
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. 4, pp. 1–38. DOI:10.46586/tosc.v2020.i4.1-38

LM-DAE: Low-Memory Deterministic
Authenticated Encryption for 128-bit Security

Yusuke Naito1, Yu Sasaki2 and Takeshi Sugawara3

1 Mitsubishi Electric Corporation, Kanagawa, Japan,
Naito.Yusuke@ce.MitsubishiElectric.co.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan, yu.sasaki.sk@hco.ntt.co.jp
3 The University of Electro-Communications, Tokyo, Japan, sugawara@uec.ac.jp

Abstract. This paper proposes a new lightweight deterministic authenticated en-
cryption (DAE) scheme providing 128-bit security. Lightweight DAE schemes are
practically important because resource-restricted devices sometimes cannot afford to
manage a nonce properly. For this purpose, we first design a new mode LM-DAE that
has a minimal state size and uses a tweakable block cipher (TBC). The design can be
implemented with low memory and is advantageous in threshold implementations (TI)
as a side-channel attack countermeasure. LM-DAE further reduces the implementation
cost by eliminating the inverse tweak schedule needed in the previous TBC-based
DAE modes. LM-DAE is proven to be indistinguishable from an ideal DAE up to
the O(2n) query complexity for the block size n. To achieve 128-bit security, an
underlying TBC must handle a 128-bit block, 128-bit key, and 128+4-bit tweak,
where the 4-bit tweak comes from the domain separation. To satisfy this require-
ment, we extend SKINNY-128-256 with an additional 4-bit tweak, by applying the
elastic-tweak proposed by Chakraborti et al. We evaluate the hardware performances
of the proposed scheme with and without TI. Our LM-DAE implementation achieves
3,717 gates, roughly 15% fewer than state-of-the-art nonce-based schemes, thanks to
removing the inverse tweak schedule.
Keywords: Deterministic authenticated encryption · beyond-birthday-bound security
· tweakable block cipher · lightweight · low-memory.

1 Introduction
The explosive increase in data communication through Internet of Things (IoT) devices has
generated a high demand for lightweight authenticated encryption (AE) schemes that can be
used comfortably in a resource-restricted environment. In particular, the National Institute
of Standards and Technology (NIST) is organizing an ongoing standardization process
for lightweight AE (NIST Lightweight Cryptography (LWC)) [NIS18]. Good designs for
lightweight AE have been studied extensively, and there is a demand for 128-bit security
to replace the conventional AES-GCM and AES-CCM with 64-bit security. NIST LWC
explicitly requires better security than AES (p. 22 in [Sön19]), and many candidates have
more than 64-bit security, including Romulus [IKMP20] and SKINNY-AEAD [BJK+19]
with 128-bit security.

Some AE schemes need nonce, a value that must be processed only once under the
same key; these schemes are called nonce-based AE. However, satisfying this requirement
in implementation turned out to be difficult, and the community has encountered many
security incidents caused by the inappropriate handling of nonces, e.g., a low-quality
random number, a tiny nonce space, and even a constant nonce [BZD+16]. Indeed, the

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-09-01 Accepted: 2020-11-01 Published: 2020-12-10

https://doi.org/10.46586/tosc.v2020.i4.1-38
mailto:Naito.Yusuke@ce.MitsubishiElectric.co.jp
mailto:yu.sasaki.sk@hco.ntt.co.jp
mailto:sugawara@uec.ac.jp
http://creativecommons.org/licenses/by/4.0/

2 LM-DAE

robustness against nonce misuse was one of the main objects in CAESAR [CAE19], which
chose two algorithms for the portfolio.

Even if implementers are careful enough, extremely resource-constrained platforms lack
critical components for realizing nonces. In particular, stateful nonce management (e.g.,
sequential counter) is necessary for 128-bit secure schemes with a 128-bit nonce because a
collision in a random number degenerates it to the birthday-bound security; a random
number generator is insufficient for these schemes. However, some devices do not have
non-volatile memory or cannot write to it with a wireless power supply [Har08, AHM14].

As long as security relies on the nonce, the risk of misuse is inevitable. In contrast to
nonce-based AE, deterministic AE (DAE) does not rely on nonces, and thus provides ro-
bustness against nonce misuse by construction. DAE is also useful for resource-constrained
devices without a random number generator or a non-volatile memory. Although DAE
needs a buffer for scanning the entire message twice, numerous IoT protocols limit the
message length to several dozen bytes (e.g., 64 bytes for CAN FD) [ALP+19] that fit
within a cheap non-volatile memory, which makes DAE a practical option. Consequently,
there is an increasing number of lightweight DAE proposals, including SUNDAE [BBLT18],
ANYDAE [CDD+19] and ESTATE [CDJ+19b]. Meanwhile, the NIST LWC candidates
are still dominated by the nonce-based AEs because a nonce is mandatory in NIST LWC.
Hence, studies on DAE and NIST LWC will complement each other.

Another line of research related to lightweight AE is an efficient countermeasure against
side-channel attack (SCA). SCA is a severe concern in the main targets of lightweight
cryptography, such as secure embedded devices, and the NIST’s competition considers
the grey-box security model with side-channel leakage, in addition to the conventional
black-box security model.

Providing SCA resistance in resource-constrained devices is challenging because promis-
ing countermeasures, such as threshold implementation (TI), are based on multi-party
computation that multiplies the memory size by the number of shares [ISW03, NRR06].
In particular, PFB [NS20] and PFB_Plus [NSS20] are nonce-based AEs optimized for TI:
the schemes with a smaller block-length primitive, enabled by the beyond-birthday-bound
(BBB) security for block size, are advantageous with TI because the number of shares can
be smaller on the linearly updated state.

Our goal is to design a lightweight DAE that is 128-bit secure and suitable for TI. More
specifically, we set the memory size as a primary target. Although a DAE needs a message
buffer for storing the entire message for two-pass scanning, the low-memory property
is still important because it is a key parameter determining the cost of a coprocessor
implementation; we can use an efficient SRAM for the message buffer, while we need
expensive registers for hardware implementation. The memory size must be at least 384
bits for 128-bit security; a 128-bit key for encryption and message authentication code
(MAC), and 256 bits for the internal state to avoid the collision. Generally, to achieve
s-bit security, the memory size must be at least 3s bits, which is our goal for the memory
size of our DAE mode.

1.1 Choice of Primitive
Our design uses tweakable block cipher (TBC) as a primitive by considering the trade-offs
summarized in Tables 1 and 2. Table 1 shows security, memory size, and speed for several
parameters: the key size k, block size n, rate r, capacity c, counter size i, and tag size τ .
Table 2 shows the same performances with the security level denoted by s. The memory
sizes with TI in Table 1 and 2 are obtained by multiplying the target memory sizes
depending on the relevant operations: the non-linearly and linearly processed states are
multiplied by 3 and 2, respectively. We assume a linear key and tweak schedule considering
SKINNY as a concrete example.

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 3

• Block cipher (BC): For the security level s, SUNDAE, ANYDAE, and ESTATE
achieve the minimum 3s-bit memory. However, the block size should be 2s bits for the
birthday-bound security; these schemes need an uncommon lightweight 256-bit BC1

to achieve 128-bit security. Moreover, a large block-size primitive has a disadvantage
with TI because the 256-bit state is duplicated into several shares.

• Permutation: In a permutation-based DAE such as HADDOC [BDP+14], the state
should be larger than 256 bits because we need a 256-bit capacity for 128-bit security
and the rate larger than 1. It also requires extra memory for storing a tag and
a counter to achieve the sponge-based counter mode in encryption. Similarly to
BC-based DAE, the large block size has a disadvantage with TI. Duplex [BDPA11]
is a core component of sponge-based AEs. For deterministic schemes via Duplex,
the security level is c/2 bits [BDPA11, ADMA15, MRV15, DMA17], where c is a
capacity. Hence, achieving 128-bit security requires at least (384 + r)-bit memory
((256 + r)-bit permutation and 128-bit key), where r is a rate.2

• TBC: TBC provides nonce-based low-memory AEs such as PFB, Romulus, and
PFB_Plus. Moreover, these AEs have BBB-security for block size, which ensures low-
memory in TI. In contrast, the conventional TBC-based DAEs such as ZAE [IMPS17]
aim at speed instead of memory size, and none achieves the minimum memory size.
We thus design a TBC-based DAE with minimum memory and with BBB-security
for block size.

1.2 Technical Challenges
Low-Memory Domain Separation A BC-based mode SUNDAE achieves the minimal
state size but requires additional primitive calls and the doubling operation for the domain
separation, which is not preferable with respect to the memory size. TBC-based modes can
embed the domain separation inside the tweak, which increases a tweak size by just a few
bits from the minimal requirement. However, existing TBC designs cannot handle these
extra tweak bits efficiently. For example, in Romulus, the tweak size except for the domain
separation is 128 bits, while it instantiates a 256-bit tweak version instead of a 128-bit tweak
version of the underlying TBC in order to process the extra 4 bits of tweak. Although there
is an implementation trick to ignore the unused part in tweakey for SKINNY [IKMP20], it
cannot be used for any TBC, and the trick makes the implementation more complicated
for the necessary simulation of the missing part. ESTATE presents a method called elastic
tweak framework [CDJ+19a] to convert a BC into a TBC with a few tweak bits, and uses
such TBC in the SUNDAE mode. This modifies the primitive and requires a new security
evaluation.

Inverse Tweak and Key Schedule BC- and TBC-based schemes demand the same secret
key for each primitive call, so we should recover the original states after making on-the-fly
tweak and key schedules. To achieve this without using extra memory for preserving the
original key and tweak, the conventional Romulus and PFB implementations used an
additional circuit for reverting the final tweakey state to the original one at the end of a
BC/TBC call. For further optimization, TGIF [IKM+19] adopted a tweakey schedule that
becomes the identity map after the encryption by 72 rounds. However, TGIF’s schedule

1There are several choices. Saturnin [CDL+19] aims at post-quantum security and supports a 256-bit
block. However, the key size is 256 bits. Rijndael [DR00] has a 256-bit block and 128-bit key version, but
we aim to be smaller than AES.

2Transform-then-Permute construction [CJN20], which is a sponge-based AE mode, achieves min{(r +
c)/2, c/ log r}-security but is a nonce-based AE.

4 LM-DAE

Table 1: Security, memory size with and without TI, and speed, where k: key size; n:
block size of (T)BC; t: tweak size of TBC; r: rate; c: capacity; τ : tag size; i: counter size.
Note that r, c, τ and i are the parameters of HADDOC, and r + c is the permutation
size. This table assumes that t ≥ n. The entries for speed show block sizes in bits for each
primitive call in hashing phases.

Name Security Memory Size w/o TI Memory Size w/ TI Speed [bit/call] Ref.

LM-DAE n n+ t+ k 3n+ 2t+ 2k n Ours
SUNDAE n/2 n+ k 3n+ 2k n [BBLT18]
ESTATE n/2 n+ k 3n+ 2k n [CDJ+19b]
ZAE n 4n+ 2t+ k 9n+ 4t+ 2k n+ t [IMPS17]

HADDOC c/2 r + c+ τ + i+ k 3(r + c) + τ + i+ 2k r + c [BDP+14]

Table 2: Memory size with and without TI, and speed, when the security levels are fixed
to s. We set the parameters to k = t = n = s for TBC-based DAEs; k = s and n = 2s for
BC-based DAEs; k = s , c = 2s and τ = 2s.

Name Memory Size w/o TI Memory Size w/ TI Speed [bit/call] Ref.

LM-DAE 3s 7s s Ours
SUNDAE 3s 8s 2s [BBLT18]
ESTATE 3s 8s 2s [CDJ+19b]
ZAE 7s 15s 2s [IMPS17]

HADDOC 5s+ r + i 10s+ 3r + i r + 2s [BDP+14]

forms a cycle in every 24 rounds, which may yield a security concern, e.g. against slide
attacks3.

1.3 Our Contribution
Novelty of the Modes. As discussed above, TBC-based design seems to be a promising
approach for designing a low-memory 128-bit secure DAE because the BC-based DAEs
require a 256-bit block while the existing BCs are not low memory or support only a
256-bit key, and the permutation-based DAE HADDOC requires a large state. In addition,
if the design structure follows SPN, a 4-bit S-box is suitable to be lightweight. In general,
a 4-bit S-box based 256-bit block BC/permutation that is lightweight particularly for
hardware implementations is more difficult to design than a 4-bit S-box based 128-bit
block TBC under the same goal. Hence, we design a DAE mode on the basis of a TBC.

We first define a state update function that is a building block for low-memory DAE
modes and that updates a 2n-bit state by using a TBC, which is shown in Fig. 1. The
function takes as input a data block (associated data or plaintext) of up to 2n bits
(Di,1, Di,2), which are xored to the 2n-bit state. Then, the state is updated by a TBC and
a linear function, where a TBC takes an input block Xi and a tweak (di, Yi) where di is
for the domain separation. By including the tweak schedule of Ẽ in the linear function,
i.e., L1,2 · Yi and L2,2 · Yi are defined to include the result of the tweak schedule with Yi,
the subsequent linear function can start immediately without computing the inverse of the
tweak schedule.

In the state update function, the size of the input data block can be up to 2n bits.
However, the maximum size, or maximum rate, to achieve n-bit security is unknown. In
Section 4, we demonstrate an attack with a complexity of O(2n/2) when the size of the
input data block is at least n+ 1 bits. That is, the size of the input is at most n bits to
achieve n-bit security.

3Besides the issue of the tweakey-schedule structure, TGIF is not suitable for LM-DAE that requires a
tweakey of at least 256 bits for 128-bit security.

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 5

Yi

EK

~

di

Xi Si,1

Si,2

Si+1,1

Si+1,2

Di,1
Matrix Operation

⊕

Di,2

⊕

Zi

L1,1 L1,2

L2,1 L2,2

Si+1,1

Si+1,2

Zi

Yi

Linear Function

Figure 1: State Update Function SUF.

In Section 5, we present our low-memory DAE mode called LM-DAE by iteratively
applying the state update function with L1,1 = 1, L1,2 = 0 and L2,1 = 1 (L2,2 is defined
to include the result of the tweak schedule), which only requires a minimal state size
of 2n bits without the inverse of the tweak schedule. The tweak size for the domain
separation in LM-DAE is 4 bits. We represent the state update by the tweak schedule by
an n-bit permutation π and then prove that for any permutation π (that is, the proof
covers non-linear tweak schedules as well as linear tweak schedules), LM-DAE is an n-bit
secure DAE, which is indistinguishable from an ideal DAE (random-bit and reject oracles).

Although the structure of LM-DAE is more complex than SUNDAE, it is a result
of the rigorous optimization across the boundaries between the mode, primitive, and
implementation. We believe that LM-DAE’s several benefits are worth the cost, in particular,
TI and block size.

Novelty of TBC. Our scheme needs a lightweight TBC with 128-bit block, a 128-bit key,
and 132-bit tweak. In this work, we use SKINNY-128-256 as a base and modify it by
applying the elastic-tweak framework to handle an additional 4-bit tweak efficiently. The
design is called TweSKINNY-128-256.

We first improve the elastic-tweak framework that will be explained in Section 8. The
improved framework is then applied to SKINNY-128-256. We tested several design choices
by evaluating the number of active S-boxes using Mixed Integer Linear Programming
(MILP). Besides, the number of rounds is chosen independently of SKINNY-128-256 to
minimize the hardware footprint. Our idea of π that removes the inverse of the tweak
schedule cannot be applied to the key, because the key needs to be the same for all TBC
invocations. We observe that the tweakey schedule of SKINNY makes a cycle in every
16 rounds about the byte position. Hence, the hardware footprint is optimized when the
number of rounds is a multiple of 16. Considering the security margin, we choose 48
rounds. This happens to match the number of rounds of SKINNY-128-256 that is chosen
purely for the security margin.

