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Abstract. Mixed Integer Linear Programming (MILP) solvers are regularly used by
designers for providing security arguments and by cryptanalysts for searching for new
distinguishers. For both applications, bitwise models are more refined and permit
to analyze properties of primitives more accurately than word-oriented models. Yet,
they are much heavier than these last ones. In this work, we first propose many new
algorithms for efficiently modeling any subset of Fn

2 with MILP inequalities. This
permits, among others, to model differential or linear propagation through Sboxes.
We manage notably to represent the differential behaviour of the AES Sbox with three
times less inequalities than before. Then, we present two new algorithms inspired
from coding theory to model complex linear layers without dummy variables. This
permits us to represent many diffusion matrices, notably the ones of Skinny-128 and
AES in a much more compact way. To demonstrate the impact of our new models on
the solving time we ran experiments for both Skinny-128 and AES. Finally, our new
models allowed us to computationally prove that there are no impossible differentials
for 5-round AES and 13-round Skinny-128 with exactly one input and one output
active byte, even if the details of both the Sbox and the linear layer are taken into
account.
Keywords: MILP · Sbox · Linear Layer · Impossible Differential

1 Introduction
In symmetric-key cryptography, a popular technique for proving resistance against classical
attacks is to model the behaviour of the cipher as a Mixed Integer Linear Programming
(MILP) problem and solve it by some MILP solver. This method was applied for the first
time by Mouha et al. [MWGP11] and by Wu and Wang [WW11] for finding the minimum
number of differentially and linearly active Sboxes and provides in such a way a proof of
resistance against these two classical attacks. Since then, the use of MILP not only by
designers but also by cryptanalysts has increased, the advantage being that it is relatively
easy to translate the cryptanalytic problem into linear constraints and use the available
solvers to solve it.

For Substitution Permutation Networks (SPN), it is possible to get easy and relatively
small models when searching for properties at the word level. For example, MILP is
often used to search for a lower bound on the number of active Sboxes by exploring
truncated differentials. However, wordwise models do not apply to all kind of ciphers
(e.g. Present [BKL+07], Gift [BPP+17]) and most importantly they are much less
accurate than models at bit level. For example, modeling the propagation of the differences
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bitwise and looking inside the Sboxes could yield longer impossible differentials than those
discovered when only truncated differences are analyzed [ST17b].

Sun et al. [SHW+14a, SHW+14b] were the first to propose bit-oriented modelings
for SPN ciphers. A non-trivial problem in doing so is to find an efficient representation
of the valid differential propagations through an Sbox. Indeed, Sboxes are non-linear
Boolean vectorial functions, therefore modeling their differential properties with R-linear
inequalities is not natural. Several approaches have been suggested to solve this problem.
In the original works of Sun et al. [SHW+14b, SHW+14a] two different methods were
notably proposed for modeling an Sbox. The first of them is a geometrical approach that
consists in representing all possible transitions (a S−→ b) through an n-bit Sbox as points
(a, b) ∈ R2n and then computing the H-representation of the convex hull of this set, that is
all the geometric faces of the smallest convex containing it. The second method, based on a
logical condition approach, consisted in representing by linear inequalities some conditional
differential properties of the Sbox. Unfortunately, the problem of these two methods is
that they are not efficient for large (e.g. 8-bit) Sboxes.

To solve this problem for large Sboxes, Abdelkhalek et al. [AST+17] observed that
generating a minimal number of constraints in logical condition modeling can be converted
into the problem of minimizing the product-of-sum representation of Boolean functions.
This last problem is well-studied and algorithms for solving it exist, for example the
Quine-McCluskey (QM) [Qui52, Qui55, McC56] or the Espresso [BSVMMH84] algorithms.
In this way, Abdelkhalek et al. managed for the first time to generate linear constraints
for 8-bit Sboxes, notably for the Sboxes of AES [aes01] and Skinny-128 [BJK+16]. While
the number of linear constraints for the Sbox of Skinny provided in [AST+17] is as low
as 372, the same method yields 8302 linear inequalities for the Sbox of AES, a modeling
that is often too heavy to be used in practice.

Efficiently representing the Sboxes is a crucial part of the modeling process. But, a
bad modeling of the diffusion layer can render the optimization process very slow or even
impractical. Indeed, with the exception of some ciphers, e.g. Present [BKL+07], where
the linear layer is just a bit-permutation, the diffusion is usually ensured by XOR gates.
Yet, the XOR operation, while linear in F2 models very badly in R. So, bitwise modeling
of heavy linear layers, that need many XORs to be represented, can lead to impractical
systems with many linear inequalities or with many dummy variables.

The use of dummy variables in MILP models is a popular approach that needs to be
discussed. To the best of our knowledge, there are three ways of using dummy variables:
linear layer branch number modeling in wordwise modelings as introduced in [MWGP11],
modeling x1 ⊕ · · · ⊕ xn = 0 with a dummy integer variable t as x1 + · · · + xn = 2 · t
and finally using a dummy binary variable a for recording an intermediate state in the
computation, for example modeling the above computation as x1 ⊕ · · · ⊕ xk ⊕ a = 0 and
a⊕ xk+1 ⊕ · · · ⊕ xn = 0. For Sbox modelings, when the construction of the Sbox is known
and well suited, only the latter can be helpful. However in general, in order to minimize
the running time of the MILP solver, it is important to minimize the number of integer
variables. In this paper we study bitwise modelings which need by definition many MILP
integer variables. We hence restricted ourselves to not introducing dummy variables and
leave the use of dummy integer variables for improving performance as an open problem.

Our Contributions In this work we propose several new bitwise MILP modelings for the
propagation of differential properties through both Sboxes and linear layers. Our methods
permit to efficiently model exact differential propagation through SPN ciphers and can be
applied to prove resistance against differential cryptanalysis and its variants or to search
for new differential-type attacks. Besides, the methods used for modeling the DDT of an
Sbox are general enough for modeling an LAT or any Boolean function.

Modelings for large Boolean functions and Sboxes We introduce many different model-
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ings for Boolean functions, by using algebraic or geometrical methods. With our
techniques we manage to decrease significantly the number of inequalities needed to
model large Sboxes. While Sasaki and Todo showed in [ST17a] that reaching the
minimal number of inequalities is not necessarily the best approach for decreasing
the solving time, yet a big difference in the number of inequalities leads to a real
difference for the optimization process, as we demonstrate with experiments. We
managed notably to represent the AES Sbox with 2882 inequalities, dividing by three
the number of inequalities needed in the best previous approach.

Modeling matrices with entries in F2 We provide efficient modelings for linear layers
without the use of dummy variables. We first explain why modeling the XOR of
several binary variables, which is the central operation in most of the matrix/vector
products over F2 , needs many inequalities. Then, we introduce new algorithms
inspired from coding theory that change the modeled matrix to significantly decrease
this number.

Applications to impossible differential cryptanalysis from the designer’s point of view
We complete the work of Sasaki and Todo in [ST17b] and we use our modeling tech-
niques for proving partial resistance against impossible differential cryptanalysis for
AES and Skinny. More precisely, we show for both ciphers that even when the Sbox
details are taken into account, there are no impossible differentials with one active
input/output byte for 5-round AES and 13-round Skinny.

All of our MILP experiments were done with the Gurobi optimizer [GO20].

Organization The rest of the paper is organised as follows. Section 2 is dedicated to
our different methods for modeling Boolean functions and Sboxes. Then, in Section 3 we
present an algorithm to efficiently model linear layers. In Section 4, we run an experiment
for illustrating the effectiveness of the previously-introduced methods. Finally, we apply
our new models to impossible differential cryptanalysis in Section 5.

2 MILP Modeling for Boolean functions and Sboxes
The methods to be introduced in this section can be applied to characterize any set
P ⊂ {0, 1}m with R-linear inequalities. As any such subset P ⊂ {0, 1}m can be seen as
the support of some Boolean function fP : Fm

2 → F2 operating on m bits, the inequalities
representing P model the constraint fP (x0, . . . , xm−1) = 1. However, as our main target
is the modeling of differential, linear or other behaviours through an Sbox S : Fn

2 → Fn
2 ,

and such behaviours can be represented (as will be explained below) by some Boolean
function, we will describe some of our techniques, without loss of generality, through the
spectrum of the differential behaviour of an Sbox.

In what follows, a (differential) transition x → y through the Sbox will be seen as
a vector of Fm

2 , involving m = 2n binary variables and will be represented, depending
on the context, either as (x0, . . . , xn−1, y0, . . . , yn−1) or as (x0, . . . , xm−1). The Hamming
weight of a vector x ∈ Fm

2 , i.e. the number of its non-zero bits, will be denoted by wt(x).
Finally, we will often use the notation [a, b] to represent the set of all integers k such that
a ≤ k ≤ b.

2.1 Modeling Boolean functions and DDTs
For many problems, as for example the search for good differential characteristics, bitwise
modelings are more often adapted than wordwise ones, as they are more precise and permit
to follow information propagation at the bit level. In such models, a binary variable
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is assigned to each bit of a differential characteristic. A variable has the value 1 if the
corresponding bit has a difference in the characteristic — in which case it is called active —
and 0 otherwise. In a MILP model, in order to follow how the information is propagated
through the different components of the cipher, each different layer has to be efficiently
modeled. For Sboxes, this is typically done by looking at the Difference Distribution Table
(DDT), that is a 2n × 2n table given by

DDT(a, b) = #
{
x ∈ Fn

2
∣∣S(x)⊕ S(x⊕ a) = b

}
.

When one only cares whether a differential propagation is possible or not, it is enough to
model the Boolean function

F2n
2 → F2

(x, y) 7→
{

0, if DDT(x, y) = 0,
1, otherwise.

However, if one wants to take into account the different integer values of the DDT, the
authors of [AST+17] propose to encode this information by modeling instead the Boolean
functions

F2n
2 → F2

(x, y) 7→
{

0, if DDT(x, y) 6= p,
1, otherwise,

for each value p > 0 such that ∃(a, b) : DDT(a, b) = p.
As one can see, modeling a DDT is equivalent to modeling some specific Boolean

function. From now on, we will focus on modeling general Boolean functions but all our
examples and applications will be focused on DDTs. In all these examples we will be
only interested in whether differential propagations are possible or not, without caring
about their concrete probability. However, one has to remember, that all these methods
can be applied to any other Boolean function and in particular to other cryptanalysis
techniques whose properties can be described through some table, as are the linear and
the boomerang cryptanalysis [Wag99].

Lets take the example of the following 3-bit Sbox, used inside the block cipher Print-
Cipher [KLPR10]:

x 0 1 2 3 4 5 6 7
S(x) 0 1 3 6 7 4 5 2

Its DDT can be visualized in Table 1.

