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Abstract. We present attacks on the cryptography formerly used in the IOTA
blockchain, including under certain conditions the ability to forge signatures. We
developed practical attacks on IOTA’s cryptographic hash function Curl-P-27, allowing
us to quickly generate short colliding messages. These collisions work even for messages
of the same length. Exploiting these weaknesses in Curl-P-27, we broke the EU-
CMA security of the former IOTA Signature Scheme (ISS). Finally, we show that
in a chosen-message setting we could forge signatures and multi-signatures of valid
spending transactions (called bundles in IOTA).
Keywords: cryptocurrencies · signature forgeries · cryptographic hash functions ·
cryptanalysis

1 Introduction
This paper presents attacks on the signature scheme used to authorize payments in a
cryptocurrency known as IOTA. IOTA is a cryptocurrency designed for use in the Internet
of Things (IoT) and automotive ecosystems. As of February 20, 2020, it had a market
capitalization of $736 million US dollars [Coi19]. The attacks we describe here work by
exploiting a cryptographic weakness in IOTA’s hash function, Curl-P-27. Importantly, our
attacks were disclosed and patched in August 2017, and thus no longer impact the security
of IOTA’s signature scheme [HNDV17].

IOTA uses cryptographic signatures to authorize payments by users. The IOTA
Signature Scheme (ISS) is based on Winternitz One-Time Signatures [Mer89], but unlike
traditional Winternitz, in IOTA users sign the hash of a message. Thus, the security of
ISS relies on its cryptographic hash function, which was Curl-P-27. Using a differential
cryptanalysis attack, we are able to quickly create messages of the same length which hash
to the same value with Curl-P-27, breaking the function’s collision resistance. We find an
upper bound on the average number of queries to Curl-P-27 to generate a collision.

Using this collision attack, we can generate signature forgeries in IOTA. Our attacks on
the IOTA signature scheme function in a chosen-message setting, where an attacker creates
two payments—a benign payment and a malicious payment—such that a signature on the
benign payment is also a valid signature on the malicious payment. Our analysis is just on
the IOTA signature scheme and does not include the security of the IOTA network as a
whole. These attacks apply to both normal and multi-signature IOTA payments. Spending
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from a multi-signature address requires one user to produce a payment for another user to
sign, which fits exactly in the chosen-message setting of our attack. We detail how to apply
our attack to IOTA payments which spend from multi-signature addresses, and provide a
tool for creating collisions in single-signature and multi-signature IOTA payments. We
also evaluate the resources required to perform the attack, and show that using 80 cores,
we can create colliding IOTA payments in less than twenty seconds on average. We have
open sourced and published the software used in these attacks.1

We follow up our signature forgery attacks with an analysis of the known-message-
attack security of the IOTA Signature Scheme. We examine the IOTA Signature Scheme’s
susceptibility to generic attacks on the underlying hash function. The result of this analysis
is an upper bound on the resistance of the IOTA Signature Scheme to these attacks.
The security bounds given in this section do not present a risk of known-message attacks.
However, they do show a reduction in the security parameters of ISS to generic attacks.

A chief contribution of this paper is that it is a real-world case study on how Winternitz
One-Time Signatures-like schemes fail when the underlying cryptographic hash function
succumbs to cryptanalysis. For instance the literature on Winternitz One-Time Signatures
e.g., [BDE+11], often analyzes its security properties under the assumption that the
signatures will be performed directly on the message itself. However the example of ISS
provides strong evidence that in practice implementers of such schemes are unlikely to
sign a message directly. This is because signing the message directly results in a signature
length which is proportional to the message length. Instead, as is the case with ISS,
implementers will sign the hash of the message. This makes the collision resistance of
the underlying hash function far more relevant to the security of the signature scheme.
Additionally this paper must contend with the limitations and realities of using a specific
set of cryptanalytic weaknesses to create signature forgeries resulting in validly formatted,
but semantically different, cryptocurrency payments.

1.1 Vulnerability Status and Impact
On July 14, 2017, some of the authors began a disclosure process with the IOTA developers.
We negotiated a timeline for them to patch the vulnerability and a date after which we
could publish our results. On August 7, 2017, the IOTA developers deployed a backwards-
incompatible upgrade to mitigate this vulnerability by removing the use of Curl-P-27
to generate signatures in IOTA, and replacing it with another hash function [Søn17].
In order to perform the upgrade, deposits and withdrawals were halted on Bitfinex for
approximately three days [Bit17]. All users who held IOTA directly (not via an exchange)
were encouraged to upgrade their wallets and addresses. On September 7, 2017 we
published our vulnerability report describing the nature of our attack [HNDV17].

Our vulnerability report included example Curl-P-27 collisions and signature forgeries
on validly formatted IOTA payment messages, as well as software to validate these examples.
In this paper, we expand upon our previous results by detailing the cryptanalytic techniques
we used to break Curl-P-27’s collision resistance and providing software to generate said
signature forgeries. We also extend these techniques to develop an attack against IOTA’s
multi-signature scheme when Curl-P-27 is used—the multi-signature setting is particularly
well-suited to chosen-message attacks. We did not send any of these forged signatures
to the IOTA network or interfere in the IOTA network in any way. As Curl-P-27 is no
longer used for ISS, the signature forgery attacks presented in this paper do not impact
present-day IOTA. This includes our multi-signature attack in Section 5.2. Curl-P-27 is
still used in other parts of IOTA [IOT17]. We do not present attacks on these uses.

Our results in Section 6 are relevant to present day IOTA, but they have no immediate
security impact for those who use the default security settings. We privately disclosed 2

1https://github.com/mit-dci/tangled-curl
2When disclosing our results on normalization IOTA co-founder Sergey Ivancheglo disputed the novelty

https://github.com/mit-dci/tangled-curl
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them to the IOTA developers on Aug 8, 2018 and then publicly disclosed them March 31
2019.

2 Related Work
After the release of our initial report, Colavita and Tanzer [CT18] independently reproduced
and implemented our cryptanalysis, as well as proved some new results about Curl-P’s
round function—namely, that it is a permutation and that it diffuses differentials across
rounds in accordance with a particular closed-form expression. They are now collaborating
on this paper. [DRUH18] explores replay attacks against IOTA.

Differential cryptanalysis techniques were first published in 1991 by Biham and Shamir
[BS91] (researchers at IBM had discovered similar techniques in 1974 but chose not to
disclose them publicly [Cop94]). In this paper, we present a very simple application
of differential cryptanalysis on a balanced ternary cryptographic hash function. Apart
from our initial vulnerability report and [CT18] we are aware of no prior research on the
differential cryptanalysis of balanced ternary-based cryptographic hash functions. However,
there is work designing and analyzing a ternary-based cryptographic pseudo-random
sequence generator [GJ05]. In response to our attacks on Curl-P, [KTDB19] proposed
Troika, a ternary cryptographic hash function with differential and linear cryptanalysis
resistance, intended as a drop-in replacement for Curl-P. [LI19] studies preimage attacks
against a reduced round Troika.

Exploiting our cryptanalysis of Curl-P-27, we present a chosen-message attack on ISS’s
unforgeability. Although the danger of broken collision resistance—and the chosen message
attack model—may not be immediately apparent, we see a cautionary tale in the work
on the MD5 hash function. In 2004, Wang et al. released the first complete collision
for MD5 [WFLY04], and soon after published a generic procedure for generating random
collisions [WY05]. In 2005, Lenstra joined Wang to apply this cryptographic vulnerability
to X.509 certificates, a cornerstone of the public key infrastructure that enables protocols
like HTTPS, and was able to construct pairs of colliding certificates [LWdW05]. Amidst
doubts that a certificate authority would sign such suspicious certificates, or that they
would even be exploitable once issued because they lacked “meaningful” structure, Stevens
joined Lenstra et al. in 2007 to extend the original random collision attack on MD5 to a
chosen-prefix collision attack [SLdW07]. This work culminated in 2009, when Stevens et al.
announced that they had managed to forge a X.509 certificate with certificate authority
privileges that passed verification on all major browsers [SSA+09], causing vendors to
immediately obsolete MD5.