Tweakey-schedule Optimization. We eliminate the inverse tweakey schedule to improve
the implementation performance. We achieve this goal without resorting to a cyclic tweakey
schedule by instantiating the proposed mode with a particular π and TBC: we address
one half of the problem by a primitive and the other half by a mode. We observed that,
with an appropriate round number, SKINNY’s TK1 comes back to the original value while
TK2 does not because of the linear feedback shift register (LFSR). Thus, we assign the
key into TK1 and let LM-DAE handle the modified tweak in TK2: LM-DAE integrates the
TK2 schedule into the linear function in Fig. 1 so that we can carry the final TK2 state to
the next block processing without losing the provable security.

Hardware Performance Evaluation. We implement LM-DAE with TweSKINNY in hard-
ware with and without TI and compare them with state-of-the-art nonce-based AEs, namely
PFB and PFB_Plus. Without TI, LM-DAE achieved 3,717 gates, which is roughly 15%
fewer than PFB and PFB_Plus with the same 3s memory thanks to the tweakey-schedule

6 LM-DAE

optimization. With TI, this advantage is preserved, and LM-DAE achieved 8,358 gates
comparable to PFB with a smaller register size.

1.4 Related Works
AE with Higher Data Rate. As LM-DAE prioritizes security and memory size in the
design trade-off, the other DAE schemes have advantages in terms of speed, i.e., rate, as
summarized in Table 1. By fixing security level s, SUNDAE and ESTATE consume a
2s-bit block for each TBC call, which is higher than LM-DAE’s s bits. ZAE accepts a
(s+ t) block for MAC wherein t is a tweak size, and HADDOC uses its entire (r + 2s)-bit
state for consuming input data4.

AE with Nonce-Misuse Resistance. There are nonce-based AEs, such as SCT [PS16]
and Romulus-M1 [IKMP20], that become DAEs when a nonce is fixed. However, they are
inefficient as a DAE because of the security level degenerated by the misuse. SCT and
Romulus-M1 are secure up to the birthday bound, requiring memory sizes greater than 3s
bits to achieve s-bit security.

1.5 Outline
The rest of this paper is organized as follows. We define basic notations in Section 2. We
introduce the state-update function and its security analysis in Sections 3 and 4. Then,
we describe the proposed LM-DAE in Section 5, followed by its security proofs in Sections
6 and 7. Section 8 is devoted to the new primitive TweSKINNY-128-256. Finally, Section
9 describes hardware implementation.

2 Preliminaries
Notation. Let ε be an empty string and {0, 1}∗ be the set of all bit strings. For an
integer i ≥ 0, let {0, 1}i be the set of all i-bit strings, {0, 1}0 := {ε}, and {0, 1}≤i :=
{0, 1}1 ∪ {0, 1}2 ∪ · · · ∪ {0, 1}i be the set of all bit strings of length at most i, except for
ε. Let 0i resp. 1i be the bit string of i-bit zeros resp. ones. For integers 0 ≤ i ≤ j,
let [i, j] := {i, i + 1, . . . , j}, (j] := [0, j] and [j] := [1, j]. For integers 0 ≤ i ≤ x, let
(x)i := x(x − 1) · · · (x − j + 1) be the falling factorial. For a non-empty set T , T $←− T
means that an element is chosen uniformly at random from T and is assigned to T . The
concatenation of two bit strings X and Y is written as X‖Y or XY when no confusion
is possible. For integers 0 ≤ i ≤ j and X ∈ {0, 1}j , let msbi(X) (resp. lsbi(X)) be the
most (resp. least) significant i bits of X, and |X| be the bit length of X, i.e., |X| = j.
For an integer n ≥ 0 and a bit string X, we denote the parsing into fixed-length n-
bit strings as (X1, . . . , X`)

n←− X, where if X 6= ε then X = X1‖ · · · ‖X`, |Xi| = n for
i ∈ [`− 1], and 0 < |X`| ≤ n; if X = ε then ` = 1 and X1 = ε. For an integer n > 0, let
ozp : {0, 1}≤n → {0, 1}n be a one-zero padding function: for X ∈ {0, 1}≤n, ozp(X) = X
if |X| = n; ozp(X) = X‖10n−1−|X| if |X| < n. For non-empty sets X ,Y, let Func(X ,Y)
be a set of all functions from X to Y.

A TBC is a set of permutations indexed by a key and a public input called tweak, and
a tweakable permutation (TP) is a TBC such that the key space is empty. Let K be the
key space, T W the tweak space, and n the input/output-block size. A TBC (encryption)
is denoted by Ẽ : K × T W × {0, 1}n → {0, 1}n, Ẽ taking a key K ∈ K is denoted by ẼK ,
and ẼK taking a tweak TW ∈ T W is denoted by ẼTWK . A TP (encryption) is denoted by
P̃ : T W × {0, 1}n → {0, 1}n. Let P̃erm(T W, {0, 1}n) be the set of all TPs.

4ZAE (resp. HADDOC) consume s (resp. r) bits in the encryptions.

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 7

For a security goal xxx, a target scheme Π, an adversary A, and the advantage function
Advxxx

Π (A), the maximum advantage over all adversaries, running in time at most t and
having parameters for an adversary’s queries Q (such as the number of queries, query
lengths, etc.), is denoted by Advxxx

Π (Q, t) := maxA Advxxx
Π (A). When an adversary is a

computationally unbounded algorithm, the time t is disregarded. For an adversary A with
access to O and after the interaction returning a decision bit, the output of A is denoted
by AO.

TPRP. Though this paper, a keyed TBC is assumed to be a secure tweakable-pseudo-
random permutation (TPRP). In the tprp-security game, an adversary A has access to
either the keyed TBC ẼK or a TRP P̃ , where K $←− K and P̃ $←− P̃erm(T W, {0, 1}n), and
after the interaction, A returns a decision bit y ∈ {0, 1}. The advantage function is defined
as

Advtprp
ẼK

(A) := Pr[AẼK = 1]− Pr[AP̃ = 1] ,

where the probabilities are taken over K, P̃ , and A.

TBC-based DAE. A DAE scheme using a keyed TBC ẼK , denoted by Π[ẼK], is a pair
of encryption and decryption algorithms (Π.Enc[ẼK],Π.Dec[ẼK]). M, C,A and T are sets
of plaintexts, ciphertexts, associated data (AD), and tags of Π[ẼK], respectively. The en-
cryption algorithm takes AD A ∈ A and a plaintext M ∈M and returns, deterministically,
a pair of a ciphertext C ∈ C and a tag T ∈ T . The decryption algorithm takes a tuple
(A,C, T̂) ∈ A×C×T , and deterministically returns either the distinguished invalid symbol
reject 6∈ M or a plaintext M ∈M. We require |Π.Enc[ẼK](A,M)| = |Π.Enc[ẼK](A,M ′)|
when these outputs are strings and |M | = |M ′|. Through this paper, we call queries to the
encryption resp. decryption oracle “encryption queries” resp. “decryption queries.”

We follow the security definition given by Rogaway and Shrimpton [RS06] that is
the indistinguishability between Π[ẼK] = (Π.Enc[ẼK],Π.Dec[ẼK]) and ($,⊥), where $ is
a random-bits oracle that has the same interface as Π.Enc[ẼK] and for a query (A,M)
returns a random bit string of length |Π.Enc[ẼK](A,M)|; ⊥ is an oracle that returns
reject for any query. In the dae-security game, first an adversary A interacts with either
Π[ẼK] or ($,⊥) where K $←− K and then returns a decision bit b ∈ {0, 1}. The advantage
function is defined as

Advdae
Π[ẼK]

(A) = Pr[AΠ[ẼK] = 1]− Pr[A$,⊥ = 1] ,

where the probabilities are taken over K, $ and A. We demand that A never asks a
trivial decryption query (A,C, T), i.e., there is a prior encryption query (A,M) with
(C, T) = Π.Enc[ẼK](A,M), and that A never repeats a query.

PRF. Let X and Y be non-empty sets, and F [ẼK] : X → Y a function using a keyed TBC
ẼK . The prf-(pseudo-random-function) security of F [ẼK] is indistinguishability between
real (F [ẼK]) and ideal (a random function R) worlds. In the prf-security game, first an
adversary A interacts with either F [ẼK] or R where K $←− K and R $←− Func(X ,Y), and
then returns a decision bit y ∈ {0, 1}. The advantage function is defined as

Advprf
F [ẼK]

(A) := Pr[AF [ẼK] = 1]− Pr[AR = 1] ,

where the probabilities are taken over K,R and A.

8 LM-DAE

3 A Tool for Low-Memory TBC-based DAE
In this section, we propose a state update function based on a TBC that is a building
block of low-memory DAE modes. The state update function is defined to take a data
block up to 2n bits long for a TBC with n-bit blocks. Before designing a DAE using the
state update function, we need to find the maximum length of a data block for achieving
n-bit security. In Section 4, we show that the length is at most n bits. Then, in Section 5,
following the result, we define our DAE mode, which iteratively uses the state update
function taking a data block of n bits, and show the security bound: our DAE mode
achieves n-bit security. The security proof is given in Section 6.

3.1 Internal State and Tweak Sizes
We first specify an internal state and tweak sizes for a low-memory n-bit secure DAE,
because the memory size of DAE largely depends on these sizes.

• Internal State Size. An internal state collision offers an output collision for a
DAE, thereby yielding a distinguishing attack from an ideal system ($,⊥). Due to
the birthday paradox, the minimum size is 2n bits for n-bit security.

• Tweak Size. Basically, TBC-based DAE modes such as ZAE [IMPS17] use small
bits in the tweak space for the domain separation. Hence, we define the tweak size as
t+ δ bits where δ is a small constant, e.g., δ = 4, for the domain separation and t is a
tweak size for handling an internal state. Regarding the tweak size t, to achieve n-bit
security, it must be t ≥ n, because a collision of the input to a TBC (the complexity
is O(2(t+n)/2)) becomes a bad event in a security proof. On the other hand, if t > n,
the TBC requires an additional t− n-bit memory beyond the memory for the 2n-bit
internal state. Hence, the tweak size should be t = n, which implies that the tweak
size is n+ δ bits.

Tweaks for domain separation. Generally, domain separations separate the domain of
the following computations: (i) data block processing in a tag generation, (ii) a finalization
in a tag generation, (iii) encryption (decryption), and whether or not a padding is applied to
the data block for (i) and (iii). In the state update function defined in the next subsection,
the δ-bit tweak space is used to separate these TBC calls.

3.2 TBC-based State Update Function
We define a state update function shown in Fig. 1 that uses a TBC with n-bit block and
n+ δ-bit tweak spaces, takes a 2n-bit (previous) internal state and a data block of length
at most 2n bits, and returns the next 2n-bit internal state. By using the state update
function iteratively, one can obtain a low-memory DAE.

The state update function SUF[ẼK] is composed of a TBC and linear operations and
takes data blocks Di,1 and Di,2. Let ẼK : ({0, 1}δ × {0, 1}n)× {0, 1}n → {0, 1}n be the
underlying TBC with a secret key K. For each j ∈ [2], let nj be the length in bits of a
data block Di,j such that 0 ≤ nj ≤ n. For an internal state (Si,1, Si,2) ∈ {0, 1}n × {0, 1}n
and data blocks (Di,1, Di,2) ∈ {0, 1}n1 × {0, 1}n2 , the next internal state (Si+1,1, Si+1,2) ∈
{0, 1}n × {0, 1}n is defined as follows.

• SUF[ẼK]((Si,1, Si,2), (Di,1, Di,2)):

1. The following operations are performed:

Xi ← Si,1 ⊕Di,1;Yi ← Si,2 ⊕Di,2;Zi ← Ẽdi,YiK (Xi)

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 9

S1,1

S1,2

Dl,1

FF T

D1,1 D1,2

Y1

EK
~

d1

X1⊕

⊕

D2,1 D2,2

Z1 EK
~

d2

X2
⊕

⊕
Y2

Z2 EK
~

dl

Xl⊕

⊕

Dl,2

Yl

Zl

Figure 2: Tag Generation Function TagGen[ẼK].

where di ∈ {0, 1}δ is a tweak for domain separation, and for the XOR operation
Si,j⊕Di,j where j ∈ [2], Di,j in the n-bit space is assigned to any nj-bit-position
and (n− nj)-bit zeros are padded in the remaining space.

2. The next internal state is defined as(
Si+1,1
Si+1,2

)
←
(
L1,1 L1,2
L2,1 L2,2

)
·
(
Zi
Yi

)
where Li,j ∈ {0, 1}n and the matrix operation is done by linear operations over
GF (2n).

3. Return (Si+1,1, Si+1,2).

We design an n-bit secure DAE using the state update function SUF[ẼK]. Before giving
our DAE, in Section 4, we show an upper bound of the length n1 + n2 to achieve n-bit
security. In Section 5, we define our DAE in accordance with the upper bound.

4 Upper Bound of Data Block Size for n-bit Security
We specify an upper bound of length n1 + n2 to achieve n-bit security. We show that
the upper bound is n bits, i.e., we give an O(2n/2) attack on a DAE that iteratively uses
SUF[ẼK] defined in Section 3 when n1 + n2 ≥ n+ 1.

4.1 Target DAE
We first split the encryption algorithm into two algorithms: tag generation algorithm
TagGen[ẼK], and ciphertext generation algorithm CTGen[ẼK]:

TagGen[ẼK] : A×M→ T , CTGen[ẼK] : A×M→ C,

where A = {0, 1}∗, M = C = {0, 1}∗, τ ≥ n and T = {0, 1}τ . Hence, the encryption
algorithm of DAE is defined as follows.

• Π.Enc[ẼK](A,M):

– C ← CTGen[ẼK](A,M); T ← TagGen[ẼK](A,M); return (C, T)

In our analysis, for DAE schemes that iteratively use SUF[ẼK], we define an adversary
that makes only encryption queries with non-empty AD and empty plaintexts. Hence, the
goal of the adversaries is to distinguish between TagGen[ẼK] and a random function, i.e.,
breaking the prf-security of TagGen[ẼK].

We define the procedure of TagGen[ẼK]. For simplicity, the length of each AD is a
multiple of the data block length n1 + n2. Let FF : {0, 1}2n → {0, 1}τ be a finalization
function. Let d1, . . . , d` be tweaks for domain separation and constant values.5 Then, the
tag generation algorithm TagGen[ẼK] is defined as follows and shown in Fig. 2.

5The reason the tweaks are fixed is that for each AD block a padding function is not applied, and in
such case, (to our knowledge) in all existing TBC-based AE schemes, the tweaks are fixed.

10 LM-DAE

• TagGen[ẼK]((D1,1‖D1,2‖ · · · ‖D`,1‖D`,2), ε): // ε is an empty plaintext.

1. S1,1 and S1,2 are initialized to n-bit constant values.
2. for i = 1, . . . , ` do (Si+1,1, Si+1,2)← SUF[ẼK]((Si,1, Si,2), (Di,1, Di,2))
3. return T ← FF(S`+1,1, S`+1,2)

4.2 Upper Bound for n-bit Security: n1 + n2 ≤ n

Theorem 1. Let P̃ $←− P̃erm(T W, {0, 1}n) and FF a random function. For the tag
generation function TagGen[P̃] using P̃ and FF such that n1 + n2 ≥ n + 1, there exist
adversaries A making O(2n/2) queries such that

Advprf
TagGen[P̃]

(A) = Ω(1) .