Table 1: DDT of the 3-bit Sbox used in PrintCipher
0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0
1 0 2 0 2 0 2 0 2
2 0 0 2 2 0 0 2 2
3 0 2 2 0 0 2 2 0
4 0 0 0 0 2 2 2 2
5 0 2 0 2 2 0 2 0
6 0 0 2 2 2 2 0 0
7 0 2 2 0 2 0 0 2

Then, by denoting by x0, x1, x2 the three bits of the input difference x and by y0, y1, y2
the three bits of the output difference y, where x0 and y0 are the LSBs of x and y
respectively, the following system of 7 inequalities is satisfied by all the valid transitions
while removing the 35 impossible transitions x→ y for which DDT(x, y) = 0.
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−2x0 − 2x1 + x2 − 2y0 − 2y1 + y2 ≥ −6
−2x0 + x1 − 2x2 − 2y0 + y1 − 2y2 ≥ −6
x0 − 2x1 − 2x2 + y0 − 2y1 − 2y2 ≥ −6

x0 + 2x1 + 4x2 + 3y0 + 2y1 − 4y2 ≥ 0
−3x0 + 2x1 − x2 + 4y0 + 2y1 + 4y2 ≥ 0

4x0 − 2x1 + x2 − 2y0 + 4y1 + 3y2 ≥ 0
(1)

2.2 State of the art
Given the truth table of a Boolean function f , the question is how to efficiently model
the constraint f(x) = 1 by a system of R-linear inequalities. This problem can then be
divided into two sub-problems:

Problem 1 How to generate a (possibly large) set of inequalities on variables x0, . . . , xm−1
that correctly models f?

Problem 2 How to choose a (typically much smaller) subset of this set of inequalities that
still correctly represents f but leads to more efficient MILP models?

For differential cryptanalysis, the above general problem corresponds to modeling the
fact that (x0, . . . , xn−1) → (xn, . . . , x2n−1) is a possible transition in a DDT. To solve
Problem 1, two different approaches were proposed in 2014 by Sun et al. [SHW+14a,
SHW+14b]. The first is a geometrical one and consists in computing the H-representation
of the convex hull of the set of possible transitions. The second one is based on logical
condition modeling. Below, we briefly explain these two methods.

The method of the H-representation of the convex hull consists, as its name suggests,
in computing the H-representation of the convex hull of all possible points a ∈ Fm

2 such
that f(a) = 1 seen as vectors of Rm. Taking then the (m− 1)-dimensional faces of the
convex hull yields a correct set of inequalities. The H-representation can be for example
computed through an algebra computer system such as Sage [The20] and gives a system
of linear inequalities excluding all impossible points (e.g. all points a such that f(a) = 0).

The second method proposed by Sun et al. and called logical condition modeling is
based on the idea that each impossible point can be removed by a single inequality in a
simple way. Indeed, consider an impossible point a = (a0, . . . , am−1). Then, the inequality

m−1∑
i=0

(1− ai)xi + ai(1− xi) ≥ 1 (2)

only discards this point a. Lets take as example the DDT of PrintCipher. As it can be
seen from Table 1, (0x1,0x6) is an impossible transition through the DDT. By writing
the input and output in a bitwise manner we have that (100) 9 (011). The above formula
gives the inequality −x0 + x1 + x2 + y0 − y1 − y2 ≥ −2 that is satisfied by all points in
F6

2 but (0x1,0x6). This method can then be applied to all impossible transitions x→ y
and yields easily a system of inequalities containing as many constraints as the number of
impossible transitions through the DDT, or as the number of zeros of the Boolean function
in the general case.

However, as mentioned in [AST+17], both these methods that provide a solution for
Problem 1 have the disadvantage of not being efficient for modeling 8-bit Sboxes. For the
first one, computing the H-representation of the convex hull for such big Sboxes is nearly
impossible, while the second method yields a very high number of initial inequalities with
by construction no hope for a correct subset for Problem 2. For example, the Skinny-128
Sbox has 54067 impossible transitions and this number of corresponding inequalities is too
high to represent the Sbox for any related MILP problem.

In 2017, Abdelkhalek et al. [AST+17] made an important step forwards in the logical
condition modeling direction, by translating the problem of searching for good inequalities
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for 8-bit Sboxes into the classical problem of minimization of the product-of-sum represen-
tation of the related Boolean function and by using the Quine-McCluskey (QM) algorithm
to solve it. This method permits to solve at once the two steps of the Sbox modeling: Find
many good inequalities (the prime implicants in the QM vocabulary) and keep among
them a good representative set. In the case of QM this representative set corresponds
to the minimal number of equations. The problem however of QM is that in practice it
needs high memory ressources and it can be slow. For this reason, Abdelkhalek et al. used
another algorithm, called the Espresso algorithm, a heuristic method for minimizing the
number of terms in a product-of-sum representation. Espresso is not guaranteed to find
the minimum, and it usually doesn’t in the case of 8-bit Sboxes, but its solutions are good
enough to be used in practice.

No matter the method used for solving Problem 1, one must choose among the initial
set of inequalities a good representative set for representing the support of the Boolean
function. This is what we called as Problem 2. As mentioned in [ST17a], determining
how many and which inequalities to keep is not an evident decision. This step is however
necessary, as in both methods from [SHW+14a, SHW+14b] and all the new methods that
we are going to present, the number of generated inequalities is high and has an important
impact on the optimization time. For example, in the convex-hull method, the number
of linear inequalities that Sage returns is typically quite high, containing notably many
redundant ones. The authors of [SHW+14b] applied then a greedy algorithm for solving
Problem 2. At each step, this algorithm adds to the solution set the best possible inequality,
that is the inequality removing the highest number of points among those that have not
been removed yet. A nice approach for solving this step was later given by Sasaki and
Todo in [ST17a]. They proposed to model the problem of minimizing the set of inequalities
that remove all the impossible propagation points as a MILP problem itself and solve it by
some solver. More precisely, their method consists in assigning a binary variable zi to each
inequality found by solving Problem 1. Then for each impossible point p, it is required that
at least one inequality removing p is chosen with

∑
i s.t. ineq. i removes p zi ≥ 1. Finally the

MILP solver is used for minimizing
∑

i zi and
{
i
∣∣ zi = 1

}
gives a solution of Problem 2.

It appears however in [ST17a] that the smallest subset of inequalities found by this
approach that correctly models a DDT, will not necessarily provide the overall best
performance when running a complete cipher modeling. Moreover, this auxiliary MILP
problem can be too heavy when the initial set of inequalities is large. In our experiments, we
have found the greedy approach from [SHW+14b] to provide better subsets for performance
even if they are a bit larger. We hence used it in the applications. However, we consider
the minimization approach from [ST17a] in solving Problem 2 to be a good benchmarking
indicator for methods solving Problem 1.

In the remaining part of the section we analyze in depth the problem of efficiently
modeling a Boolean function with MILP inequalities and we concentrate on Problem 1.
Indeed our goal is to generate efficient algorithms for modeling a Boolean function by
using the smallest number of inequalities as an indicator for the quality of the method.

We propose different methods for doing so. The first method, based on generating better
inequalities from the H-representation is applicable for up to 12-bit Boolean functions
and gives better results than all previous methods for up to 6-bit Sboxes. Unfortunately,
this method is not applicable for 8-bit Sboxes. For this reason, we develop other methods
for larger Boolean functions and Sboxes. With these methods, described in Sections 2.4
and 2.5 we manage to model 8-bit Sboxes with a much smaller number of inequalities than
what was done before.

In the remaining part of this section, and to facilitate comprehension, all methods
will be described through the DDT modeling application. Nevertheless, none of these
techniques is DDT-specific and they can be applied directly for modeling any Boolean
function.
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2.3 Convex hull techniques for up to 6-bit Sboxes
When the computation of the H-representation of the convex hull of all possible transitions
in a DDT is computationally feasible, this H-representation provides by definition a set
of inequalities modeling the possible differential transitions through the Sbox. However,
as we will show, it is possible to compute many other linear inequalities from this initial
set by simply adding up some of them. The reason for doing so is to generate potentially
better inequalities than the ones directly given by the convex hull, where better means
that the new inequalities remove more impossible transitions than the initial ones do.

Indeed, if a possible differential transition z = (x, y) ∈ {0, 1}m, with m = 2n satisfies
the k inequalities C1, . . . , Ck : c`

0z0 + · · · + c`
m−1zm−1 + b` ≥ 0, with ` ∈ [1, k] then it

obviously also satisfies the inequality

( k∑
i=1

ci
0
)
z0 + · · ·+ (

k∑
i=1

ci
m−1

)
zm−1 +

k∑
i=1

bi ≥ 0

produced by simply summing up the initial k inequalities and denoted in the sequel as
Cnew = C1 + . . .+ Ck.

Of course, most of the inequalities produced by randomly summing k inequalities from
the H-representation of the convex hull, do not present any interest, as they will very
probably be satisfied by the whole space {0, 1}m. In order to produce meaningful new linear
inequalities from the H-representation of the convex hull, we noticed that if k hyperplanes
of the H-representation share a vertex on the cube {0, 1}m, (i.e. a possible transition),
then the addition of the k corresponding inequalities will probably yield an interesting new
constraint, given that its hyperplane intersects with the cube at least on this particular
vertex. By "interesting" we mean here that the new inequality Cnew will remove a different
(potentially larger) set of impossible transitions than the original inequalities. This idea is
illustrated in Figure 1 (Appendix A) and described by Algorithm 1.

Algorithm 1 takes as input a set Spos corresponding to the possible transitions through
an Sbox S and a parameter k that indicates the number of inequalities to be added together
each time. Then it starts by generating the convex hull corresponding to Spos by using for
example the inequality_generator() function of the sage.geometry.polyhedron class
of the Sage computer algebra system [The20]. This gives us an initial set of inequalities
Cset of the form c0x0 + · · ·+ cm−1xm−1 + b` ≥ 0. Then, for every point p in Spos we add
together any k inequalities C1, . . . , Ck that this point satisfies with a zero left-hand side,
i.e. p belongs to the hyperplanes defined by those inequalities. We add in Cset the new
inequality only if it is meaningful, in the sense that it removes a new set of impossible
transitions.

In practice, Algorithm 1 is rather fast for 4-bit Sboxes — a few minutes for k = 2
and a few hours at most for k = 3 — and the set of constraints Cset obtained that way
does not have too many elements, which allows fast minimization in solving Problem 2.
For example, Sage returns 327 linear inequalities for the Sbox of Present. By applying
Algorithm 1 with k = 2 we get a little bit less than 500 inequalities, and for k = 3 we get
a little bit less than 700 inequalities.

We applied Algorithm 1 to solving Problem 1 for different Sboxes from the literature
and benchmarked it by solving Problem 2 with the method of [ST17a] to obtain a minimal
modeling. The results are summarized in Table 2. We took k = 2 to run Algorithm 1,
apart for Twine, Pride, Serpent S3 and Serpent S7 where taking k = 3 gave slightly
better results. The case k = 1, corresponds to the method of [ST17a]. Even as already
said, the exact minimum is not necessarily what one has to take to minimize the solving
time of the global problem, it is however a good indicator of the quality of the method
used to solve Problem 1 and permits to compare the different methods between them. We
nonetheless also give the results with the greedy approach from [SHW+14a] and k = 1 for
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Algorithm 1 Compute a set of inequalities from possible transitions.
1: procedure ComputeConstraints(Spos, k)
2: Hset ← Hull(Spos)
3: Cset ← Hset
4: for all p ∈ Spos do
5: for all {C1, . . . , Ck} ∈ P(Hset) such that p belongs to the hyperplanes of
C1, . . . , Ck do

6: Cnew = C1 + . . .+ Ck

7: if Cnew removes a new set of impossible transitions then
8: Cset ← Cset ∪ {Cnew}
9: end if
10: end for
11: end for
12: end procedure

completeness. As can be seen from Table 2 but also for all the Sboxes we tested for n ≤ 6,
running the algorithm with k > 1 always gave better results than with k = 1.