In October 2017, after the IOTA developers transitioned from using Curl-P-27 to using
Kerl—based on Keccak—as the hash function in the IOTA Signature Scheme, an unrelated
vulnerability called the 13 or M attack was discovered [Pin18]. This exploit relies on the
fact that in IOTA’s signature scheme—which signs the message’s hash in chunks with
values in [−13, 13]—a signature for the number 13 (also represented as ‘M’) reveals as
plaintext a derivative of the private key that can be used to forge all subsequent chunks.
The IOTA Foundation patched this vulnerability by requiring that if a message hash to be
signed includes a 13, then the user must alter the message until no 13s are present in the
digest. As an additional remediation step, the IOTA developers transferred potentially
compromised funds to addresses under their control, providing a process for users to later
apply to the IOTA Foundation in order to reclaim their funds [Rot18]. We also present the
first analysis of the resistance of ISS to generic attacks. Our results in this area show that,

of our normalization analysis. He argues that based on an earlier statement he made in [blo18] that the
weakness in the normalization scheme was both intentional and that they had told us of the existence of
this weakness. As far we are aware there is no preceding work providing concrete and correct analysis of
the degree to which normalization continues to weaken ISS (IOTA Signature Scheme).
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because of a process IOTA performs on the hash of a message called normalization, the
IOTA security scheme provides a lower level of security than claimed in public materials.

3 Background
In this section, we provide the necessary preliminaries to understand our attacks. We start
with a short review of some of IOTA’s uncommon design features and terminology. We
also provide an overview of the Curl-P hash function and the IOTA Signature Scheme
(ISS).

3.1 IOTA Design
IOTA currently has several uncommon design features. First, IOTA uses balanced ternary
instead of binary; second, payments in IOTA are known as bundles; third, IOTA uses a
new data structure called a tangle rather than a traditional chain of blocks; and fourth,
IOTA employs a trusted party called a coordinator to checkpoint the state and approve
payments.

IOTA’s data structures use balanced ternary, or base three; instead of bits in {0, 1}, it
uses trits in {−1, 0, 1}, and instead of bytes of eight bits, it uses trytes of three trits. A
tryte is represented as an integer in [−13, 13]. IOTA often serializes trytes as the letters
A-Z and the number 9.

A payment in IOTA is represented by a data structure called a bundle. Bundles are
composed of multiple transactions, but IOTA transactions are not like transactions in
other cryptocurrencies; they are buffers which store inputs or outputs. IOTA transactions
include, among others, address, signature, value, and tag fields. We provide a detailed
description of the IOTA bundle and transaction format when describing our attacks in
Section 5.

IOTA is built upon the concept of a tangle [Pop16]. This is similar to a Directed
Acyclic Graph-chain (DAG-chain), where each block can reference more than one block
parent [SZ15]. In IOTA’s case, however, there are no blocks to aggregate multiple payments.
Instead, each transaction must have a nonce proving Proof-of-Work (PoW) and include
pointers to two other transactions. In order to add transactions to the tangle, a user
selects two tip transactions from the tangle to reference in her transaction. Once created
and signed, the user performs sufficient Proof-of-Work and broadcasts the transaction (or
transactions, in the case of a bundle) to the IOTA network.

In IOTA as it is currently deployed, a bundle must also be approved by the coordinator
to be accepted. The coordinator is a trusted party run by the IOTA developers that
approves and checkpoints the state of the tangle by signing it. This has led to concerns
that IOTA is centralized, or under the control of the IOTA developers [Wal17]. The IOTA
developers argue IOTA is not centralized and that the coordinator is a temporary measure.
The source code for the coordinator is not publicly available. Since we did not interact
with the IOTA network we cannot confirm how the coordinator would impact our proposed
attacks, but we are not aware of any mechanism in the coordinator that would prevent the
attacks presented in this paper.

3.2 IOTA’s Signature Scheme (ISS)
IOTA uses a signature scheme inspired by the Winternitz One-Time Signatures (W-
OTS) [Mer89]. W-OTS is an optimization of Lamport signatures [Lam79], operating on
multiple bits (in IOTA, trits) at once to trade computational cost for decreased public key
size.
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Figure 1: The Curl-P construction.

ISS differs in several important aspects from W-OTS. First, ISS operates on the hashes
of messages rather than on the messages directly, as in traditional W-OTS.3 Second, rather
than use a checksum, ISS performs a technique dubbed normalization on the hash of the
message. As we will show in Section 6, the use of normalization instead of a checksum
reduces the security parameters of ISS when compared with W-OTS.

ISS has three security levels. The first security level only signs the first third of the
message hash. The second security level signs the first two thirds of the message hash.
Finally, the third security level signs the entire message hash. Because our attack works
against the highest security level, it also works against any of the lower security levels. For
this reason, when we talk about ISS we will implicitly assume that security level three is
used. In Section 6 we analyze the strength of the different security levels.

3.3 Curl-P
In this section, we describe the Curl-P hash function. Curl-P (sometimes referred to as
Curl) is a cryptographic hash function designed specifically for use in IOTA . It has been
used for a number of purposes in IOTA, including creating transaction addresses, creating
message digests, Proof-of-Work (PoW), and hash-based signatures. At a high level, Curl-P
follows the pattern of a Sponge Construction [BDPVA08, GJMG11], but it differs in some
key areas. As the IOTA project has not provided any formal specification or analysis
of Curl-P, we base our description on the open source implementation of Curl-P made
available by the IOTA developers.

Unlike most cryptographic hash functions, Curl-P operates on trits in balanced ternary.
For clarity, we represent individual trits with lowercase letters such as a, b, c, x, y, z and
sequences of trits as uppercase letters such as S,N,X,Y, unless we are referring a particular
trit within a sequence of trits, where we will use subscript notation such as Si. Following
IOTA’s convention, the R in Curl-P-R denotes the number of rounds used (e.g., Curl-P-27
denotes 27-round Curl-P).

As shown in Figure 1, Curl-P operates as follows: (1) Curl-P initializes an all zero state
S of length 729 trits. (2) The message is broken into message blocks mb0 · · ·mbn, each 243
trits. Curl-P employs no message padding; instead, if a message is not a multiple of 243
in length, the last message block is allowed to be less than 243 trits.4 (3) In turn, each

3One can remark that modern signature schemes, like XMSS, LMS, and SPHINCS+ sign a randomized
hash digest, and thereby achieve multi-target security, and relax conditions placed on the internal
(compressing) hashes (i.e., they remain secure if internal hashes are second preimage-resistant; down from
collision-resistance). However, our attack is not against the W-OTS internals, as used in ISS, but against
this “outer” hash invocation, therefore even though ISS should have considered a randomized variant, it
would still not prevent attacks if the digest hash is completely broken, as is the case here.

4In some implementations of Curl-P an error is thrown if the message length is not an even multiple of
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message block mb0 · · ·mbn is copied into the first third of the state S and then that state
S is transformed by the function f r. (4) Finally, when no more message blocks remain
Curl-P returns the first third of the final state as the hash output. For a more detailed
description, see Algorithm 1.

Algorithm 1: The sponge-like construction used by Curl-P.
Function CurlHash(msg):

S ← {0}729;
for p← 0; p < |msg|; p← p+ 243 do

if p+ 243 < |msg| then
mb← msg[p, p+ 243];

else
mb← msg[p, |msg| − 1];

S[0, |mb|]← mb;
S ← f r(S);

return S[0, 243];

Now let’s turn our attention to the function f r, which is used to transform the state S.
The transformation function f r is actually just the function f recursively called on the
state S for r rounds, e.g., f 3(S) = f (f (f (S))). Curl-P-27 is the Curl-P hash function which
uses f 27 as its transformation function.