4.3 Proof of Theorem 1 (Attacks when n1 + n2 ≥ n+ 1)
We prove Theorem 1 by demonstrating the attacks with a complexity of O(2n/2) when the
data block size n1 + n2 is at least n+ 1 bits.

The attack goal is a forgery. Overall, we first generate a state collision: two different
data D1 and D2 that result in the same 2n-bit state. Then for any common suffix Dsuffix,
the tag for D1‖Dsuffix and D2‖Dsuffix will collide.

The attack target satisfies n1+n2 ≥ n+1. From this nature, at least one of n1 ≥ n/2+1
or n2 ≥ n/2 + 1 holds. Besides, both of n1 ≥ 1 and n2 ≥ 1 hold. The attack procedure
depends on which of n1 and n2 is larger than or equal to n/2 + 1 bits. We study each case.

4.3.1 Case 1: n1 ≥ n/2 + 1

We inject the difference from the ith block and to cancel it in the i + 1th block. The
analysis is further divided into several cases depending on whether L1,1, L1,2, L2,1 and L2,2
are zero or non-zero. To be secure, during the matrix operation, each of two n-bit inputs
(resp. outputs) must contribute to at least one of the two n-bit outputs (resp. inputs). This
limits the valid pattern of L1,1, L1,2, L2,1, L2,2 to be the seven cases depicted in Fig. 3. The
analysis is further divided into three cases: L2,1 = 0, L1,1 = 0, and L2,1 6= 0 ∧ L1,1 6= 0.

𝐿1,1

𝐿1,2

𝐿2,1

𝐿2,2
𝐿1,1 ≠ 0, 𝐿2,1 ≠ 0𝐿2,1 = 0 𝐿1,1 = 0

Figure 3: Seven Patterns of Linear Computations.

L2,1 = 0. When L2,1 = 0, Zi does not impact Si+1,2. We set ∆Di,1 6= 0 and ∆Di,2 = 0,
then the difference is propagated as depicted in Fig. 4. It is ensured that ∆Zi 6= 0. Because
of L2,1 = 0, ∆Zi does not impact Si+1,2, thus by setting ∆Di+1,1 6= 0 and ∆Di+1,2 = 0,
all the differences can be canceled probabilistically. Let δ := ∆Di+1,1. Then if ∆Zi is
equal to δ/L1,1, the difference is canceled. Because of n1 ≥ n/2 + 1, the attacker can
choose 2n/2 distinct values of Di,1. By making 2n/2 queries, there should exist one pair
that achieves ∆Zi = δ/L1,1, hence the construction is attacked. For the completeness, the
algorithmic description of the attack is given in Alg. 1.

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 11

෨𝐸𝐾

𝐿1,1

𝐿1,2

𝐿2,2

≥
𝑛

2
+ 1

𝐷𝑖,1 𝐷𝑖,2 𝐷𝑖+1,1 𝐷𝑖+1,2

∗ 0

𝛿

𝐿1,1

𝛿 0

0

0

∗

Figure 4: Differential Propagation for Case 1 with L2,1 = 0.

Algorithm 1 Attack Procedure for Case 1 with L2,1 = 0.
1: Choose any two distinct values of Di+1,1 denoted by z and z′.
2: Choose any value for Di,2 and Di+1,2 denoted by y and w, respectively.
3: for j = 1, 2, . . . , 2n/2 do
4: Choose a value of Di,1 denoted by xj that is different from other xj .
5: Query xj‖y‖z‖w and xj‖y‖z′‖w and store the corresponding output of the queries

denoted by Qj and Q′j .
6: end for
7: Find a pair of two indices j1 and j2 such that Qj1 = Q′j2

.

L1,1 = 0. The attack is almost the same as the case with L2,1 = 0. The only different
point is that the difference in the i+1th block is injected from Di+1,2 because ∆Zi impacts
Si+1,2. Due to the similarity, we omit the details.

L2,1 6= 0 and L1,1 6= 0. In this case, we set ∆Di+1,1 6= 0 and ∆Di+1,2 6= 0. We expect
∆Zi to satisfy L2,1 ·∆Zi = ∆Di+1,2 and L1,1 ·∆Zi = ∆Di+1,1 simultaneously. Then, all
the differences are canceled. The differential propagation is depicted in Fig. 5.

෨𝐸𝐾
𝐿1,1

𝐿1,2

𝐿2,2

≥
𝑛

2
+ 1

𝐷𝑖,1 𝐷𝑖,2 𝐷𝑖+1,1 𝐷𝑖+1,2

≥
𝑛

2
+ 1

∗ 0

Δ𝑍𝑖

𝐿1,1 ⋅ Δ𝑍𝑖 𝐿2,1 ⋅ Δ𝑍𝑖

0

0∗

𝐿2,1

Figure 5: Differential Propagation for Case 1 with L2,1 6= 0 ∧ L1,1 6= 0.

Those imply that ∆Di+1,2
L2,1

= ∆Di+1,1
L1,1

, hence ∆Di+1,1 = L1,1
L2,1
·∆Di+1,2. The left-hand

side is the linear space of dimension n1 and the right-hand side is the linear space of
dimension n2, where n1 + n2 ≥ n + 1, hence there always exists a particular choice of
∆Di+1,1 and ∆Di+1,2 that causes the difference cancellation. After appropriate ∆Di+1,1
and ∆Di+1,2 are chosen, the attack procedure is almost the same as the previous one. Due
to the similarity, we omit the details.

4.3.2 Case 2: n2 ≥ n/2 + 1

Unlike in Case 1, 2n/2 different Xi may be impossible to prepare because n1 can be very
small, e.g., only 1 bit. Hence, a different attack strategy is required. The analysis again

12 LM-DAE

depends on whether L1,1, L1,2, L2,1, and L2,2 are zero or non-zero. We do the case analysis
for three cases: L1,1 = 0, L1,1 6= 0 ∧ L1,2 6= 0, and L1,2 = 0.

L1,1 = 0. In this case, the attacker injects a difference from Di,1 and cancels it with a
difference from Di+1,2. The differential propagation is shown in Fig. 6, and the attack
procedure is shown in Alg. 2. The attacker chooses 2n1/2 values of Di,1 and 2n2/2 values
of Di+1,2 and makes queries of all combinations, thus the data complexity is 2(n1+n2)/2,
which is O(2n/2). Then we expect a state collision by the following analysis.

෨𝐸𝐾

𝑛2 ≥
𝑛

2
+ 1𝑛1

𝐷𝑖,1 𝐷𝑖,2

∗ Δ𝑍𝑖

0

0

∗

𝐿1,2

𝐿2,1

𝐿2,2

𝐷𝑖+1,1 𝐷𝑖+1,2

𝑛2 ≥
𝑛

2
+ 1𝑛1

0 ∗

∗

0

0

0

𝐿2,1 ⋅ Δ𝑍𝑖 0

Figure 6: Differential Propagation for Case 2 with L1,1 = 0.

Without loss of generality, assume that the data forDi+1,2 is xored to n2 least significant
bits (LSBs). Then ∆Di+1,2 cannot be added to n−n2 most significant bits (MSBs). From
n1 + n2 ≥ n+ 1, we have n− n2 ≤ n1 − 1, i.e., the number of bits that cannot be canceled
by ∆Di+1,2 is at most n1 − 1 bits. By choosing 2n1/2 values of Di,1, we expect one pair
with no difference in n1 MSBs of L2,1 ·Zi. For this pair, 2n2/2 values of Di+1,2 are queried,
thus the difference in n2 LSBs will be canceled in one pair. For the completeness, the
algorithmic description of the attack is given in Alg. 2.

Algorithm 2 Attack Procedure for Case 2 with L1,1 = 0.
1: Choose any value for Di,2 and Di+1,1 denoted by y and z, respectively.
2: for i = 1, 2, . . . , 2n1/2 do
3: Choose a value of Di,1 denoted by xi that is different from other xi.
4: for j = 1, 2, . . . , 2n2/2 do
5: Choose a value of Di+1,2 denoted by wj that is different from other wj .
6: Query xi‖y‖z‖wj and store the corresponding output of the query Qi,j .
7: end for
8: end for
9: Find a quartet of four indices i1, i2, j1 and j2 such that Qi1,j1 = Q′i2,j2

.

L1,1 6= 0 and L1,2 6= 0. We first explain the most complex case in which all of L1,1,
L1,2, L2,1, and L2,2 are non-zero. Let ∆Di,1 be any non-zero difference and let δ := ∆Di,2.
We cancel the difference with ∆Di+1,1 = 0 and ∆Di+1,2 = δ′. The differential propagation
is depicted in Fig. 7.

∆Yi is δ. We expect that ∆Zi will cancel the impact of ∆Yi to Si+1,1, namely
L1,1 ·∆Zi = L1,2 · δ. This occurs with probability 2−n. Then, the difference is canceled in
the i+ 1th block if the following holds.(

L2,2 ⊕
L1,2 · L2,1

L1,1

)
· δ = δ′. (1)

For simplicity, we denote the coefficient in Eq. (1) by L.

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 13

෨𝐸𝐾

𝐿1,1

𝐿1,2

𝐿2,2

𝐷𝑖,1 𝐷𝑖,2 𝐷𝑖+1,1 𝐷𝑖+1,2

∗ 𝛿 0 𝛿′

𝛿

0∗

𝐿2,1

≥
𝑛

2
+ 1 𝐿1,2

𝐿1,1
⋅ 𝛿

𝐿1,2 ⋅ 𝛿

𝐿2,2 ⋅ 𝛿
𝐿1,2 ⋅ 𝐿2,1

𝐿1,1
⊕𝐿2,2 ⋅ 𝛿

Figure 7: Attack against Case 2 where all of L1,3, L1,4, L2,3 and L2,4 are non-zero.

The number of choices of such δ and δ′ depends on the parameter n2. Considering that
n2 ≥ n/2 + 1, the number of choices is at least 22·n2−n. Thus, we can exploit the birthday-
paradox like effect of size at most 22·n2−n. Unlike in the previous cases, δ and δ′ cannot
be fixed in advance. To overcome this issue, whenever we choose Di,2, we compute Di+1,2
by L ·Di,2. Then for any paired values Di,2 and D′i,2 with a difference Di,2 ⊕D′i,2, the
corresponding paired values of Di+1,2 have a difference L ·Di,2⊕L ·D′i,2 = L · (Di,2⊕D′i,2).
Hence, the coefficient L is preserved for any paired values of Di,2.

We also consider all 2n1 possible values of Di,1 to exploit the birthday-paradox like
effect of size 2n1 . The attack procedure is given in Alg. 3. We introduce two parameters s
and t where s ≤ n1 and t ≤ n2 to evaluate the number of queries.

Algorithm 3 Attack for Case 2 with L2,4, L1,4, L1,3, and L2,3 are Non-zero.
1: Compute 2t choices of δ := ∆Di,2 and δ′ := ∆Di+1,2 satisfying δ′ := L · δ.
2: Choose any value for Di+1,1 denoted by z.
3: for j = 1, 2, . . . , 2s do
4: Choose a value of Di,1 denoted by xj that is different from other xj .
5: for k = 1, 2, . . . , 2t do
6: Choose a value of Di,2 denoted by yk from δ that is different from other yk.
7: Compute Di+1,2 denoted by wk by wk = L · yk.
8: Query xj‖yk‖z‖wk and store the corresponding output denoted by Qj,k.
9: end for
10: end for
11: Find a pair of paired indices (j1, k1) and (j2, k2) such that Qj1,k1 = Qj2,k2 .

We show the complexity analysis of Alg. 3. The attack makes 2s+t queries to collect
Qj,k. Two distinct (j, k) achieve the difference in Di,1, Di,2, Di+1,1, Di+1,2 in Fig. 7. Hence
if
(2s+t

2
)
≈ 22(s+t) ≥ 2n, we expect one pair that produces the desired ∆Zi. From the

condition 22(s+t) ≥ 2n, the number of queries 2s+t is at least 2n/2. In the following, we
show that the attack complexity can be 2n/2 for any choice of n1 and n2 that satisfies
n1 + n2 ≥ n + 1. The goal is to show that there always exists a choice of s and t that
satisfies the following constraints.

s+ t = n/2, s ≤ n1, t ≤ 2 · n2 − n.

It is easy to check that when n1 = n/2 and n2 = n/2 + 1, we can set s = n/2 and t = 0,
hence the attack complexity is 2n/2. On the other hand, when n1 = 1 and n2 = n, we can
set s = 0 and t = n/2, hence the attack complexity is 2n/2. In general, the attacker can set
s = n1. Then t becomes n/2− n1. From n1 + n2 = n+ 1, we have t = n2 − n/2− 1. The

14 LM-DAE

attacker can always choose such t because the constraint of the range of t is t ≥ 2 · n2 − n.
As a conclusion, there always exists the choice of s and t to achieve n/2 queries.

Example. When n1 = n/4 and n2 = 3n/4 + 1, the number of (δ, δ′) is about
22·(3n/4)−n = 2n/2, which gives the range of t as t ≤ n/2. We set s = n/4.
Hence, t is n/2− n/4 = n/4. This is consistent with the condition t ≤ n/2.

The attack for L2,1 = 0 and L2,2 6= 0 is almost the same. The coefficient L in Eq. (1)
will be slightly different; the second term in Eq. (1) will not appear. The attack for
L2,1 6= 0 and L2,2 = 0 is also the same variant. The coefficient L in Eq. (1) will be slightly
different; the first term in Eq. (1) will not appear. In both cases, the collision of the state
is generated with a complexity of O(2n/2).

L1,2 = 0. The attack in this case is also a variant of the attack for L1,1 6= 0 and L1,2 6= 0.
We generate a collision on ∆Zi. The diagram of the differential propagation is depicted in
Fig. 8. Due to the similarly, we omit the details.

෨𝐸𝐾
𝐿1,1

𝐿2,1

𝐿2,2

𝐷𝑖+1,1 𝐷𝑖+1,2

𝑛2 ≥
𝑛

2
+ 1𝑛1

∗

𝛿

𝛿

0 𝛿′

𝐿2,2 ⋅ 𝛿

0

∗

0

𝑛2 ≥
𝑛

2
+ 1𝑛1

𝐷𝑖,1 𝐷𝑖,2

Figure 8: Differential Propagation for Case 2 with L1,2 = 0.

5 LM-DAE
5.1 Specification
We have designed a new DAE called LM-DAE that has minimum memory size. LM-DAE is
designed by using the SIV paradigm [RS06], and the MAC and encryption/decryption func-
tions iteratively use the state update function SUF[ẼK] given in Section 3. In accordance
with the upper bound of the data block size given in Section 4, the state update function
takes an n-bit data block that is an optimal size for achieving n-bit security. In addition, to
avoid the inverse tweak schedule, we introduce an n-bit permutation π : {0, 1}n → {0, 1}n
in the internal state, i.e., the result of the tweak schedule can be used as the next internal
state. The tweak space is defined as T W = (15] × {0, 1}n, where the tweak space (15]
is for the domain separation that can be achieved by a 4-bit space. The specification of
LM-DAE is given in Algorithm 4 and is illustrated in Fig. 9.
Remark 1. The tweak rule for the domain separation is defined to transfer information for
a length of AD to the tweaks v and w. If the information is not transferred, there exists
an attack with 2n/2 complexity. The attack collects 2n/2 inputs with a distinct final AD
block such that u = 2, and 2n/2 inputs with a distinct final AD block such that u = 3,
then a collision of a TBC having a last AD block occurs for a pair of inputs with different
domain separations, and results in a tag collision. Using the collision, one can forge a tag
(or distinguish the MAC from a random function).

