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Abstract. A forkcipher is a keyed, tweakable function mapping an n-bit input to a 2n-
bit output, which is equivalent to concatenating two outputs from two permutations.
A forkcipher can be a useful primitive to design authenticated encryption schemes for
short messages. A forkcpher is typically designed within the iterate-fork-iterate (IFI)
paradigm, while the provable security of such a construction has not been widely
explored.
In this paper, we propose a method of constructing a forkcipher using public permu-
tations as its building primitives. It can be seen as applying the IFI paradigm to the
tweakable Even-Mansour ciphers. So our construction is dubbed the forked tweakable
Even-Mansour (FTEM) cipher. Our main result is to prove that a (1, 1)-round FTEM
cipher (applying a single-round TEM to a plaintext, followed by two independent
copies of a single-round TEM) is secure up to 2 2n

3 queries in the ideal permutation
model.
Keywords: Forkcipher · tweakable block cipher · indistinguishability · Even-
Mansour cipher

1 Introduction

Forkciper. Authenticated encryption (AE) aims at achieving the two fundamental
security goals of symmetric key cryptography; it simultaneously assures the confidentiality
and authenticity of data. With a significant amount of research in this area, we now
have a rich set of general-purpose AE schemes, some already standardized (e.g., GCM
and CCM) and some expected to be adopted by new applications and standards (e.g., the
CAESAR finalists Ascon [DEMS16], ACORN [Wu16], AEGIS-128 [WP16], OCB [KR16],
COLM [ABD+16], Deoxys ll [JNPS16], and MORUS [WH16]). However, research efforts are
still needed in AE, in particular, for high-performance and low-latency processing of short
messages. With this motivation, a new primitive, dubbed a forkcipher, has been proposed
by Andreeva et. al. [ALP+19]; a forkcipher is a new type of cipher that maps an n-bit input
message to an 2n-bit output. When the left or right half of the output is truncated, one
obtains an n-bit permutation. Intuitively, this is equivalent to evaluating two independent
(tweakable) permutations. To obtain a forkcipher, they proposed the iterate-fork-iterate
(IFI) paradigm; for some r1 and r2, a plaintext is encrypted by r1 rounds of the cipher.
Then, the output “forks” along two parallel paths with r2 rounds. A half of the output
can be seen as a ciphertext while the other half can be used to authenticate the message.
So it might be faster than existing block cipher-based authenticated encryption modes, in
particular, for short messages. They also proposed a dedicated forkcipher ForkSkinny by
applying the IFI paradigm to the tweakable block cipher Skinny [BJK+16].

In [ALP+19], they proposed a straightforward way of constructing a forkcipher using a
secure tweakable block cipher TBC as its building primitive, namely,

TBC(k, t1,TBC(k, t0, ·))||TBC(k, t2,TBC(k, t0, ·))
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for a secret key k and three independent tweaks t0, t1, t2. If TBC is modeled as an ideal
tweakable permutation, then the three tweaked permutations will behave like independent
secret random permutations, say p0, p1, p2, where p1(p(·))||p2(p(·)) will be perfectly secure,
namely, the concatenation of two independent random permutations.

In this paper, we weaken the ingredients by using three public permutations, where all
parties have access to the underlying primitives; we will propose a way of constructing a
forkcipher on top of random permutations, and study its provable security in the ideal
permutation model. This can be seen as the first step in making the model analyzed
in provable security fashion more faithful to an actual iterate-fork-iterate instance, such
as ForkSkinny. This approach is also akin to the corpus of work that investigate generic
security of various cryptographic constructions such as key alternating ciphers, Feistel
ciphers, and so on.
(Tweakable) Iterated Even-Mansour Ciphers. The iterated Even-Mansour (EM)
construction [EM97, DR02] is one of the simplest block cipher constructions, abstracting
substitution-permutation ciphers. The Even-Mansour construction based on an n-bit
permutation P encrypts an n-bit plaintext x with two n-bit keys k and k′ by computing

EM[P ]((k, k′), x) = k′ ⊕ P (k ⊕ x).

It has been proved that EM is secure up to the birthday bound [EM97]. Moreover, its
r-round variant is proved to be secure up to 2rn/(r+1) queries [CS14].

Cogliati et al. [CS15] proposed to tweak EM, and the resulting tweakable cipher is
called the tweakable Even-Mansour (TEM) cipher. This construction uses a family of hash
functions, where each round key k of EM is replaced by h(t) for a tweak t and a hash
key h. They proved that a 2-round TEM is secure up to 2 2n

3 queries when the underlying
permutations and the round hash keys are all independent.

1.1 Our Contribution
In this paper, we propose to fork an r-round TEM. Our construction, dubbed FTEM, is
parameterized by r1 and r2 such that r1 + r2 = r; an (r1, r2)-round FTEM encrypts a
plaintext using an r1-round TEM cipher and the resulting output is encrypted by two
independent r2-round TEM ciphers. In this paper, we focus on a (1, 1)-round FTEM that
encrypts an n-bit plaintext x with key h = (h1, h2, h3) ∈ H3 and tweak t by computing

h2(t)⊕ P−1
2 (h1(t)⊕ h2(t)⊕ P1(x⊕ h1(t)))||h3(t)⊕ P−1

3 (h1(t)⊕ h3(t)⊕ P1(x⊕ h1(t))),

where P1, P2, P3 are n-bit permutations, and H is a family of hash functions (see Figure 1).
As the main contribution of this paper, we prove that, when H is a uniform δ-almost

XOR-universal family of functions, the distinguishing advantage of any adversary making
p primitive queries and q construction queries is upper bounded by

O
(
δq

3
2 +

p
√
q

2n

)
.

