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Abstract. Recent works of Cogliati et al. (CRYPTO 2018) have initiated provable
treatments of Substitution-Permutation Networks (SPNs), one of the most popular
approach to construct modern blockciphers. Such theoretical SPN models may
employ non-linear diffusion layers, which enables beyond-birthday-bound provable
security. Though, for the model of real world blockciphers, i.e., SPN models with
linear diffusion layers, existing provable results are capped at birthday security up to
2n/2 adversarial queries, where n is the size of the idealized S-boxes.
In this paper, we overcome this birthday barrier and prove that a 4-round SPN with
linear diffusion layers and independent round keys is secure up to 22n/3 queries. For
this, we identify conditions on the linear layers that are sufficient for such security,
which, unsurprisingly, turns out to be slightly stronger than Cogliati et al.’s conditions
for birthday security. These provides additional theoretic supports for real world
SPN blockciphers.
Keywords: blockciphers · substitution-permutation networks · beyond-birthday-
bound

1 Introduction
Modern blockciphers roughly fall into two classes (with some rare exceptions such as
IDEA [LM91] and KATAN [DDK09]), namely Feistel networks and their generalizations,
and substitution-permutation networks (SPNs). A Feistel round applies a domain-preserving
function on half of the data, and then executes XOR and swap operations. This paradigm
may be generalized to using compression functions, expansion functions, and smaller
functions. Popular examples include many blockcipher standards such as DES [oS77],
GOST [GOS89], and Camellia [ISO16]. On the other hand, the latter paradigm SPNs
start with a set of public permutations on the set of n-bit strings which are called S-boxes.
These public permutations are then extended to a keyed permutation on wn-bit inputs for
some integer w by iterating the following steps:

1. Substitution step: break down the wn-bit state into w disjoint chunks of n bits, and
evaluate an S-box on each chunk;

2. Permutation step: apply a keyed permutation to the whole wn-bit state (which is
also applied to the plaintext before the first round).
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S-boxes are typically highly non-linear, and, in fact, serve as the only source of non-
linearity in many blockciphers. There is no a priori restriction on the (non-)linearity of
the Permutation step, and the use and advantages of non-linear permutations was recently
explored [LRL18]. Though, modern blockciphers still tend to use linear or affine mappings
for the Permutation step [Bir11], which involves a simple key-mixing step followed by an
invertible linear or affine transformation. More precisely, their permutation steps are linear
or affine with respect to additions on GF(2n), where n is the size of the S-box. Various
popular blockciphers including the AES [DR02], Serpent [ABK98], and the ISO/IEC
lightweight standard PRESENT [BKL+07] follow this approach. Furthermore, a subset of
them using maximum distance separable linear transformations allows for effective provable
security against certain types of attacks [DR01, PSC+02, PSLL03, MV15, SLG+16].

The traditional security notion for blockciphers is (strong) pseudorandomness: for any
adversary with reasonable resources, the blockcipher with a random and secret key should
be indistinguishable from a truly random permutation. Proving such security for concrete
blockciphers such as AES seems out of the reach of current techniques. The usual approach
is to idealize some underlying primitives and prove that the high-level structure is sound,
in the sense of being a strong pseudorandom permutation (SPRP) or others. Typically,
to prove security for Feistel networks, the Feistel round functions are idealized, resulting
in schemes such as the seminal Luby-Rackoff model [LR88, MP03, Pat03, Pat04, HR10,
CHK+16]. To prove security for SPNs, the “S-boxes” may be idealized as secret random
functions or permutations, leaving the permutation layers as efficient “non-cryptographic”
functions [IK01, MV15]. In this case, the S-boxes act as the only source of cryptographic
hardness, while the permutation layers only supply auxiliary combinatorial properties.
This limits the provable security to the domain-size of the S-boxes, which is unfortunately
as small as 8 bits in, e.g., the AES. Consequently, provable results on SPNs do not relate
to any concrete SPN-based block ciphers. Instead, they should be viewed as theoretical
support for the SPN approach to constructing blockciphers.1