Each round of f r generates a new state from the current state by calling f . As described
in Algorithm 2, each trit in the new state is determined by applying the simple function g
to a pair of trits in the current state. Each trit in the current state is used twice, once as
the first parameter to g (represented by a) and once as the second parameter (represented
by b). In Table 1, we give g as a substitution box or s-box.

Table 1: S-box used by Curl-P: takes two trits a, b and returns a trit c.

c = g(a, b)

b = −1 b = 0 b = 1
a = −1 1 1 -1
a = 0 0 -1 1
a = 1 -1 0 0

4 Cryptanalysis of Curl-P
In this section, we apply common differential cryptanalysis methods to engineer meaningful
full-state collisions in Curl-P-27. Our attack constructs two messages of the same length
which differ at only a single trit position and hash to the same value under Curl-P-27. Our
technique lets us have a large degree of control over the content of the colliding messages,
including arbitrary message prefixes and suffixes. In the next section, we will exploit this
control over Curl-P-27 to forge signatures on valid IOTA payments.

We were unable to find a formal specification or documentation of Curl-P or Curl-P-27

243 preventing trivial collisions.
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Algorithm 2: The transform function f (S) called by the Curl Hash Function.
i ← 0;
for pos← 0; pos < 729; pos← pos + 1 do

j ← i;
if i < 365 then

i ← i+ 364;
else

i ← i− 365;
N[pos]← g(Sj ,Si);

return N;

beyond the source code published as part of the IOTA open source project5. Furthermore, in
our correspondence with the IOTA developers, they have stated that Curl-P-27 is designed
to collide for specific sets of inputs [blo18]. In fact, Curl-P-27 is clearly non-random.
As explored in detail by [CT18], Curl-P-27’s non-random behavior can be observed in
messages of the same length; collisions and second preimages are trivial to generate for
messages of different lengths. Thus, to ensure we have truly broken Curl-P-27 we show
that our collision attack meaningfully breaks a security property of Curl-P-27 on which
the IOTA Signature Scheme (ISS) depends (see Section 5).

At a high level, our attack works as follows. We choose two messages of at least three
message blocks in length which differ at only a single trit. To decrease the difficulty of
our attack, we choose these messages such that they satisfy certain constraint equations
(explained in Section 4.2). Once we arrive at the message blocks that differ between the
two messages we need to ensure that a collision occurs. To do this, we randomly modify a
set of trits in both messages. This set of altered trits is limited to the differing message
block in each of the two messages. The idea is that after running the transform function f 27

on the differing message blocks, the only differences are in the first third of the resultant
states.

f 27(S)[243, 729] = f 27(S′)[243, 729]

Because Curl-P replaces the first third of the state with the next message block, these
differences are erased, causing a full state collision. We exploit the differential properties
of Curl-P-27 to brute force a 1-trit difference for many of the rounds of the transformation
function such that it is unlikely these differences will diffuse beyond the first third of the
state by the final round. Finding two messages that maintain a 1-trit difference across
a sufficient number of rounds to generate a collision is upper bounded by 7.6 million or
222.87 queries to Curl-P-27.

In Figure 2, we visualize our experimental results for how differences diffuse over
rounds in Curl-P-27. We shade the graph by the probability that a collision occurs given
a particular starting position of a 1-trit difference (x-coordinate) and a lower bound
on the number of rounds that a 1-trit difference does not diffuse (y-coordinate). To
experimentally generate this dataset we performed 100 samples per position and round
depth (11 · 243 · 100 = 267300 samples in total). Each sample was initialized to a random
state with random difference injected at the anticipated position and round.

In related work, Colavita and Tanzer [CT18, Lemma 3] make the following observation:
two message blocks with 1-trit difference in position p, when evolved over ` rounds, can
only have differences in a contiguous modular region of size at most 2`. Moreover, the
starting point p′` of this region depends only on p and `. Later, their attacks use exhaustive

5The IOTA developers have asked us to note their statement that“it was widely communicated that
IOTA was utilizing a prototype hash function since inception”.
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Figure 2: Our experimental estimate of the prob. of a full state collision for any two
message blocks differing by one trit: x-axis is the position of the trit that differs and y-axis
is number of rounds before the two internal states differ by more than one trit.

search techniques to find a 1-trit difference does not diffuse.
Our collision attack uses a 1-trit difference at position 17 in the differing message

blocks. Using the results of this experiment, we can calculate the probability of a collision
if a 1-trit difference, starting at position 17, is maintained for certain number of rounds.
By maintained, we mean that for each of these rounds the difference between both states
is always 1-trit. For position 17, the probability of a collision is 1.0 for 20 rounds. Thus, if
we prevent diffusion of a 1-trit difference starting at position 17 for at least 20 rounds we
should find a collision. This attack should work for some of the other positions in the input
message block (as shown in [CT18]). Note that since this estimate is slightly pessimistic
since it doest not count all the ways a collision could result from a 1-trit difference. Instead
it only estimates the probability of collision where 1-trit difference is maintained for at
least 20 rounds i.e., does not diffuse.

4.1 Differential Properties of Curl-P Transformation Function f r

In this section, we show how to find states that maintain a 1-trit difference for at least
20 rounds. This involves analyzing the differential properties of Curl-P’s transformation
function f .

Differential cryptanalysis is concerned with studying the propagation patterns of
differences between two or more sets of inputs. The most common technique is the
discovery of differential trails. A differential trail is a probabilistic bias of how a set
of differences will propagate to another set of differences through many rounds of a
cryptographic function. Here we only work with a specific differential trail, namely a 1-trit
difference between the two states S,S′ under repeated applications of the transformation
function f . We show that Curl-P has a strong bias toward maintaining a 1-trit difference
across rounds (i.e., applications of f ).

Let’s first introduce some necessary terminology. Since Curl-P operates on trits in
{−1, 0, 1} instead of bits in {0, 1}, we must use new notation for ternary differentials. To
represent the difference between two trits, x and x′ we use 	 (e.g., 0	−1, which means
either x = 0 and x′ = −1 or x = −1 and x′ = 0). By the term diffusion, we indicate that
after an application of f the number of differences between the two states has increased
(i.e., the differences have diffused).

Our attack is built around the fact that the s-box g does not always propagate differences.
For example, consider two sets of inputs and outputs to g: a, b, c and a′, b′, c′ such that
g(a, b) = c and g(a′, b′) = c′. We make the following observations:

1. For all possible values, if a 6= a′ and b = b′ then it will always be the case that c 6= c′.
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Figure 3: The Markov chain represents the probability of starting from a single difference
of a particular type and ending in a single difference.

2. If a = a′ and b 6= b′ then both c = c′ and c 6= c′ are possible (e.g., a = a′ = 1, b = 0
and b′ = −1 then c = c′ = 0).

Each round of f r i.e., each application of f in f r, is called to update the state. As
discussed in Section 3.3, each trit in the updated state depends on the output of applying
g to two trits in the prior state. Each trit in the state is plugged into the s-box g twice,
once as the first parameter a and once as the second parameter b. This means that a 1-trit
difference will always propagate to the next round, since when it is the first parameter a to
the s-box g, the output of g will differ based on a difference in a (as shown in observation
1). Thus if you apply f to two states S,S′ which have 1-trit difference the updated states
f (S), f (S′) will either differ by 1 trit or 2 trits. It will never result in a 0-trit difference.

We model the probability that a 1-trit difference will remain a 1-trit difference across k
rounds of Curl-P. As shown in Figure 3, by enumerating all possible inputs to g we develop
a Markov model of the possible difference states after an application of f starting from a
1-trit difference. For instance, if the 1-trit difference in the current round is 0	 1, then
with probability 1/9 the difference stays the same (i.e., 0 	 1) in the next round, with
probability 2/9 the difference becomes 0	−1 in the next round, or with 6/9 the number
of differences increases from 1 to 2 (marked as the fail state as it fails to maintain a 1-trit
difference).