So, when δ is close to 1/2n, a (1, 1)-round FTEM is secure up to 2 2n
3 adversarial queries in

the random permutation model (assuming p = q). However, from a practical point of view,
one should carefully interpret this bound since p and q, which represent offline and online
complexity respectively, may be unbalanced; for example, when FTEM is instantiated with
a lightweight permutation with n = 80, and when p is as high as 264, q has to be kept
much smaller than 232.
Proof Technique. It is straightforward to prove the security of a (1, 1)-round FTEM
up to the birthday bound since the three underlying 1-round Even-Mansour ciphers will
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behave like independent random permutations in the multi-key setting. In order to prove
beyond-birthday security, we moved one step further by extending the security proof of
the two-round TEM ciphers (with the standard H-coefficient technique).

For simplicity of proof, we assume that an adversary is given an additional primitive
query for free whenever two construction queries make a collision at the input to the
underlying permutation. Then we upper bound the probability of two collisions made by
three queries. Without such “bad” events, one can prove that the probabilities of obtaining
a good transcript are close in the real and in the ideal world.

By taking only a half of the output from a (1, 1)-round FTEM, one immediately obtains
a two-round TEM. Therefore, our result implies that forking does not dilute the security
of a two-round TEM, while improving performance by doubling its output size. Besides
providing theoretical insights on forkciphers, our result also has a practical interest in
the context of permutation-based cryptography. For example, if our construction is
instantiated with the Keccak permutation [BDPA09] or with Gimli [BKL+17], then we
obtain a wide forkcipher with a huge message space, while achieving provable security
beyond the birthday bound.

P1

h1

P−1
2

h2

P−1
3

h3

x1

x2

x3

t

Figure 1: Tweakable Even-Mansour forkcipher of (1,1)-round, based on public permutations
P1, P2, P3 and hash functions h1, h2, h3.

2 Preliminaries
2.1 Notation
In all of the following, we fix a positive integer n such that n ≥ 3, and write N = 2n. For
a positive integer q, we write [q] = {1, . . . , q}.

Given a non-empty finite set X , x←$ X denotes that x is chosen uniformly at random
from X . The set of all functions from X to Y is denoted Func(X ,Y), and the set of all
permutations of X is denoted Perm(X ). The set of all permutations of {0, 1}n is simply
denoted Perm(n). The set of all sequences that consist of b pairwise distinct elements
of X is denoted X ∗b. The set of all subsets of X with b elements is denoted X#b. For
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example, for distinct elements a, b ∈ X , (a, b) and (b, a) are distinguished in X ∗2, while
{a, b} = {b, a} in X#2. For integers 1 ≤ b ≤ a, we will write (a)b = a(a− 1) · · · (a− b+ 1)
and (a)0 = 1 by convention. If |X | = a, then (a)b becomes the size of X ∗b. When two sets
X and Y are disjoint, their (disjoint) union is denoted X t Y.

2.2 Uniform and XOR-Universal Hash Functions
Let δ > 0, and let H be a family of functions h : T → {0, 1}n for a non-empty set T .

1. H is said to be uniform if for any x ∈ T and any y ∈ {0, 1}n,

Pr [h←$ H : h(x) = y] = 1
2n .

2. H is said to be δ-almost XOR-universal (δ-AXU) if for any distinct x, x′ ∈ T and
any y ∈ {0, 1}n,

Pr [h←$ H : h(x)⊕ h(x′) = y] ≤ δ.

A Useful Lemma. The following lemma will be used later in our security proof.

Lemma 1. Let N, a, b, c, t be positive integers such that t + a ≤ N/2, t + b ≤ N/2 and
t+ c ≤ N/2. Then, the following inequality holds.

((N)t)
2 (N − a− b− c)t

(N − a)t (N − b)t (N − c)t
≥ 1− 8t(ab+ bc+ ca)

N2 .

Proof. One has

((N)t)
2 (N − a− b− c)t

(N − a)t (N − b)t (N − c)t
=
t−1∏
i=0

(N − i)2 (N − a− b− c− i)
(N − a− i) (N − b− i) (N − c− i)

=
t−1∏
i=0

1− (ab+ bc+ ca)(N − i)− abc
(N − a− i) (N − b− i) (N − c− i)

≥
t−1∏
i=0

1− (ab+ bc+ ca)N
(N − a− i) (N − b− i) (N − c− i)

≥
t−1∏
i=0

1− (ab+ bc+ ca)N
(N − a− t) (N − b− t) (N − c− t)

≥ 1− t(ab+ bc+ ca)N
(N − a− t) (N − b− t) (N − c− t)

≥ 1− 8t(ab+ bc+ ca)
N2 .

2.3 Tweakable Block Cipher
A tweakable permutation TP with tweak space T and message space X is a mapping
TP : T × X → X such that, for any tweak t ∈ T , x 7→ TP(t, x) is a permutation of X .
Throughout the paper, we will fix X = {0, 1}n, and write T P(T , n) to mean the set of all
tweakable permutations with tweak space T and message space {0, 1}n.

