound on the probability that a p-collision happens
for all p bigger than a certain threshold, where the probability is kept comparably low. In
contrast, for attacks, we are interested in maximizing p in p-collisions in the average case.
Hence, in attacks, we work with a u that is typically smaller than what is considered in
the provable security analysis.

Christoph Dobraunig and Bart Mennink 209

Putting this into numbers, consider the message authentication in Isap’s Ascon in-
stances [DEM ™17, DEM ™19, DEM*20]. In the bound, the value ug(N_q) is bounded by

—s,8
,u%;zg’ug < 5, as in the second term of (6). In contrast, in the attack of Section 5.3.2,

we have chosen the value for the p-collision as p = 2, in order to get the best attack
complexity on average. This is why the bound of (6) already indicates an advantage larger
than 1 for N = 21278 while we need N = 2'%7 in the attacks. For the Spongent-256-like
instance we discussed in Section 4.2.2 and Section 5.3.1, we chose p = 6 and p = 5 to
improve the attack complexity on average, while a bound would have typically uﬂlug <16
following [DMV17, Equation (32)].

To sum up, the attacks show that the dominating terms appearing in the bounds are
justified, even if G is a PRF, and regardless of whether SuKS is used as a PRF or a MAC.

Acknowledgments

We thank Maria Eichlseder for all the fruitful discussions. This work has been supported
in part by the Austrian Science Fund (FWF): J 4277-N38, and from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 681402).

References

[ADMV15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security
of Keyed Sponge Constructions Using a Modular Proof Approach. In Gregor
Leander, editor, F'SE 2015, volume 9054 of LNCS, pages 364-384. Springer,
2015.

[BCD'19] Zhenzhen Bao, Avik Chakraborti, Nilanjan Datta, Jian Guo, Mridul Nandi,
Thomas Peyrin, and Kan Yasuda. PHOTON-Beetle Authenticated Encryption
and Hash Family. Submission to NIST Lightweight Cryptography, 2019.

[BDPV07] Guido Bertoni, Joan Daemen, Michagl Peeters, and Gilles Van Assche. Sponge
functions. Ecrypt Hash Workshop 2007, May 2007.

[BDPVO08] Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche. On
the Indifferentiability of the Sponge Construction. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 181-197. Springer, 2008.

[BDPV1la] Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche. Cryp-
tographic sponge functions (Version 0.1). https://keccak.team/, January
2011.

[BDPV11b] Guido Bertoni, Joan Daemen, Michagl Peeters, and Gilles Van Assche. Duplex-
ing the Sponge: Single-Pass Authenticated Encryption and Other Applications.
In Ali Miri and Serge Vaudenay, editors, SAC 2011, volume 7118 of LNCS,
pages 320-337. Springer, 2011.

[BDPV1lc] Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche. On
the Security of the Keyed Sponge Construction. Symmetric Key Encryption
Workshop, February 2011.

[BDPV11d] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. The
Keccak SHA-3 submission (Version 3.0). http://keccak.noekeon.org/
Keccak-submission-3.pdf, 2011.

https://keccak.team/
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf

210

Tightness of the Suffix Keyed Sponge Bound

[BKL*11]

[CDH*12]

[CIN20]

[CLL19]

[DEM™*17]

[DEM*19]

[DEM™+20]

[DEMS19]

[DL14]

[DM56]

[DM20a]

[DM20b)]

[DMM?20]

[DMV17]

Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem
Varici, and Ingrid Verbauwhede. spongent: A Lightweight Hash Function.
In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011, volume 6917 of
LNCS, pages 312-325. Springer, 2011.

Donghoon Chang, Morris Dworkin, Seokhie Hong, John Kelsey, and Mridul
Nandi. A Keyed Sponge Construction with Pseudorandomness in the Standard
Model. NIST SHA-3 Workshop, March 2012.

Bishwajit Chakraborty, Ashwin Jha, and Mridul Nandi. On the Security
of Sponge-type Authenticated Encryption Modes. TACR Transactions on
Symmetric Cryptology, 2020(2):93-119, Jul. 2020.

Wonseok Choi, ByeongHak Lee, and Jooyoung Lee. Indifferentiability of
Truncated Random Permutations. In Steven D. Galbraith and Shiho Moriai,
editors, ASTACRYPT 2019, volume 11921 of LNCS, pages 175-195. Springer,
2019.

Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP — Towards Side-Channel Secure Authenticated
Encryption. TACR Transactions on Symmetric Cryptology, 2017(1):80-105,
Mar. 2017.

Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, Bart
Mennink, Robert Primas, and Thomas Unterluggauer. ISAP v2. Submission
to NIST Lightweight Cryptography, 2019.

Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. Isap v2.0. TACR
Transactions on Symmetric Cryptology, 2020(S1):390-416, 2020.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schléffer.
Ascon v1.2. Submission to NIST Lightweight Cryptography, 2019.

Itai Dinur and Gaétan Leurent. Improved Generic Attacks against Hash-Based
MACs and HATFA. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO
2014, volume 8616 of LNCS, pages 149-168. Springer, 2014.

Abraham De Moivre. The doctrine of chances. 1756.

Christoph Dobraunig and Bart Mennink. Key Recovery At-
tack on PHOTON-Beetle. OFFICIAL COMMENT on NIST
mailing list: https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/official-comments/
photon-beetle-round2-official-comment.pdf, March 2020.

