
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. 3, pp. 362–366. DOI:10.13154/tosc.v2020.i3.362-366

Errata to Sound Hashing Modes of Arbitrary
Functions, Permutations, and Block Ciphers

Aldo Gunsing, Joan Daemen and Bart Mennink

Digital Security Group, Radboud University, Nijmegen, The Netherlands
aldo.gunsing@ru.nl, joan@cs.ru.nl, b.mennink@cs.ru.nl

Abstract. In ToSC 2018(4), Daemen et al. performed an in-depth investigation of
sound hashing modes based on arbitrary functions, permutations, or block ciphers.
However, for the case of invertible primitives, there is a glitch. In this errata, we
formally fix this glitch by adding an extra term to the security bound, q/2b−n, where
q is query complexity, b the width of the permutation or the block size of the block
cipher, and n the size of the hash digest. For permutations that are wider than
two times the chaining value this term is negligible. For block cipher based hashing
modes where the block size is close to the digest size, the term degrades the security
significantly.
Keywords: hash functions · tree hashing · sufficient conditions · indifferentiability
· errata

1 Introduction
In [DMA18], Daemen, Mennink, and Van Assche performed a thorough investigation
of cryptographic hashing modes. They considered a very large class of hashing modes
built on top of arbitrary functions, permutations, or block ciphers, and derived sufficient
conditions for these modes to be hard to differentiate from a random oracle. Their analysis
generalized earlier attempts of Dodis et al. [DRRS09] and Bertoni et al. [BDPV14]. Most
importantly, the contribution of Daemen et al. consisted of cleaner sufficiency conditions
and analyses for permutation based cryptographic hashing modes. While the conceptually
cleaner sufficiency conditions simplified the security analyses, a level of complication was
introduced by the fact that more general modes than in [DRRS09,BDPV14] were taken
into consideration.

After publication of the original article, it turned out that there was an error in the
proof of the mode for a truncated permutation or a block cipher [Nev19]. At a high level,
the attack consisted of (i) querying the construction oracle for an arbitrary message M‖m
to get a hash digest h, (ii) querying the inverse primitive on input of the hash outcome
h (possibly appended, as truncation is involved), and (iii) using the previous result to
compute the hash of M‖m′, without having to know M but only h, m and m′. Intuitively,
the attack would succeed after 2b−n attempts, where b is the width of the permutation or
block length of the block cipher, and n the hash digest size. The problem is discussed at a
higher level of technicality in Section 2.

Fortunately, the glitch is quite simple to fix. In this errata to the original article
of Daemen et al. [DMA18], we correct the analysis for the case of modes based on a
permutation or block cipher. The original analysis carries over with an additional term
q/2b−n, where b is the width of the primitive or block size of the block cipher, and n the hash
digest size. The updated indifferentiability bounds for the relevant hashing modes are given
in Table 1. The updated analysis is described in Section 3. For truncated permutations,

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-06-01 Accepted: 2020-08-01 Published: 2020-09-28

https://doi.org/10.13154/tosc.v2020.i3.362-366
mailto:aldo.gunsing@ru.nl
mailto:joan@cs.ru.nl
mailto:b.mennink@cs.ru.nl
http://creativecommons.org/licenses/by/4.0/

Aldo Gunsing, Joan Daemen and Bart Mennink 363

Table 1: Updated indifferentiability bounds for hashing modes of an arbitrary function, a
truncated permutation or a (truncated) block cipher. The rectangles denote the additional
terms. The conditions SF, RD, MD, and LA stand for subtree-freeness, radical-decodability,
message-decodability, and leaf-anchoring, respectively (see the original article [DMA18] for
their definitions). q is the adversarial complexity expressed as the number of primitive
queries either direct or indirect, n the CV length, and b ≥ n the width of the permutation
resp. the block length of the block cipher.

compression function type SF+RD+MD LA bound

arbitrary function X —
(

q
2
)

2n

truncated permutation X X

(
q
2
)

+ 1
2n

+
(

q
2
)

2b
+ q

2b−n

truncated block cipher X X

(
q
2
)

+ 1
2n

+
(

q
2
)

2b
+ q

2b−n

the impact of the additional term is negligible if b− n > n, i.e., if b > 2n. This is the case
for wide permutations such as Keccak-p[1600] or Keccak-p[800], or the permutation used
in MD6. For lightweight permutations, the presence of the term becomes problematic.
However, these do not lend themselves easily to the tree hashing modes considered in this
work in the first place, as at least two CVs should fit in a single permutation input, hence
b > 2n. For the modes based on block ciphers b is the block length. In most cases there
is no truncation, i.e., implying b = n and all security evaporates. However, if there is
truncation and n 6 b/2, the additional term is negligible. For example, using the block
cipher underlying SHA-512/256 [SHA15] we get b = 512 and n = 256, which gives 128 bits
of security both without and with the extra term. Concluding, the extra term leads to an
extra requirement for modes to be secure, in that sufficient truncation has to be done.