As shown below, we convert the Markov model to a state transition matrix.
1/9 2/9 0 6/9
1/9 0 2/9 6/9
0 0 0 1
0 0 0 1


k

The top row represents the state transitions probabilities of 0	 1, the second row −1	 0,
third row −1	 1, and fourth row that a 1-trit difference diffuses to a 2-trit difference (the
fail state). Using this matrix, we compute a lower bound on the probability that after k
applications of f , the number of differences remains at 1. This is a lower bound as our
analysis does not count transitions which increase to a difference of 2 trits or more and
then later become a 1-trit difference.

Thus, starting from a 1-trit 0	1 difference we calculate a lower bound on the probability
of a 1-trit difference by raising the matrix to the number of rounds we wish to investigate.
For example, if we raise it to the power 3, the transition probabilities in the matrix
represent the probability that you arrive at that difference after three rounds. Thus, we
can measure the probability we don’t fail after k rounds.

Earlier, we experimentally verified that if a 1-trit difference starting at position 17 is
maintained for 20 rounds of Curl-P-27 (i.e., 20 applications of f ), then the probability of a
collision is 1.0. Using our state transition matrix we calculate for 20 rounds, our attack
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has a per query success probability lower bounded by 2−42. That is, we need to make on
the order of 242 queries to Curl-P-27 with different message pairs before finding a pair that
will maintain a 1-trit difference for 20 rounds. This message pair will result in a collision.
In the next section, we will show we can significantly reduce the necessary number of
queries to Curl-P-27.

4.2 Solving for a 1-Trit Difference
In this section, we show how to reduce the number of queries to Curl-P-27 by selecting
messages with particular properties. We first show how to constrain two states S and
S′, which differ by 1-trit, such that for at least 9 applications of f a 1-trit difference will
be maintained (i.e., there is no diffusion of differences). To do this, we represent f as a
system of equations and solve for particular values of trits in states S and S′.

We can represent the transformation function f r(S) as a series of equations. For
example, a single call to f can be written as

f (S)0 = g(S0,S364), f (S)1 = g(S364,S728), . . . , f (S)728 = g(S365,S0)

where f (S)0 is the trit in position 0 of the updated state after f is applied. Since each
round is just the recursive application of f , we can write the value of a particular trit
after a number of rounds of f in terms of some of the initial values of the state S. We use
superscript to denote the number of rounds of f . For example, with

f 2(S)6 = g(g(S366,S1), g(S184,S548))

we specify the equation for the trit in position 6 after two rounds of f .
Using this representation, we find the equations guaranteeing that a 1-trit 0	1 difference

is maintained for 9 rounds. We then find a message prefix that satisfies these equations.
To do this we wrote a simple program which modifies trits until we find a set of values
that satisfies the equations. This program takes less than a second to find a solution (see
Section 5.3 for our performance evaluation). The number of values in the two colliding
messages that must be fixed to satisfy the equation scales with number of rounds i.e.,
more rounds means more trits in the message whose values can’t be changed. To ensure
the later stages of the attack have plenty of flexibility to change the messages we limit our
approach to 9 rounds. Thus, given a particular message template, we only have to change
a small set of trits in two message blocks to transform it into a satisfactory message.

4.3 Finding Collisions
We now combine our two methods to generate collisions for Curl-P-27. We refer to the
technique shown in Section 4.2 of choosing a message prefix such that a 1-trit difference at
a particular position will not diffuse across 9 rounds as the constraint phase of our attack.
We call our method in Section 4.1 of trying different messages to increase the number of
rounds for which a 1-trit difference is maintained the brute-force phase.

Our collision attack requires at least three message blocks: mba, mbb, and mbc, where
mbb contains the difference. Any number of message blocks can exist before mba. Any
number of message blocks can exist between mba and mbb. mbc is always the next message
after mbb and overwrites the differences in the first third of the state created by mbb. The
actual value of mbc has no impact on the attack and can be anything.

Our full attack works as follows. First, in the constraint phase of our attack we find a
suitable message prefix by altering trits in parts of mba and mbb, such that they guarantee a
1-trit difference across 9 rounds of f . Next, in the brute-force phase we randomly alter trits
in particular positions in mbb with the objective of finding two messages such that a 1-trit
difference starting in position 17 is maintained across 20 rounds. As the constraint phase
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ensures that each attempt in the brute-force phase also maintains a 1-trit difference across
9 rounds, the attack complexity of the brute-force phase is reduced from 20 rounds to 11
rounds. As a result, the estimate of the success rate per query is reduced to approximately
2−22.87 or one out of 7.6 million.

As is typical in differential cryptanalysis, our probability calculations make the simplify-
ing assumption that actual values of the differing inputs are uniformly random. Due to the
low diffusion rate of Curl-P-27 and the non-random properties of Curl-P this assumption
may not always hold. However, as seen in Section 5.3, the estimates given in this section
are reasonably close to the actual results.

5 Exploiting Collisions in Curl-P to Forge Signatures
In this section, we show how our collision attack against Curl-P-27 can be used to perform
a signature forgery attack against the IOTA Signature Scheme (ISS). Continuing from the
previous section, we show how to create two valid IOTA bundles (i.e., payments), which
differ in at most two trits and have the same Curl-P-27 hash. Then, we will describe the
setting of our attack which exploits these colliding bundles to forge signatures. Finally, we
will show how to perform this attack against multi-signatures (multisigs) as used by ISS.

5.1 Chosen-Message Attack on ISS
Our attack is a chosen-message attack, which means that a malicious user Eve tricks a
user Alice by asking Alice to sign a bundle, b1, and then later producing a different bundle,
b2, which also verifies under the signature Alice provided. In more detail:

1. Alice generates a key pair (PK,SK).

2. Eve uses our collision attack on Curl-P-27 to produce two bundles b1, b2 such that
b1 6= b2 and CurlHash(b1) = CurlHash(b2).

3. Eve sends b1 to Alice and asks Alice to sign it. Alice inspects b1 and confirms that it
is benign.

4. Alice sends Eve a signature σ on b1, i.e., Sign(SK, b1)→ σ.

5. Eve produces a signature, bundle pair (σ, b2) such that b1 6= b2, b2 is a valid bundle,
and b2 verifies under Alice’s PK even though Alice has never seen b2.

In Section 4.3, we introduced the general format of our attack, which requires at least
three message blocks mba, mbb, and mbc. To perform the first phase of the attack, we
set certain trits in mba and mbb to particular values. In the brute-force phase, we change
other trits in mbb each attempt and check to see if we have achieved a collision. However,
the bundles must pass the validity checks in the IOTA software in order for them to be
accepted in IOTA as valid bundles, which limits the trits we can modify to perform our
attack.

A bundle’s hash is computed by hashing the concatenation of the address, value, tag,
timestamp, current index, and last index fields of each transaction in the bundle. Each
transaction supplies two message blocks. Recall from Section 3.1 that “transactions” in
IOTA are more like inputs and outputs; a valid payment requires multiple transactions.
The format of a transaction is shown in Figure 4. Most of these fields are constrained in
well-formatted bundles—for example, the values in a bundle cannot sum to a negative
number, the timestamp must be within a certain range, and the indexes must line up with
the transactions in the bundle. Tags do not impact the semantics or validity of the bundle
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Signature Fragment (6561)

Address (243)
Value (81) Tag (81) TS (27) Current (27) Last (27)

Bundle Hash (243)
Trunk Transaction Hash (243)
Branch Transaction Hash (243)

Nonce (243)

Figure 4: IOTA transaction format. Field sizes are in trits. The shaded fields are used to
calculate the bundle hash of the bundle in which the transaction is included. A bundle
must have multiple transactions in order to be a valid payment.

and can contain arbitrary trits. Thus, for both the constraint phase and for each attempt
in the brute-force phase of our attack, we only change the trits in the tags.