Unfortunately, for larger Sboxes, and notably for n = 8 computing the convex hull is
computationally hard. For this reason, we describe in the following sections, alternative
methods that can be used for modeling 8-bit Sboxes.

Table 2: Number of inequalities to model differential transitions for various 4-bit Sboxes
# Inequalities # Inequalities

Sbox [SHW+14a] [ST17a] Alg. 1 Sbox [SHW+14a] [ST17a] Alg. 1
Present 22 21 17 Serpent S0 23 21 17
Klein 22 21 19 Serpent S1 24 21 17
Twine 23 23 19 Serpent S2 25 21 18
Prince 26 22 19 Serpent S3 31 27 20
Piccolo 23 21 16 Serpent S4 26 23 19
MIBS 27 23 20 Serpent S5 25 23 19
LBlock S0 28 24 17 Serpent S6 22 21 17
LBlock S1 27 24 17 Serpent S7 30 27 20
LBlock S2 27 24 17 Lilliput − 23 19
LBlock S3 27 24 17 Minalpher − 22 19
LBlock S4 28 24 17 Midori S0 − 21 16
LBlock S5 27 24 17 Midori S1 − 22 20
LBlock S6 27 24 17 Rectangle − 21 17
LBlock S7 27 24 17 Skinny − 21 16
LBlock S8 28 24 17 Gift − − 17
LBlock S9 27 24 17 Pride − − 16

2.4 Logical condition techniques for 8-bit Sboxes
In this first section, we show that one can easily derive simple inequalities to remove spaces
of the form a⊕Prec(u) inside the DDT. Let againm = 2n where n is the bit-size of the Sbox.
For some u = (u0, u1, . . . , um−1) ∈ Fm

2 we denote by supp(u) =
{
i
∣∣ui = 1

}
⊆ [0,m− 1].

Furthermore Prec(u) denotes the space
{
x ∈ Fm

2
∣∣x � u}, where x � u means that xi ≤ ui

for all i ∈ [0,m− 1].
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Proposition 1. Let a ∈ Fm
2 and u ∈ Fm

2 such that supp(a)
⋂

supp(u) = ∅ and let
I = [0,m− 1] \

(
supp(a)

⋃
supp(u)

)
. Then, for all x ∈ Fm

2 ,

−
∑

i∈supp(a)

xi +
∑
i∈I

xi ≥ 1− wt(a)⇔ x 6∈ a⊕ Prec(u).

Proof. Let x ∈ Fm
2 . If x ∈ a⊕ Prec(u),

−
∑

i∈supp(a)

xi +
∑
i∈I

xi = −
∑

i∈supp(a)

ai = −wt(a).

Otherwise x⊕ a � u, so there exists some ` ∈ supp(a)
⋃
I such that x` = 1− a`.

• If ` ∈ supp(a), x` = 0 and
∑

i∈supp(a) xi ≤ wt(a)− 1.

• If ` ∈ I, x` = 1 and
∑

i∈I xi ≥ 1.
In both cases, −

∑
i∈supp(a) xi +

∑
i∈I xi ≥ 1− wt(a).

Example 1. We show how the above method can be applied to remove some invalid
transitions for the Sbox of the block cipher Present [BKL+07]. The Sbox used in
Present is a 4-bit permutation S : F4

2 → F4
2 given by the following table:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2

The Difference Distribution Table (DDT) of Present is given in Appendix B.
Here m = 2 × 4 = 8. For better visualizing points in the DDT, we will see F8

2 as
F4

2 × F4
2 . Further, we will use the following bit ordering. For a point [α, β] ∈ F4

2 × F4
2 ,

the index 0 will correspond to the least significant bit (LSB) of α, 3 will correspond to
the most significant bit (MSB) of α, 4 to the LSB of β and 7 to the MSB of β. Let
a = [0,1], u = [9,4] ∈ F4

2 × F4
2 . Then,

Prec(u) = {[0, 0], [0, 4], [1, 0], [1, 4], [8, 0], [8, 4], [9, 0], [9, 4]}.

Further, as supp(a) = {4} and supp(u) = {0, 3, 6}, I = {1, 2, 5, 7}. Therefore the equation
−x4 + x1 + x2 + x5 + x7 ≥ 0 removes exactly the 8 points in the space

a⊕ Prec(u) = {[0, 1], [0, 5], [1, 1], [1, 5], [8, 1], [8, 5], [9, 1], [9, 5]}.

We can verify from the DDT in Appendix B that all these points correspond indeed to
invalid transitions through the DDT.

2.4.1 An efficient algorithm for searching for spaces of the form a⊕ Prec(u)

Given a set of impossible transitions P , Algorithm 2 finds all subsets of the form a⊕Prec(u)
excluding those that are subsets of others. For each a ∈ P , it builds spaces a⊕ Prec(u) ⊆
P by progressively incrementing the weight of u, with u such that a ⊕ u ∈ P and
supp(u) ∩ supp(a) = ∅ and checking for all v � u,wt(v) = wt(u)− 1 whether a⊕ Prec(v)
has already been identified as a subset of P.

We show next that Algorithm 2 and the Quine-McCluskey algorithm are strongly
related. The Quine-McCluskey algorithm has two steps. Given a set of points P, the first
step finds a set S of subspaces a⊕ Prec(u) ⊆ {0, 1}m such that

P =
⋃

a⊕Prec(u)∈S

a⊕ Prec(u),

∀(a⊕ Prec(u)) ⊆ P,∃E ∈ S : a⊕ Prec(u) ⊆ E,
and ∀E,F ∈ S, E 6⊆ F.
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Algorithm 2 Find a⊕ Prec(u) sets included in the set P ⊂ {0, 1}m.
1: procedure AffinePrec(P)
2: Sout ← ∅ . Output set
3: for all a ∈ P do
4: Sinteresting ← ∅ . Set of interesting new inequalities of the form a⊕ Prec(u)
5: for all i ∈ [0,m] do
6: Si ← ∅
7: Ui ← ∅
8: end for

. We start by grouping all u such that a⊕ Prec(u) ⊆ P
. and supp(a) ∩ supp(u) = ∅ by their weight in sets U .

9: for all p ∈ P do
10: u← a⊕ p
11: if supp(a) ∩ supp(u) = ∅ then
12: Uwt(u) ← Uwt(u) ∪ {u}
13: end if
14: end for

. If U1 6= ∅, a⊕ Prec(0) is no longer interesting
. since ∀u ∈ U1, a ∈ a⊕ Prec(u).

15: if U1 = ∅ then
16: Sinteresting ←

{
a⊕ Prec(u)

∣∣u ∈ U0
}

17: else
18: Sinteresting ←

{
a⊕ Prec(u)

∣∣u ∈ U1
}

19: end if
. a⊕ Prec(u) ∈ Sk ⇔ wt(u) = k and a⊕ Prec(u) ⊆ P

20: S0 ←
{
a⊕ Prec(u)

∣∣u ∈ U0
}

21: S1 ←
{
a⊕ Prec(u)

∣∣u ∈ U1
}

22: for k ∈ [2,m] do
23: for u ∈ Uk do
24: if ∀v � u st. wt(v) = k − 1, a⊕ Prec(v) ∈ Sk−1 then
25: Sk ← Sk ∪ {a⊕ Prec(u)}
26: for all v � u st. wt(v) = k − 1 do

. Remove a⊕ Prec(v) since a⊕ Prec(v) ⊂ a⊕ Prec(u)
27: Sinteresting ← Sinteresting\{a⊕ Prec(v)}
28: end for
29: end if
30: end for
31: Sinteresting ← Sinteresting ∪ Sk

32: end for
33: Sout ← Sout ∪ Sinteresting
34: end for
35: return Sout
36: end procedure

This is exactly what does Algorithm 2. The second step of QM then searches for a minimal
set S ′ ⊆ S, in the sense that:

P =
⋃

a⊕Prec(u)∈S′

a⊕ Prec(u) and ∀E,F,G ∈ S ′, E 6⊆ F ∪G.

This formulation of the Quine-McCluskey algorithm is very different from the one en-
countered in the literature and in the best of our knowledge, it is the first time that
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this algorithm is presented in this way. We use this presentation as it is well suited for
understanding the link between the two methods.

The important thing for us is that we principally need this first step to find good
modelings. This corresponds to solving Problem 1. The second step of the QM algorithm,
corresponds to providing a solution for Problem 2, by minimizing the number of terms
with the objective of finding a good circuit for a Boolean function, but not necessarily
a good MILP modeling. Moreover, this second step is computationally harder than the
first one and acts as a bottleneck when using QM as a black box inequality generator for
MILP modelings. Indeed, it is much faster to use Algorithm 2 alone for solving Problem 1
together with a greedy algorithm or a MILP-based algorithm for solving Problem 2. This
is not only faster but can also provide a significantly lower number of inequalities.

We notably applied Algorithm 2 for generating an initial set of inequalities for the 8-bit
Sboxes of AES and Skinny-128. We then obtained 70336 initial inequalities for AES and
8829 for Skinny-128. The running time was of around 15 minutes for AES and 2 hours
for Skinny-128 where 90% of the time was spent not for finding new inequalities but for
removing not interesting ones (lines 26-28 in Algorithm 2). The difference in these running
times is explained by the fact that as the DDT of Skinny-128 is very sparse, there are
many more possible spaces a⊕ Prec(u) than for the DDT of AES. After this, to find a
representative set among these initial inequalities (Problem 2 ) we set up a minimization
problem and solved it with Gurobi. While for Skinny-128 the problem was solved in just
a few seconds providing us with the global minimal (which is thus the same as the QM
algorithm), for AES the problem didn’t reach the minimum even after 1900975 seconds
of search on a 8-core laptop. However, the solution provided by Gurobi, even if not the
minimal one is much better than the one given by Espresso, as it can be seen in Table 3.
Furthermore, according to the authors of [AST+17], QM itself cannot be applied to AES
because of its memory complexity.

Table 3: Number of inequalities to exclude P for various 8-bit S-boxes with the methods
of [AST+17] and Algorithm 2.

# Inequalities
[AST+17] Alg. 2 with

Sbox # Zero entries QM Espresso MILP minimization
AES 33150 − 8302 7461
Skinny-8 54067 372 376 372

While for Sboxes with sparse DDTs, as the one of Skinny-128, the method of this
section provides a quite compact modeling, for Sboxes with low differential uniformity
(i.e. highest value in the DDT), as the one of AES the number of obtained inequalities is
quite high for practical applications. For this reason, we provide in the following sections
new methods for modeling large Sboxes that outperform in most of the cases the methods
provided up to now.

2.5 Modeling an Sbox with inequalities issued from balls B(d, c)
We saw in the previous section that each set of impossible transitions of the form a⊕Prec(u)
provided a single inequality for removing all points in the set. What we learned in particular
from this is that it is interesting to group impossible transitions in sets having a particular
algebraic description and get inequalities out of them. In this section, we investigate a
different type of sets and show how to use their mathematical description to get nice
inequalities. More precisely, we show that points lying in a ball B(d, c) of radius d centred
at a point c ∈ Fm

2 , can be removed together by a simple inequality.
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Definition 1. A ball of Fm
2 of radius d centred at c ∈ Fm

2 is the subset of all points whose
Hamming distance from the center c is at most d: B(d, c) =

{
x ∈ Fm

2
∣∣wt(x⊕ c) ≤ d}.