Recently, initiated by Dodis et al. [DSSL16, DKS+17], a series of works investigated
a new model of SPNs, in which the S-boxes are small public ideal primitives and the
permutation layers remain non-cryptographic. In detail, it was [DSSL16] that for the
first time investigated the indifferentiability [MRH04] of confusion-diffusion networks or
keyless SPN models combining public random S-boxes and non-cryptographic permutation
layers. It was also [DSSL16] that for the first time confirmed (in a widely recognized
theoretical model) that, the use of non-linear permutation layers ensures more security
than linear ones. The SPRP security of keyed SPN models has to be deferred to later
in [DKS+17, CDK+18]. In detail, regarding the (more common) SPN model with linear
permutation layers, Dodis et al. [DKS+17] exhibited a chosen-ciphertext boomerang attack
against 2 rounds using only 4 queries. On the positive side, they proved that 3 rounds
ensure the classical birthday-bound security, i.e., security up to 2n/2 adversarial queries,
where n is the size of the idealized S-boxes. These characterized its SPRP security. To
ensure this birthday-bound security, the linear permutation layers shall satisfy a quite
mild condition of “zero-freeness”, meaning that all entries in the matrix representations of
the linear permutation layers and their inverses shall be non-zero.

Regarding the SPN model with non-linear permutation layers, Dodis et al. [DKS+17]
identified a combinatorial property on the permutations that suffices for security in this
case, named blockwise universality. Informally, a keyed permutation πk is blockwise
universal if, for any distinct inputs x, x′ and any constant c, the probability (taken over
uniform k) of each of the following events is low: (i) a block of π(k, x) is equal to a block
of π(k, x′), (ii) two different blocks of π(k, x) are equal, (iii) a block of π(k, x) is equal
to c. Using such non-linear permutations, they showed that even one round is already

1Similar limitation exists in Feistel schemes, though it appears more acceptable, being, e.g., 32 bits in
DES.
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sufficient for birthday-bound. Later, Cogliati and Lee improved this result by: (i) adding
tweaks into the non-linear transformations to obtain tweakable non-linear SPNs, and (ii)
proving beyond-birthday-bound results [CL18]. They showed that two rounds of such
tweakable non-linear SPNs are secure tweakable blockciphers [LRW11] up to roughly 22n/3

adversarial queries. They also provided a (non-tight) asymptotic security bound improving
as the number of rounds grows.

1.1 Our Results

As briefed before, with more than two rounds, non-linear SPNs could ensure beyond-
birthday-bound security. Though, practitioners prefer linear SPNs, the security of which
is only proved up to birthday-bound at 3 rounds. Observing this gap, we ask whether
it is possible to achieve security beyond the birthday barrier with linear SPN structures.
For this, we focus on linear SPNs with independent S-boxes and independent round keys,
and we will focus on the case where w ≥ 2, since, when w = 1, we recover the standard
Even-Mansour construction that has already been well investigated (see the related works
below). For such linear SPNs, we answer our main question positively and prove the first
beyond-birthday-bound (BBB) 2n/3-bit security result on 4 rounds.

Concretely, we first characterize conditions on the linear layers that are sufficient for
2n/3-bit security. For a linear transformation T to meet this, it has to be “zero-free” in
the aforementioned sense. In addition, in both T and T−1, the sum of every 2 entries from
the same row shall be non-zero. Thus, the conditions are slightly stronger than that for
birthday-bound, and may be viewed as a second order extension of the aforementioned
“zero-freeness” condition.

With this, we show that a 4-round linear SPN is beyond-birthday-bound secure, if:
(i) 4 independent public random S-boxes are used in the four rounds respectively, and
(ii) such a “second order zero-free” linear permutation layer is used in every round, and
(iii) the round keys are uniform and independent. Our proof employs the H-coefficient
technique [Pat09]. Moreover, we prove the notion of point-wise proximity [HT16], thus
establishing 2n/3-bit multi-user security for 4-round linear SPNs as well. We refer to Table
1 for the position of our result.

Our proof crucially relies on a technical lemma of Cogliati and Lee [CL18] on two SPN
rounds. In some sense, in our 4-round linear SPNs, the 1st and 4th round play similar
role as the so-called blockwise universal permutations in the 2-round non-linear SPNs of
Cogliati and Lee. The situation somewhat resembles that of tweakable Even-Mansour
ciphers [CLS15, CS15]. See Section 3 for details.

Interpretation. We view our result as extending a sound theory for constructing ciphers
from small S-boxes and providing additional theoretical support for the SPN approach (par-
ticularly for the real world “linear SPNs”). As mentioned before, the n-bit idealized S-boxes
are the only cryptographic hardness in the current SPN models with non-cryptographic
permutation layers, and this enforces the inherent “2n provable barrier”. Neither this
2n bound nor our inferior 22n/3 bound (though improved upon 2n/2 of [CDK+18]) is
meaningful for regular SPN blockciphers, in which very low values of n are typically chosen
for the S-boxes. For example, the S-box of the AES is based on the inverse of GF(28),
and has n = 8. Though, this series of theoretic results should be viewed as important
complementary to the more coarse iterated Even-Mansour model [BKL+12].