Another important question is where Eve can place the collision to cause damage. In
our initial vulnerability report, we demonstrated colliding bundles for two different styles
of attack: one which places the collision in the address field so Alice unwittingly signs a
bundle which burns funds that were originally intended for Eve, allowing Eve to claim
Alice made a mistake, and a second which places two collisions in two different value fields
in a bundle so that Alice unwittingly signs a bundle which pays Eve more than intended.
In the following section, we describe in detail the latter attack style for bundles which
require multiple signatures, which fits our chosen message setting.

5.2 Multi-signature Attack
One criticism of the signature forgery attacks presented in our vulnerability report [HNDV17]
is that they are chosen-message attacks, that is, Eve must ask Alice to sign a bundle. To
help demonstrate the importance of chosen-message security, we now extend our attacks
to the IOTA multi-signature (multisig) scheme [Sch18]. In multisig, funds can be spent
only by signatures from multiple parties. To spend, one party creates a bundle and
asks the other party to sign it, which is exactly a chosen-message attack. The IOTA
Foundation encourages exchanges deploying a hot storage/cold storage solution6 to use
multisig for securely storing funds [Fou18a]. One of the main reasons multisig is used in a
cryptocurrency context is that it requires that an attacker must compromise more than
one party to steal funds. Our attack removes this security benefit of multisig. We will
consider a simple case of a 2-of-2 multisig where two parties both sign to spend funds;
however, our attack generalizes to more complex settings.

Consider two parties—Eve and Alice—each holding a pair of ISS keys—(PKE ,SKE)
and (PKA,SKA)—and funds which can only be spent by both a signature from Eve’s secret
key and a signature from Alice’s secret key. This implies that Eve and Alice previously
entered into a 2-of-2 multisig and are now spending those funds jointly. Our attack will
work as follows: Eve will compute two colliding bundles, one which pays funds to Alice
and one of which pays funds to Eve. Eve will sign and send to Alice the bundle that pays
Alice. Once she has Alice’s signature, Eve will use it on the colliding bundle to create a
valid bundle which Alice never saw or authorized, and will broadcast this bundle.7 In this
setting, Eve is either malicious or has been compromised by a malicious party.

6This is cryptocurrency terminology for structuring the control of an account holding funds such that
any transfer of funds requires the consent of two secret keys. One of the secret keys is “cold,” meaning it
is kept in a location not connected to the internet such as an airgapped device.

7Note that if Alice is a cold wallet, she relies on Eve to broadcast the transaction.
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Txn MB Message block contents

0 0 Address
1 Value Tag TS Current Last

1 2 Address
3 Value Tag TS Current Last

2 4 Address
5 Value Tag TS Current Last

3 6 Address
7 Value Tag TS Current Last

4 8 Address
9 Value Tag TS Current Last

...

Figure 5: A bundle portioned into its message blocks. We target two collisions: One in the
17th position of message block 3 by manipulating the trits in the tag portions of message
blocks 1 and 3, and one in the 17th position of message block 7 by manipulating the tags
in 5 and 7. The red arrows indicate the collisions.

In order to construct such bundles, Eve places the collisions in certain value fields in
certain transactions. Figure 5 shows the first four transactions in such a bundle divided
into message blocks. The highlighted fields are the trits relevant to our attack. Eve causes
a collision in trit 17 of the value field in the second transaction (message block 3) by
manipulating the trits in the tag fields both before and after the collision. By doing this,
Eve can produce two bundles with different values in the second transaction that have
the same bundle hash. Eve creates a second collision later on in the bundle in the fourth
transaction (message block 7), this time arranging the collision so that the values still sum
to zero in both colliding bundles. This serves to change what amounts are paid to whom
in the transaction.

Generating these collisions essentially requires running the attack twice, sequentially.
In our current collision tool, we require one transaction between the two transactions
where we collide in the value fields. Other than this requirement, and the requirement
that the collisions are not in the first or last transactions, we can handle bundles with
different numbers of transactions. That our tool can only cause collisions in the 17th
trit of a message block is a limitation of the tool’s current implementation, not of the
cryptanalysis techniques described in Section 4. Our tool does not depend on the specific
addresses and values in the transactions to generate collisions, but the collision trits in the
values that are changed must be different in order to produce valid bundles. For example,
if trit 17 is zero in both Alice and Eve’s output values in b1, then flipping trit 17 in Eve’s
output to one in b2 will cause the values in b2 to not sum to zero. In b1 Alice’s output
value’s trit 17 should be one and Eve’s should be zero.

In Appendix B we show the contents of two example bundles we created using this
technique. In this example, the bundles are spending a multisig input of 500, 000, 000
IOTA controlled by Alice and Eve. Alice signs a bundle which pays Eve 1 IOTA and the
remainder to other addresses. In the colliding bundle, Eve receives 129, 140, 164 IOTA, at
the expense of Alice’s address.

Generating colliding single-signature bundles operates in much the same way; our
vulnerability report demonstrated a signature forgery on a bundle which paid out to three
addresses. In the benign bundle b1 Alice receives 50, 000 and 810, 021, 667 IOTA to two
addresses she controls and pays 100 IOTA to Eve. In the malicious bundle b2 Eve changes
this so that she receives 129, 140, 263 instead of 100, at the expense of Alice’s funds. We
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Table 2: Run time of the constraint phase, brute-force phase, and the entire multisig
attack which involves running each phase twice. Measurements over 5000 iterations.

Part Average Min Max

Constraint phase 1.1 s 0.27 s 6.1 s
Brute-force phase 7.2 s 0.04 s 74 s
Multisig 15.2 s 1.4 s 74 s

have not investigated the effects of placing collisions in fields besides the value and address.
Other attacks might be possible.

5.3 Performance Analysis
We ran these attacks on a 80-core Intel machine with 8 2.4GHz 10-core Intel chips and 256
GB of RAM, running 64-bit Linux 4.9.74. Our attacks use all of the CPU but a negligible
amount of the RAM. As described in Section 4.3, finding a collision consists of two phases:
the constraint phase calculates the set of constraints, and the brute-force phase generates
randomness in the tags to find collisions.

The constraint phase generates and solves eighteen equations, two for each of the first
nine rounds of Curl-P-27. The constraint phase is implemented in Python, and runs on
a single core. We did not try to optimize the first phase. Table 2 shows the average,
minimum, and maximum times of running the first phase 5000 times, when colliding on
the 17th trit.

Table 2 also shows measurements for the brute-force phase, which uses the trits and
template generated from the first phase to brute-force one collision. This is implemented
in Go and parallelizes well, so we use all 80 cores of our server. On average it only takes
7.2 seconds to find one collision using the output of the first phase. On average, it takes
5.2M attempts to find one collision, with the minimum and maximum attempts over 5000
runs 1279 and 53M, respectively. This corroborates our analysis in Section 4.3.

In order to perform the multisig attack described in Section 5.2, we must run both the
constraint phase and the brute-force phase twice, sequentially, to find two collisions. Using
our collision tool, it takes on average 15.2 seconds to produce two multisig bundles which
differ in two places. Table 2 shows the average, minimum, and maximum times for 5000
runs with the same starting bundle.

6 Security Against Generic Attacks
In this section, we show upper bounds on the security offered by ISS against generic brute
force attacks. These attacks are independent of the underlying hash function (currently
instantiated as Kerl, a wrapper around Keccak-384), which we will model here as a random
oracle, i.e., an ideal cryptographic hash function. The attacks described in this section
are unrelated to the attacks on Curl-P and apply to the live IOTA network. However
they do not present a critical vulnerability for default security parameters of ISS.8 Generic
attacks consider the strength of a function to brute-force attacks e.g., trying values blindly
until guessing the preimage. The generic attacks presented here focus on a part of the
IOTA Signature Scheme (ISS) called normalization. Put simply, when signing a message
IOTA composes the output of Kerl or Curl-P with a normalization function. The output
space of the normalization function is smaller than the input space. Therefore even if two

8We disclosed these results to the IOTA developers on Aug 6 2018 and made these results public March
31 2019.
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messages do not collide in the hash function, collisions or preimages could be found after
the normalization function is applied.