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 15

Algorithm 4 LM-DAE
Encryption LM-DAE.Enc[ẼK](A,M)
1: T ← LM-DAE.MAC[ẼK](A,M)
2: C ←M ⊕msb|M |

(
LM-DAE.PRNG[ẼK](T, d|M |/ne)

)
3: return (C, T)

Decryption LM-DAE.Dec[ẼK](A,C, T̂)
1: M ← C ⊕msb|C|

(
LM-DAE.PRNG[ẼK](T̂ , d|C|/ne)

)
2: T ← LM-DAE.MAC[ẼK](A,M)
3: if T = T̂ then return M ; else return reject

MAC LM-DAE.MAC[ẼK](A,M)
1: u← 2; v ← 4 // These induces are used if |A| mod n 6= 0
2: if |A| mod n = 0 ∧A 6= ε then

{
u← 3; v ← 5

}
3: if A = ε then v ← 6
4: if |M | mod n 6= 0 then w ← v + 3
5: if |M | mod n = 0 ∧M 6= ε then w ← v + 6
6: if M = ε then w ← v + 9
7: (Ft,Fb)← LM-DAE.Hash[ẼK](A,M, u, v)
8: Ft← Ẽw,Fb

K (Ft); Fb← π(Fb)⊕ Ft; Ft← Ẽw,Fb
K (Ft); Fb← π(Fb)⊕ Ft

9: return T ← Ft‖Fb

Hash LM-DAE.Hash[ẼK](A,M, u, v)
1: (A1, . . . , Aa) n←− A; (M1, . . . ,Mm) n←−M ; Ht← 0n; Hb← 0n
2: if A 6= ε then
3: for i = 1, . . . , a− 1 do

{
Ht← Ẽ1,Hb

K (Ht⊕Ai); Hb← π(Hb)⊕Ht
}

4: Ht← Ẽu,Hb
K (Ht⊕ ozp(Aa)); Hb← π(Hb)⊕Ht

5: end if
6: if M 6= ε then
7: for i = 1, . . . ,m do

{
Ht← Ẽv,Hb

K (Ht⊕ ozp(Mi)); Hb← π(Hb)⊕Ht
}

8: end if
9: return (H1, H2)← (Ht,Hb)

PRNG LM-DAE.PRNG[ẼK](T,m)
1: (Rt0,Rb0) n←− T
2: for i = 1, . . . ,m do {Rti ← Ẽ

0,Rbi−1
K (Rti−1); Rbi ← π(Rbi−1)⊕ Rti}

3: return Rt1‖Rt2‖ · · · ‖Rtm

5.2 Security Bounds

In Theorem 2, we show that LM-DAE.MAC achieves n-bit prf-security. Thus, LM-DAE.MAC
becomes a secure MAC with low memory. In Theorem 3, we show that LM-DAE achieves
n-bit dae-security. The proof of Theorem 3 makes use of the prf-security in Theorem 2.
In these theorems, we use the following adversarial parameters: qE is the number of
encryption queries; qD is the number of decryption queries; σM is the number of TBC calls
in LM-DAE.MAC; σE is the number of TBC calls in LM-DAE.PRNG; σ is the number of
TBC calls in LM-DAE.

16 LM-DAE

LM-DAE.Hash

0n

A1
ozp(M3)

0n

T1

T2

Rt1

H1

H2

H1

H2

LM-DAE.PRNGLM-DAE.MAC (Finalization)

⊕

⊕

~EK

1
π

⊕

⊕

~EK

1
π

A2

⊕

⊕

~EK
u

π

ozp(A3)

⊕

⊕

~EK
v

π

M1

⊕

⊕

~EK
v

π

M2

⊕

~EK
w

π ⊕

~EK
w

π ⊕

~EK
0

π ⊕

~EK
0

π ⊕

~EK
0

π

⊕

⊕

~EK
v

π

T1

T2

Rt2 Rt3

Figure 9: LM-DAE where a = 3 and m = 3.

Theorem 2. For any permutation π, we have

Advprf
LM-DAE.MAC[ẼK]

(σM, t) ≤
σM

2n − σM
+ 2.5σ2

M
(2n − σM)2 + Advtprp

ẼK
(σM, t+O(σM)) ,

where a tprp-adversary makes σM queries.

Theorem 3. Let Q := (qE , qD, σM, σE , σ). For any permutation π, we have

Advdae
LM-DAE[ẼK]

(Q, t) ≤ σ2
E

22n + qD
22n + σM

2n − σM
+ 2.5σ2

M
(2n − σM)2 + Advtprp

ẼK
(σ, t+O(σ)) ,

where a tprp-adversary makes σ queries.

Remark 2. We discuss the tightness of the upper bound. For privacy, the randomness of
a ciphertext cannot be ensured if a collision for inputs to ẼK in LM-DAE.PRNG occurs.
By the birthday analysis, the collision probability is roughly σ2

E/22n. For authenticity,
there are two strategies for forging a tag. The first strategy is to guess a tag of 2n bits.
The success probability is roughly qD/22n. The second strategy is to use a collision of 2n
internal state values of LM-DAE.Hash by encryption queries, which yields a collision of
tags. The collision messages offer a new collision by extending the messages: appending a
message block with the collision messages. Using the extended messages, one can forge a
tag. By the birthday analysis, the collision probability is roughly q2

E/22n. Hence, the lower
bound of LM-DAE is roughly σ2

E/22n + qD/22n + q2
E/22n. For our bound in Theorem 3,

the terms σM/(2n − σM) + 2.5σ2
M/(2n − σM)2 are different from the lower bound, which

include lengths of data processed in LM-DAE.MAC and might be improved.6 Filling the
gap between lower and upper bounds is an open problem.

6 Proof of Theorem 2
First, the keyed TBC ẼK is replaced with a TRP P̃ . By this replacement, the tprp-
advantage function Advtprp

ẼK
(σM, t + O(σM)) is introduced in the security bound, and

the remaining work is to upper-bound the dae-advantage function Advprf
LM-DAE.MAC[P̃]

(σM),
where adversaries are computationally unbounded algorithms and the complexities are solely
measured by query complexity. Without loss of generality, adversaries are deterministic.

6Indeed, some CBC-type MACs, which iterate a BC, achieve length-free security [Pie06, JN16]. On the
other hand, the CBC-type MACs update all bits of an internal state for each BC call, whereas LM-DAE
updates half bits of an internal state for each TBC call. The difference might become impossible to remove
data lengths from the terms.

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 17

6.1 Strategy and Upper Bound of Advprf
LM-DAE.MAC[P̃]

(σM)

Let qM be the number of queries by an adversary, H := LM-DAE.Hash, and ` := a + m.
For α ∈ [qM], the lengths a, m, and ` at the α-th query are denoted by aα, mα, and `α,
respectively, and values and variables defined at the α-th query are denoted by using the
superscript of (α), e.g., M (α), T (α), etc.

Let zero be an event that some output of P̃ defined in H[P̃] is equal to 0n. As an
output of P̃ is chosen uniformly at random from at least 2n − σM values, we have

Pr[zero] ≤ σM
2n − σM

.

We next define two probabilities for H[P̃]. For two inputs to H[P̃]: (A(α),M (α), u(α), v(α))
and (A(β),M (β), u(β), v(β)), the first (collision) probability is defined as follows:

δ1(α, β) :=
{

Pr[(H(α)
1 , H

(α)
2) = (H(β)

1 , H
(β)
2)|¬zero] if w(α) = w(β) ,

0 if w(α) 6= w(β) .

Note that by the definition of LM-DAE, w(α) = w(β) implies (u(α), v(α)) = (u(β), v(β)). The
second probability is defined as follows: for an input to H[P̃]: (A(α),M (α), u(α), v(α)),

δ2(α) := max
Z∈{0,1}n

Pr[H(α)
2 = Z ∧ (A(α) 6= ε ∨M (α) 6= ε)] .

We then give two lemmas. In the first one, the prf-security bound of LM-DAE.MAC[P̃]
is given that uses the probabilities Pr[zero], δ1(α, β), and δ2(α). In the second one, the
upper bounds of δ1(α, β) and δ2(α) are given.

Lemma 1.

Advprf
LM-DAE.MAC[P̃]

(qM) ≤ Pr[zero] +
∑
α∈[qM]

∑
β∈[α−1]

(
δ1(α, β) + 3δ2(α)

2n

)
+ 0.5q2

M
22n .

Lemma 2. For two distinct inputs to H[P̃]: (A(α),M (α)) and (A(β),M (β)) such that
w(α) = w(β), we have

δ1(α, β) ≤ `α + `β
(2n − σM)2n .

For an input to H[P̃], (A(α),M (α)), we have

δ2(α) ≤ 1
2n − σM

.

Putting the upper bounds of Pr[zero], δ1(α, β) and δ2(α) into Lemma 1 gives

Advprf
LM-DAE.MAC[P̃]

(σM) ≤ σM
2n − σM

+
∑
α∈[qM]

∑
β∈[α−1]

(
`α + `β

(2n − σM)2 + 3
2n(2n − σM)

)
+ 0.5q2

M
22n

≤ σM
2n − σM

+ 0.5σ2
M

(2n − σM)2 + 1.5q2
M

2n(2n − σM) + 0.5q2
M

22n

≤ σM
2n − σM

+ 2.5σ2
M

(2n − σM)2 .

18 LM-DAE

6.2 Proof of Lemma 1
This proof permits for an adversary A to obtain all hash values (H(1)

1 , H
(1)
2), . . . , (H(qM)

1 , H
(qM)
2)

after all queries. In the ideal world, after all queries, a TRP P̃
$←− P̃erm (T W, {0, 1}n) is

defined and then the hash values are defined. Hence, A obtains the following values, called
“transcript,”

τ :=
{

(A(1),M (1), T (1), H
(1)
1 , H

(1)
2), . . . , (A(qM),M (qM), T (qM), H

(qM)
1 , H

(qM)
2)

}
.

In this proof, we use the following notations: for each α ∈ [qM],

T
(α)
1 := msbn(T (α)), T

(α)
2 := lsbn(T (α)), X

(α)
1 := H

(α)
1 , Y

(α)
1 := H

(α)
2 ,

X
(α)
2 := π(H(α)

2)⊕ π−1(T (α)
1 ⊕ T (α)

2), Y
(α)
2 := π−1(T (α)

1 ⊕ T (α)
2) .

In the real world, for i ∈ [2], X(α)
i and Y (α)

i are the input block and tweak at the i-th
TRP call in the finalization function.

6.2.1 Coefficient H Technique

This proof uses the coefficient H technique [Pat08]. Let T1 be a transcript in the real
world obtained by sampling P̃

$←− P̃erm(T W, {0, 1}n). Let T2 be a transcript in the
ideal world obtained by sampling R $←− Func(X , {0, 1}2n) where X is the domain space
of LM-DAE.MAC. We call a transcript τ valid if Pr[T2 = τ] > 0. Let T be all valid
transcripts. Then,

Advprf
LM-DAE.MAC[P̃]

(A) = SD(T1,T2) = 1
2
∑
τ∈T
|Pr[T1 = τ]− Pr[T2 = τ]| .

Then, the statistical distance SD(T1,T2) is upper-bounded as follows. T is partitioned
into two transcripts: good transcripts Tgood and bad transcripts Tbad. Then, SD(T1,T2) is
upper-bounded by the following lemma.

Lemma 3 ([Pat08]). Let 0 ≤ ε ≤ 1 be such that for all τ ∈ Tgood, Pr[T1=τ]
Pr[T2=τ] ≥ 1− ε. Then,

SD(T1,T2) ≤ Pr[T2 ∈ Tbad] + ε.

Hereafter, first good and bad transcripts are defined. Then Pr[T2 ∈ Tbad] is upper
bounded, and Pr[T1=τ]

Pr[T2=τ] is lower-bounded. Finally, by the above lemma, an upper bound of
Advprf

LM-DAE.MAC[P̃]
(A) is obtained.

6.2.2 Definitions of Good and Bad Transcripts

Bad transcripts Tbad are defined so that one of the following conditions is satisfied. Good
transcripts Tgood are defined as Tgood = T \Tbad.

• zero⇔ some output of P̃ in the hash function is equal to 0n.

• bad1 ⇔ ∃α, β ∈ [qM], i, j ∈ [2] s.t.
(α, i) 6= (β, j) ∧ (X(α)

i , Y
(α)
i) = (X(β)

j , Y
(β)
j) ∧ w(α) = w(β).

• bad2 ⇔ ∃α, β ∈ [qM] s.t.
α 6= β ∧X(α)

1 6= X
(β)
1 ∧ Y (α)

1 = Y
(β)
1 ∧X(α)

2 = X
(β)
2 ∧ w(α) = w(β).

• bad3 ⇔ ∃α, β ∈ [qM] s.t.
α 6= β ∧X(α)

2 6= X
(β)
2 ∧ Y (α)

2 = Y
(β)
2 ∧ T (α)

1 = T
(β)
1 ∧ w(α) = w(β).

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 19

bad1 defines an input collision for P̃w(α) . For i ∈ {2, 3}, badi defines an impossible output
for P̃ in the finalization function, that is, the input blocks are distinct and the tweaks are
the same, but the output is the same.

6.2.3 Upper Bound of Pr[T2 ∈ Tbad]

We upper-bound the four probabilities in the ideal world Pr[zero], Pr[bad1|¬zero], Pr[bad2],
and Pr[bad3], because

Pr[T2 ∈ Tbad] ≤ Pr[zero] + Pr[bad1|¬zero] + Pr[bad2] + Pr[bad3] .

The upper bounds of Pr[bad1|¬zero], Pr[bad2] and Pr[bad3] (given below) give

Pr[T2 ∈ Tbad] ≤ Pr[zero] +
∑
α∈[qM]

∑
β∈[α−1]

(
δ1(α, β) + 3δ2(α)

2n

)
+ 0.5q2

M
22n .

Upper Bounding Pr[bad1|¬zero]. The following cases are considered.

1. ∃α, β ∈ [qM] s.t. α 6= β ∧ (X(α)
1 , Y

(α)
1) = (X(β)

1 , Y
(β)
1)∧w(α) = w(β). These collisions

are of the forms

X
(α)
1 = X

(β)
1 ⇔ H

(α)
1 = H

(β)
1 Y

(α)
1 = Y

(β)
1 ⇔ H

(α)
2 = H

(β)
2 .

The probability that this case occurs is at most∑
α∈[qM]

∑
β∈[α−1]

δ1(α, β) .

2. ∃α, β ∈ [qM] s.t. (X(α)
1 , Y

(α)
1) = (X(β)

2 , Y
(β)
2) ∧ w(α) = w(β). These collisions are of

the forms

X
(α)
1 = X

(β)
2 ⇔ H

(α)
1 = π(H(β)

2)⊕ π−1(T (β)
1 ⊕ T (β)

2)

Y
(α)
1 = Y

(β)
2 ⇔ H

(α)
2 = π−1(T (β)

1 ⊕ T (β)
2).

Fix α, β, H(α)
1 , H(β)

2 , and T (β)
2 . Regarding X(α)

1 = X
(β)
2 , as T (β)

1 is chosen uniformly
at random from {0, 1}n, we have Pr[X(α)

1 = X
(β)
2] ≤ 1/2n. Regarding Y (α)

1 = Y
(β)
2 ,

we have Pr[Y (α)
1 = Y

(β)
2] ≤ δ2(α). Summing the upper bound for each combination

(α, β), the probability that this case occurs is at most∑
α∈[qM]

∑
β∈[α−1]

δ2(α)
2n .