A tweakable block cipher TBC with key space K, tweak space T and message space X
is a mapping TBC : K × T × X → X such that for any key k ∈ K, (t, x) 7→ TBC(k, t, x) is
a tweakable permutation with tweak space T and message space X .
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A tweakable Even-Mansour cipher is a natural construction of a tweakable block cipher
using public permutations. Let H be a family of functions h : T → {0, 1}n for a non-empty
set T . Given an r-tuple P = (P1, . . . , Pr) of permutations of {0, 1}n (for some positive
integer r), the r-round tweakable Even-Mansour cipher TEMP : Hr×T ×{0, 1}n → {0, 1}n
maps a key h = (h1, . . . , hr) ∈ Hr, a tweak t ∈ T , and a plaintext x ∈ {0, 1}n to the
following ciphertext.

TEMP(h, t, x) = EMPr

hr,t
◦ · · · ◦ EMP1

h1,t
(x),

where for each i ∈ {1, . . . , r}, x ∈ X and t ∈ T ,

EMPi

hi,t
(x) = hi(t)⊕ P (hi(t)⊕ x).

We will interchangeably write TEMP(h, t, x) and TEMP
h (t, x).

2.4 Forkcipher
A (tweakable) forkcipher FTBC with key space K, tweak space T , message space {0, 1}n
and flag b ∈ {0, 1, 2} is a mapping FTBC : K×T ×{0, 1}n×{0, 1, 2} → {0, 1}n∪ ({0, 1}n×
{0, 1}n). The encryption algorithm takes a key K ∈ K, a tweak t ∈ T , a message
x ∈ {0, 1}n and an output selector b, and outputs the “left” n-bit ciphertext C0 if b = 0,
the “right” n-bit ciphertext C1 if b = 1, and both ciphertexts (C0, C1) if b = 2.

Let H be a family of functions h : T → {0, 1}n for a tweak space T . For positive
integers r1 and r2, the (r1, r2)-round tweakable Even-Mansour forkcipher FTEMP1,P2,P3

based on an r1-tuple P1 and r2-tuples P2 and P3 of n-bit permutations operates on
message space {0, 1}n with key space Hr1 ×Hr2 ×Hr2 and tweak space T , where

FTEMP(h, t, x, 0) = TEMP2
h2
◦ TEMP1

h1
(t, x),

FTEMP(h, t, x, 1) = TEMP3
h3
◦ TEMP1

h1
(t, x),

FTEMP(h, t, x, 2) =
(

FTEMP(h, t, x, 0),FTEMP(h, t, x, 1)
)
,

for a key h = (h1,h2,h3) ∈ Hr1 ×Hr2 ×Hr2 , a tweak t ∈ T and a plaintext x ∈ {0, 1}n.

2.5 Indistinguishability
The focus of this paper will be put on the case that r1 = r2 = 1. In this case, the tweakable
Even-Mansour forkcipher is based on a set of three independent permutations, denoted
P = (P1, P

−1
2 , P−1

3 )1; precisely, let

FTEMP(h, t, x) =
(

TEMP−1
2
h2
◦ TEMP1

h1
(t, x),TEMP−1

3
h3
◦ TEMP1

h1
(t, x)

)
,

for h = (h1, h2, h3) ∈ H3, t ∈ T and x ∈ {0, 1}n.
In the real world, a secret key h = (h1, h2, h3) ∈ H3 is chosen uniformly at random. A

set of three permutations P1, P2, and P3 are also chosen independently at random from
Perm(n). A distinguisher A is given access to a construction oracle, denoted CONSre, as
well as P = (P1, P2, P3); the oracle CONSre takes as input a tweak t ∈ T , x ∈ {0, 1}n
which is either a plaintext or a (partial) ciphertext, and j ∈ {1, 2, 3}, and returns

CONSre(t, x, j) def=
(

TEMP−1
j+1
hj+1

◦ TEMPj

hj
(t, x),TEMP−1

j+2
hj+2

◦ TEMPj

hj
(t, x)

)
1We use the inverses of P2 and P3 for convenience of notation in our security proof. It makes no

difference in the security proof since they are modeled as random permutations.
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with indices taken modulo 3.2
In the ideal world, tweakable permutations Q̃ and R̃ are chosen from T P(T , n) inde-

pendently at random; a distinguisher A is given access to a construction oracle (with the
same interface as CONSre), denoted CONSid, defined as follows.

CONSid(t, x, 1) def=
(
Q̃(t, x), R̃(t, x)

)
,

CONSid(t, x, 2) def=
(
R̃(t, Q̃−1(t, x)), Q̃−1(t, x)

)
,

CONSid(t, x, 3) def=
(
R̃−1(t, x), Q̃(t, R̃−1(t, x))

)
.

On the other hand, oracle access to P = (P1, P2, P3) is still allowed in this world.
The adversarial goal is to tell apart the two worlds by adaptively making oracle queries

to the construction and each of the permutations. Formally, A’s distinguishing advantage
is defined by

AdvFTEM(A) = Pr
[
Q̃, R̃←$ T P(T , n), P1, P2, P3 ←$ Perm(n) : 1← ACONSid,P1,P2,P3

]
− Pr

[
h1, h2, h3 ←$ H, P1, P2, P3 ←$ Perm(n) : 1← ACONSre,P1,P2,P3

]
.

For p, q > 0, we define
AdvFTEM(p, q) = max

A
AdvFTEM(A)

where the maximum is taken over all adversaries A making at most p queries to each of
the inner permutations and at most q queries to the construction oracle.