To review informally, a cryptographic hash function is an efficiently computable function
H that maps an input of arbitrary length to an output digest (or hash) with constant
length λ, and that satisfies the following security properties [KL14]:

Collision Resistance: It is hard to find x1, x2 such that x1 6= x2 and H(x1) =
H(x2).

Second Preimage Resistance: Given x1, it is hard to find x2 6= x1 such that
H(x1) = H(x2).

Preimage Resistance: Given y, it is hard to find x such that H(x) = y.

In concrete implementations, “hard” means that breaking these guarantees should take
a number of queries to the hash function exponential in Θ(λ). Preimage resistances are
typically expected to have λ bits of security, while collision resistance has λ/2 bits of
security (due to the generic birthday attack) [Wie05].

However, ISS does not act directly on H(msg), but rather on a modified hash value
Norm(H(msg)), so we must analyze the above security parameters for the composed hash
function, which has a reduced output space and thus decreased difficulty of brute force
attacks. Rather than sign the message hash directly, ISS modifies the hash of the message in
two ways: First, it sets the last trit in the digest to 0; this is done to deal with mismatched
buffer sizes when converting from binary to ternary. Second, it applies the normalization
procedure described in Algorithm 3. This is done to prevent an attack that is typically
mitigated in W-OTS by the addition of a checksum. As part of normalization, if any of
the digest trytes have the value 13, normalization will fail and the signature generation
retries the hashing and signature process with a modified message; this is to mitigate the
attack where signing the value 13 will leak part of the signer’s private key [Pin18].

The normalization process splits the message digest into three chunks of 27 trytes
each. Then in each chunk, starting from the left, it increments or decrements each tryte
within the range [−13, 13] until the sum of all the trytes in the digest is 0. For example,
if the last 26 trytes in the chunk sum to 12 and the first tryte is 5, the normalization
procedure will decrement the first tryte to −12 . Once the normalization process computes
the normalized hash (and the hash does not fail the 13 check, mentioned above), either
one, two, or three of these chunks will be output and signed, corresponding to level 1, 2,
or 3 security in ISS. We describe the normalization process as pseudocode in Alg. 3.

This means that to forge a level 1 signature on a message msg2 given a valid signature
on msg1, only the first thirds of Norm(H(msg1)) and Norm(H(msg2)) must collide. IOTA
claims that these levels provide 81, 162, and 243 trits of security (128.3, 256.7, and
385.1 bits) respectively [Fou18b], as they are equivalent to using hash functions with
smaller output size and thus smaller λ. Security level 2 is the default. Security level 1,
while supported and once recommended for small value amounts [Søn16], is no longer
recommended for use [Fou18d].

In order to compute the impact normalization has on preimage and collision resistance,
we do the following: First, we determine the number of outputs that result from normal-
ization. Second, we compute the number of inputs that do not fail normalization. Most
valid inputs which are passed to normalization will fail causing the signature method to
fail and requiring a change to the message to be signed. Finally, since the output of the
normalization function is not uniform, to determine the preimage and collision resistance
we must compute the Shannon entropy. Shannon entropy takes into account the differences
in probabilities between outputs of the normalization function. Intuitively, some outputs
are more likely because the normalization algorithm adjusts trytes starting from the left
until the sum is zero. This means that normalized chunks that have large tryte values
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Algorithm 3: ISS’s deterministic hash normalization procedure.
Function Norm(hmsg, level):

hmsgTrytes ← ToTrytes(hmsg);
for i← 0;i < level;i← i+ 1 do

chunk ← hmsgTrytes[i ∗ 27 : i ∗ 27 + 27];
for j ← 0; sum(chunk)! = 0 do

if sum ( chunk) < 0 then
if chunk[j] == 13 then

j ← j + 1;
else

chunk[j]← chunk[j] + 1;

if sum ( chunk) > 0 then
if chunk[j] == −13 then

j ← j + 1;
else

chunk[j]← chunk[j]− 1;

for n← 0; n < 27; n← n+ 1 do
if chunk[n] = 13 then

return Fail;
nmsg[i ∗ 27 : i ∗ 27 + 27]← chunk;

return ToTrits(nmsg)

later in the string will have more preimages than those with small tryte values and thus a
random input is more likely to be normalized to one of these outputs.

To compute the size of all possible valid normalization outputs, we introduce the
following recurrence which we will use throughout this section. Let S(n, u) denote the
number of n-tryte chunks not containing a 13 with a sum of u. This produces the following
recurrence:

S(n, u) =


1 if n = 0 ∧ u = 0
0 if n = 0 ∧ u 6= 0∑u+13
k=u−12 S(n− 1, k) otherwise .

The two base cases, (n = 0, u = 0) and (n = 0, u 6= 0), correspond to tryte strings of length
0 which should only sum to the value 0, so there are no valid tryte strings that sum to
a value other than 0. For the recurrent case (when n > 0), we consider every possible
value of the first tryte: all integers in the range [−13, 12]. We do not count 13 because the
number 13 is not allowed in normalized outputs. When the first tryte has value v, in order
for the total of the string to be u, the remaining n− 1 trytes must sum to u− v. Therefore
there are S(n − 1, u − v) such tryte chunks for each value of v. Letting k = u − v and
summing over v ∈ [−13, 12], we obtain the equation above.

Using this recurrence, we can count how many 27-tryte chunks (n = 27) sum to 0
(u = 0) and do not contain a 13. The number of all possible normalization outputs for one
chunk is S(27, 0) ≈ 375.84, meaning that the normalized distribution has a max entropy
of approximately 75.84 trits (120.21 bits). However, as we stated earlier, the output of
normalization is not uniformly distributed. Therefore the actual entropy (and security) is
less than this upper bound.

We will now compute the value N , the number of inputs (unnormalized chunks) which
normalize successfully; that is, after normalization none of the trytes are 13. Figure 6
shows how the input space of all possible 27-tryte chunks maps to the output space of
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N S(27,0)

All possible 381

27 tryte chunks (input)  

Valid normalized 
27 tryte chunks (output)

375.84
379.53

380.798

Normalization
success

Normalization
failure

Figure 6: Mapping of input space of unnormalized chunks to the output space of valid,
normalized chunks.

S(27, 0) valid normalized chunks. N is the total number of unnormalized chunks in the
input space that will end up completing the normalization procedure without failure. Let
` = 27 be the length of the tryte string to be normalized. The following is the expression
for N :

N =
12∑

k=−12
27 · S(`− 1, k) +

`−1∑
p=1

12∑
b=−12

27p · (14− b) · S(`− 1− p, 13p− b)

To understand the derivation for N , we note that the normalization will attempt to
make the tryte string sum to 0 by incrementing or decrementing the first tryte until it
reaches 13 or −13, proceeding onto the second tryte if it hits one of these limits while
the sum is still not 0. Note that if a tryte reaches 13, normalization will fail and abort.
Therefore, if normalization modifies the second tryte, the first tryte must have been
modified to −13. Similarly, if normalization modifies the nth tryte for n > 1, the previous
n− 1 trytes must have been modified to −13.

The value p represents the number of trytes that are modified to −13. The first term
in N is almost all the tryte strings which only require modifying the first tryte (or none)
in normalization. Here, p = 0, meaning that at the end of normalization either no trytes
were changed, or only the first tryte was changed and it did not reach a value of −13.
Further, suppose the first tryte takes on a final (post-normalization) value j in the range
[−12, 12]. As only the first tryte is potentially modified, our output string must contain
the final `− 1 trytes unmodified. If these final `− 1 trytes sum to −j, then the first tryte
will take on a final (post-normalization) value of j, regardless of its initial value. There
are S(`− 1,−j) such values for the final `− 1 trytes. As there are 27 potential values of
the first tryte for each of these cases, we obtain the first summation of N .