3. ∃α, β ∈ [qM] s.t. α 6= β ∧ (X(α)
2 , Y

(α)
2) = (X(β)

2 , Y
(β)
2)∧w(α) = w(β). These collisions

are of the forms

X
(α)
2 = X

(β)
2 ⇔ π(H(α)

2)⊕ π−1(T (α)
1 ⊕ T (α)

2) = π(H(β)
2)⊕ π−1(T (β)

1 ⊕ T (β)
2)

Y
(α)
2 = Y

(β)
2 ⇔ π−1(T (α)

1 ⊕ T (α)
2) = π−1(T (β)

1 ⊕ T (β)
2).

Fix α, β, H(β)
2 , T (α)

2 , T (β)
1 and T

(β)
2 . Regarding Y (α)

2 = Y
(β)
2 , as T (β)

1 is chosen
uniformly at random from {0, 1}n, we have Pr[Y (α)

2 = Y
(β)
2] ≤ 1/2n. Regarding

X
(α)
2 = X

(β)
2 , fixing T (β)

1 , by H(α)
2 , we have Pr[X(α)

2 = X
(β)
2] ≤ δ2(α). Summing the

upper bound for each (α, β), the probability that this case occurs is at most∑
α∈[qM]

∑
β∈[α−1]

δ2(α)
2n .

20 LM-DAE

Hence, we have

Pr[bad1|¬zero] ≤
∑
α∈[qM]

∑
β∈[α−1]

(
δ1(α, β) + 2δ2(α)

2n

)
.

Upper Bounding Pr[bad2]. First fix α, β ∈ [qM] such that α 6= β. The collisions
Y

(α)
1 = Y

(β)
1 and X(α)

2 = X
(β)
2 are of the forms

Y
(α)
1 = Y

(β)
1 ⇔ H

(α)
2 = H

(β)
2

X
(α)
2 = X

(β)
2 ⇔ π(H(α)

2)⊕ π−1(T (α)
1 ⊕ T (α)

2) = π(H(β)
2)⊕ π−1(T (β)

1 ⊕ T (β)
2).

Fix H(β)
2 , T (α)

2 , T (β)
1 , and T (β)

2 . Regarding Y (α)
1 = Y

(β)
1 , we have Pr[Y (α)

1 = Y
(β)
1] ≤ δ2(α).

Regarding X(α)
2 = X

(β)
2 , as T (α)

1 is chosen uniformly at random from {0, 1}n, we have
Pr[X(α)

2 = X
(β)
2] ≤ 1/2n. Summing the upper bound for each (α, β), we have

Pr[bad2] ≤
∑
α∈[qM]

∑
β∈[α−1]

δ2(α)
2n .

Upper Bounding Pr[bad3]. First fix α, β ∈ [qM] such that α 6= β, and fix T
(β)
1 and

T
(α)
2 . Regarding the condition T

(α)
1 = T

(β)
1 , as T (α)

1 is chosen uniformly at random
from {0, 1}n, we have Pr[T (α)

1 = T
(β)
1] ≤ 1/2n. Regarding the condition Y

(α)
2 = Y

(β)
2 ,

Y
(α)
2 = Y

(β)
2 ⇔ π−1(T (α)

1 ⊕ T
(α)
2) = π−1(T (β)

1 ⊕ T
(β)
2) is satisfied. As T (α)

2 is chosen
uniformly at random from {0, 1}n, we have Pr[Y (α)

2 = Y
(β)
2] ≤ 1/2n. Summing the upper

bound for each (α, β), we have

Pr[bad3] ≤ 0.5q2
M

22n .

6.2.4 Lower Bound of Pr[T1=τ]
Pr[T2=τ]

Let τ ∈ Tgood. Let pH be the probability that a hash function is compatible with τ .
Regarding Pr[T2 = τ], in the ideal world, for each α ∈ [qM], T (α) is chosen uniformly

at random from {0, 1}2n. We thus have

Pr[T2 = τ] = pH ·
1

22nqM
.

Next, Pr[T1 = τ] is lower bounded. By bad2 and bad3, one has Pr[T1 = τ] > 0. Let
σ[w, Y] be the number of input blocks to P̃w,Y . Then, we have

Pr[TR = τ] = pH ·
∏

w∈[7,15],Y ∈{0,1}n

1
(2n)σ[w,Y]

≥
∏

w∈[7,15],Y ∈{0,1}n

1
(2n)σ[w,Y] .

By ¬bad1, we have ∑
w∈[7,15],Y ∈{0,1}n

σ[w, Y] = 2qM

as the total number of TRP calls in the finalization is 2qM, and thus

Pr[T1 = τ] ≥ pH ·
1

22nqM
.

Finally, these bounds give
Pr[T1 = τ]
Pr[T2 = τ] ≥ 1 .

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 21

Ht1
l

Hb1

Dl
Xl

Yl

1
D1

H1

H2Hbl

Htl
2

Ht2

Hb2

D2

Ht3

Hb3

X1

Y1

X2

Y2
⊕p

⊕

⊕

⊕

⊕

⊕0n

0n
dl d2

p
d1

p

Figure 10: LM-DAE.Hash with indices counted from the last TRP call to the first one.

6.2.5 Upper Bound of Advprf
LM-DAE.MAC[P̃]

(qM)

Putting the above bounds into Lemma 3, we obtain the upper bound in Lemma 1.

6.3 Proof of Lemma 2: Upper Bounding δ1(α, β)
In this proof, values and variables for (A(α),M (α)) (resp. (A(β),M (β))) are denoted by
using the black dot • (resp. the star ?) instead of (α) (resp. (β)). Hence, we upper-bound
the probability that for two distinct inputs (A•,M•), (A?,M?) such that w• = w? (i.e.,
u• = u? and v• = v?), the collisions (H•1 , H•2) = (H?

1 , H
?
2) occur, under the assumption

that zero does not occur.
In the following analysis, we count indices from the last TRP call in the hash function

and then use Sans-serif font for the values with the count rule such as Hti,Hbi, which are
the i-th internal states values (see Fig. 10). The input block and tweaks for i-th TRP
inputs (the indices are counted from the last TRP call) are denoted by Xi and (di,Yi),
respectively, where

di := dm−i+1 (i ∈ [m]) and di+m := da−i+1 (i ∈ [a]).

Data blocks are denoted by

Di := Mm−i+1 (i ∈ [m]) and Di+m := Aa−i+1 (i ∈ [a]).

Let
I 6= :=

{
i
∣∣i ∈ [max{`•, `?}] ∧ (D•i , d•i) 6= (D?i , d?i)

}
be a set of indices with distinct pairs of data block and tweak, where Di := ε if i > `. Note
that as (A•,M•) 6= (A?,M?), |I 6=| ≥ 1 is satisfied.

In this analysis, we consider three cases.
• Case 1: ∀i ∈ [min{`•, `?}] : (D•i , d•i) = (D?i , d?i).

• Case 2: ∃i ∈ [min{`•, `?}] s.t. (D•i , d•i) 6= (D?
i , d?i) ∧ D•γ 6= D?

γ ∧ d•γ = d?γ for γ =
min I 6=.

• Case 3: ∃i ∈ [min{`•, `?}] s.t. (D•i , d•i) 6= (D?i , d?i) ∧ d•γ 6= d?γ for γ = min I 6=.

For each case, the probability δ1(α, β) = Pr[(H•1 , H•2) = (H?
1 , H

?
2)|¬zero] where P̃ $←−

P̃erm (T W, {0, 1}n) is upper bounded below. These upper bounds give

δ1(α, β) ≤ `• + `?
(2n − σM)2 .

6.3.1 Case 1

In this case, `• 6= `? must be satisfied. Without loss of generality, we assume that `• > `?.
Then, (H•1 , H•2) = (H?

1 , H
?
2) ⇔ (Ht•`?+1,Hb•`?+1) = (0n, 0n) is satisfied. By ¬zero, in

Case 1, we have
δ1(α, β) = 0 .

22 LM-DAE

⊕π

⊕

⊕π

⊕

⊕π

⊕

⊕π

⊕

Htγ
γγ+1

γγ+1

Hbγ

Hbγ

Dγ

Dγ

Xγ

Hbγ+1

Hbγ+1

Htγ+1

Htγ+1

Hbγ+2

Hbγ+2

Dγ+1

Dγ+1

Yγ

Xγ
Yγ

≠ == =≠

Htγ

Xγ+1
Yγ+1⊕π

⊕

⊕π

⊕

γ+2Dγ+2

Dγ+2

Htγ+2

Htγ+2

Xγ+2
Yγ+2

Htγ+3

Hbγ+3

Hbγ+3

Figure 11: Hash procedures in Case 2, where tweaks for domain separation are omitted.

6.3.2 Case 2

Let γ := min I 6=. In this case, (H•1 , H•2) = (H?
1 , H

?
2) ⇔ (X•γ ,Y•γ) = (X?γ ,Y?γ) is satisfied,

where

X•γ = X?γ ⇔ D•γ ⊕ Ht•γ+1 = D?γ ⊕ Ht?γ+1,

Y•γ = Y?γ ⇔ Hb•γ+1 = Hb?γ+1 ⇔ Ht•γ+1 ⊕ π(Hb•γ+2) = Ht?γ+1 ⊕ π(Hb?γ+2).

See also Fig. 11. Thus, one has (H•1 , H•2) = (H?
1 , H

?
2)⇔

Ht•γ+1 ⊕ Ht?γ+1 = D•γ ⊕ D?γ and π(Hb•γ+2)⊕ π(Hb?γ+2) = D•γ ⊕ D?γ .

By D•γ 6= D?γ , to have the collision (H•1 , H•2) = (H?
1 , H

?
2), the following conditions must be

satisfied:

Ht•γ+1 6= Ht?γ+1 and π(Hb•γ+2) 6= π(Hb?γ+2) (i.e, Hb•γ+2 6= Hb?γ+2).

We first upper-bound Pr[Ht•γ+1 ⊕ Ht?γ+1 = D•γ ⊕ D?
γ]. By Ht•γ+1 6= Ht?γ+1, the TRP

outputs Ht•γ+1 and Ht?γ+1 are distinct variables and chosen uniformly at random from at
least 2n − σM values in {0, 1}n. Using the randomness of Ht•γ+1 or Ht?γ+1, we have

Pr[Ht•γ+1 ⊕ Ht?γ+1 = D•γ ⊕ D?γ] ≤ 1
2n − σM

.

We next upper-bound Pr[π(Hb•γ+2)⊕ π(Hb?γ+2) = D•γ ⊕ D?γ], where Hbγ+2 = Htγ+2 ⊕
π(Htγ+3 ⊕ π(Htγ+4 ⊕ π(· · ·π(Ht` ⊕ π(0n)) · · ·))). Without loss of generality, we assume
that `• ≥ `?. Then, the following cases are considered.

• In the first case, X•γ+2 collides with at least one of {X•γ+3, . . . ,X•`• ,X
?
γ+2, . . . ,X?`?},

which are input blocks with indices greater than γ + 1 except for X•γ+2. X•γ+2 =
Ht•γ+3 ⊕ D•γ+2 is satisfied, and Ht•γ+3 is chosen uniformly at random from at least
2n−σM values in {0, 1}n. By using the randomness of Ht•γ+3, the collision probability
is at most

`• − 1 + `?
2n − σM

.

• In the second case, no such collision occurs, that is, none of {X•γ+3, . . . ,X•`• ,X
?
γ+2, . . . ,X?`?}

is equal to X•γ+2. Then, Pr[π(Hb•γ+2)⊕π(Hb?γ+2) = D•γ⊕D?γ] is upper-bounded, using

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 23

⊕π

⊕

⊕π

⊕

⊕π

⊕

⊕π

⊕1

v

u Htγ

Htγ
γγ+1

γγ+1

Hbγ

Hbγ

v

⊕π

⊕

⊕π

⊕

⊕π

⊕

⊕π

⊕1

v

1

γ+j-1
Htγ+ju

γ+j

γ+j-1γ+j =

independent

independent
Hbγ+1

Hbγ+1

Htγ+1

Htγ+1

Figure 12: Hash procedures in Case 3, where tweaks for domain separation are in the
TRP boxes.

the randomness of Ht•γ+2, as Hb•γ+2 = Ht•γ+2 ⊕ π(Hb•γ+3). This case ensures that
Ht•γ+2 is a variable distinct from other variables used to define Hb•γ+3 or Hb?γ+2, which
are {Ht•γ+3, . . . ,Ht•`• ,Ht?γ+2,Ht?γ+3, . . . ,Ht?`?}. Thus, as Ht•γ+2 is chosen uniformly at
random from at least 2n − σM values in {0, 1}n, we have

Pr[π(Hb•γ+2)⊕ π(Hb?γ+2) = D•γ ⊕ D?γ] ≤ 1
2n − σM

.

Summing the upper bounds gives

Pr[π(Hb•γ+2)⊕ π(Hb?γ+2) = D•γ ⊕ D?γ] ≤ `• + `?
2n − σM

.

Finally, in Case 2, we have

δ1(α, β) ≤ `• + `?
(2n − σM)2 .

6.3.3 Case 3

Let γ := min I 6=. In this case, (H•1 , H•2) = (H?
1 , H

?
2)⇔ Ht•γ = Ht?γ ∧Hb•γ = Hb?γ is satisfied,

where

Hb•γ = Hb?γ ⇔ Ht•γ ⊕ π(Ht•γ+1 ⊕ π(Hb•γ+2)) = Ht?γ ⊕ π(Ht?γ+1 ⊕ π(Hb?γ+2)).

Hence, we have (H•1 , H•2) = (H?
1 , H

?
2)⇔

Ht•γ = Ht?γ and Ht•γ+1 ⊕ π(Hb•γ+2) = Ht?γ+1 ⊕ π(Hb?γ+2),

where Htγ = P̃ dγ ,Yγ (Xγ) and Htγ+1 = P̃ dγ+1,Yγ+1(Xγ+1). By d•γ 6= d?γ , one has a•, a?,m•,m? >
0 and m• 6= m?. Without loss of generality, assume that m• > m?. Then, as shown in
Fig. 12, by v• 6= u?, Ht•γ and Ht?γ are independent variables, and by u• 6= v•, Ht•γ and
Ht•γ+j that is defined by P̃ with u• are independent variables. Ht•γ and Ht•γ+j are chosen
uniformly at random from at least 2n − σM values in {0, 1}n. By the randomness of Ht•γ+j ,
we have

Pr[Ht•γ+1 ⊕ π(Hb•γ+2) = Ht?γ+1 ⊕ π(Hb?γ+2)] ≤ 1
2n − σM

,

24 LM-DAE

and by the randomness of Ht•γ , we have

Pr[Ht•γ = Ht?γ] ≤ 1
2n − σM

.

Thus, in Case 3, we have

δ1(α, β) ≤ 1
(2n − σM)2 .

6.4 Proof of Lemma 2: Upper Bounding δ2(α)

By A(α) 6= ε ∨M (α) 6= ε, the hash value H(α)
2 is defined by using the output of the last

TRP call, which is chosen uniformly at random from at least 2n − σM values in {0, 1}n.
Thus, for any Z, we have

δ2(α) ≤ 1
2n − σM

.

7 Proof of Theorem 3
First, the keyed TBC ẼK is replaced with a TRP P̃ , and thus we have

Advdae
LM-DAE[ẼK]

(Q, t) ≤ Advdae
LM-DAE[P̃]

(Q) + Advtprp
ẼK

(σ, t+O(σ)) .