Furthermore, by S(d, c) we will denote the sphere of radius d centred on c, that is the set
of points x ∈ B(d, c) for which wt(x⊕ c) = d.

To illustrate this idea, we start with an example of the most simple case — balls of
radius 1.

Example 2. Considerm = 4 and let B(1, c) be a ball of radius 1 centred at c = (1, 0, 0, 0) ∈
F4

2 : B(1, c) = {(1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}.
It can be checked that all five points of the above ball can be removed by

(1− x0) + x1 + x2 + x3 ≥ 2.

We can construct similar examples for any ball of dimension d > 1. As we will show
now, for any dimension m and any point c ∈ Fm

2 , it is possible to construct an inequality
that removes all points of the ball B(d, c).

Proposition 2. Let c ∈ Fm
2 . Then, the inequality

m−1∑
i=0

(1− ci)xi + ci(1− xi) ≥ d+ 1, (3)

holds if and only if x 6∈ B(d, c).

Proof. Notice here that
∑m−1

i=0 (1− ci)xi + ci(1− xi) =
∑m−1

i=0 xi ⊕ ci = wt(x⊕ c). For any
point u ∈ B(d, c), we thus have

∑m−1
i=0 (1− ci)ui + ci(1−ui) = wt(u⊕ c) ≤ d. On the other

side, Eq. (3) is satisfied for any point u ∈ Fm
2 \ B(d, c), as wt(u⊕ c) > d.

2.6 Distorted balls
When searching for inequalities removing impossible transitions for a DDT, we have to be
sure that the corresponding ball does not contain any possible transitions that we would
mistakenly remove. In Sboxes used in practice, notably those with a low differentially
uniformity, as the number of non-zero coefficients is usually large, removing entire balls
does not usually work, as the number of balls for which all points correspond to impossible
transitions is typically very small. While the above method works well for sparse DDTs as
the one of Skinny-128, for the Sbox of Present, no plain ball, even of radius 1, can be
removed with this method.

We will show now, that we can still extract an inequality from a ball for which we have
removed from its edge all possible transition points. We call such a ball distorted.

Example 3. Consider again Example 2. Inequality (1−x0)+x1 +x2 +x3 ≥ 2 removed all
five points of the ball B(1, (1, 0, 0, 0)). Suppose now that we want to remove all the above
points except from (0, 0, 0, 0) and (1, 0, 1, 0). Then, intuitively it is enough to increase
a little bit the coefficient a0 corresponding to point (0, 0, 0, 0), that is the coefficient of
(1− x0), to be sure that when x0 = 0 then a0(1− x0) ≥ 2. As for the other points of the
ball x0 = 1, this change does not have any impact on them. In the same way, we can
increase the coefficient a2 before x2, to be sure to keep (1, 0, 1, 0). One can check that
2(1− x0) + x1 + 2x2 + x3 ≥ 2 removes indeed the three remaining points of the ball.

The next proposition formalises the previous example to distorted balls of dimension d.
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Proposition 3. Let B(d, c) ⊂ Fm
2 be a ball of radius d from which we remove the set of

points Q = (c ⊕ Prec(q))
⋂
S(d, c) for some q ∈ Fm

2 . Here p ∈ Q represents a possible
transition towards the edge of the ball. We define a ∈ Qm such that

ai =
{

d+1
d if qi = 1,

1 otherwise.

Then
m−1∑
i=0

ai

[
(1− ci)xi + ci(1− xi)

]
≥ d+ 1 ⇐⇒ x 6∈ B(d, c)\Q.

Proof. First note that since x, c ∈ Fm
2 , ai

[
(1 − ci)xi + ci(1 − xi)

]
= ai(xi ⊕ ci) for all

i ∈ [0,m− 1].

• If x 6∈ B(d, c), then
∑m−1

i=0 ai(xi ⊕ ci) ≥
∑m−1

i=0 xi ⊕ ci ≥ wt(x⊕ c) ≥ d+ 1.

• If x ∈ B(d− 1, c), then
∑m−1

i=0 ai(xi ⊕ ci) ≤ d+1
d (d− 1) ≤ d.

• Let x ∈ S(d, c).

– If x ∈ Q then x⊕ c � q and
∑m−1

i=0 ai(xi ⊕ ci) = d+1
d wt(x⊕ c) = d+ 1.

– If x 6∈ Q then x⊕ c � q and there exists some j such that xj 6= cj , qj = 0 and
aj = 1. Then

m−1∑
i=0

ai(xi ⊕ ci) = 1 +
∑
i 6=j

ai(xi ⊕ ci)

≤ 1 + d+ 1
d

∑
i 6=j

xi ⊕ ci = 1 + d+ 1
d

(wt(x⊕ c)− 1) = 1 + d+ 1
d

(d− 1)

< d+ 1.

Remark 1. For d = 1, Proposition 3 implies that for any ball of radius 1 and for any subset
Q of points on its edge, it is possible to create an inequality that removes the points in
the ball minus the set Q. For d > 1 the situation is a little bit different, as removing some
points from the edge can also remove other points that we would like to keep. Despite
this, inequalities created this way are usually interesting as they can permit to remove
different points together.

Example 4. Consider again the example of Present and let B(1, c) be the ball centred at
c = [0, 1] : B(1, c) = {[0, 1], [0, 0], [0, 3], [0, 5], [0, 9], [1, 1], [2, 1], [4, 1], [8, 1]}. By looking at
the corresponding DDT (Appendix B) one can see that all the points in B(1, c) correspond
to impossible transitions, except [0, 0]. Then, if q = [0, 1], we have that Q = {[0, 0]} and

x0 + x1 + x2 + x3 + 2(1− y0) + y1 + y2 + y3 ≥ 1

removes B(1, c) \ Q.

The inequalities provided up to now can remove points in a single ball. While this
provides a simple and fast algorithm by itself by simply going through all balls into a DDT
and writing down the corresponding inequalities, in practice we only used this method
in combination with a more powerful method that we detail in the next section. This
new method permits us to remove points belonging to the union of three different balls of
radius 1. We call this process merging.
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2.6.1 Merging three balls of radius d = 1

This method has similarities with the adding inequalities method used in Algorithm 1,
except that we combine inequalities obtained with the distorted balls approach. We start
by computing distorted balls of radius 1 centred on impossible transitions. However,
simply adding inequalities obtained from neighbouring distorted balls often results in “bad”
inequalities, in the sense that they do not discard many impossible transitions. To get a
more efficient method, we found that when slightly changing one of the distorted balls,
adding 2 to the right-hand side of the sum of the three inequalities gives a better inequality.
We now present in detail how to get such an inequality.

Let I be the set of all impossible transitions through the Sbox and let a, b and c be
three distinct points in I such that

• wt(a⊕ b) = wt(a⊕ c) = 1,

• b 6= c,

• a⊕ b⊕ c ∈ I.
Let B(1, a),B(1, b) and B(1, c) be the corresponding balls of radius 1. We denote by

Pa = B(1, a) \ I ⊆ S(1, a) Pb = B(1, b) \ I ⊆ S(1, b)
Pc = B(1, c) \ I ⊆ S(1, c)

the possible transition points inside each ball. Finally, consider the sets
Q1 = Pa ⊕ a⊕ b ⊆ S(1, b) Q2 = Pa ⊕ a⊕ c ⊆ S(1, c)
Q3 = Pb ⊕ b⊕ c ⊆ S(1, c)

and let Q denote Pa ∪ Pb ∪ Pc ∪Q1 ∪Q2 ∪Q3.
With Proposition 3, one can compute the inequalities A(x) ≥ 2, B(x) ≥ 2 and C(x) ≥ 2

that remove respectively B(1, a) \ (Q∪ {c}),B(1, b) \ Q and B(1, c) \ Q. With the above
notations, we have the following proposition.
Proposition 4. Let x ∈ {0, 1}m, then

A(x) +B(x) + C(x) ≥ 8 ⇔ x 6∈
(
B(1, a) ∪ B(1, b) ∪ B(1, c)

)
\ Q.

A proof for Proposition 4 and an example on the Sbox of Present is provided in
Appendix C. The method is summarized in Algorithm 3.

The sets Ra, Rb and Rc in Algorithm 3 correspond to the points inside each ball that
have to be kept when writing down the equation for the corresponding distorted ball. More
precisely, Ra = Pa ∪ {c}, Rb = Pb ∪Q1 and Rc = Pc ∪Q2 ∪Q3. It is interesting to note
that there is no symmetry between b and c: if one changes the roles of b and c, then the
new inequality created will remove a different subset of points from the three balls, giving
thus a different inequality for our collection.

We applied Alg. 3 together with Alg. 2 and Proposition 3 to create a large set of
inequalities for the Sboxes of Skinny-8 and AES and applied a MILP minimization
problem to find a small set of inequalities to represent each Sbox. The results can be
visualized in Table 4. The resulting MILP problem took only a few seconds to terminate
for Skinny-8 while the optimization could not be terminated for AES. Even though, the
number of inequalities that we got by stopping the optimization process after a few days
of computation provided us with a much lower number than the best previous result. Of
course, by pushing the optimization further, it is possible to get even less inequalities for
AES but one has to remember that obtaining the absolute minimum does not usually lead
to the quickest solving time.

Last, we also applied the combination of the three above methods (Alg. 2, Alg. 3 and
Proposition 3) to all 4-bit Sboxes of Table 2 and for all of them we obtained the same
number of inequalities as with Algorithm 1.
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Algorithm 3 Create new inequalities from all possible triples of distorted balls
1: procedure AddThreeBalls(I)
2: C ← ∅ . Initialize the set of inequalities.
3: for all (a, b, c) ∈ I s. t. wt(a⊕ b) = wt(a⊕ c) = 1 and b 6= c do
4: Pa ← B(1, a) \ I Pb ← B(1, b) \ I
5: Ra ← Pa ∪ {c}, Rb ← Pb, Rc ← B(1, c) \ I
6: for all p ∈ Pa do
7: Rb ← Rb ∪ {p⊕ a⊕ b}
8: Rc ← Rc ∪ {p⊕ a⊕ c}
9: end for
10: for all p ∈ Pb do
11: Rc ← Rc ∪ {p⊕ b⊕ c}
12: end for
13: Use Proposition 3 to write down an inequality A(x) ≥ 2 removing B(1, a) \Ra

14: Use Proposition 3 to write down an inequality B(x) ≥ 2 removing B(1, b) \Rb

15: Use Proposition 3 to write down an inequality C(x) ≥ 2 removing B(1, c) \Rc

16: Cnew ← A(x) +B(x) + C(x) ≥ 8 . New interesting inequality
17: C ← C ∪ {Cnew}
18: end for
19: end procedure

Table 4: Number of inequalities to model the corresponding Sboxes, where the set of
initial inequalities was generated by three different methods: Alg. 2 and 3 and Prop. 3

# Inequalities
Sbox [AST+17] Alg. 2 and 3 and Prop. 3.
Skinny-8 372 302
AES 8302 2882

2.7 Comparing different techniques for Sbox modeling

Using 5 or 6-bit Sboxes inside a cipher is less common than using 4-bit and 8-bit ones.
However, some designs, e.g. Keccak, Ascon or Fides among others, use such Sboxes for
different reasons each: Good masking properties or optimal resistance against differential
cryptanalysis among others. Indeed, APN permutations, that is permutations whose DDTs
are only composed of 0s and 2s and that have the best possible differential properties,
exist for 5 and 6 bits. We tested our algorithms on some Sboxes of this size, mainly for
permitting comparison between the different developed methods. Indeed, these sizes, not
as small as 4 bits and not as large as 8 bits are ideal for permitting all of the algorithms
to run (even the ones based on the computation of the convex hull) and for providing
non-trivial comparisons. The results are summarized in Table 5. The first method, that
we note as Convex Hull, corresponds to the method based on the H-representation of the
convex hull provided by Sun et al. in [SHW+14a].