2.6 H-coefficient Technique
Suppose that a distinguisher A makes p queries to each of the permutations, and q queries
to the construction oracle. The queries made to the construction oracle are recorded in a
query history

QC = (ti, xi1, xi2, xi3)1≤i≤q.

According to the instantiation, it would imply either FTEMh[P](ti, xi1) = (xi2, xi3) or
(xi2, xi3) = (Q̃(ti, xi1), R̃(ti, xi1)). For j = 1, 2, 3, the queries made to Pj are recorded in a
query history

QPj = (j, uij , vij)1≤i≤p,

where (j, uij , vij) represents the evaluation Pj(uij) = vij obtained by the i-th query to Pj .
We will often omit the index j when it is clear from context. Let

QP = QP1 ∪QP2 ∪QP3 .

At the end of the interaction, we will provide the adversary A with the actual key h. In
the ideal world, a dummy key h will be selected uniformly at random from H3, and given
to A. This will not degrade the adversarial distinguishing advantage since the distinguisher
is free to ignore this additional information. We will call

τ = (h,QC ,QP1 ,QP2 ,QP3)

the transcript of the attack; it contains all the information that A has obtained at the end
of the attack. When we consider an information theoretic distinguisher, we can assume
that the distinguisher is deterministic without making any redundant query.

2In this paper, an adversary is allowed only a single type of construction query. This assumption is
only for simplicity of proof, while it is equivalent to the original definition.
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Given a permutation oracle transcript Q and a permutation P , we will write P ` Q if
P (u) = v for every (u, v) ∈ Q. Similarly, given a tuple of permutation oracle transcripts
Q = (Q1, . . . ,Qr) and a tuple of permutations P = (P1, . . . , Pr) for some r, we will
write P ` Q if Pi ` Qi for every i = 1, . . . , r. This notation naturally extends to
construction oracle transcripts; for CONS ∈ {CONSid,CONSre}, we will write CONS ` QC
if CONS(t, x1, 1) = (x2, x3) for every (t, x1, x2, x3) ∈ QC .

Fix a transcript τ = (h,QC ,QP1 ,QP2 ,QP3). We will call the transcript τ attainable
if the probability that CONSid ` QC and (P1, P2, P3) ` (QP1 ,QP2 ,QP3) is nonzero in the
ideal world. We also denote Tid(resp. Tre) the probability distribution of the transcript τ
induced by the ideal world (resp. the real world). By extension, we use the same notation
to denote a random variable distributed according to each distribution.

In order to upper bound the advantage of the distinguisher, we will partition the set of
attainable transcripts Γ into a set of “good” transcripts Γgood such that the probabilities
to obtain some transcript τ ∈ Γgood are close in the real and in the ideal world, and a set
Γbad of “bad” transcripts such that the probability to obtain any τ ∈ Γbad is small in the
ideal world, and use the following theorem.

Lemma 2 (H-coefficient Technique [Pat08]). Fix a distinguisher A. Let Γ = Γgood t Γbad
be a partition of the set of attainable transcripts. Assume that there exists ε1 such that for
any τ ∈ Γgood,

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− ε1,

and that there exists ε2 such that Pr[Tid ∈ Γbad] ≤ ε2. Then one has

AdvFTEMP
h

(A) ≤ ε1 + ε2.

3 Security of FTEM
In this section, we prove the security of a (1, 1)-round FTEM cipher based on a triple of
public permutations P = (P1, P2, P3) ∈ Perm(n)3 using a family H of hash functions from
T to {0, 1}n as the key space; for h = (h1, h2, h3) ∈ H3,

FTEMP(h, t, x) =(h2(t)⊕ P−1
2 (h1(t)⊕ h2(t)⊕ P1(x⊕ h1(t))),

h3(t)⊕ P−1
3 (h1(t)⊕ h3(t)⊕ P1(x⊕ h1(t)))).

The provable security of this cipher is summarized by the following theorem.

Theorem 1. For δ > 0, let H be a uniform δ-AXU family of functions from T to {0, 1}n.
Then, for any integers p and q such that p+ 2q ≤ N/2, one has

AdvFTEM(p, q) ≤
12(p+√q)2q

N2 + 3δq

+
3δ(p+√q)2q2

2N2 +
3p√q
N

+
3δq√q

2 + 24q(p+ 2q)2

N2 +
6q√q
N

.

Proof. As a preliminary step, we extend a transcript τ by including additional information
in it; after A has finished the interactions with its oracles but before it outputs its
decision bit, it is provided with the hash keys h = (h1, h2, h3) (as discussed in Section 2.6).
Moreover, we employ a trick to simplify the proof: for i ∈ {1, 2, 3}, if there exist any pairs
(t, x1, x2, x3), (t′, x′1, x′2, x′3) ∈ QC such that xi⊕hi(t) = x′i⊕hi(t′) and (xi⊕hi(t), ·) /∈ QPi

,
A is given an additional primitive query (xi⊕ hi(t), Pi(xi⊕ hi(t))) by lazy sampling Pi (in
both the ideal and the real worlds). This additional information is included in QPi , and
this step will be called the collision-giving phase.
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The next step of the proof is to define bad events; they are typically related to collisions
of queries on the input to the construction or any underlying permutation. For i ∈ {1, 2, 3},
we define

Ui = {u : (u, v) ∈ QPi},
Vi = {v : (u, v) ∈ QPi},
αi = |{(t, x1, x2, x3) ∈ QC : ∃(t′, x′1, x′2, x′3) 6= (t, x1, x2, x3), xi ⊕ hi(t) = x′i ⊕ hi(t′)}| ,
βi = |{(t, x1, x2, x3) ∈ QC : xi ⊕ hi(t) ∈ Ui}| .