Hereafter, the dae-advantage Advdae
LM-DAE[P̃]

(qE , qD, σ) is upper-bounded, where adver-
saries are computationally unbounded algorithms and the complexities are solely measured
by the numbers of queries and their lengths. Without loss of generality, adversaries are
deterministic.
Remark 3. The beginning of the proof is the same as the proof of Theorem 1 in [RS06],
which shows that the dae-advantage Advdae

LM-DAE[P̃]
(Q) is upper-bounded by the advantage

of distinguishing ciphertexts from random strings plus the prf-advantage of LM-DAE.MAC
plus (qE + qD)/22n. As the proof is simple, and for the sake of completeness, we show the
proof in the following proof.

7.1 Strategy and Upper Bound of Advdae
LM-DAE[P̃](Q)

First, the MAC function LM-DAE.MAC[P̃] is replaced with a random functionM. The
modified DAE (LM-DAE[P̃] with M) is denoted by LM-DAE1[P̃ ,M]. The encryption
(resp. decryption) is denoted by LM-DAE.Enc1[P̃ ,M] (resp. LM-DAE.Dec1[P̃ ,M]). By
the replacement, we have

Advdae
LM-DAE[P̃]

(Q) ≤ Advdae
LM-DAE1[P̃ ,M]

(Q) + Advprf
LM-DAE.MAC[P̃]

(σM) .

The upper bound of Advprf
LM-DAE.MAC[P̃]

(σM) is given in Theorem 2. The upper bound of

Advdae
LM-DAE1[P̃ ,M]

(Q) is given in Eq. (2) in Subsection 7.2. We thus have

Advdae
LM-DAE[P̃]

(Q) ≤ σ2
E

22n + qD
22n + σM

2n − σM
+ 2.5σ2

M
(2n − σM)2n .

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 25

7.2 Upper Bounding Advdae
LM-DAE1[P̃ ,R](Q)

A middle system between LM-DAE1[P̃ ,M] and an ideal system ($,⊥) is introduced:
LM-DAE1⊥[P̃ ,M] = (LM-DAE.Enc1[P̃ ,M],⊥). Using the middle system, we have

Advdae
LM-DAE1[P̃ ,M]

(Q) ≤ max
A

(
Pr[ALM-DAE1[P̃ ,M] = 1]− Pr[ALM-DAE1⊥[P̃ ,M] = 1]

)
+ max

A

(
Pr[ALM-DAE1⊥[P̃ ,M] = 1]− Pr[A$,⊥ = 1]

)
≤ max

A

(
Pr[ALM-DAE1[P̃ ,M] = 1]− Pr[ALM-DAE1⊥[P̃ ,M] = 1]

)
+ max

A

(
Pr
[
ALM-DAE.Enc1[P̃ ,M] = 1

]
− Pr

[
A$ = 1

])
.

These upper bounds are given in Eqs. (3) and (4) in Subsecs. 7.3 and 7.4, respectively. We
thus have

Advdae
LM-DAE1[P̃ ,M]

(Q) ≤ σ2
E

22n + qD
22n . (2)

7.3 Upper Bounding Pr[ALM-DAE1[P̃ ,M] = 1]−Pr[ALM-DAE1⊥[P̃ ,M] = 1]

If all responses of decryption queries to the system LM-DAE1[P̃ ,M] are⊥, then LM-DAE1[P̃ ,M]
and LM-DAE1⊥[P̃ ,M] are indistinguishable. Hence, the difference Pr[ALM-DAE1[P̃ ,M] =
1] − Pr[ALM-DAE1⊥[P̃ ,M] = 1] is upper-bounded by the probability that some response
of decryption query to LM-DAE.MAC[P̃ ,M] is not reject. As an output of a random
functionM is chosen uniformly at random from {0, 1}2n, the probability of forging a tag
is 1/22n, and thus we have

max
A

(
Pr[ALM-DAE1[P̃ ,M] = 1]− Pr[ALM-DAE1⊥[P̃ ,M] = 1]

)
≤ qD

22n . (3)

7.4 Upper Bounding Pr
[
ALM-DAE.Enc1[P̃ ,M] = 1

]
− Pr

[
A$ = 1

]
An output of LM-DAE.Enc1[P̃ ,M] is a set of an output of M and a ciphertext that is
defined by xoring a plaintext with an output of LM-DAE.PRNG[P̃]. Thus, the difference is
upper-bounded by the probability of distinguishing between the following system and $:

LM-DAE.Enc10[P̃ ,M](A,M) := (M(A,M), LM-DAE.PRNG[P̃](M(A,M),m))

where m = d|M |/ne. That is,

max
A

(
Pr
[
ALM-DAE.Enc1[P̃ ,M] = 1

]
− Pr

[
A$ = 1

])
≤ max

A

(
Pr
[
ALM-DAE.Enc10[P̃ ,M] = 1

]
− Pr

[
A$ = 1

])
,

where for each query, $(A,M) returns a random string of length |LM-DAE.Enc10[P̃ ,M](A,M)|.
We say the world with LM-DAE.Enc10[P̃ ,M] (resp. $) is a left (resp. right) world.

The proof for upper bounding the distinguishing probability can be done by the same
analysis as the proof of Lemma 1. Hereafter, first, an overview of the proof is given, and
then the details of the proof are given.

26 LM-DAE

7.4.1 Overview

As the proof of Lemma 1, this proof uses the coefficient H technique, and we can ensure
that LM-DAE.Enc10[P̃ ,M](A,M) and $ are indistinguishable if (1) no collision in 2n-bit
inputs to P̃ in LM-DAE.PRNG[P̃] occurs (corresponding with the bad event bad1 in the
proof of Lemma 1) and (2) there is no impossible output for P̃ , that is, the n-bit tweaks
are the same and the n-bit input blocks are distinct but the n-bit outputs are the same
(corresponding with the bad event bad2 and bad3 in the proof of Lemma 1). By using
the coefficient H technique, these probabilities are evaluated in the right world, and using
the randomness of $, the probability that the event (1) occurs can be upper-bounded by(
σE
2
)
/22n ≤ 0.5σ2

E/22n (as the 2n-bit inputs are random), and the probability that the
event (2) occurs can be upper-bounded by

(
σE
2
)
/22n ≤ 0.5σ2

E/22n (as the n-bit tweaks and
the n-bit outputs are random). Then, assuming that (1) and (2) do not occur, by the
same analysis as the proof of Lemma 1, we can ensure that LM-DAE.Enc10[P̃ ,M](A,M)
and $ are indistinguishable. Hence, we have

max
A

(
Pr
[
ALM-DAE.Enc10[P̃ ,M] = 1

]
− Pr

[
A$ = 1

])
≤ σ2

E
22n .

7.4.2 Strategy, Notation, and Transcript

We upper-bound the probability of distinguishing the left world from the right world, using
the coefficient H technique (see the definition and Lemma 3 in Subsection 6.2). Let T1 be
a transcript in the left world obtained by sampling P̃ andM. Let T2 be a transcript in
the right world obtained by sampling $. Let T be a set of all valid transcripts.

For α ∈ [qE], the plaintext length in blocks m at the α-th query is denoted by mα, and
values and variables defined are denoted by using the superscript of (α), e.g., M (α), T (α),
etc.

In the both worlds, A obtains the following transcript after all queries:

τ :=
{

(A(1),M (1), R(1), T (1)), . . . , (A(qE),M (qE), R(qE), T (qE))
}
,

where T (α) =M(A(α),M (α)) and R(α) = LM-DAE.PRNG[P̃](T (α),mα) in the left world
and (R(α), T (α)) = $(A(α),M (α)) in the right world. This analysis uses the following
notations.

• R(α) = Rt(α)
1 ‖ · · · ‖Rt(α)

mα , where α ∈ [qE] and |Rt(α)
i | = n for i ∈ [mα].

• T (α) = Rt(α)
0 ‖Rb(α)

0 , where |Rt(α)
0 | = n and |Rb(α)

0 | = n.

• Rb(α)
i = Rt(α)

i ⊕ π(Rb(α)
i−1) for i ∈ [mα].

Note that in the left world, Rt(α)
i is the output of the i-th TRP call and the input of the

(i+ 1)-th TRP call, and Rb(α)
i is the tweak of the (i+ 1)-th TRP call.

7.4.3 Definitions of Good and Bad Transcripts

Bad transcripts Tbad are defined so that one of the following conditions is satisfied. Good
transcripts Tgood are defined as Tgood = T \Tbad.

• bad1 ⇔ ∃α, β ∈ [qE], i ∈ [mα], j ∈ [mβ] s.t.
(α, i) 6= (β, j) ∧ (Rt(α)

i−1,Rb(α)
i−1) = (Rt(β)

j−1,Rb(β)
j−1).

• bad2 ⇔ ∃α, β ∈ [qE], i ∈ [mα], j ∈ [mβ] s.t.
(α, i) 6= (β, j) ∧ Rt(α)

i−1 6= Rt(β)
j−1 ∧ Rb(α)

i−1 = Rb(β)
j−1 ∧ Rt(α)

i = Rt(β)
j .

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 27

bad1 defines a collision in inputs to TRP. bad2 defines an impossible output for P̃ 0, that
is, the input blocks are distinct and the tweaks are the same, but the output is the same.

7.4.4 Upper Bounding Pr[T2 ∈ Tbad]

Since Pr[T2 ∈ Tbad] ≤ Pr[bad1] + Pr[bad2], we upper bound the two probabilities in the
right world Pr[bad1] and Pr[bad2].

Regarding Pr[bad1], we first fix α, β ∈ [qE], i ∈ [mα], j ∈ [mβ] such that (α, i) 6= (β, j),
and then upper bound Pr[(Rt(α)

i−1,Rb(α)
i−1) = (Rt(β)

j−1,Rb(β)
j−1)]. Regarding Rt(α)

i−1 = Rt(β)
j−1,

as Rt(α)
i−1 is chosen uniformly at random from {0, 1}n, we have Pr[Rt(α)

i−1 = Rt(β)
j−1] ≤ 1/2n.

Regarding the condition Rb(α)
i−1 = Rb(β)

j−1, the collision is of the form Rb(α)
0 = Rb(β)

j−1 if
i = 1; Rt(α)

1 ⊕ π(Rb(α)
0) = Rb(β)

j−1 if i = 2; Rt(α)
i−1 ⊕ π(Rt(α)

i−2 ⊕ π(Rb(α)
i−3)) = Rb(β)

j−1 if i > 2.
As Rb(α)

0 (i = 1, 2) and Rt(α)
i−2 (i > 2) are chosen uniformly at random from {0, 1}n, we

have Pr[Rb(α)
i−1 = Rb(β)

j−1] ≤ 1/2n. Summing the upper bound for each α, β, i, j gives

Pr[bad1] ≤
(
σE
2

)
· 1

22n ≤
0.5σ2

E
22n .

Regarding Pr[bad2], we first fix α, β ∈ [q], i ∈ [mα], j ∈ [mβ] such that (α, i) 6= (β, j),
and then upper-bound Pr[Rb(α)

i−1 = Rb(β)
j−1 ∧ Rt(α)

i = Rt(β)
j]. The analyses of the Rt and

Rb collision events are the same as those of Pr[bad1], and thus we have

Pr[bad2] ≤
(
σE
2

)
· 1

22n ≤
0.5σ2

E
22n .

These upper bounds give

Pr[T2 ∈ Tbad] ≤ Pr[bad1] + Pr[bad2] ≤ σ2
E

22n .

7.4.5 Lower Bounding Pr[T1=τ]
Pr[T2=τ]

Let τ ∈ Tgood.
First, Pr[T2 = τ] is evaluated. In the right world, for each α ∈ [q], T (α) is chosen

uniformly at random from {0, 1}2n, and R(α) is chosen uniformly at random from {0, 1}nmα .
As
∑
α∈[qE]mα = σE , we have

Pr[T2 = τ] =
qE∏
α=1

(
1

22n ·
1

2nmα

)
= 1

22nqE+
∑

α∈[qE]
nmα

= 1
22nqE+nσE

.

Next, Pr[T1 = τ] is lower-bounded. By bad2, one has Pr[T1 = τ] > 0. Let σY be the
number of input blocks to P̃ 0,Y . For each α ∈ [q], T (α) is chosen uniformly at random
from {0, 1}2n, and thus we have

Pr[T1 = τ] =
(

1
22n

)qE
·

∏
Y ∈{0,1}n

1
(2n)σY

≥
(

1
22n

)qE
·

∏
Y ∈{0,1}n

1
(2n)σY .

By ¬bad1,
∑
Y ∈{0,1}n σY = σE is satisfied, and thus we have

Pr[T1 = τ] ≥ 1
22nqE+nσE

.

Finally, these bounds give
Pr[T1 = τ]
Pr[T2 = τ] ≥ 1 .

28 LM-DAE

7.4.6 Upper Bound of maxA

(
Pr
[
ALM-DAE.Enc10[P̃ ,M] = 1

]
− Pr

[
A$ = 1

])
Putting these bounds into Lemma 3 gives

max
A

(
Pr
[
ALM-DAE.Enc10[P̃ ,M] = 1

]
− Pr

[
A$ = 1

])
≤ σ2

E
22n . (4)

8 TweSKINNY: SKINNY with Small Additional Tweak
We extend SKINNY-128-256 to process 4 extra bits of tweak by applying the elastic-
tweak framework proposed by Chakraborti et al. [CDJ+19a]. The construction is called
TweSKINNY-128-256. We first recall the elastic-tweak framework and present some
improvements. We then describe the specification of TweSKINNY-128-256 and finally
explain the design rationale and security evaluation.

8.1 Elastic-Tweak Framework and Our Improvements
The elastic-tweak is a dedicated method for converting a BC into a TBC with a small
tweak, e.g. 4, 8, and 16 bits [CDJ+19a]. The elastic-tweak is defined with four parameters
(θ1, θ2, θ3, θ4), where an input of size θ1 bits is expanded to θ2 bits by using a linear
function and then the expanded tweak is added to θ3 bytes of the internal state in every
θ4 rounds of the target BC. For example, TweAES[4, 8, 8, 2] proposed by Chakraborti et
al. [CDJ+19a] converts AES into a TBC to accept a 4-bit tweak, where a 4-bit tweak is
expanded to 8 bits by a simple linear code and each bit of the expanded tweak is added to
8 bytes of the state in every 2 rounds.

Regarding the security, as long as the small tweak value is 0, the elastic-tweak does not
modify the original scheme. Hence the security concern is only the case where the attacker
exploits the tweak. The core argument is that the linear expansion of the small tweak
makes the attack difficult, e.g., it ensures differences in many bytes when the tweak has a
non-zero difference.

Here we point out several points of the elastic-tweak that can be improved.

A. The expanded tweak must be stored in a register, which requires the memory of the
expanded size, or θ2 bits.

B. The value of the expanded tweak is the same in all places, which may cause a security
concern.

C. The tweak addition in every θ4 rounds requires a selector in the hardware implemen-
tation. Note that the designers of the elastic-tweak [CDJ+19a] intentionally make θ4
sparse because it helps them to quickly evaluate the security.

In our design, we improve the above points as follows.

• Points A and B are solved together. Instead of storing θ2-bit expanded tweak, we
generate it on the fly from the θ1-bit state by applying an LFSR of θ1 bits denoted
by LFSR iteratively. Let tw be a θ1-bit tweak and θ2 = ` · θ1. Then, we compute the
expanded tweak as tw‖LFSR1(tw)‖ · · · ‖LFSR`−1(tw).

• For point C, we decided to add the tweak in every round, namely θ4 = 1, which
makes the round function identical for all rounds.