2 Problem in Original Analysis
For simplicity, consider a block cipher based tree hashing mode without truncation, i.e.,
with b = n, for the processing of a message M‖m, where M is of arbitrary length and m
of fixed length. The computation of the final node when computing T (M‖m) = h would
typically be of the following form:

E

m

CV h

Here, CV is the intermediate result when compressing M . Because the block cipher is
invertible, an attacker can compute CV = E−1

m (h). It can use this information to compute
T (M‖m′) = h′ = Em′(CV) based on just h, m and m′, thus without any knowledge of M .
It can use this trick to differentiate the hashing mode from a random oracle.

In short, an attacker can do the following:

1. query T (M‖m) = h,

2. query E−1
m (h) = CV,

3. query Em′(CV) = h′,

364 Errata to Sound Hashing Modes of Arbitrary Functions, Permutations, and BCs

4. verify h′ = T (M‖m′).

The problem for the simulator is that it does not remain consistent. We assume that
at the end of the interaction, the distinguisher will always verify its queries to the random
oracle. In above case, it will query the simulator for the compression of M . The simulator
will return a random value CV′, which is unlikely to be equal to CV. However, to be
consistent with the random oracle, the simulator has to return h for Em(CV′) as well. This
means that it is no longer consistent as a block cipher, as both CV and CV′ are mapped
to h under Em. Note that the simulator is already inconsistent without querying Em′(CV),
but we do need that additional query to exploit the weakness in a real hashing mode.

The same problem holds when a truncated permutation is used and b− n is small. In
general, the attacker gets an advantage of q/2b−n by guessing the truncated bits.

In general, the problem is caused by the fact that the final primitive call in the hashing
mode is invertible and that the attacker succeeds in inverting it in 2b−n attempts, as it
must correctly guess the b− n-bit truncated part. The attack therefore does not affect the
analysis of [DMA18] for arbitrary functions, but only for permutations and block ciphers.

3 Updated Analysis
As a reference, we first restate the simulator and bad views of [DMA18, Theorem 2] for
the case of a permutation. The simulator is given in Algorithm 3. For the bad views,
we denote byM = {(M1, Z1, h1), . . . , (Mr, Zr, hr)} the view seen by distinguisher D′ on
interaction with the construction oracle, and by Ł = {(x1, y1), . . . , (xq, yq)} the view seen
by D′ on interaction with the primitive oracle. The set Ł is split into forward queries Lfwd

and inverse queries Linv. We further split Lfwd into

Lrad = {(xi, yi) ∈ Lfwd | S = radicalExtend[Lfwd
i−1](xi) ∈ Srad

T },
Lother = Lfwd \ Lrad .

Denote ν = (M,Lrad,Lother,Linv). The set V denotes any attainable view that can be
observed by D′.

An attainable view ν is called bad if:

(i) There exist distinct (xi, yi), (xj , yj) ∈ Lrad with byicn = byjcn;

(ii) There exist distinct (xi, yi), (xj , yj) ∈ Lother with byicn = byjcn;

(iii) There exist (xi, yi) ∈ Lrad and (xj , yj) ∈ Lother with i < j such that byjcn =
radicalValue[Łi−1](xi);

(iv) There exist (xi, yi) ∈ Linv such that bxicn = IV;

(v) There exist (xi, yi) ∈ Linv and (xj , yj) ∈ Lfwd such that bxicn = byjcn;

(vi) There are distinct (xi, yi), (xj , yj) ∈ (Lfwd ∪ Linv) with xi = xj or yi = yj .

The error of [DMA18] happens in the analysis of bad event (vi). The original paper
assumes that the simulator always returns random values from Zb

2 for new inputs, which
leads to the term

(|Ł|
2

)
/2b =

(
q
2
)
/2b. However, when a query completes a tree, the first n

bits of its result are taken from the random oracle, whose bits are not random when the
distinguisher has queried it earlier. Below a corrected analysis of bad event (vi) is given.