By definition, we see that |QPi
| = p+αi and αi ≤ βi. We will call an attainable transcript

τ bad if one of the following conditions is satisfied:

• bad1⇔
∨
{i,j}∈[3]#2 bad1{i,j}, where

– bad1{i,j} ⇔ there exist (t, x1, x2, x3) ∈ QC , ui ∈ Ui, uj ∈ Uj such that xi ⊕
hi(t) = ui and xj ⊕ hj(t) = uj .

• bad2⇔
∨

(i,j)∈[3]∗2 bad2(i,j), where

– bad2(i,j) ⇔ there exist (t, x1, x2, x3) ∈ QC , (ui, vi) ∈ QPi
, vj ∈ Vj such that

xi ⊕ hi(t) = ui and vi ⊕ hi(t) = vj ⊕ hj(t).

• bad3⇔
∨

(i,j)∈[3]∗2 bad3(i,j), where

– bad3(i,j) ⇔ there exist distinct (t, x1, x2, x3), (t′, x′1, x′2, x′3) ∈ QC and (not
necessarily distinct) (ui, vi), (u′i, v′i) ∈ QPi such that xi⊕hi(t) = ui, x′i⊕hi(t′) =
u′i and vi ⊕ hi(t)⊕ hj(t) = v′i ⊕ hi(t′)⊕ hj(t′).

• bad4⇔
∨
i∈[3] bad4i, where

– bad4i ⇔ for j, k ∈ [3] \ {i} such that j 6= k, there exist distinct (t, x1, x2, x3),
(t′, x′1, x′2, x′3) ∈ QC , (uj , vj) ∈ QPj

and (uk, vk) ∈ QPk
such that xj⊕hj(t) = uj ,

x′k ⊕ hk(t′) = uk and vj ⊕ hj(t)⊕ hi(t) = vk ⊕ hk(t′)⊕ hi(t′).

• bad5⇔ βi >
√
q for some i ∈ {1, 2, 3}.
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Pi P−1
j

uixi ⊕ hi(t) uj xj ⊕ hj(t)

(a) bad1

Pi P−1
j

uixi ⊕ hi(t) vjvi

(b) bad2

Pi P−1
j

uixi ⊕ hi(t)

x′i ⊕ hi(t′) u′i

vi

v′i

(c) bad3

Pi

P−1
j

P−1
k

ukvk x′k ⊕ hk(t′)

ujvj xj ⊕ hj(t)

(d) bad4

Figure 2: Bad events bad1, bad2, bad3 and bad4. Black dots represent values fixed by
permutation queries, while white dots are “free”. Two distinct dots on each side do not
necessarily correspond to distinct values.

Remark 1. By bad5, we limit the number of collisions between queries. On the other
hand, if badi happens for some i ∈ {1, 2, 3, 4}, then an adversary is able to distinguish
FTEM from its ideal counterpart. For example, suppose that a transcript satisfies bad1;
it means that the transcript contains (t, x1, x2, x3) ∈ QC , ui ∈ Ui and uj ∈ Uj such that
xi⊕hi(t) = ui and xj⊕hj(t) = uj . In the real world, one always has vi⊕vj = hi(t)⊕hj(t),
while this equation holds with negligible probability in the ideal world.

If a transcript τ is not bad, then it will be called a good transcript. With the definition
of bad transcripts as above, we can prove the following lemmas, whose proof is deferred to
the end of this section.

Lemma 3. One has

Pr[Tid ∈ Γbad] ≤
12(p+√q)2q

N2 + 3δq +
3δ(p+√q)2q2

2N2 +
3p√q
N

+
3δq√q

2 .
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Lemma 4. Let p and q be nonnegative integers such that p + 5√q ≤ N/2. For any
τ ∈ Γgood, one has

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1−

(
24q(p+ 2q)2

N2 +
6q√q
N

)
.

Theorem 1 follows by combining Lemma 3 and Lemma 4 with Lemma 2.

3.1 Proof of Lemma 3
For an event E, we will write pid [E] (resp. pre [E]) to denote the probability that Tid (resp.
Tre) satisfies E. By the union bound, we have

pid [τ ∈ τbad] = pid [bad1 ∨ bad2 ∨ bad3 ∨ bad4 ∨ bad5]
≤ pid [bad5] + pid [bad1 ∨ bad2 ∨ bad3 ∨ bad4 | ¬bad5]
≤ pid [bad1 | ¬bad5] + pid [bad2 | ¬bad5] + pid [bad3 | ¬bad5]

+ pid [bad4 | ¬bad5] + pid [bad5]

In the following, we will bound the probability of each bad event in the ideal world.
Without bad5, we can assume that αi ≤ βi ≤

√
q and |Ui| ≤ p+√q for i = 1, 2, 3.

Upper bounding pid [bad1] and pid [bad2]. Assuming that bad5 does not hold, fix
{i, j} ∈ [3]#2. For any (t, x1, x2, x3) ∈ QC , ui ∈ Ui and uj ∈ Uj ,

pid [hi(t) = xi ⊕ ui ∧ hj(t) = xj ⊕ uj ] = 1
N2

by H is uniform and since hi and hj are chosen independently. Since |QC | ≤ q and
|Ui|, |Uj | ≤ p+√q, we have

pid
[
bad1{i,j} | ¬bad5

]
≤

(p+√q)2q

N2 ,

and hence,

pid [bad1 | ¬bad5] ≤
3(p+√q)2q

N2 .