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 29

8.2 Specification of TweSKINNY-128-256
The improved elastic-tweak is applied to SKINNY-128-256 [BJK+16], which is a TBC
designed by Beierle et al. supporting a 128-bit block and up to 256 bits of a combination of
a key and a tweak (tweakey). In our scheme, both the key and the (big) tweak are 128 bits.
When tw = 0, the computation is exactly the same as SKINNY-128-256, hence the new
components introduced by TweSKINNY-128-256 are a linear update of tw in every round
and an addition of the expanded tweak to the state. The round function is illustrated in
Fig. 13. SKINNY-128-256 consists of 48 rounds. TweSKINNY-128-256 also consists of 48
rounds. Refer to Supplementary material A for the full description.

ARTK ARC ARt

SC SR MC

Byte
permutation

Byte
permutation

8-bit
LFSR

4-bit
LFSR

4-bit
LFSR

Figure 13: Round Function of TweSKINNY-128-256. Grey bits are the added bits.

SubCells (SC). Apply an 8-bit S-box to all 16 bytes in parallel.

AddRoundTweakey (ARTK). Two 128-bit states are initialized to a 128-bit key and a
128-bit tweak. In each round, 8 bytes in the top 2 rows of the both states are added
to the internal state. Then byte positions are permuted in the same way for two
128-bit tweakey states. Finally, each byte value is updated by an 8-bit LFSR only
for the second tweaky state.

AddRoundConstnat (ARC). A 4-bit and 2-bit round constant and a fixed 1-bit constant
0x2 are added to 3 bytes in Fig. 13.

AddRoundSmallTweak (ARt). A 4-bit state T is initialized to a small tweak. In each
round, T is added to the 4 LSBs of the third row in the rightmost column and is
updated by T ← LFSR(T), where LFSR is the 4-bit LFSR defined as x3‖x2‖x1‖x0 →
x0⊕x3‖x3‖x2‖x1. Then, T is added to the 4 LSBs of the fourth row in the rightmost
column and is updated by T ← LFSR(T).

ShiftRows (SR). Bytes in row i are rotated by i positions to right, i ∈ {0, 1, 2, 3}.

MixColumns (MC). Four bytes in each column are updated as (b0, b1, b2, b3)→ (b0⊕ b2⊕
b3, b0, b1 ⊕ b2, b0 ⊕ b2).

8.3 Design Rationale and Security Evaluation
To achieve 128-bit security, LM-DAE requires a TBC that supports a 128-bit block, a
128-bit key and a 132-bit tweak. We first decided to mainly rely on the existing TBC.
This motivated us to consider SKINNY-128-256.

30 LM-DAE

The next decision is how to process the extra 4-bit tweak. A natural choice is to use
SKINNY-128-384. However, increasing 128 bits of the tweak space only for the 4-bit domain
separation overly increases the hardware implementation cost. Moreover, for SKINNY-128-
384, security will fall to the so-called TK3 setting, which is weaker than SKINNY-128-256.
This motivated us to extend the design of SKINNY-128-256 by applying the elastic-tweak.
We also consider that the role of the 4-bit of tweak (for domain separation) is different from
the 128-bit tweak, thus developing a dedicated method to handle those 4 bits is reasonable.
Indeed, in the mode, the value of the domain separation is usually fixed. In particular, it
is fixed to 0 during the encryption. Then the security of TweSKINNY-128-256 is the same
as that of SKINNY-128-256 as long as the encryption function is analyzed.

As mentioned above, the elastic tweak has 4 parameters, and θ1 is fixed to 4 bits from
the mode requirement and θ4 is fixed to 1 to improve the implementation. There are
still design spaces for θ2, θ3, and the position of θ3 bytes that are xored during the ARt
operation. Following the strategy of the expanded tweak, we set θ2 > θ1. We tested several
choices by evaluating the minimum number of active S-boxes with MILP.

A valuable case analysis is depicted in Fig. 14, which adds the expanded tweak to 4 bytes
in the last row. We found that the minimum number of active bytes is 4r for r rounds.

ARTK ARt

SC SR MC

Figure 14: One-Round Iterative Differential in Row-wise Addition. ARC is omitted.

Having 4 active bytes in every round ensures the maximum differential characteristic
probability of (2−2)4 = 2−8 that ensures 2−128 after 16 rounds. This is not a bad choice,
but the 1-round iterative characteristic may cause a vulnerability against an unknown
cryptanalytic method. This motivated us to add the expanded tweak at least in two rows.7

In Table 3, we compare the minimum number of active S-boxes in several constructions.
For SKINNY-128-256, we borrowed the number of active S-boxes from the design document
[BJK+16]. Attempt 1 is our attempt analyzed in Fig. 14 that enables the 1-round iterative
differential characteristic. Attempt 2 is our attempt in which the size of the expanded tweak
is 16 bits and the tweak is added to 4 bytes in the ith row and jth column i, j ∈ {2, 3}.
TweSKINNY-128-256 is our final attempt specified and illustrated in Fig. 13. SK means
the single-key. TK1 means the single-key but the (large) tweak has some difference. TK2
implies the related-key-related-tweak setting. In our attempts, by setting ∆tw = 0, the
constructions have the same number of active S-boxes as SKINNY-128-256. Hence only
numbers for ∆tw 6= 0 are listed. SKINNY-128-256 has only two tweakey states, thus TK3
cannot be used. If we consider using SKINNY-128-384 for the extra 4-bit tweak, TK3
needs to be considered.

Table 3 shows that our final choice is stronger than Attempt 1. Attempt 2 is more
secure because of two additional bytes affected by the ARt operation. However, if we
compute 1 or 2 more rounds by our final choice, it would reach the similar number of
rounds, and we thus adopted our final choice. Finally, compared to the original SKINNY-

7We observed that similar 2-round iterative differentials can be built even by adding the tweak to 4
bytes in the third row. We want to avoid adding the tweak in the first two rows in order to avoid the
cancellation against the differences in tweakey.

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 31

Table 3: Comparison of the Minimum Number of Active S-boxes.

Construction Setting 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SKINNY-128-256 SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66 75
Attempt 1 SK, ∆tw 6= 0 0 4 11 16 20 24 28 32 36 40 44 48 52 56 60 64
Attempt 2 SK, ∆tw 6= 0 0 4 9 15 23 29 34 39 36 45 50 54 58 64 70 74
TweSKINNY-128-256 SK, ∆tw 6= 0 0 2 5 10 16 22 27 32 35 38 43 50 55 60 65 68
SKINNY-128-256 TK1 0 0 1 2 3 6 10 13 16 23 32 38 41 45 49 54
Attempt 1 TK1, ∆tw 6= 0 0 4 8 12 16 24 29 33 39 43 47 52 56 61 65 -
Attempt 2 TK1, ∆tw 6= 0 0 4 9 15 21 25 30 36 43 48 52 60 65 70 75 81
TweSKINNY-128-256 TK1, ∆tw 6= 0 0 2 5 10 18 22 28 33 39 45 49 56 60 65 73 78
SKINNY-128-256 TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35 40
Attempt 1 TK2, ∆tw 6= 0 - - - - - - - - - - - - - - - -
Attempt 2 TK2, ∆tw 6= 0 0 4 9 15 20 23 29 34 41 45 51 57 61 68 73 79
TweSKINNY-128-256 TK2, ∆tw 6= 0 0 2 5 10 16 22 27 32 35 38 47 53 58 64 69 76
SKINNY-128-384 TK3 0 0 0 0 0 0 1 2 3 6 10 13 16 19 24 27

128-256, the small tweak slightly reduces the security in the SK setting. However, if the
attacker puts a difference both in the tweakey and a small tweak, the cancellation does
not occur frequently, and the number of active bytes actually increases from the original
SKINNY-128-256. Hence we believe that in the TK1 or TK2 settings, our design via the
elastic-tweak does not impose new security vulnerability.

The fact that TweSKINNY is the same as SKINNY for zero tweak allows us to skip
analyzing many attacks that do not exploit the additional tweak. The additional tweak
space is only 4 bits, hence many attacks cannot work in nature. Integral analysis is an
example; collecting 256 tweak values for one byte is impossible.

9 Hardware Implementation
We implement LM-DAE instantiated with TweSKINNY-128-256 in hardware, and compare
its performance with the conventional AE schemes PFB with SKINNYe-64-256 and
PFB_Plus with SKINNY-128-256; we chose them for their similarity to our scheme and the
availability of the detailed performance evaluation [NSS20]. We refer to these instantiations
as LM-DAE[TweSKINNY-128-256], PFB_Plus[SKINNYe-64-256], and PFB[SKINNY-128-
256]. Although our evaluation is limited to hardware, LM-DAE’s low-memory property
(see Table 1) is applicable to software implementation and should be useful to implement
a compact software that uses a small RAM footprint [MM13].

9.1 Comparing Register Sizes
We first compare the register sizes between the schemes with and without TI because they
dominate the circuit area in a compact implementation. We can obtain the non-TI register
sizes for 128-bit security by assigning s = 128 in Table 2.
Without TI: LM-DAE uses 384 (= 3 × 128) bits without TI, aligned with SUN-
DAE [BBLT18]. Note, however, that SUNDAE and ESTATE [CDJ+19b] need a 256-bit
primitive for s = 128, which is uncommon in lightweight cryptography, as discussed in
Section 1. Meanwhile, ZAE [IMPS17] with a 128-bit primitive has the larger register size
of 896 bits. In the non-deterministic AE category, PFB [NS20] and PFB_Plus [NSS20]
also use 384 bits, and they are the smallest.
With TI: LM-DAE uses 896 (= 7 × 128) bits with TI, the smallest among the other
DAEs with 128-bit security. The advantage of LM-DAE over SUNDAE comes from its

32 LM-DAE

Input
Previous TBC output Output

Previous tweak output
TBC output
Tweak output

Figure 15: The operational unit that covers all the block-wise operations in LM-DAE

smaller block size, which becomes ×3 in TI [NSS20], while the tweakey part becomes
×2 only. The non-deterministic schemes can have smaller register sizes (e.g., PFB’s 768
bits and PFB_Plus’ 704 bits) because the tweak storing the public nonce needs no SCA
countermeasure.

9.2 Design Policy
We set the circuit area as the primary performance target and prioritize it over latency and
throughput; the other AEs can be better than LM-DAE for speed-oriented optimization as
summarized in Tables 1 and 2.

For a fair comparison, we follow the design policy of the previous PFB_Plus and
PFB implementations [NSS20]. We design a coprocessor that defines a set of commands
for processing aligned blocks. The handling of exceptional cases such as padding in a
final block, and dispatching operations in an appropriate order is the main processor’s
responsibility. The design preserves a secret key during its lifetime, and thus there is no
need for feeding the key for each block processing.

We implement the design using Verilog at the register-transfer level. We do not make
gate-level optimization except explicit instantiation of scan flip-flop, a register with a
built-in selector, commonly used in the previous works [MPL+11, BJK+16, NS20, NSS20].

9.3 Implementation
Mode of Operation: LM-DAE’s operations on hashing, encryption, and decryption
are highly homogeneous, and the functional unit in Figure 15 sufficiently covers all the
block-wise processing. This simplicity enables the overhead of conditionally-used circuits
and selectors for switching between them to be reduced. Figure 16 shows the datapath
diagram of our implementation8.
Tweakey Assignment: We assign a 128-bit secret key and tweak into TK1 and TK2,
respectively, to eliminate the need for an inverse tweakey schedule. TweSKINNY-128-256
with the appropriate number of rounds brings the secret key in the TK1 back to its original
value after finishing the on-the-fly scheduling. The TK2 array does not come back to
the original state, but we can carry the final TK2 state to the next block processing
because LM-DAE integrates the TK2 schedule as π. As a result, we can simplify the
tweakey-schedule implementation by eliminating inverse operations.
Tweakey Array: We follow the previous array-based architecture for the tweakey
schedule [NSS20], but the absence of the inverse tweakey schedule greatly simplifies the
circuit. The TK1 and TK2 arrays are composed of the 16 scan flip-flops with two inputs:
one way for a shift register and another for the tweakey schedule (a byte permutation).
The previous implementation had yet another byte permutation for an inverse tweakey
schedule and an adder for incrementing a counter, which resulted in additional 128-bit
selectors for switching between them [NSS20].

8The implementation in Figure 16 uses some more AND/selector gates to support initialization that
Figure 15 omits for simplicity.

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 33

byte permutation

TK2 array LFSR

byte permutation

8

TK1 array

State array

M
ix

C
ol

um
ns

gf h

ShiftRows

ShiftRows

ShiftRows

ShiftRows

tag

RC gen.

LFSRid

i

key

zero

input State array

: 3 shares in TI : 2 shares in TI

8

8 8

8

8

44

8

output/tag

Figure 16: Datapath diagram of LM-DAE instantiated with TweSKINNY.

Table 4: Circuit area breakdown of LM-DAE[TweSKINNY-128-256], PFB_Plus[SKINNYe-
64-256], and PFB[SKINNY-128-256]. The PFB_Plus and PFB performances are based on
Table 4 of [NSS20].

Component w/o TI w/ TI

LM-DAE PFB_Plus PFB LM-DAE PFB_Plus PFB

Total 3,717 4,351 4,400 8,358 7,439 8,448
Total/TBC/State 1,102 532 1,098 3,440 1,646 3,517
Total/TBC/Key 1,004 1,268 1,224 2,008 2,620 2,546
Total/TBC/Tweak 1,012 1,551 1,421 2,019 1,551 1,470

State Array: We use the byte-serial architecture following the original SKINNY
paper [NSS20, BJK+16]. The state array has 4× 4 scan flip-flops connected in two ways:
one way for a shift register and another for ShiftRows. The 8-bit SKINNY S-box is
decomposed into 4 stages, i.e., i ◦ h ◦ g ◦ f , and the state array integrates the first 3 stages
for reducing latency.
Elastic Tweak: The elastic tweak is directly achieved as a 4-bit LFSR, similar to
the round-constant generator in Figure 16. The LFSR is initialized with a user-supplied
domain-separation number and clicks twice a round. There is no need for round-dependent
handling, which simplifies a state machine that does not appear in the datapath diagram.
Threshold Implementation: We implement a TI secure up to the first-order attacks,
and the decomposed S-box enables uniform sharing with three shares. By following the
previous implementation, we also protect the tweak and key schedule [NSS20]. Figure 16
shows the number of shares for each component. The state array needs three shares for
the S-box, while the tweakey arrays need only two shares because the tweakey schedule is
linear. We need no protection for the public domain-separation bits. The design requires
the inputs in the shared representation, and never reconstructs unshared data.