On the other hand, as provable security (mostly against differential and linear prop-
erties) of the ARX ciphers advances, recent works have put forward practical choices
of 11- [BDMD+20] or even 64-bit [BBdS+19] bigger S-boxes. The bound becomes more
meaningful with such parameters.
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Table 1: Summary of provable result on SP-Networks. The first column presents the
number of rounds in the model. The second column indicates how many S-boxes are
used in the model & whether they are secret or public. Regarding security, PRF, PRP,
SPRP, and TSPRP (tweakable strong pseudorandom permutation) indicate the security
model, su and mu indicates if it’s in the single- or multi-user setting, while the header
term indicates the concrete provable bounds. We remark that concrete security was not
the focus of [MV15].

Rounds S-boxes Permutation layers Security Ref.
1 1 public Non-linear n/2, su TSPRP [CDK+18]
2 2 public Non-linear 2n/3, mu TSPRP [CL18]
2t 2t public Non-linear tn

t+1 , mu TSPRP [CL18]
3 3 secret Linear, Serpent-like n/2, su PRP [IK01]
3 1 public Linear, “zero-free” n/2, su SPRP [DKS+17]
t t secret Linear, “zero-free” n/3, su PRF [MV15]
4 4 public Linear, “2nd order zero-free” 2n/3, mu SPRP Sect. 3

1.2 Other Related Work
Here we survey some other related works besides the aforementioned ones on SPNs with
public S-boxes [DSSL16, DKS+17, CL18, CDK+18]. First, when w = 1,

• Linear SPNs collapse to the iterated Even-Mansour construction, the SPRP secu-
rity of which was first studied in [EM97] and subsequently extended to multiple
rounds [BKL+12, Ste12, LPS12, CS14, CLL+18, HT16] and multi-user setting [HT16].
In detail, with t rounds, the n-bit iterated Even-Mansour cipher is tightly secure up
to 2 tn

t+1 adversarial queries [BKL+12, CS14, HT16];

• Non-linear tweakable SPNs collapse to tweakable Even-Mansour ciphers with non-
linear tweaking functions [CLS15] (with follow-ups such as [CS15, GJMN16, Men16]).

Provable security of the earlier non-linear SPN models with secret, key-dependent S-boxes
were (partly) addressed by Naor and Reingold [NR99], Chakraborty and Sarkar [CS06],
and Halevi [Hal07]. Security of linear SPN models with such secret S-boxes were proved
by Iwata and Kurosawa [IK01], though for specific permutation layers and birthday-bound
security only. Subsequently, Miles and Viola [MV15] proved chosen-plaintext security for
linear SPNs with PRF S-boxes, “zero-free” permutations, and more than 2 rounds.

Finally, on the cryptanalytic side, attacks against SPNs could be found in [Jou03,
HR04, BS10, BBK14, BK15, BK15], while provable security has been addressed by [DR01,
PSC+02, PSLL03, MV15] against differential/linear cryptanalysis and [SLG+16] against
others such as impossible differential attacks, etc. In addition, it was shown in [LRL18]
that the use of non-linear permutation layers may indeed increase security against differen-
tial/linear attacks.

2 Preliminaries
Throughout this work, we fix positive integers w and n, and let N = 2n. Let F := GF(2n),
which is identified with {0, 1}n. An element x in {0, 1}wn can be viewed as a concatenation
of w blocks of length n. The ith block of this representation will be denoted x[i] for
i = 1, . . . , w, so we have x = x[1]‖x[2]‖ . . . ‖x[w]. For any integer r such that r ≥ s, we
will write (r)s = r!/(r − s)!, and define (r)0 := 1 for completeness. For an integer m ≥ 1,
the set of all permutations on {0, 1}m will be denoted Perm(m).
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Linear substitution-permutation networks. A substitution-permutation network (SPN)
defines a keyed permutation via repeated invocation of two transformations: blockwise
computation of a public, cryptographic permutation called an “S-box,” and application of
a keyed, non-cryptographic permutation. In this paper we will only introduce a model of
linear SPNs. Formally, an r-round SPN taking inputs of length wn is defined by r+1 round
keys k = (k0, k1, . . . , kr) ∈ ({0, 1}wn)r+1, r permutations S1, . . . , Sr : {0, 1}n → {0, 1}n,
and an invertible linear permutation T ∈ Fw×w. Define

Si(x[1]⊕ ki−1[1]‖ . . . ‖x[w]⊕ ki−1[w]) def= Si(x[1]⊕ ki−1[1])‖ . . . ‖Si(x[w]⊕ ki−1[w]).