As one can see from the above table, Algorithm 1 and the combination of Algorithm 2,
Algorithm 3 and Proposition 3 are the ones giving always the best results. Algorithm 1
is almost always better but it has the disadvantage that it cannot be applied to larger
dimensions.
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Table 5: Number of inequalities for modeling various 5 and 6-bit Sboxes with four different
methods.

# Inequalities
n Sbox Citation Convex Hull Alg. 2 Alg. 1 Alg. 2 and 3 and Prop. 3

5

Keccak [BDPA09] 46 46 34 36
Ascon [DEMS19] 40 59 32 49
Fides-5 [BBK+13] 79 124 64 61
SC2000-5 [SYY+01] 82 123 66 64

6
Apn-6 † [BDMW10] 195 288 167 179
Fides-6 [BBK+13] 223 455 180 194
SC2000-6 [SYY+01] 241 567 218 214

†The concrete function analyzed here is the one given through its table representation by John Dillon
in his talk at Fq09 [Dil09].

3 Linear layer modeling
As seen in the previous section, modeling in the context of MILP valid propagations
through 8-bit Sboxes may lead to large systems of R-linear inequalities. One would think
that modeling a linear layer is much easier. While this is true for simple linear layers as
the ones of Present or Gift that consist in simple bit-permutations, modeling other
linear layers can also lead to large systems of R-linear inequalities. This is in particular
due to the difficulty of efficiently modeling the XOR operation that is the major component
of most diffusion layers. This is explained in the next subsection.

3.1 XOR modeling
Modeling a linear layer is often related to how the XOR operation is modeled. The following
proposition gives an idea of how difficult it can be to efficiently model a linear layer without
dummy variables.

Proposition 5. The equation x0 ⊕ x1 ⊕ . . . ⊕ xn−1 = 0 needs at least 2n−1 R-linear
inequalities of the form

n−1∑
i=0

cixi + d ≥ 0, c ∈ Rn, d ∈ R

to characterise the set of its solutions in Fn
2 .

Proof. First, we can exhibit such a set of inequalities. Indeed, for each a ∈ Fn
2 such that

a0 ⊕ a1 ⊕ . . .⊕ an−1 = 1, we have seen in Section 2 that we can write down an inequality
that only eliminates a from the set of possible solutions. Since there are exactly 2n−1 such
points, we have 2n−1 inequalities modeling

{
x ∈ Fn

2
∣∣x0 ⊕ . . .⊕ xn−1 = 0

}
.

Let us suppose now that there exists an inequality c · x+ d ≥ 0 that eliminates at the
same time two points a and b such that ai = 0 and bi = 1 for some i ∈ [0, n− 1]. Let e be
the vector (0, . . . , 1, . . . , 0) with ei = 1. Then,

• if ci ≤ 0, c · (a⊕ e) + d = c · a+ d+ ci < 0.

• Otherwise, if ci > 0, c · (b⊕ e) + d = c · b+ d− ci < 0.

This means that if an inequality eliminates two different points on the cube {0, 1}n, it
necessarily also eliminates two points with Hamming distance 1.

Moreover, two points a and b such that wt(a ⊕ b) = 1 cannot both be solutions of
x1 ⊕ . . .⊕ xn = 0. This explains why we need as many R-linear inequalities as points to
eliminate, i.e. 2n−1.
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Therefore, a naïve way to model a linear layer is to model each XOR operation in the
way showed in Proposition 5. We will often refer to this as the naïve method. The rest of
this section is dedicated to the presentation of more efficient ways for modeling general
linear layers.

3.2 General modeling
When modeling a mathematical operation for MILP with a system of linear inequalities,
the input and output variables play the same role inside each inequality. This shows that
modeling a matrix M means modeling the kernel of A = (M |I), where I is the identity
matrix. Indeed, for any matrix M with entries in F2 ,

Mx = y ⇔Mx⊕ y = 0⇔ A

(
x
y

)
= 0.

One can then model the equation given by each row of A with the XOR modeling. But
as we have just seen, the number of constraints for modeling one XOR operation grows
exponentially with the number of involved variables. Since our goal is to model the kernel
of A and since it is known that for any invertible matrix P ∈ GLn(F2),Ker(P ·A) = KerA,
the idea is to find a matrix P ∈ GLn(F2) such that the rows of P · A have minimum
Hamming weight and induce thus a minimal number of XOR operations. More precisely,
this means finding an invertible matrix P that minimizes

n∑
i=1

2wt(P ·A)i,?−1, (4)

where wt(P ·A)i,? corresponds to the Hamming weight of the i-th row of P · A. The
question is now how to find such a matrix P . A first idea would be to search for minimum
weight codewords in the linear code generated by the rows of A, as this is done when
computing the linear branch number of the matrix M . For example, consider the matrix

MMidori =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 (MMidori|I) =


0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1


used in the linear layer of Midori. This matrix has branch number 4 which means that
for all x ∈ F4

2 , wt(x · (M |I)) ≥ 4. Hence we cannot hope for a more minimal modeling of
this linear operation based on the XOR modeling than the one given by (M |I). However,
let us take the example of the Skinny MixColumns operation given by the matrix MSkinny
below. In that case, the code generated by (MSkinny|I) has minimum distance 2 and it is
equivalently generated by the matrix ASkinny obtained by adding in F2 the fourth line to
the first line of (M |I).

MSkinny =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 ASkinny =


0 0 0 1 1 0 0 1
1 0 0 0 0 1 0 0
0 1 1 0 0 0 1 0
1 0 1 0 0 0 0 1

 .

While the naïve XOR modeling of (MSkinny|I) would have needed 23 + 2 + 22 + 22 = 18
inequalities, using the above matrix for the XOR modeling only requires 14 inequalities.

To demonstrate that this representation is more efficient in practice compared to the
naïve approach, we computed the time it takes for the Gurobi Optimizer [GO20] to reach
the minimum number of active Sboxes over several rounds of Skinny-128 for the two
different modelings of MixColumns. In this experiment, in order to emphasize the impact
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of the linear layer modeling and to avoid correlations with the modelings of the other parts
of the cipher, we used a very simple modeling for the 8-bit Sbox. This Sbox modeling,
introduced in [AST+17] under the name of arbitrary Sbox mode, needs only 2n inequalities
for the whole Sbox but only models the following behaviour: if at least one input bit is
active then at least one output bit has to be active and vice versa. The timings (in seconds)
of this experiment can be visualised in Table 6. We emphasize that the reported timings
is the time for the solver to reach what we already know to be the minimum number of
active Sboxes. Indeed, as even with the improved modeling the number of inequalities
still remains high, our MILP solver takes too long for terminating and thus proving that
the found upper bound on the minimum number of active Sboxes is tight. The minimum
number of active Sboxes for Skinny has been computed by its designers in [BJK+16]
thanks to wordwise modelings.

Table 6: Computation time in seconds for the Gurobi solver to find the minimum number
of active Sboxes over r rounds for Skinny-128 with two different modelings for MixColumns.

Number of rounds 6 7 8 9 10
Minimum number of active Sboxes 16 26 36 41 46
Time to reach this minimum with the new modeling 0 0 0 16 5200
Lowest upper bound with naïve linear layer or - if
the minimum was reached

- - - - 47

Time at which we stopped the experiment or time
after which the minimum was reached

16 35 30 1862 14600

It is obvious from this table that the new modeling of the Skinny linear layer reduces
importantly the solving time. We propose now a new algorithm, Algorithm 4, that given
the matrix A = (M |I), finds a matrix P that minimizes Eq. (4). First, the matrix P is
initialized to the identity matrix. Then, the algorithm proceeds in a row-wise manner
and searches at each step to replace the current row with a better one. To start with, it
searches to replace the first row of A with a codeword of the form

m ·A, m ∈
{
x ∈ Fn

2
∣∣x1 = 1

}
and wt(m ·A) < wt(A1,?).

After this first step, the matrix P is updated as

P =


1 m2 · · · mn

1
. . .

1

 .

The algorithm then searches for a replacement for the second row of the matrix P ·A in
the same way and updates the matrix P if a lower weight codeword has been found.

Algorithm 4, whose time complexity is n2n−1 multiplications of a n-bit binary vector
with a matrix with n rows and an arbitrary number ofN columns, finds notably the previous
result for Skinny (14 inequalities). We also applied Algorithm 4 to the Aes MixColumns.
The naïve XOR modeling gives 2176 inequalities for this matrix and Algorithm 4 does not
improve this quantity.

We develop now a different idea that permits in some cases to significantly improve the
number of inequalities needed for modeling the linear layer, compared to both the naïve
approach and Algorithm 4.
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Algorithm 4 Given a binary matrix A of size n×N returns P ∈ GLn(F2) minimizing
Eq. (4).
1: procedure FindP(A)
2: Amut ← A
3: P ← In

4: for ` ∈ {1, . . . , n} do
5: mbest ← Amut

`

6: for all m ∈
{
x ∈ Fn

2
∣∣x` = 1

}
do

7: if wt(m ·Amut) < wt(mbest) ·Amut then
8: mbest ← m
9: end if
10: end for
11: Amut

` ← mbest ·Amut

12: P ←



1
. . .
mbest

. . .
1

 · P
13: end for
14: return P
15: end procedure

3.3 Changing the Sbox modeling for improving the linear one
The idea of this approach consists in changing the Sbox modeling. Indeed, if we find an
invertible block-diagonal matrix (with blocks having the size of the Sbox)

Q =


Q1

Q2
. . .

Q2b


where b is the number of words on which MixColumns operates (e.g. b = 4 for the AES,
Skinny or Midori), then changing the modeling of the Sbox S into the modelings of
Q−1

i ◦ S ◦Q−1
i+b for all i ∈ [1, b] allows for a new, potentially better XOR modeling of the

MixColumns operation with the equation (M |I)Q = 0. Once a convenient matrix Q has
been found, modeling (M |I)Q = 0 can be done using Algorithm 4. In summary, with
this method, the problem of finding a good XOR modeling for the linear layer boils down
to finding a matrix P ∈ GLn(F2) and a block-diagonal matrix Q ∈ GL2n(F2) such that
P (M |I)Q minimizes (4).

We propose Algorithm 5 for finding such matrices P and Q. The idea of this algorithm
is to iterate alternating searches for P and Q, hoping that modifying one of P or Q will
allow further optimization. This algorithm then takes as parameter the number of desired
iterations p ∈ N. In practice however, for all of our experiments, we have never needed
p ≥ 2.