Next, suppose that p > 0, meaning that p trytes have been normalized to −13 at the
end of the procedure. Consider the final value b of the tryte following the p trytes with
value −13 (see Figure 7). This tryte can take on any value b in the range [−12, 12]. Note
that the first p trytes will be reduced to −13 and the next tryte will be reduced to b if
and only if the final `− 1− p trytes sum to 13p− b. There are S(`− 1− p, 13p− b) such
tryte strings. Furthermore, note that the initial value of the tryte following the first p
trytes must be greater than or equal to than its final value b, as it is never increased by
the normalization procedure. This is because to obtain −13 values in the first p > 0 trytes,
the original sum must be greater than or equal to 0, and thus normalization will never
increase tryte values. There are exactly 14 − b tryte values greater than or equal to b.
Finally, again we recognize that the initial values for the first p trytes do not matter, as
they are unconditionally normalized to −13 by the procedure. This yields the 27p term.
Combining and iterating over p, which can take on any value between 1 and `− 1, and
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Table 3: 1st and 2nd preimage resistance, claimed and actual in trits (bits).

Level Claimed Security 1st & 2nd Preimage Resistance Upper Bound
1 81 trits (128.38 bits) 73.12 trits (115.90 bits)
2 162 trits (256.76 bits) 146.25 trits (231.80 bits)
3 243 trits (385.15 bits) 218.37 trits (346.11 bits)

b which varies in the range [−12, 12], we obtain the latter term of N . This value of N
implies that 19.9% of unnormalized chunks will complete normalization without failure.

~t = (−13,−13, . . . ,−13︸ ︷︷ ︸
first p trytes

, b, tp+2, tp+3, . . . , t`︸ ︷︷ ︸
remaining `− 1− p trytes

must sum to 13p− b

)

Figure 7: Adjusted hash value when normalization procedure stops after normalizing first
p trytes. Letting b be the value of p + 1-th tryte, the remaining ` − 1 − p trytes must
sum to 13p− b, as the first p trytes were normalized to −13. We conclude that this case
happens for S(`− 1− p, 13p− b) strings.

In order to analyze the entropy of the resulting normalized distribution, we must
compute the probability that a random input produces each normalized output. We begin
by restricting our analysis to those inputs which correctly normalize (of which there are
N). The first summation captures each input string which results in a normalized string
beginning with no trytes of value −13. Each of these output strings is produced by input
strings matching in all ` − 1 final trytes with any value for the first tryte. Thus the
probability that each one is produced is 27

N . Per the analysis above, there are S(`− 1, k)
such strings for each value k the initial tryte can take on in the normalized output.

In the latter summation, note that each normalized string beginning with p trytes of
value −13, followed by a tryte of value b, is produced by exactly 27p(14− b) input strings.
For each value of p and b, there are S(`−1−p, 13−p− b) such strings. Using this analysis,
we can construct a vector ~p of length S(27, 0) in which each element corresponds to the
probability of obtaining a given output string. This probability vector can then be used to
compute relevant entropies and collision probabilities.

Using this probability vector, we compute the Shannon entropy of the distribution to
obtain 73.12 trits (115.90 bits) of security, lower than the 81 trits (128.38 bits) claimed
by IOTA. Furthermore, the normalized distribution has a considerably lower min-entropy
of 40.56 trits (64.29 bits). As each chunk in the hash is independent under the random
oracle model, this entropy scales linearly with the security level i.e., level 2 has twice the
entropy of level 1.

When generalizing to the third security level, we note that the last trit of the digest is
zeroed before normalization. This may affect the entropy to a very minor degree. Our
estimates do not account for this, but the effect can be simulated by modifying the base
cases of S. Without this complication, we obtain the following breakdown of the three
security levels against preimage attacks:

These results translate directly to upper bounds for ISS’s EU-RMA security. If an
attacker Eve sees a signature on a message msg1 chosen by Alice, it is sufficient to find
a second preimage msg2 such that Norm(H(msg1)) = Norm(H(msg2)) in the relevant
chunks for the security level. This brute forced message can have meaningful structure,
as long as there are sufficiently large unspecified regions, like the Tag region of IOTA
transactions described in Section 5, in which to probe the search space.
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Table 4: Collision resistance (CR) upper bound, claimed and actual upper bound in
trits (bits). Third column, marked valid, shows impact of rejecting collisions that fail the
normalization output check.

Level Claimed Security CR Upper Bound CR Upper Bound (valid)
1 40.5 trits (64.19 bits) 29.74 trits (47.14 bits) 34.15 trits (54.14 bits)
2 81 trits (128.38 bits) 58.85 trits (93.27 bits) 63.26 trits (100.27 bits)
3 121.5 trits (192.57 bits) 87.42 trits (138.56 bits) 91.83 trits (145.56 bits)

We also calculate an upper bound for collision resistance of the composed hash function
and apply this result to ISS’s EU-CMA security. Consider a generic brute force attack,
in which we aim to find msg1 and msg2 such that Norm(H(msg1)) = Norm(H(msg2)) for
the chunks used in our given security level. Furthermore, suppose msg1 and msg2 are
drawn from a sufficiently large uniform distribution. Let X denote the previously described
distribution of the normalization function’s image, and M denote the number of samples
drawn from X before finding a collision. We can compute the quantity β−1 = ‖X‖2

2, where
β−1 represents the probability that two independent samples from X are equal, as

∑
i p

2
i

using the probability vector defined above. Therefore, we can compute an upper bound on
level one collision resistance using E[M ] ≤ 2

√
β [Wie05]:

β−1 ≈ 1.67 · 10−28

E[M ] ≤ 2
√
β ≈ 1.55 · 1014 ≈ 247.14

Thus, assuming we draw uniformly from the preimage of valid outputs of the normal-
ization function, we can stage a brute force attack on level 1 keys using only 247.14 queries.
Repeating this analysis for levels 2 and 3 yields the complexities in Table 4.

However, note that only approximately 0.788% of inputs are in the preimage of valid
normalization outputs. Thus, our attack time is increased by a factor of approximately 27.
Upper bounds for collision resistance translate directly to upper bounds for ISS’s EU-CMA
security. Eve can generate two messages that collide under the composed hash function,
and Alice’s signature for one will be valid for the other. Using standard techniques,
these brute-forced collisions can have distinct and prespecified structure at the cost of 2x
overhead.

While these brute-force attacks largely do not have practical query complexities—with
the notable exception of the level 1 EU-CMA attack—these bounds are not only lower
than stated figures, but they also represent just one attack vector against an idealized ISS.

7 Discussion
The IOTA developers have made several statements discussing the impact and the cause
of these vulnerabilities. We summarize these statements and address some of the concerns.

The IOTA developers have argued that the chosen-message attack model is irrelevant
in the context of the complete IOTA network: specifically, that the chosen-message setting
is implausible because “in IOTA an attacker doesn’t choose the signed message” [blo18]. In
response to the critique on the chosen-message setting we extended our signature-forgery
attack to work on payments spending from a multisig address since the multisig protocol
explicitly allows one user to choose the message that another user will sign.

The IOTA developers also argued that “even most valid attacks” would fail on the
live IOTA network because of unspecified “protection mechanisms” in the closed-source
coordinator [blo18, Fou18c]. The attacks presented in the vulnerability report and this
paper are against the IOTA Signature Scheme in isolation. We did not analyze these
attacks within the context of the complete IOTA system.
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Additionally, IOTA developers claimed that the ability to find colliding inputs to Curl-P-
27 was intentional and was for the purposes of preventing “scam clones.” It is worth quoting
them in full: “The IOTA team made a design decision early on to prevent this possibility [of
scam clones] by purposefully introducing the Curl-P hashing function with known practical
collisions. This had the express purpose of rendering fraudulent clones of the protocol useless
in their application as a DLT protocol, while at the same time guaranteeing the security
of the IOTA protocol and network as a whole.” They argue that the closed-source IOTA
coordinator would protect the IOTA network from these purposefully introduced flaws,
which they refer to as a “copy-protection mechanism” [Fou18c]. Based on this statement,
IOTA seems to indicate that our research, in addition to discovering a novel attack on
the IOTA Signature Scheme, may have uncovered an intentionally-placed backdoor in the
cryptography of IOTA.