Let (xi, yi), (xj , yj) ∈ (Lfwd ∪ Linv) be arbitrary distinct queries with i < j. We do
some case separation based on what kind of queries i and j are.

Aldo Gunsing, Joan Daemen and Bart Mennink 365

Algorithm 3
Interface: S : Zb

2 → Zb
2 , x 7→ y

if x /∈ domŁ then
S ← radicalExtend[Lfwd](x) . radical-extend tree from single node
if S ∈ ST then . query completes tree

(M,Z)← extract(S) . extract message and tree template
z

$←− Zb−n
2

y ← RO(M,Z)‖z
else . query does not complete tree

y
$←− Zb

2
end if
Ł(x)← y

end if
return Ł(x)

Interface: S−1 : Zb
2 → Zb

2 , y 7→ x
if y /∈ rngŁ then

x
$←− Zb

2
Ł−1(y)← x

end if
return Ł−1(y)

1. Suppose (xj , yj) /∈ Lother. Then yj (for a forwards query) or xj (for a backwards
query) is chosen randomly from Zb

2, hence the probability of a collision is indeed
1/2b.

2. Suppose (xj , yj) ∈ Lother. Now we separate based on query i.

(a) Suppose (xi, yi) ∈ Lother. By the negation of bad event (ii) we know that
byicn 6= byjcn, hence we cannot have a collision.

(b) Suppose (xi, yi) /∈ Lother. This is the problematic case. We merely know that
the final b − n bits of yj are chosen randomly from Zb−n

2 . If query j does
not complete a tree, the other bits are also chosen randomly, but we can only
guarantee the final b − n bits for both cases combined. This means that the
probability of a collision is bounded by 1/2b−n. Note that for a collision to
happen we have the additional requirement that byicn = byjcn.

As we only get a probability of 1/2b−n when (xi, yi) /∈ Lother, (xj , yj) ∈ Lother and byicn =
byjcn, we can bound the number of problematic cases. For every query (xi, yi) /∈ Lother

there is at most one query (xj , yj) ∈ Lother with byicn = byjcn by bad event (ii). Hence
the number of suitable pairs is at most |Ł\Lother| 6 q. This means that we get the original
term

(|Ł|
2

)
/2b =

(
q
2
)
/2b plus an additional one of q/2b−n.

The fix to [DMA18, Theorem 3], for the block cipher based modes, is identical.

Acknowledgments
The authors would like to thank Samuel Neves, Gilles Van Assche, and the anonymous re-
viewers of ToSC for their valuable feedback. Aldo Gunsing is supported by the Netherlands
Organisation for Scientific Research (NWO) under TOP grant TOP1.18.002 SCALAR.
Joan Daemen is supported by the European Research Council under the ERC advanced
grant agreement under grant ERC-2017-ADG Nr. 788980 ESCADA.

366 Errata to Sound Hashing Modes of Arbitrary Functions, Permutations, and BCs

References
[BDPV14] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sufficient

conditions for sound tree and sequential hashing modes. Int. J. Inf. Sec.,
13(4):335–353, 2014.

[DMA18] Joan Daemen, Bart Mennink, and Gilles Van Assche. Sound Hashing Modes of
Arbitrary Functions, Permutations, and Block Ciphers. IACR Trans. Symmetric
Cryptol., 2018(4):197–228, 2018.

[DRRS09] Yevgeniy Dodis, Leonid Reyzin, Ronald L. Rivest, and Emily Shen. Indif-
ferentiability of Permutation-Based Compression Functions and Tree-Based
Modes of Operation, with Applications to MD6. In Orr Dunkelman, editor,
Fast Software Encryption, 16th International Workshop, FSE 2009, Leuven,
Belgium, February 22-25, 2009, Revised Selected Papers, volume 5665 of Lecture
Notes in Computer Science, pages 104–121. Springer, 2009.

[Nev19] Samuel Neves. Personal communication, 2019.

[SHA15] National Institute of Standards and Technology. FIPS 180-4: Secure Hash
Standard (SHS). Federal Information Processing Standards Publication 180-4,
August 2015.

	Introduction
	Problem in Original Analysis
	Updated Analysis