Applying Algorithm 5 on the AES MixColumns operation with parameter p = 1 gives
P and Q such that the quantity of Equation (4) initially at 2176 drops down to 1088.
However, Algorithm 5 does not give better results for Midori or Algorithm 4 for Skinny.
Matrices P and Q for the AES are given in Appendix E.

To measure at which point such a change in the modeling of the linear layer can be
an improvement for the running time, we ran an experiment for the AES similar to the
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Algorithm 5 Given a matrix A of size n×N , find P ∈ GLn(F2) and block-diagonal Q
with 2b blocks such that (P,Q) minimizes

∑n
i=1 wt((P ·A ·Q)i).

1: procedure FindB(A, p, b)
2: P ← FindP(A)
3: Amut ← PAmut

4: Q← I2n

5: loop p times
6: for all i ∈ [1, 2b] do

7: Ci ← columns n · i
b
, · · · , n · (i+ 1)

b
− 1 of Amut

8: Qi ← FindP(CT
i )T

9: end for

10: Q← Q ·


Q1

Q2
. . .

Q2b



11: Amut ← Amut ·


Q1

Q2
. . .

Q2b


12: P ← FindP(Amut)·P
13: Amut ← PAmut

14: end loop
15: return P,Q
16: end procedure
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Table 7: Time in seconds to reach the lowest upper bound for the minimum number of
active Sboxes for the AES.

Number of rounds 5 6 7 8
Lowest upper bound with improved linear layer 28 35 47 65
Time needed to reach this upper bound 105 117 5547 6900
Lowest upper bound with naïve linear layer 31 40 49 69
Time at which we stopped the experiment 2300 2200 8200 10000

one above for Skinny-128. One important difference is that wordwise modelings for the
AES have not been able to provide tight lower bounds for the minimum number of active
Sboxes because of byte multiplications needed in the MixColumns operation. For example
in [MWGP11], the authors used the branch number of the MixColumns operation to obtain
lower bounds. In Table 7, we hence give the lowest upper bound on the minimum number
of active Sboxes reached with the improved linear layer modeling after the given number
of seconds and the same upper bound reached by the naïve linear layer after the given
number of seconds.

For a discussion on the complexity of Algorithms 4 and 5, see Appendix D.

3.3.1 Modeling of affine equivalent Sboxes

As seen in this section, to apply Algorithm 5, instead of modeling the cipher’s original
Sbox S, one will need to model one or more Sboxes that are linearly equivalent to S.
Therefore, it is necessary to ensure that the modeling of these linearly equivalent Sboxes
is not (much) worse than the modeling for S. This leads to the following more general
question: “How does the modeling of an Sbox gets affected by affine equivalence?” In our
experiments with AES, the only needed affine equivalent Sbox — SboxAES ◦ Q0 where
Q0 is given in Appendix E — had a very similar modeling to the original one SboxAES,
leading notably to almost the same number of final inequalities. It is however not clear for
us what happens in the general case and we believe that this constitutes an interesting
open problem. For example, it could be useful to know for any given Sbox whether one
can compute an affine equivalent Sbox that can be modeled with much less inequalities.
A related question is whether a lower bound on the number of needed inequalities in the
modeling can be found accross the equivalence class of an Sbox.

3.4 Other applications
Besides AES, Skinny and Midori we also applied Algorithms 4 and 5 to the linear layers
of some other block ciphers. The obtained results are summarized in Table 8.

4 Impact of the new modelings on the solving time
In this section we analyze the impact of our new modelings on the running time of a MILP
optimization problem. We chose to perform our experiments on the problem of deciding
whether a differential (δin, δout) is possible, which in practice consists in finding a possible
differential characteristic, if this one exists. This kind of computation is used in practice
in impossible differential cryptanalysis. We will provide more details on the full problem
in Section 5.

The goal of these experiments is to quantify in terms of time the impact of both the
Sbox and the MixColumns modelings. For this, we considered two different modelings for
the Sbox: the logical condition modeling method of Section 2.4 and a combination of the
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Table 8: Number of inequalities to model a diffusion matrix for MILP without dummy
variables with the naïve way, and with the two algorithms developed in this section. A
description of the linear layers of the three last ciphers can be found in Appendix F.

# Inequalities
Cipher Naïve Algorithm 4 Algorithm 5
Midori-128 32 32 32
Skinny-128 18 14 14
AES 2176 2176 1088
Aria 2048 2048 2048
Anubis 7168 2032 1680
Saturnin 5632 352 352

Table 9: Computation time (sec) for 32 rounds of Skinny and 5 rounds of AES.
Sbox modeling

Cipher Sample MixColumns modeling Alg. 2 Alg. 2 + Alg. 3

Skinny 1975 pairs Naïve 185 172
Improved 21 29

AES
Dense (4594 pairs) Naïve 43 16

Improved 42 25

Sparse (259 pairs) Naïve 1600 441
Improved 1944 662

methods of Sections 2.4 and 2.5. For the linear layer we also considered two cases: in
the first case we model the MixColumns matrix via the naïve XOR modeling and in the
second we model it with the improved XOR modeling given by Algorithms 4 and 5. We
then considered all four different combinations of these Sbox and MixColumns modelings.
For launching the experiment, we chose a random set of input and output difference pairs
(δin, δout) and asked Gurobi to verify whether the differential (δin, δout) is possible.

We ran this experiment for Skinny-128 and the AES and present in Table 9 the
average computation times for each cipher. Quantiles and other statistics are available
in Appendix G. For the AES, the computation time is dramatically higher when the
input and output are sparse (have much more zeros than ones) than when they are dense,
hence the need for two different tables. Our intuition for this fact is that there are many
more possible differential characteristics inside the differential when the input and the
output are dense, which makes it easy for the solver to find one in a few seconds. For
the application on AES with sparse ends, we also indicate to our models which bytes are
active and inactive in the first two and last two rounds. This reduces the running time of
the solver by approximately a factor 10.

As we can see, for Skinny-128 the change of modeling for the linear layer has a much
bigger impact on the running time than the change of the Sbox modeling. There are in
our opinion three possible reasons for that: First, the number of rounds under study for
Skinny, 32, is high enough for the modeling of the linear layers to have impact. Then, as
one can see from Table 4, the difference between the two Sbox modelings is not significant.
Finally, the number of inequalities per Sbox is rather low (< 400), which gives the linear
layer modeling more impact as well.

For the AES, the inverse phenomenon happens: the linear layer modeling does not have
an important impact whereas the Sbox modeling divides the running time by 2. Again, we
think that a possible explanation of this is that the number of rounds, 5, is too low for the
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linear layer to a have an important impact, the difference between the two Sbox modelings
is significant (see Table 4) and the number of inequalities per Sbox is rather high (≈ 3000)
making that the Sbox computations have a higher proportion in the global process.

5 Applications on impossible differential cryptanalysis
Impossible differential cryptanalysis is a powerful and well-studied cryptanalytic technique
introduced independently by Knudsen [Knu98] and Biham et al. [BBS99]. Its principle
consists in finding impossible differentials, i.e. an input difference δin and an output
difference δout that cannot be connected. Any impossible differential attack starts with
the discovery of an impossible differential (δin, δout) covering a maximal number of rounds.
Traditionally this was done with the U-method [KHS+03] or its extensions [LLWG14,
WW12]. However, in 2017, Sasaki and Todo [ST17b], showed that MILP can be successfully
used to prove resistance against impossible differential attacks or for discovering new
impossible differential distinguishers. For proving (partial) resistance against impossible
differential cryptanalysis with MILP, and as briefly explained in Section 4, one can choose
a set of input and output pairs and then solve a MILP differential propagation problem
with the given cipher model for each of those pairs. The chosen set is typically composed of
all possible inputs and outputs with exactly one active byte, i.e. for which exactly one byte
has a difference. When all of those computations result in a valid differential transition,
showing thus that the input and output differences can be connected, we consider that
resistance against impossible differential cryptanalysis has been partially proven, where
partially applies to the fact that the input and output spaces are restricted. However, as
seen in Section 4, a single computation with a fixed input and output difference can be
too long for permitting to do such kind of proofs for a large meaningful enough set of
input/output pairs. To overcome this problem Sasaki and Todo introduced in Section 5 of
[ST17b], the Differential Possibility Equivalence technique. This technique reduced the
number of MILP instances to solve and permitted to drastically reduce the overall running
time of this process. In what follows we briefly present this technique. Then we show how
to further improve this method for decreasing the running time further. We applied this
technique to provide partial resistance against differential cryptanalysis for 5-round AES
and 13-round Skinny-128.

5.1 The Differential Possibility Equivalence technique
We consider for the rest of this section that an R-round MILP model is composed of R
non-linear layers and begins and ends with a non-linear layer. It is then also obviously
composed of R− 1 linear layers.

Suppose that we search for R-round impossible differentials for an SPN cipher. Suppose
further that the pairs of input and output differences are restricted in a set S and that
we have computed a possible differential characteristic for R rounds x0

R−→ y0. The idea
of the Differential Possibility Equivalence technique is to exploit this possible differential
characteristic to discard other possible transitions (x, y) ∈ S without computing at each
time a new R-round differential characteristic x R−→ y from scratch. To do so, one chooses
rin and rout such that rin + rout < R and gets the differences x′ and y′ in the already
computed path

x0
rin−−→ x′

R−rin−rout−−−−−−−−→ y′
rout−−→ y0.

One then discards all (x, y) ∈ S such that the transitions x rin−−→ x′ and y′ rout−−→ y are
possible, which means computing two smaller differential paths on rin and rout rounds.
Sasaki and Todo introduced this technique in [ST17b] with x′ and y′ respectively right
before and right after the first and last non-linear layers (hence with rin = rout = 1),
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finding x and y by directly looking at the DDT of the Sboxes used in those non-linear
layers. However, it can be interesting to try the same with other values for rin and rout,
using MILP models for checking differential paths x rin−−→ x′ and y′ rout−−→ y.

The choice of rin and rout for finding a minimal running time depends on the cipher and
the running times for computing differential characteristics for R, rin and rout respectively
rounds. Moreover, one should avoid to check differential transitions x rin−−→ x′ and y′ rout−−→ y
when they have a low probability to be possible. In the search for impossible differentials
with exactly one active input and one active output byte, it appears that it is rather
efficient to restrain the checks for (x, y) such that x shares the same active byte as x0 and
y shares the same active byte as y0. Indeed, for the AES with R = 5, rin = rout = 2, the
computation of one R-round differential characteristic x0

R−→ y0 allows to discard all the
other pairs (x, y) with the same active bytes. For Skinny-128 with R = 13, rin = rout = 2,
for 2 checks x 2−→ x′ or y′ 2−→ y, one possible transition gets discarded on average.

5.2 Applications to Skinny-128 and AES
In [ST17b] the authors used MILP for proving the maximal number of rounds for which
impossible differentials exist for many different designs, if the input and output differences
are restricted inside one word (bit, nibble or byte, depending on the design). Most of the
analyzed ciphers are based on 4-bit Sboxes while for the analyzed designs using 8-bit Sboxes
the details of the Sboxes are not taken into account. The only exception is Midori-128
but whose Sboxes are constructed from two 4-bit ones.