Then, given an input x ∈ {0, 1}wn, the output of the SPN SPTk [S] is computed as follows:

– Let x1 := x.

– For i = 1 to r − 1 do:

1. yi := Si(xi ⊕ ki−1).
2. xi+1 := T · yi.

– xr+1 := Sr(xr ⊕ kr−1)⊕ kr.

– The output is xr+1.

Note that this model matches the structure of popular SPN ciphers such as the AES,
Serpent, and PRESENT. Also note that our model follows [CDK+18, Sect. 4.2] and uses
different S-boxes in different rounds. We remark that some other [CDK+18, Sect. 3]
assumed the same S-box in every round. Finally, we refer to [DKS+17, Sect. 2.1] for a
more general model of SPNs and its connection to the above model.

Multi-user security definitions. Let SPT [S] be an r-round linear SPN based on a set of
S-boxes S = (S1, . . . , Sr) and an invertible linear permutation T . So SPT [S] becomes a
keyed permutation on {0, 1}wn with key space ({0, 1}wn)r+1.

In the multi-user setting, let ` denote the number of users. In the real world, ` secret
keys k1, . . . ,k` ∈ ({0, 1}wn)r+1 are chosen independently at random. A set of independent
S-boxes S = (S1, . . . , Sr) is also randomly chosen from Perm(n)r. A distinguisher D is given
oracle access to (SPTk1

[S], . . . ,SPTk`
[S]) as well as S = (S1, . . . , Sr). In the ideal world, D

is given a set of independent random permutations P = (P1, . . . , P`) ∈ Perm(wn)` instead
of (SPTk1

[S], . . . ,SPTk`
[S]). Oracle access to S = (S1, . . . , Sr) is still allowed in this world.

The adversarial goal is to tell apart the two worlds (SPTk1
[S], . . . ,SPTk`

[S],S) and
(P1, . . . , P`,S) by adaptively making forward and backward queries to each of the con-
structions and the S-boxes. Formally, D’s distinguishing advantage is defined by

Advmu
SPT (D) = Pr

[
P1, . . . , P`

$← Perm(wn)`,S $← Perm(n)r : 1← DS,P1,...,P`

]
− Pr

[
k1, . . . ,k`

$←
(
({0, 1}wn)r+1)`,S $← Perm(n)r : 1← DS,SPT

k1
[S],...,SPT

k`
[S]
]
.

For p, q > 0, we define
Advmu

SPT (p, q) = max
D

Advmu
SPT (D)

where the maximum is taken over all adversaries D making at most p queries to each of
the S-boxes and at most q queries to the ` outer permutations in total (thus ` ≤ q). In
the single-user setting with ` = 1, Advmu

SPT (D) and Advmu
SPT (p, q) will also be written as

Advsu
SPT (D) and Advsu

SPT (p, q), respectively.
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The H-coefficient technique. Suppose that a distinguisher D makes p queries to each
of the S-boxes, and in total q queries to the construction oracles. The queries made to the
j-th construction oracle, denoted Cj , are recorded in a query history

QCj
= (j, xj,i, yj,i)1≤i≤qj

(1)

for j = 1, ..., `, where qj is the number of queries made to Cj and (j, xj,i, yj,i) represents
the evaluation obtained by the ith query to Cj . So according to the instantiation, it implies
either SPTkj

[S](xj,i) = yj,i or Pj(xj,i) = yj,i. Let

QC = QC1 ∪ . . . ∪QC`
.

For j = 1, . . . , r, the queries made to Sj are recorded in a query history

QSj
= (j, uj,i, vj,i)1≤i≤p

where (j, uj,i, vj,i) represents the evaluation Sj(uj,i) = vj,i obtained by the ith query to
Sj . Let

QS = QS1 ∪ . . . ∪QSr

Then the pair of query histories
τ = (QC ,QS)

will be called the transcript of the attack: it contains all the information that D has
obtained at the end of the attack. In this work, we will only consider information theoretic
distinguishers. Therefore we can assume that a distinguisher is deterministic and does not
make any redundant query, and hence the output of D can be regarded as a function of τ ,
denoted D(τ) or D(QC ,QS).