Similarly, we obtain

pid [bad2 | ¬bad5] ≤
6(p+√q)2q

N2 .

Upper bounding pid [bad3]. Assuming that bad5 does not hold, fix (i, j) ∈ [3]∗2. For any
(t, x1, x2, x3) 6= (t′, x′1, x′2, x′3) ∈ QC and (ui, vi), (u′i, v′i) ∈ QPi such that xi ⊕ hi(t) = ui
and x′i ⊕ hi(t′) = u′i, one has the following statement. By the δ-AXU property of H and
the fact that hi and hj are picked independently from H, for some fixed h′ ∈ H,

pid [hi = h′ ∧ hj(t)⊕ hj(t′) = vi ⊕ v′i ⊕ h′(t)⊕ h′(t′)] ≤
δ

|H|
.

Summing over all possible h′ and all such tuple of queries, we have

pid
[
bad3(i,j) | ¬bad5

]
≤ δβ2

i

2 ≤ δq

2 ,

since βi <
√
q without bad5. Hence,

pid [bad3 | ¬bad5] ≤ 3δq.

Upper bounding pid [bad4]. Assuming that bad5 does not hold, consider bad4i for a
fixed i ∈ {1, 2, 3}.
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1. Assume that t 6= t′. For any (t, x1, x2, x3) 6= (t′, x′1, x′2, x′3) ∈ QC , (uj , vj) ∈ QPj
and

(uk, vk) ∈ QPk
, by the uniformity of H and the δ-AXU property of H and the fact

that hi, hj , hk are picked independently from H,

pid [hj(t) = xj ⊕ uj ∧ hk(t′) = x′k ⊕ u′ ∧ hi(t)⊕ hi(t′) = vj ⊕ hj(t)⊕ vk ⊕ hk(t′)] ≤ δ

N2 .

Therefore we have

pid [bad4i ∧ (t 6= t′) | ¬bad5] ≤
δ(p+√q)2q2

2N2 .

2. Assume that t = t′. We only consider (t, x1, x2, x3) 6= (t′, x′1, x′2, x′3) ∈ QC ,
(uj , vj) ∈ QPj and (uk, vk) ∈ QPk

such that xj ⊕ x′k = uj ⊕ vj ⊕ uk ⊕ vk. Given
(t, x1, x2, x3), (uj , vj) and (uk, vk), there exists only one (t, x′1, x′2, x′3) which satisfies
the above equation. So, the number of such tuples is upper bounded by (p+√q)2q.
It is trivial that any tuples that do not satisfy the above equation cannot make bad4.
By the uniformity of H and the fact that hj and hk are picked independently from
H,

pid [hj(t) = xj ⊕ uj ∧ hk(t′) = x′k ⊕ uk] ≤ 1
N2 .

Therefore, we have

pid [bad4i ∧ (t = t′) | ¬bad5] ≤
(p+√q)2q

N2 .

Considering three possibilities of choosing i, we have

pid [bad4 | ¬bad5] ≤
3δ(p+√q)2q2

2N2 +
3(p+√q)2q

N2 .

Upper bounding pid [bad5]. For i ∈ [3], αi and βi can be seen as a random variable
using the randomness of hi. Then we have

Ex [αi] = Ex [hi(t)⊕ hi(t′) = xi ⊕ x′i] ≤
δq2

2 .

For any (t, x1, x2, x3) ∈ QC , it collides with primitive query only if an adversary gets
(xi ⊕ hi(t), ·) ∈ QPi in the querying phase or the collision-giving phase. Then we have

Ex [βi] = Ex [hi(t) = xi ⊕ u] ≤ pq

N
+ Ex [αi] ≤

pq

N
+ δq2

2 .

By Markov’s inequality,

pid [βi >
√
q] ≤

p
√
q

N
+
δq
√
q

2 .

Therefore we have

pid [bad5] ≤
3p√q
N

+
3δq√q

2 .

Summing up all the upper bounds for the probabilities of individual bad events, we can
conclude the proof of Lemma 3.
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3.2 Proof of Lemma 4
Fix a good transcript τ = (h,QC ,QP1 ,QP2 ,QP3). We will partition QC into the following
subsets.

QU1 = {(t, x1, x2, x3) ∈ QC : x1 ⊕ h1(t) ∈ U1},
QU2 = {(t, x1, x2, x3) ∈ QC : x2 ⊕ h2(t) ∈ U2},
QU3 = {(t, x1, x2, x3) ∈ QC : x3 ⊕ h3(t) ∈ U3},
Q0 = {(t, x1, x2, x3) ∈ QC : x1 ⊕ h1(t) /∈ U1, x2 ⊕ h2(t) /∈ U2, x3 ⊕ h3(t) /∈ U3}.

Note that |QU1 | = β1, |QU2 | = β2 and |QU3 | = β3. Furthermore, we have

QC = QU1 tQU2 tQU3 tQ0

since for (i, j) ∈ [3]∗2,

• QUi ∩QUj = ∅ without bad1(i,j),

• QUi
∩Q0 = ∅ by definition.