Our new modelings for both big Sboxes and linear layers and the above generalization
of the Differential Possibility Equivalence technique permitted us to complement the work
done in [ST17b] for 8-bit based ciphers, by taking in particular the Sbox details into account.
For both 5-round AES and 13-round Skinny-128 1, for each pair of input/output bytes (i,
j), we ran our models with the Differential Possibility Equivalence technique on the set
with 255× 255 elements with byte i active in input and byte j active in output. Those
computations provide us with proofs for partial resistance against impossible differential
cryptanalysis.

Skinny-128. For the parameters R = 13, rin = rout = 2, the proof for each pair of
input/output active byte has been completed in an average time of 15 minutes on 2
cores of Intel XEON E3-1240 v5. To the best of our knowledge, this proof is a new
result

AES. For the parameters R = 5, rin = rout = 2, the proof for each pair of input/output
active byte completed in an average time of 10 hours on 2 cores of Intel XEON
E3-1240 v5. Sun et al. proved in [SLG+16] without any restriction on the number
of active input or output bytes, that there are no 5-round impossible differentials for
AES, unless the details of the Sbox are taken into account. By taking the details of
the Sbox into account, we provide an extension of Sun et al.’s proof, in the case of
one active input and one active output byte. Note however that Wang and Jin gave
recently in [WJ19] a theoretical proof for 5 rounds of AES. Indeed, they proved,
that for any number of active input/output bytes, all differentials are possible if
round-keys are taken uniformly at random.

6 Conclusion
In this paper, we presented new techniques for improving MILP models simulating differ-
ential properties through Sboxes and MixColumns operations. We found better modelings

1There is an ambiguity in the literature over the number of rounds on which impossible differentials
are found for Skinny. For us, 13 rounds means that there are 13 Sbox layers and 12 linear layers.
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for various Sboxes with sizes ranging from 4 to 8 bits with three different approaches:
adding inequalities given by the H-representation of the convex hull of possible transitions,
packing impossible transitions in affine subspaces of the form a⊕Prec(u) or packing them
in (possibly “merged”) distorted balls. Our techniques for Sbox modeling are very general:
they basically give efficient algorithms to represent any subset of {0, 1}n with a small
number of inequalities. Those techniques could then have applications beyond differential
cryptanalysis. We also introduced a link between the modeling of F2-linear operations
and the search for a basis with minimal weight codewords inside F2 -linear codes. We gave
algorithms based on this link to reduce the inequality cost of MixColumns modelings.

We then gave insights on how those techniques impact the performance of comput-
ing a differential characteristic with a fixed input and output for Skinny-128 and the
AES. Those two cases respectively demonstrate the benefits of better modelings for the
MixColumns operations and for the Sboxes. Finally, we applied those techniques to proving
partial resistance of 13-round Skinny and 5-round AES against impossible differential
cryptanalysis with the specific properties of the Sboxes fully taken into account.

Lastly, our techniques could be applied in a straightforward manner to the search
for best differential characteristics in various ciphers as explained in [AST+17] and to
similar problems of linear cryptanalysis. The optimal way of solving Problem 2 to improve
performance remains an open problem.
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A Example figure of a convex hull of a set of possible
transitions

Figure 1: Example of the convex hull of a set of possible transitions. Since in practice
transitions only lie on the hypercube {0, 1}m, this figure is just a sketch to give intuition
about our method.
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B DDT of Present

Table 10: DDT of the 4-bit Sbox used in Present
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
10 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
11 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
12 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
13 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
14 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
15 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

C Proof and example for merging three balls

C.1 Proof of Proposition 4
We recall that a, b, c, a⊕ b⊕ c ∈ I, b 6= c,wt(a⊕ b) = wt(a⊕ c) = 1,

Pa = B(1, a) \ I ⊆ S(1, a), Pb = B(1, b) \ I ⊆ S(1, b),
Pc = B(1, c) \ I ⊆ S(1, c), Q1 = Pa ⊕ a⊕ b ⊆ S(1, b),
Q2 = Pa ⊕ a⊕ c ⊆ S(1, c), Q3 = Pb ⊕ b⊕ c ⊆ S(1, c),

A(x) ≥ 2, B(x) ≥ 2 and C(x) ≥ 2 remove respectively B(1, a) \ (Q∪ {c}),B(1, b) \ Q and
B(1, c) \ Q and we introduce the notations

A(x) =
m−1∑
i=0

αi(xi ⊕ ai), B(x) =
m−1∑
i=0

βi(xi ⊕ bi),

C(x) =
m−1∑
i=0

γi(xi ⊕ ci).

We also denote the basis vectors as

i
↓

ei = (0, · · · , 1 , · · · , 0)

for all i ∈ [0,m− 1]. Finally, jb and jc will denote the indices such that a⊕ b = ejb
and

a⊕ c = ejc
.

We then have the two following lemmas:

Lemma 1. The points a, b, c and a⊕ b⊕ c do not belong to Q.
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Proof. First, since those points are impossible transitions, they cannot belong to Pa∪Pb∪Pc

by definition. Then if a ∈ Q1, then b ∈ Pa which as said above is impossible. For all the
other cases we have: a ∈ Q2 ⇒ c ∈ Pa, a ∈ Q3 ⇒ a⊕ b⊕ c ∈ Pb, b ∈ Q2 ⇒ a⊕ b⊕ c ∈ Pa,
b ∈ Q3 ⇒ c ∈ Pb, c ∈ Q1 ⇒ a⊕ b⊕ c ∈ Pa.

Lemma 2. It holds that αjc
= 2 and αjb

= βjb
= βjc

= γjb
= γjc

= 1.

Proof. From Proposition 3 in the case d = 1, we have for all i ∈ [0,m− 1]:

• αi = 1+((ci⊕ai)∨
∨

q∈Q∩B(1,a) qi⊕ai) because A(x) ≥ 2 removes B(1, a)\ (Q∪{c}),

• βi = 1 +
∨

q∈Q∩B(1,b) qi ⊕ bi,

• γi = 1 +
∨

q∈Q∩B(1,c) qi ⊕ ci.

Since by definition, a ⊕ c = ejc
, αjc

= 2. If αjb
= 2, ∃q ∈ Q ∩ B(1, a) : qjb

6= ajb
, i.e.

q = a⊕ ejb
= b but b 6∈ Q. Hence αjb

= 1. In the same way, βjb
= 2⇔ b⊕ ejb

= a ∈ Q,
βjc = 2 ⇔ b ⊕ ejc = a ⊕ b ⊕ c ∈ Q, γjb

= 2 ⇔ c ⊕ ejb
= a ⊕ b ⊕ c ∈ Q and γjc = 2 ⇔

c⊕ ejc = a ∈ Q.

We are ready now to give a proof of Proposition 4.

Proof. Let x 6∈ B(1, a) ∪ B(1, b) ∪ B(1, c).

• Let xjb
= ajb

and xjc
= ajc

. Then x 6∈ B(1, a) ⇒ ∃i1, i2 6∈ {jb, jc} : xi1 6= ai1

and xi2 6= ai2 . Hence A(x) ≥ αi1 + αi2 ≥ 2, B(x) ≥ βi1 + βi2 + βjb
≥ 3 and

C(x) ≥ γi1 + γi2 + γjc
≥ 3.

• Let xjb
= ajb

and xjc
6= ajc

. Then xjb
= cjb

and xjc
= cjc

and x 6∈ B(1, c) ⇒
∃i1, i2 6∈ {jb, jc} : xi1 6= ai1 and xi2 6= ai2 . Hence A(x) ≥ αi1 + αi2 + αjc

≥ 4,
B(x) ≥ βi1 + βi2 + βjb

+ βjc
≥ 4 and C(x) ≥ γi1 + γi2 ≥ 2.

• Let xjb
6= ajb

and xjc
= ajc

. Then xjb
= bjb

and xjc
= bjc

and x 6∈ B(1, b) ⇒
∃i1, i2 6∈ {jb, jc} : xi1 6= ai1 and xi2 6= ai2 . Hence A(x) ≥ αi1 + αi2 + αjb

≥ 3,
B(x) ≥ βi1 + βi2 ≥ 2 and C(x) ≥ γi1 + γi2 + γjb

+ γjc
≥ 4.

• Let xjb
6= ajb

and xjc 6= ajc . Then x 6∈ B(1, b)∪B(1, c)⇒ ∃ib, ic 6∈ {jb, jc} : xib
6= ai1

and xic
6= ai2 .

– If ib 6= ic, A(x) ≥ 4, B(x) ≥ 3 and C(x) ≥ 3.
– Otherwise, A(x) = αib

+ αic
+ αjc

≥ 4, B(x) = βib
+ βjc

≥ 2 and C(x) =
γib

+ γjb
≥ 2.

Therefore, in all the above cases the inequality A(x) +B(x) + C(x) ≥ 8 is verified.
Let now x ∈ (B(1, a) ∪ B(1, b) ∪ B(1, c)) ∩Q.

• If x ∈ B(1, a), since a, b, c 6∈ Q, ∃i 6∈ {jb, jc} : x = a ⊕ ei. It immediatly follows
that αi = 2. Moreover, b ⊕ ei = x ⊕ a ⊕ b ∈ B(1, b) ∩ Q so βi = 2 and c ⊕ ei =
x⊕ a⊕ c ∈ B(1, c) ∩Q and thus γi = 2. Hence A(x) = αi = 2, B(x) = βi + βjb

= 3
and C(x) = γi + γjc

= 3. Finally, A(x) +B(x) + C(x) = 8.

• If x ∈ B(1, b), since a, b, a ⊕ b ⊕ c 6∈ Q, ∃i 6∈ {jb, jc} : x = b ⊕ ei. We have
A(x) = αi + αjb

, B(x) = βi = 2 and C(x) = γi + γjb
+ γjc

. Since x = a⊕ ei ⊕ ajb
=

c⊕ ei ⊕ ejb
⊕ ejc

, x ∈ Q but x 6∈ S(1, a) ∪ S(1, c). Hence x ∈ Pb or x ∈ Q1.

– If x ∈ Pb, c⊕ ei = x⊕ b⊕ c ∈ Q3 ⊆ Q ∩ B(1, c) so γi = 2.
– If x ∈ Q1, a⊕ ei = x⊕ a⊕ b ∈ Pa ⊆ Q ∩ B(1, a) so αi = 2.
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In both cases, A(x) +B(x) + C(x) ≥ 8.

• If x ∈ B(1, c), since a, c, a ⊕ b ⊕ c 6∈ Q, ∃i 6∈ {jb, jc} : x = c ⊕ ei. We have
A(x) = αi + αjc

= αi + 2, B(x) = βi + βjb
+ βjc

and C(x) = γi = 2. Hence
A(x) +B(x) + C(x) ≥ 8.

Finally, let x ∈ (B(1, a) ∪ B(1, b) ∪ B(1, c)) \ Q.

• If x ∈ {a, b, c, a⊕ b⊕ c}, one can easily check that A(x) +B(x) + C(x) ≤ 7.

• If x ∈ B(1, a)\{a, b, c}, ∃i 6∈ {jb, jc} : x = a⊕ei. A(x) = αi, B(x) = βi +βjb
= βi +1

and C(x) = γi + γjc
= γi + 1. Since x = a⊕ ei 6∈ Q, we have A(x) = αi = 1.