Christoph Dobraunig and Bart Mennink. Security of the Suffix Keyed Sponge.
TACR Transactions on Symmetric Cryptology, 2019(4):223-248, Jan. 2020.

Christoph Dobraunig, Florian Mendel, and Bart Mennink. Practical forgeries
for ORANGE. Inf. Process. Lett., 159-160:105961, 2020.

Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-State Keyed Duplex
with Built-In Multi-user Support. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASTACRYPT 2017, volume 10625 of LNCS, pages 606—637. Springer,
2017.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/official-comments/photon-beetle-round2-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/official-comments/photon-beetle-round2-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/official-comments/photon-beetle-round2-official-comment.pdf

Christoph Dobraunig and Bart Mennink 211

[GPT15]

[JLM14]

[JLM™*19]

[LNS18]

[LPW13]

[LS18]

[Men18]

[MRHO4]

[MRV15]

[Nat15]

[NY16]

[Pv95]

Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. The Exact PRF Security
of Truncation: Tight Bounds for Keyed Sponges and Truncated CBC. In
Rosario Gennaro and Matthew Robshaw, editors, CRYPTO 2015, volume
9215 of LNCS, pages 368-387. Springer, 2015.

Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2¢/2? Security
in Sponge-Based Authenticated Encryption Modes. In Palash Sarkar and
Tetsu Iwata, editors, ASTACRYPT 2014, volume 8873 of LNCS, pages 85-104.
Springer, 2014.

Philipp Jovanovic, Atul Luykx, Bart Mennink, Yu Sasaki, and Kan Yasuda.
Beyond Conventional Security in Sponge-Based Authenticated Encryption
Modes. J. Cryptology, 32(3):895-940, 2019.

Gaétan Leurent, Mridul Nandi, and Ferdinand Sibleyras. Generic Attacks
Against Beyond-Birthday-Bound MACs. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, volume 10991 of LNCS, pages 306-336.
Springer, 2018.

Gaétan Leurent, Thomas Peyrin, and Lei Wang. New Generic Attacks against
Hash-Based MACs. In Kazue Sako and Palash Sarkar, editors, ASTACRYPT
20183, volume 8270 of LNCS, pages 1-20. Springer, 2013.

Gaétan Leurent and Ferdinand Sibleyras. The Missing Difference Problem,
and Its Applications to Counter Mode Encryption. In Jesper Buus Nielsen
and Vincent Rijmen, editors, FEUROCRYPT 2018, volume 10821 of LNCS,
pages 745-770. Springer, 2018.

Bart Mennink. Key Prediction Security of Keyed Sponges. TACR Transactions
on Symmetric Cryptology, 2018(4):128-149, Dec. 2018.

Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
Impossibility Results on Reductions, and Applications to the Random Oracle
Methodology. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages
21-39. Springer, 2004.

Bart Mennink, Reza Reyhanitabar, and Damian Vizar. Security of Full-State
Keyed Sponge and Duplex: Applications to Authenticated Encryption. In
Tetsu Iwata and Jung Hee Cheon, editors, ASTACRYPT 2015, volume 9453
of LNCS, pages 465-489. Springer, 2015.

National Institute of Standards and Technology. FIPS PUB 202: SHA-
3 Standard: Permutation-Based Hash and Extendable-Output Functions.
Federal Information Processing Standards Publication 202, U.S. Department
of Commerce, August 2015.

Yusuke Naito and Kan Yasuda. New Bounds for Keyed Sponges with Ex-
tendable Output: Independence Between Capacity and Message Length. In
Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages 3-22. Springer,
2016.

Bart Preneel and Paul C. van Oorschot. MDx-MAC and Building Fast MACs
from Hash Functions. In Don Coppersmith, editor, CRYPTO 95, volume 963
of LNCS, pages 1-14. Springer, 1995.

212

Tightness of the Suffix Keyed Sponge Bound

[RS19]

[Sti30]

[STKT06]

Raghvendra Rohit and Sumanta Sarkar. Trivial Key Recov-
ery Attack on Oribatida-192-96. OFFICIAL COMMENT on
NIST mailing list: https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/official-comments/
Oribatida-round2-official-comment.pdf, September 2019.

James Stirling. Methodus Differentialis sive Tractatus de Summatione et
Interpolatione Serierum Infinitarum. 1730.

Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday
Paradox for Multi-collisions. In Min Surp Rhee and Byoungcheon Lee, editors,
ICISC 2006, volume 4296 of LNCS, pages 29—-40. Springer, 2006.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/official-comments/Oribatida-round2-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/official-comments/Oribatida-round2-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/official-comments/Oribatida-round2-official-comment.pdf

	Introduction
	Generic Attacks
	Our Contribution
	Outline

	Preliminaries
	PRF Security
	Uniformity and Universality
	Multi-Collisions

	The Suffix Keyed Sponge
	The Construction
	The Bound
	Interpretation of the Bound

	Attacks with Easy to Invert Absorption
	Multi-Collision on the Tag
	Multi-Collision on the Inner Part During Key Absorption

	Attack with Hard to Invert Absorption
	Attack Description
	Attack Complexity
	Application
	Remarks

	Conclusion