Since P1, P2, P3 and h1, h2, h3 are all independent in both the real and the ideal worlds,
we have

Pr[Tre = τ ]
Pr[Tid = τ ] = Pr [h] Pr [P ` τp] Pr [FTEMh[P] ` QC | h,P ` τp]

Pr [h] Pr [P ` τp] Pr
[
(Q̃, R̃) ` QC | h,P ` τp

]
= Pr [FTEMh[P] ` QC | h,P ` τp]

Pr
[
(Q̃, R̃) ` QC | h,P ` τp

] ,

where we write τp = (QP1 ,QP2 ,QP3). Let

p(τ) = Pr [FTEMh[P] ` QC | h,P ` τp] ,

pU (τ) = Pr
[ 3∧
i=1

FTEMh[P] ` QUi
| h,P ` τp

]
,

p0(τ) = Pr
[

FTEMh[P] ` Q0 | h,P ` τp,
3∧
i=1

FTEMh[P] ` QUi

]
.

Then we have

Pr[Tre = τ ]
Pr[Tid = τ ] = p(τ)

Pr
[
(Q̃, R̃) ` QC | h,P ` τp

] = pU (τ)p0(τ)
Pr
[
(Q̃, R̃) ` QC | h,P ` τp

] . (1)

We will now lower bound pU (τ) and p0(τ).
Lower Bounding pU (τ). For (i, j) ∈ [3]∗2, let

Ũ ji = {xi ⊕ hi(t) : (t, x1, x2, x3) ∈ QUj
},

Ṽ ji = {Pj(xj ⊕ hj(t))⊕ hj(t)⊕ hi(t) : (t, x1, x2, x3) ∈ QUj
}.

Then for (i, j, k) ∈ [3]∗3,

• Ui, Ũ
j
i , Ũ

k
i are pairwise disjoint since otherwise at least one of bad1{i,j} and bad1{i,k}

holds;
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• Vi, Ṽ
j
i , Ṽ

k
i are pairwise disjoint since otherwise at least one of bad2(i,j), bad2(i,k),

and bad4j holds;

•
∣∣∣Ũ ij ∣∣∣ =

∣∣∣Ṽ ij ∣∣∣ =
∣∣∣Ũ ik∣∣∣ =

∣∣∣Ṽ ik ∣∣∣ = βi since otherwise at least one of bad1{i,j}, bad3(i,j),
bad1{i,k}, and bad3(i,k) holds.

Therefore, P1 should satisfy additional β2 + β3 equations that map Ũ2
1 to Ṽ 2

1 and map Ũ3
1

to Ṽ 3
1 , in order to satisfy all QP1 , QP2 and QP3 . The same argument applies to P2 and P3.

Overall, we have

pU (τ) = 1
(N − p1)β2+β3(N − p2)β3+β1(N − p3)β1+β2

. (2)

Lower Bounding p0(τ). For i = 1, 2, 3, Pi is fixed on p′i elements, where

p′1 = p1 + β2 + β3,

p′2 = p2 + β3 + β1,

p′3 = p3 + β1 + β2.

Let q′ = q − β1 − β2 − β3, and let m be the number of distinct tweaks appearing in QC ;
they will be denoted t1, . . . , tm. For i = 1, . . . ,m, let Q0,i denote a subset of Q0 whose
tweak is ti, and let q′i = |Q0,i|. Then we have

m∑
i=1

q′i = q′.

Without loss of generality, we can assume that the first q′1 queries use tweak t1, and
the next q′2 queries use tweak t2, and so on. Hence, we can write

Q0 =
{

(t1, x1,1
1 , x1,1

2 , x1,1
3 ), . . . , (t1, x1,q′1

1 , x
1,q′1
2 , x

1,q′1
3 ), . . . , (tm, xm,q

′
m

1 , x
m,q′m
2 , x

m,q′m
3 )

}
.

For i = 1, . . . ,m, and j = 1, . . . , q′i, let

ûi,j1 = xi,j1 ⊕ h1(ti),
ûi,j2 = xi,j2 ⊕ h2(ti),
ûi,j3 = xi,j3 ⊕ h3(ti).

By the definition of Q0, for each k = 1, 2, 3, all ûi,jk are distinct and not included
in Uk ∪ Ũk+1

k ∪ Ũk+2
k with indices taken modulo 3. Let N0 be the number of tuples

(v̂1,1
1 , . . . , v̂

1,q′1
1 , . . . , v̂

m,q′m
1 ) satisfying the following conditions:

• for each (i, j), v̂i,j1 /∈ V1 ∪ Ṽ 2
1 ∪ Ṽ 3

1 where
∣∣∣V1 ∪ Ṽ 2

1 ∪ Ṽ 3
1

∣∣∣ = p′1;

• for each (i, j), v̂i,j1 ⊕ h1(ti)⊕ h2(ti) /∈ V2 ∪ Ṽ 3
2 ∪ Ṽ 1

2 where
∣∣∣V2 ∪ Ṽ 3

2 ∪ Ṽ 1
2

∣∣∣ = p′2;

• for each (i, j), v̂i,j1 ⊕ h1(ti)⊕ h3(ti) /∈ V3 ∪ Ṽ 1
3 ∪ Ṽ 2

3 where
∣∣∣V3 ∪ Ṽ 1

3 ∪ Ṽ 2
3

∣∣∣ = p′3;

• for each (i, j), v̂i,j1 ⊕ h1(ti)⊕ h2(ti) is distinct from any value v̂k,`1 ⊕ h1(tk)⊕ h2(tk)

such that k < i and ` = 1, . . . , q′k, which excludes at most
i−1∑
k=1

q′k values for v̂i,j1 ;