• If x ∈ B(1, b) \ {a, b, a⊕ b⊕ c}, ∃i 6∈ {jb, jc} : x = b⊕ ei. A(x) = αi + αjb
= αi + 1,

B(x) = βi = 1 and C(x) = γi + γjb
+ γjc

= γi + 2. If αi = 2, a ⊕ ei ∈ Q then
a⊕ ei ∈ Pa and x = (a⊕ ei)⊕ a⊕ b ∈ Q1 ⊆ Q. Hence αi = 1.

• If x ∈ B(1, c) \ {a, c, a⊕ b⊕ c}, ∃i 6∈ {jb, jc} : x = b⊕ ei. A(x) = αi + αjc
= αi + 2,

B(x) = βi + βjb
+ βjc

= βi + 2 and C(x) = γi = 1. If αi = 2, a ⊕ ei ∈ Q then
a ⊕ ei ∈ Pa and x = (a ⊕ ei) ⊕ a ⊕ c ∈ Q2 ⊆ Q. Hence αi = 1. If βi = 2 then
b⊕ ei ∈ Q.

– If b⊕ ei ∈ Pb, x ∈ Q3 ⊆ Q.
– If b⊕ ei ∈ Q1, a⊕ ei ∈ Pa and x = (a⊕ ei)⊕ a⊕ c ∈ Q2 ⊆ Q.

Hence βi = 1.

In conclusion, we always have in this last case that A(x) +B(x) + C(x) ≤ 7.

C.2 Example of Algorithm 3 on Present
Example 5. Let a = [0, 11], b = [0, 15] and c = [0, 10] be three impossible transition
points for the Sbox of Present.

B(1, [0, 11]) = {[0, 11], [0, 10], [0, 9], [0, 15], [0, 3], [1, 11], [2, 11], [4, 11], [8, 11]},
B(1, [0, 15]) = {[0, 15], [0, 14], [0, 13], [0, 11], [0, 7], [1, 15], [2, 15], [4, 15], [8, 15]}
B(1, [0, 10]) = {[0, 10], [0, 11], [0, 8], [0, 14], [0, 2], [1, 10], [2, 10], [4, 10], [8, 10]}.

Here, Pa = {[8, 11]}, Pb = {[8, 15]} and Pc = {[2, 10], [4, 10]}. These sets correspond to
all possible transitions inside each ball and therefore they should not be removed by the
final inequality. We note them in red.

Then we also compute the three sets Q1, Q2 and Q3, each one containing possible
transitions but also impossible transition points that will unfortunatly not be discarded by
the new inequality. We highlight these points in blue unless they are already in red. By
following notation we get that Q1 = {[8, 15]}, Q2 = Q3 = {[8, 10]}. With the set Q, we
construct the following distorted balls

B(1, [0, 11])\(Q∪ {[0, 10]}), B(1, [0, 15])\Q and B(1, [0, 10])\Q.

Following the technique of Proposition 3 for each of the three distorted balls, we get
the following three linear constraints:

x0 + x1 + x2 + 2x3 + 2(1− y0) + (1− y1) + y2 + (1− y3) ≥ 2
x0 + x1 + x2 + 2x3 + (1− y0) + (1− y1) + (1− y2) + (1− y3) ≥ 2

x0 + 2x1 + 2x2 + 2x3 + y0 + (1− y1) + y2 + (1− y3) ≥ 2
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Directly adding the three inequalities, while mathematically correct, usually yields
inequalities that remove a smaller subset of impossible transitions than what we could get.
For this reason, we use the following subtlety: we add 2 to the right-hand side of the sum
to construct an inequality removing only the black points inside each ball. By doing so we
get that

3x0 + 4x1 + 4x2 + 6x3 + 2(1− y0) + 3(1− y1) + y2 + 3(1− y3) ≥ 6

removes the 17 points

{[0, 2], [0, 3], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 13], [0, 14]
[0, 15], [1, 10], [1, 11], [1, 15], [2, 11], [2, 15], [4, 11], [4, 15]} =

(B(1, a) ∪ B(1, b) ∪ B(1, c)) \ {[2, 10], [4, 10], [8, 10], [8, 11], [8, 15]}.

D On the complexity of algorithms for linear layer model-
ing

For our implementation of Algorithms 4 and 5, we represented binary matrices as vectors
of 64-bit integers, each integer representing a row. The multiplication of an n-bit binary
vector with a n×N matrix then takes at most n XORs of 64-bit integers when N ≤ 64. With
this implementation, the running time of Algorithm 4 on the AES MixColumns matrix on
a single core is 929 seconds. In Algorithm 5, the computation of Q applies Algorithm 4 on
2b matrices with n

b rows. The complexity is then

2b ·
(n
b

)2
· 2 n

b−1 XORs of 64-bit integers.

The running time of this computation is then negligible compared to the computation of
P in practice. Indeed, the computation of P applies Algorithm 4 on a matrix with n rows,
which has a complexity of

n2 · 2n−1 XORs of 64-bit integers.

Finally, the running time of Algorithm 5 is (p+ 1) times the running time of Algorithm 4.

E MixColumns modeling for the AES
Algorithm 5 applied on the AES MixColumns outputted the matrices of Table 11. The
lines are represented as hexadecimal numbers with the first column element being the least
significant bit (i.e. the rightmost one).

F Analyzed linear layers
We provide here a brief description of the linear layers of the ciphers Anubis, Aria and
Saturnin whose modeling for MILP we analyzed in Section 3.

• Anubis is a 128-bit block cipher designed by Barreto and Rijmen in 2000 in the
context of the NESSIE project. Anubis follows the SPN construction and uses an
involutive MixColumns operation, based on an MDS matrix

H =


1 2 4 6
2 1 6 4
4 6 1 2
6 1 2 4

 ∈M4(F28).
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Table 11: AES MixColumns matrices

A

101018180
202028381
404040602
808088c84

1010109888
2020203010
4040406020
808080c040

10001818001
20002838102
40004060204
800088c8408

100010988810
200020301020
400040602040
800080c04080

1000081800101
2000083810202
4000006020404
800008c840808

10000098881010
20000030102020
40000060204040
800000c0408080

100000080010181
200000081020283
400000002040406
80000008408088c

1000000088101098
2000000010202030
4000000020404060
80000000408080c0

P

10101
2
4

8000808
10
20
40
80

1010001
200
400

8080800
1000
2000
4000
8000

1010100
20000
40000
80808

100000
200000
400000
800000

1000101
2000000
4000000
8080008

10000000
20000000
40000000
80000000

Q0

81
2
4

88
10
20
40
80

P AQ

1010101000080
202020301
404040602

8000808840c0000
1010101808
2020203010
4040406020
808080c040

101000100800100
20002030102
40004060204

80808000000840c
100010180810
200020301020
400040602040
800080c04080

101010000008001
2000003010202
4000006020404
808080c000084

10000018081010
20000030102020
40000060204040
800000c0408080

100010180010000
200000001020203
400000002040406
808000800840c00

1000000008101018
2000000010202030
4000000020404060
80000000408080c0

Q =



Q0
Q0

Q0
Q0

I
I

I
I



Each entry ofH is an element
∑
xiX

i of the finite field F2 [X]/(X8+X4+X3+X2+1)
represented by the integer

∑
xi2i. For the Anubis’s MixColumns operation, the

quantity of Equation (4) initially at 7168 drops to 2032 after applying Algorithm 4
and to 1680 after applying Algorithm 5.

• Saturnin is a 2-round candidate of the NIST Lightweight Crypto Competition,
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designed by Canteaut et al. [CDL+19]. Its main component is a block cipher with a
MixColumns operation applying the transformation M : (F4

2)4 ← (F4
2)4 (see Figure 2)

to different parts of the state. Algorithm 4 allows the quantity of Equation (4)
initially at 5632 to drop down to 352 but Algorithm 5 does not permit to reduce this
quantity further.

α(x) =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 · x

M :


a
b
c
d

 7→


α2(a)⊕ α2(b)⊕ α(b)⊕ c⊕ d
a⊕ α(b)⊕ b⊕ α2(c)⊕ c⊕ α2(d)⊕ α(d)⊕ d

a⊕ b⊕ α2(c)⊕ α2(d)⊕ α(d)
α2(a)⊕ a⊕ α2(b)⊕ α(b)⊕ b⊕ c⊕ α(d)⊕ d


Figure 2: Saturnin’s M transformation.

• Aria. Presented at ICISC in 2003 by Kwon et al. [KKP+03], Aria is an SPN block
cipher whose diffusion layer consists in applying a 16× 16 binary matrix (given in
Figure 3) to different parts of the state. The quantity of Equation (4) is 2048 and is
not improved by our algorithms.



0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1


Figure 3: Aria diffusion layer matrix.
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G More statistics on the experiment of Section 4

Table 12: Computation time (sec) for 32 rounds of Skinny-128 on a sample of 1975
input/output pairs.

Sbox Alg. 2 Alg. 2 and 3
MixColumns Naïve Improved Naïve Improved
Mean 185 21 172 29
Std 359 26 364 34
Min 5 5 5 5
25 % 6 6 6 6
50 % 61 6 7 6
75 % 106 7 104 63
Max 1876 120 2084 292

Table 13: Computation time (sec) for 5 rounds of AES on a sample of 4594 dense
input/output pairs.

Sbox Alg. 2 Alg. 2 and 3
MixColumns Naïve Improved Naïve Improved
Mean 43 40 16 25
Std 2 7 4 28
Min 22 17 8 8
25 % 40 40 11 19
50 % 42 41 13 20
75 % 44 44 20 22
Max 55 53 52 379

Table 14: Computation time (sec) for 5 rounds of AES on a sample of 259 sparse
input/output pairs.

Sbox Alg. 2 Alg. 2 and 3
MixColumns Naïve Improved Naïve Improved
Mean 1599 1944 441 662
Std 1560 2051 166 274
Min 17 24 7 11
25 % 983 1047 382 460
50 % 1194 1465 424 702
75 % 2036 2347 488 822
Max 18237 23566 1062 2824

One can see in those experiments that the computation can be very long and that the
standard deviation is huge. We do not have any explanation for this fact. However, the
means and quantiles behave coherently with each other, which shows that a different MILP
modeling does have a clear influence on the solving time.


	Introduction
	MILP Modeling for Boolean functions and Sboxes
	Modeling Boolean functions and DDTs
	State of the art
	Convex hull techniques for up to 6-bit Sboxes
	Logical condition techniques for 8-bit Sboxes
	Modeling an Sbox with inequalities issued from balls B(d, c)
	Distorted balls
	Comparing different techniques for Sbox modeling

	Linear layer modeling
	XOR modeling
	General modeling
	Changing the Sbox modeling for improving the linear one
	Other applications

	Impact of the new modelings on the solving time
	Applications on impossible differential cryptanalysis 
	The Differential Possibility Equivalence technique
	Applications to Skinny-128 and AES

	Conclusion
	Example figure of a convex hull of a set of possible transitions
	DDT of Present
	Proof and example for merging three balls
	Proof of Proposition 4
	Example of Algorithm 3 on Present

	On the complexity of algorithms for linear layer modeling
	MixColumns modeling for the AES
	Analyzed linear layers
	More statistics on the experiment of Section 4