8 Conclusion
This paper presents chosen-message signature forgery attacks on the IOTA Signature
Scheme when using the hash function Curl-P-27. We explain the cryptanalysis methods
we used to create full-state collisions on same-length messages which differ in only a single
position. We describe how to use these methods to create two valid IOTA bundles which
can differ in multiple positions but still hash to the same value, and thus a signature
for one is a valid signature for the other. We give examples placing these differences in
the value fields of a bundle, and show that an attacker can produce such bundles using
easily-accessible hardware in tens of seconds.
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A Security Definitions
In this Section we provide a formal definition of the EU-CMA (Existential Unforgeability
under Chosen Message Attack) and EU-RMA (Existential Unforgeability under Random
Message Attack) for ISS (IOTA Signature Scheme). We use EU-RMA to model known
message attacks where the known message is chosen at random. We discuss extending
these definitions to include chosen message attacks which are limited to messages which
are also valid IOTA bundles.

We briefly recall the standard definitions of digital signature schemes and their security,
mirroring standard literature [Gol04, KL14, GBH18].

Definition 1. A digital signature scheme is a triple of algorithms (KeyGen,Sign,Verify)
working as follows:

• KeyGen(1λ)→ (PK,SK): On input 1λ, the key generator KeyGen outputs a keypair
(PK,SK), consisting of a public key PK and secret key SK.

• Sign(SK,msg) → σ: On input SK and message msg, the signing algorithm Sign
outputs a signature σ.

• Verify(PK,msg, σ) → b: On input PK, msg, σ, the verification algorithm Verify
outputs a decision bit b.
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We require perfect completeness. That is, for any message msg, a validly generated
signature must always be accepted:

Pr
[

Verify(PK,msg, σ) = 1
∣∣∣∣ (PK,SK)← KeyGen(1λ)

σ ← Sign(SK,msg)

]
= 1 .

The setting relevant for our work in Section 5 is a chosen message attack where, before
outputting a forgery, an adversary gets to learn signatures for messages of his choice. In
particular, for one-time signature schemes, the adversary is able to learn a signature for a
single message. Other attack models include random message attacks (adversary is able to
learn signatures on random message(s)) which we define to model a known message attack.
Key-only attacks (adversary is only able to learn the public key). In particular, prior work
offered a key-only attack of IOTA [Pin18] succeeding with probability 1 for ≈ 3% public
keys. Our chosen message attack exploiting vulnerabilities in Curl-P-27 succeeds with
probability 1 (under reasonable heuristics) for all public keys.
Definition 2. A one-time signature scheme (KeyGen,Sign,Verify) is secure against chosen
message attacks (or, EU-CMA secure), if no polynomial-time stateful adversary A =
(A1,A2) can output a fresh forgery, except with negligible probability:

Pr

 (msg 6= msg′)
and

Verify(PK,msg′, σ′) = 1

∣∣∣∣∣∣∣∣
(PK,SK)← KeyGen(1λ)

(msg, st)← A1(PK)
σ ← Sign(SK,msg)

(msg′, σ′)← A2(st,msg, σ)

 ≈ negl(λ) .

Notably, ISS uses a hash-then-sign paradigm. Therefore, ability to find collisions for the
underlying hash function directly yields to a chosen-message attack. Given two colliding
inputs x1 and x2 (H(x1) = H(x2)), the adversary will first output msg = x1, and after
receiving a correct signature σ = Sign(SK,msg) from the challenger, will output msg′ = x2
and σ′ = σ. Because both messages yield the same value when hashed, Verify(PK,msg′, σ′)
always accepts.

One could argue that the practical impact of not achieving EU-CMA security is hard
to quantify. Indeed, if other parts of the overall system required messages to have certain
structure, yet an attacker was only able to produce forgeries for messages that lack this
requisite structure, these cryptographic breaks might not yield attacks exploitable against
valid messages.

We rule out this possibility by devising a highly flexible collision-finding algorithm (see
Section 5). In particular, our algorithm lets us freely generate collisions with arbitrary
known prefixes and suffixes. This is sufficient, for example, to generate two colliding
IOTA transactions, or two colliding multi-signature bundles. We explain how to generate
such forgeries in Appendix B, and experimentally validate that the IOTA reference
implementation from August 6, 2017, which is before the commit to change the hash
function from Curl-P to Keccak [Han17], accepts the forged signatures.

Section 6 discusses existential unforgeability under random message attack (EU-RMA)
against ISS, where the message is chosen randomly i.e., sampled uniformly.Note that
for one-time signatures the adversary A is no longer stateful as it does not require any
interacting with the security game beyond receiving (PK,msg, σ) triple for randomly chosen
msg, and outputting a forgery.
Definition 3. A one-time signature scheme (KeyGen,Sign,Verify) is secure against random
message attacks (or, EU-RMA secure), if no polynomial-time adversary A, given a signature
on a random message can output a fresh forgery, except with negligible probability:

Pr

 (msg 6= msg′)
and

Verify(PK,msg′, σ′) = 1

∣∣∣∣∣∣∣∣
(PK,SK)← KeyGen(1λ)
msg $←− {−1, 0, 1}poly(λ)

σ ← Sign(SK,msg)
(msg′, σ′)← A(PK,msg, σ)

 ≈ negl(λ) .
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Txn Address Tag b1 Value b2 Value

0 Bob WJ9JPWIYIVQSTFNYY9HCZUQRVBK 182219672 182219672

1 Eve CYBLAAX9ZA99Q9ZU9CXIU9DXCCW 1 129140164

2 Carol GOUKGHTRFTLRHPOBZRMDLM9QIEM 400000 400000

3 Alice FZZMZXCXWAI9SZAURCR9C9BXDCW 129140164 1

4 Alice,Eve 999999999999999999999999999 -500000000 -500000000

5 999999999999999999999999999 0 0

6 999999999999999999999999999 0 0

7 999999999999999999999999999 0 0

8 999999999999999999999999999 0 0

9 999999999999999999999999999 0 0

10 Alice,Eve 999999999999999999999999999 188240163 188240163

Figure 8: An example multisig bundle spending from an address controlled by Alice and
Eve. Transaction 4 is the funding transaction, and transaction 10 is the change which goes
back to Alice and Eve. The collisions are in transactions 1 and 3. Transactions 5-9 are
just to hold the signature fragments of Alice and Eve.

The definitions given in this section are intended as a helpful guide for the security
assumptions of ISS. Because these definitions are asymptotic definitions they do not cleanly
map onto our practical attacks which deal with concrete computational resources. We hope
that follow up research will extend this work to develop concrete definitions for security of
ISS such as those given for RSA in [BR96].

B Example Colliding Bundles
Our previous vulnerability report detailed colliding bundles which execute the steal money
and waste money attacks for single-signature bundles. In Section 5.2, we described the
structure of these attacks and showed how we targeted collisions in value fields using the
previous and following tags. Here, we describe in more detail example multi-signature
bundles that have the same hash and spend different amounts to Alice and Eve.

Figure 8 describes two different bundles b1 and b2 that differ only in the value fields
in two transactions. We give the address the funds are being spent to or from, the tags,
and the values. Each bundle consists of 11 transactions: one input spending funds that
were in a multisig address controlled by Alice and Eve (4), five outputs, including one
change output, spending to Alice, Bob, Carol, Eve, and back to Alice and Eve’s multisig
address (0-3,10), and five extra transactions which are present only to hold signature
fragments from Alice and Eve authorizing the spend (5-9). Signature-holding transactions
have empty addresses and values. The tags in first four transactions are generated using
our collision tool so that b1 and b2 will have the same hash.
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