• for each (i, j), v̂i,j1 ⊕ h1(ti)⊕ h3(ti) is distinct from any value v̂k,`1 ⊕ h1(tk)⊕ h3(tk)

such that k < i and ` = 1, . . . , q′k, which excludes at most
i−1∑
k=1

q′k values for v̂i,j1 .
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In order to evaluate the number of tuples, for each (i, j), v̂i,j1 must be chosen distinct from

the previous
i−1∑
k=1

q′k + (j − 1) values. Therefore, one has

N0 ≥
m∏
i=1

q′i∏
j=1

(
N − p′1 − p′2 − p′3 − 3

i−1∑
k=1

q′k − (j − 1)
)

=
m∏
i=1

(
N − p′1 − p′2 − p′3 − 3

i−1∑
k=1

q′k

)
q′

i

. (3)

Given that Tid satisfies (QU1 ,QU2 ,QU3) and τp, the condition P1(ûi,j1 ) = v̂i,j1 requires q′
distinct fresh equations on P1, P2, P3. Therefore we have

p0(τ) = N0 ·
1

(N − p′1)q′
· 1

(N − p′2)q′
· 1

(N − p′3)q′
. (4)

Putting The Pieces Together. Combining (2) and (4), we have

p(τ) = N0

(N − p1)q′+β2+β3(N − p2)q′+β3+β1(N − p3)q′+β1+β2

. (5)

It is also obvious that

Pr
[
(Q̃, R̃) ` QC | h,P ` τp

]
= 1(∏m

i=1 (N)qi

)2 . (6)

Then, by (1), (5) and (6), we have

pre [τ ]
pid [τ ] ≥

N0 ·
(∏m

i=1 (N)qi

)2

(N − p1)q′+β2+β3(N − p2)q′+β3+β1(N − p3)q′+β1+β2

=
N0 ·

(∏m
i=1 (N)q′

i

)2

(N − p′1)q′ (N − p′2)q′ (N − p′3)q′︸ ︷︷ ︸
R0

×

(∏m
i=1 (N)qi

)2

(∏m
i=1 (N)qi

)2
(N − p1)β2+β3

(N − p2)β3+β1
(N − p3)β1+β2︸ ︷︷ ︸

R′

It remains to lower bound R0 and R′; by (3), we have

R0 =
N0 ·

(∏m
i=1 (N)q′

i

)2

(N − p′1)q′ (N − p′2)q′ (N − p′3)q′

≥
m∏
i=1

(
(N)q′

i

)2 (
N − p′1 − p′2 − p′3 − 3

∑i−1
k=1 q

′
k

)
q′

i(
N − p′1 −

∑i−1
k=1 q

′
k

)
q′

i

(
N − p′2 −

∑i−1
k=1 q

′
k

)
q′

i

(
N − p′3 −

∑i−1
k=1 q

′
k

)
q′

i

≥
m∏
i=1

(
1− 8q′i ((p′1 + t) (p′2 + t) + (p′3 + t) (p′1 + t) + (p′3 + t) (p′1 + t))

N2

)
, (7)
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where the last inequality follows from Lemma 1 with t =
∑i−1
k=1 q

′
k. For j = 1, 2, 3 (without

bad5), p′j + t is upper bounded as follows.

p′1 + t = p′1 +
i−1∑
k=1

q′k ≤ p′1 + q′ ≤ p1 + q − β1 ≤ p+ 2q,

p′2 + t = p′2 +
i−1∑
k=1

q′k ≤ p′2 + q′ ≤ p2 + q − β2 ≤ p+ 2q,

p′3 + t = p′3 +
i−1∑
k=1

q′k ≤ p′3 + q′ ≤ p3 + q − β3 ≤ p+ 2q.

By combining the above upper bounds with (7), and since
m∑
i=1

q′i ≤ q, we have

R0 ≥ 1− 24q(p+ 2q)2

N2 . (8)

On the other hand, since βi ≤
√
q for i = 1, 2, 3 (without bad5), we have

R′ ≥

(∏m
i=1(N − q′i)qi−q′i

)2

N2(β1+β2+β3) ≥

(
(N − q)

∑m

i=1
(qi−q′i)

)2

N2(β1+β2+β3) ≥

(
(N − q)q−q′

)2

N2(β1+β2+β3)

≥
(
(N − q)(β1+β2+β3))2

N2(β1+β2+β3) ≥
(

1− q

N

)6√q
≥ 1−

6q√q
N

. (9)

Combining (8) and (9), we can conclude the proof of Lemma 4.

4 Conclusion
In this paper, we have proposed to apply the IFI paradigm to tweakable Even-Mansour
ciphers, and proved that a (1, 1)-round FTEM cipher is secure up to 2 2n

3 queries in the
ideal permutation model.

Compared to the straightforward construction using three independent tweakable
block ciphers (as discussed in [ALP+19]), our construction is a public-permutation based
counterpart with a weaker provable security bound, while using weaker primitives as well,
distinguishing permutations, keys and tweaks.

It is an interesting open question whether the same level of security is possible with a
smaller number of keys and permutations. We expect that this question might be resolved
by using (advanced) Mirror theory and the sum-capture lemma. Another open question
is to apply the iterate-multifork-iterarte paradigm [ALP+19] to the TEM ciphers. Our
conjecture is that the resulting permutation-based forkcipher will enjoy almost the same
level of security.
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