9.4 Performance Evaluation and Comparison
Evaluation: We synthesized the design using Synopsys Design Compiler with the
NanGate 45-nm standard cell library [Nan], the same conditions with the previous PFB
and PFB_Plus implementations [NSS20]. For a component-wise comparison, we preserve
the module hierarchy up to the major components, as summarized in Table 4.
Performance without TI: LM-DAE[TweSKINNY-128-256] achieves 3,717 gates, which

34 LM-DAE

is smaller than both PFB_Plus[SKINNYe-64-256] and PFB[SKINNY-128-256], although
they have the same register size in Table 2. The comparison between LM-DAE[TweSKINNY-
128-256] with PFB[SKINNY-128-256] clearly shows that the difference comes from the
tweakey implementations: LM-DAE[TweSKINNY-128-256]’s TK1 and TK2 are smaller by
roughly 200 and 400 gates, respectively. This improvement comes from the elimination of
the inverse tweakey schedule and a built-in adder, as discussed in Section 9.3.
Performance with TI: The advantage of the lightweight tweakey arrays preserves in
TI, and LM-DAE achieves 8,358 gates, which is comparable to PFB with a smaller register
size by 128 bits (see Table 1). LM-DAE should protect a secret tweak as opposed to PFB
and PFB_Plus using a public tweak; PFB and PFB_Plus are smaller than LM-DAE by
128 and 192 register bits, respectively. However, the lightweight tweakey arrays made
LM-DAE’s circuit area comparable to that of PFB by canceling the PFB’s register advantage.
Meanwhile, we can explain the PFB_Plus[SKINNYe-64-256]’s advantage of 919 gates over
LM-DAE[TweSKINNY-128-256] by (i) the even smaller register size and (ii) the advantage
of the smaller 4-bit S-box of the underlying SKINNYe-64-256 in TI.
Speed: As a downside, LM-DAE[TweSKINNY-128-256] has longer latency. In the
TweSKINNY-128-256 implementation, the state array finishes each round in 21 cycles
(16 cycles for the S-box, 4 cycles for MixColumns, and 1 cycle for ShiftRows), and a
single TweSKINNY-128-256 call uses 1024 (=21× 48 + 16) cycles. If we assume that the
other TBCs use the same serial architecture that determines the latency by the number
of rounds, SKINNY-128-256 and SKINNYe-64-256 use 1024 (=21 × 48 + 16) and 940
(=21× 44 + 16) cycles, respectively. Since LM-DAE needs two TBC calls for each 16-byte
message block (for hash and mac), the latency approaches 128.0 (= 1024×2

16) cycles/byte. In
contrast, the PFB[SKINNY-128-256] and PFB_Plus[SKINNYe-64-256] implementations
have 64.0 (=1024

16) and 117.5 (= 940
8) cycles/byte, respectively. LM-DAE[TweSKINNY-128-

256]’s latency is exactly the twice of that of PFB[SKINNY-128-256] because of the two-pass
message scanning; meanwhile, it is comparable to PFB_Plus[SKINNYe-64-256].

References
[ADMA15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security

of Keyed Sponge Constructions Using a Modular Proof Approach. In FSE
2015, volume 9054 of LNCS, pages 364–384. Springer, 2015.

[AHM14] Frederik Armknecht, Matthias Hamann, and Vasily Mikhalev. Lightweight
Authentication Protocols on Ultra-Constrained RFIDs - Myths and Facts. In
RFIDSec 2014, volume 8651 of LNCS, pages 1–18. Springer, 2014.

[ALP+19] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar,
Arnab Roy, and Damian Vizár. Forkcipher: A New Primitive for Authenticated
Encryption of Very Short Messages. In ASIACRYPT 2019, volume 11922 of
LNCS, pages 153–182. Springer, 2019.

[BBLT18] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser.
SUNDAE: Small Universal Deterministic Authenticated Encryption for the
Internet of Things. IACR ToSC, 2018(3):1–35, 2018.

[BDP+14] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Using Keccak technology for AE: Ketje, Keyak and more.
SHA-3 2014 Workshop, 2014.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the Sponge: Single-Pass Authenticated Encryption and Other Applications.
In SAC 2011, volume 7118 of LNCS, pages 320–337. Springer, 2011.

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 35

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In
CRYPTO 2016, volume 9815 of LNCS, pages 123–153. Springer, 2016.

[BJK+19] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY-
AEAD and SKINNY-Hash v1.1. In Submission to NIST LWC, 2019.

[BZD+16] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp
Jovanovic. Nonce-Disrespecting Adversaries: Practical Forgery Attacks on
GCM in TLS. ePrint, 2016:475, 2016.

[CAE19] CAESAR. Competition for Authenticated Encryption: Security, Applicabil-
ity, and Robustness. Available at https://competitions.cr.yp.to/caesar.
html, 2019.

[CDD+19] Donghoon Chang, Nilanjan Datta, Avijit Dutta, Bart Mennink, Mridul Nandi,
Somitra Sanadhya, and Ferdinand Sibleyras. Release of Unverified Plaintext:
Tight Unified Model and Application to ANYDAE. IACR ToSC, 2019(4):119–
146, 2019.

[CDJ+19a] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas Lopez,
Mridul Nandi, and Yu Sasaki. Elastic-Tweak: A Framework for Short Tweak
Tweakable Block Cipher. ePrint 2019/440, 2019.

[CDJ+19b] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas Lopez,
Mridul Nandi, and Yu Sasaki. ESTATE Authenticated Encryption Mode:
Hardware Benchmarking and Security Analysis. In NIST Lightweight Cryp-
tography Workshop 2019, 2019.

[CDL+19] Anne Canteaut, Sébastien Duval, Ga etan Leurent, María Naya-Plasencia,
Léo Perrin, Thomas Pornin, and André Schrottenloher. Saturnin: a suite of
lightweight symmetric algorithms for post-quantum security version 1.1. In
Submission to NIST LWC, 2019.

[CJN20] Bishwajit Chakraborty, Ashwin Jha, and Mridul Nandi. On the Security
of Sponge-type Authenticated Encryption Modes. IACR Trans. Symmetric
Cryptol., 2020(2):93–119, 2020.

[DMA17] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-State Keyed Duplex
with Built-In Multi-user Support. In ASIACRYPT, volume 10625 of LNCS,
pages 606–637. Springer, 2017.

[DR00] Joan Daemen and Vincent Rijmen. The Block Cipher Rijndael. In CARDIS’98,
volume 1820 of LNCS, pages 277–284. Springer, 2000.

[Har08] D. Harkins. RFC5297: Synthetic Initialization Vector (SIV) Authenticated
Encryption Using the Advanced Encryption Standard (AES). Available at
https://tools.ietf.org/html/rfc5297, 2008.

[IKM+19] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, Thomas Peyrin,
Yu Sasaki, Siang Meng Sim, and Ling Sun. Thank goodness it’s friday
(TGIF) v.1.0. In Submission to NIST LWC, 2019.

[IKMP20] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Duel of the Titans: The Romulus and Remus Families of Lightweight AEAD
Algorithms. IACR ToSC, 2020:43–120, 2020.

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html
https://tools.ietf.org/html/rfc5297

36 LM-DAE

[IMPS17] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.
ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message
Authentication. In CRYPTO 2017, volume 10403 of LNCS, pages 34–65.
Springer, 2017.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO 2003, volume 2729 of LNCS,
pages 463–481. Springer, 2003.

[JN16] Ashwin Jha and Mridul Nandi. Revisiting structure graphs: Applications to
CBC-MAC and EMAC. J. Math. Cryptol., 10(3-4):157–180, 2016.

[MM13] Mitsuru Matsui and Yumiko Murakami. Minimalism of Software Implementa-
tion — Extensive Performance Analysis of Symmetric Primitives on the RL78
Microcontroller. In FSE 2013, volume 8424 of LNCS, pages 393–409. Springer,
2013.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the Limits: A Very Compact and a Threshold Implementation of
AES. In EUROCRYPT 2011, volume 6632 of LNCS, pages 69–88. Springer,
2011.

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of Full-State
Keyed Sponge and Duplex: Applications to Authenticated Encryption. In
Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, volume 9453 of
LNCS, pages 465–489. Springer, 2015.

[Nan] NanGate. NanGate FreePDK45 open cell library. http://www.nangate.com.

[NIS18] NIST. Submission Requirements and Evaluation Criteria for the Lightweight
Cryptography Standardization Process. Available at https://csrc.nist.
gov/Projects/lightweight-cryptography, 2018.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold Im-
plementations Against Side-Channel Attacks and Glitches. In ICICS 2006,
volume 4307 of LNCS, pages 529–545. Springer, 2006.

[NS20] Yusuke Naito and Takeshi Sugawara. Lightweight Authenticated Encryption
Mode of Operation for Tweakable Block Ciphers. IACR TCHES, 2020(1):66–94,
2020.

[NSS20] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Lightweight Authenticated
Encryption Mode Suitable for Threshold Implementation. In EUROCRYPT
2020, volume 12106 of LNCS, pages 705–735. Springer, 2020. The latest version
is available at https://eprint.iacr.org/2020/542.

[Pat08] Jacques Patarin. The "Coefficients H" Technique. In SAC 2008, volume 5381
of LNCS, pages 328–345. Springer, 2008.

[Pie06] Krzysztof Pietrzak. A Tight Bound for EMAC. In Michele Bugliesi, Bart
Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP 2006, volume
4052 of LNCS, pages 168–179. Springer, 2006.

[PS16] Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated En-
cryption Modes for Tweakable Block Ciphers. In CRYPTO 2016, volume 9814
of LNCS, pages 33–63. Springer, 2016.

http://www.nangate.com
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
https://eprint.iacr.org/2020/542

Yusuke Naito, Yu Sasaki and Takeshi Sugawara 37

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of
the Key-Wrap Problem. In EUROCRYPT 2006, volume 4004 of LNCS, pages
373–390. Springer, 2006.

[Sön19] Meltem Sönmez. On the NIST Lightweight Cryptography Standardization. In
23rd Workshop on Elliptic Curve Cryptography (ECC 2019), 2019.

38 LM-DAE

Supplementary Material

A Supplementary Material: Details of SKINNY-128-256
The major part of the specification of TweSKINNY-128-256 relies on SKINNY-128-256
[BJK+16]. Here, we give the details of SKINNY-128-256.

S-box

Let x0, . . . , x7 represent the eight inputs bits of the S-box (x0 being the least significant
bit), it iteratively applies the following two operations four times:

(x7, x6, x5, x4, x3, x2, x1, x0)→ (x7, x6, x5, x4 ⊕ (x7 ∨ x6), x3, x2, x1, x0 ⊕ (x3 ∨ x2)),
(x7, x6, x5, x4, x3, x2, x1, x0)→ (x2, x1, x7, x6, x4, x0, x3, x5).

The table representation of 8-bit S-box [BJK+16] is as follows.
0x65,0x4c,0x6a,0x42,0x4b,0x63,0x43,0x6b,0x55,0x75,0x5a,0x7a,0x53,0x73,0x5b,0x7b,
0x35,0x8c,0x3a,0x81,0x89,0x33,0x80,0x3b,0x95,0x25,0x98,0x2a,0x90,0x23,0x99,0x2b,
0xe5,0xcc,0xe8,0xc1,0xc9,0xe0,0xc0,0xe9,0xd5,0xf5,0xd8,0xf8,0xd0,0xf0,0xd9,0xf9,
0xa5,0x1c,0xa8,0x12,0x1b,0xa0,0x13,0xa9,0x05,0xb5,0x0a,0xb8,0x03,0xb0,0x0b,0xb9,
0x32,0x88,0x3c,0x85,0x8d,0x34,0x84,0x3d,0x91,0x22,0x9c,0x2c,0x94,0x24,0x9d,0x2d,
0x62,0x4a,0x6c,0x45,0x4d,0x64,0x44,0x6d,0x52,0x72,0x5c,0x7c,0x54,0x74,0x5d,0x7d,
0xa1,0x1a,0xac,0x15,0x1d,0xa4,0x14,0xad,0x02,0xb1,0x0c,0xbc,0x04,0xb4,0x0d,0xbd,
0xe1,0xc8,0xec,0xc5,0xcd,0xe4,0xc4,0xed,0xd1,0xf1,0xdc,0xfc,0xd4,0xf4,0xdd,0xfd,
0x36,0x8e,0x38,0x82,0x8b,0x30,0x83,0x39,0x96,0x26,0x9a,0x28,0x93,0x20,0x9b,0x29,
0x66,0x4e,0x68,0x41,0x49,0x60,0x40,0x69,0x56,0x76,0x58,0x78,0x50,0x70,0x59,0x79,
0xa6,0x1e,0xaa,0x11,0x19,0xa3,0x10,0xab,0x06,0xb6,0x08,0xba,0x00,0xb3,0x09,0xbb,
0xe6,0xce,0xea,0xc2,0xcb,0xe3,0xc3,0xeb,0xd6,0xf6,0xda,0xfa,0xd3,0xf3,0xdb,0xfb,
0x31,0x8a,0x3e,0x86,0x8f,0x37,0x87,0x3f,0x92,0x21,0x9e,0x2e,0x97,0x27,0x9f,0x2f,
0x61,0x48,0x6e,0x46,0x4f,0x67,0x47,0x6f,0x51,0x71,0x5e,0x7e,0x57,0x77,0x5f,0x7f,
0xa2,0x18,0xae,0x16,0x1f,0xa7,0x17,0xaf,0x01,0xb2,0x0e,0xbe,0x07,0xb7,0x0f,0xbf,
0xe2,0xca,0xee,0xc6,0xcf,0xe7,0xc7,0xef,0xd2,0xf2,0xde,0xfe,0xd7,0xf7,0xdf,0xff

Tweakey Update

After eight bytes in top two rows are added to the state, 16-byte positions are permuted
by applying the following permutation to both 128-bit tweakey states;

(0, . . . , 15)→ (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7),

where a byte position 4i+ j, 0 ≤ i, j ≤ 3 corresponds to the ith row and the jth column
of the 4× 4 representation of the state. Then, every cell of the first and second rows for
128-bit tweak are updated with the following LFSR.

(x7, x6, x5, x4, x3, x2, x1, x0)→ (x6, x5, x4, x3, x2, x1, x0, x7 ⊕ x5),

where x0 stands for the LSB of the cell.

Round Constant

A 6-bit affine LFSR, whose state is denoted (rc5, rc4, . . . , rc0) (with rc0 being the least
significant bit), is used to generate round constants. Its update function is defined as:

(rc5, rc4, rc3, rc2, rc1, rc0)→ (rc4, rc3, rc2, rc1, rc0, rc5 ⊕ rc4 ⊕ 1).

The six bits are initialized to zero and updated before use in a given round. Let c0, c1, c2
be the byte value added to the first, the second, and the third rows of the leftmost column,
respectively. Those are computed as

(c0, c1, c2) = (0‖0‖0‖0‖rc3‖rc2‖rc1‖rc0, 0‖0‖0‖0‖0‖0‖rc5‖rc4, 0x2).

	Introduction
	Choice of Primitive
	Technical Challenges
	Our Contribution
	Related Works
	Outline

	Preliminaries
	A Tool for Low-Memory TBC-based DAE
	Internal State and Tweak Sizes
	TBC-based State Update Function

	Upper Bound of Data Block Size for n-bit Security
	Target DAE
	Upper Bound for n-bit Security: n1+n2 n
	Proof of Theorem 1 (Attacks when n1 + n2 n+1)

	LM-DAE
	Specification
	Security Bounds

	Proof of Theorem 2
	Strategy and Upper Bound of AdvprfLM-DAE.MAC[P"0365P](M)
	Proof of Lemma 1
	Proof of Lemma 2: Upper Bounding 1(,)
	Proof of Lemma 2: Upper Bounding 2()

	Proof of Theorem 3
	Strategy and Upper Bound of AdvdaeLM-DAE[P"0365P](Q)
	Upper Bounding AdvdaeLM-DAE1[P"0365P,R](Q)
	Upper Bounding Pr[ALM-DAE1[P"0365P,M] = 1] - Pr[ALM-DAE1[P"0365P,M] = 1]
	Upper Bounding Pr[ALM-DAE.Enc1[P"0365P,M]=1] - Pr[A$=1]

	TweSKINNY: SKINNY with Small Additional Tweak
	Elastic-Tweak Framework and Our Improvements
	Specification of TweSKINNY-128-256
	Design Rationale and Security Evaluation

	Hardware Implementation
	Comparing Register Sizes
	Design Policy
	Implementation
	Performance Evaluation and Comparison

	Supplementary Material: Details of SKINNY-128-256