Fix a transcript τ = (QC ,QS), a key k ∈ ({0, 1}wn)r+1, a permutation P ∈ Perm(wn),
a set of S-boxes S = (S1, . . . , Sr) ∈ Perm(n)r and j ∈ {1, . . . , `}: if Sj(uj,i) = vj,i for every
i = 1, ..., p, then we will write Sj ` QSj

. We will write S ` QS if Sj ` QSj
for every

j = 1, ..., r. Similarly, if SPTk [S](xj,i) = yj,i (resp. P (xj,i) = yj,i) for every i = 1, ..., qj ,
then we will write SPTk [S] ` QCj

(resp. P ` QCj
).

Let k1, . . . ,k` ∈
(
({0, 1}wn)r+1)` and P = (P1, . . . , P`) ∈ Perm(wn)`, if SPTkj

[S] ` QCj

(resp. Pj ` QCj
) for every j = 1, . . . , `, then we will write (SPTkj

[S])j=1,...,` ` QC (resp.
P ` QC). If there exist P ∈ Perm(wn)` and S ∈ Perm(n)r that outputs τ at the end of
the interaction with D, then we will call the transcript τ attainable. So for any attainable
transcript τ = (QC ,QS), there exist P ∈ Perm(wn)` and S ∈ Perm(n)r such that P ` QC
and S ` QS . For an attainable transcript τ = (QC ,QS), let

p1(τ) = Pr
[
P $← Perm(wn)`,S $← Perm(n)r : P ` QC

∧
S ` QS

]
,

p2(τ) = Pr
[
k1, . . . ,k`

$←
(
({0, 1}wn)r+1)`,S $← Perm(n)r : (SPTkj

[S])j ` QC
∧
S ` QS

]
.

With these definitions, the core lemma of the H-coefficient technique (without defining
“bad” transcripts) is stated as follows.

Lemma 1. Let ε ≥ 0. Suppose that for any attainable transcript τ = (QC ,QS),

p2(τ) ≥ (1− ε)p1(τ). (2)

Then one has
Advmu

SPT (D) ≤ ε.
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The lower bound (2) is called ε-point-wise proximity of the transcript τ = (QC ,QS).
The point-wise proximity of a transcript in the multi-user setting is guaranteed by the
point-wise proximity of (QCj

,QS) for each j = 1, . . . , ` in the single user setting. The
following lemma is a restatement of Lemma 3 in [HT16].

Lemma 2. Let ε : N× N→ R≥0 be a function such that

1. ε(x, y) + ε(x, z) ≤ ε(x, y + z) for every x, y, z ∈ N,

2. ε(·, z) and ε(z, ·) are non-decreasing functions on N for every z ∈ N.

Suppose that for any distinguisher D in the single-user setting that makes p primitive
queries to each of the underlying S-boxes and makes q construction queries, and for any
attainable transcript τ obtained by D, one has

p2(τ) ≥ (1− ε(p, q))p1(τ).

Then for any distinguisher D in the multi-user setting that makes p primitive queries
to each of the underlying S-boxes and makes total q construction queries, and for any
attainable transcript τ obtained by D, one has

p2(τ) ≥ (1− 2ε(p+ wq, q))p1(τ).

3 Beyond-Birthday-Bound Security for 4-Round SPNs
Concretely, let SPTk [S] be the 4-round SPN using any linear transformations T . I.e.,

SPTk [S](x) := ⊕k4 ◦ S4 ◦ ⊕k3 ◦ T ◦ S3 ◦ ⊕k2 ◦ T ◦ S2 ◦ ⊕k1 ◦ T ◦ S1 ◦ ⊕k0(x), (3)

where ⊕ki
is the operation of xoring with the wn-bit round-key ki, and ◦ stands for function

composition. We define good linear transformations to characterize their properties that
are sufficient for 2n/3-bit security.

Definition 1. We say that a linear transformation

T =


t1,1 t1,2 · · · t1,w
t2,1 t2,2 · · · t2,w
...

... . . . ...
tw,1 tw,2 · · · tw,w

 , T−1 =


t′1,1 t′1,2 · · · t′1,w
t′2,1 t′2,2 · · · t′2,w
...

... . . . ...
t′w,1 t′w,2 · · · t′w,w

 ,

is good, if:

1. T contains no zero entries, i.e., ti,j 6= 0 for all i, j ∈ {1, . . . , w}, and

2. No row of T contains redundant entries, i.e., for every i, ti,j 6= ti,j′ for all distinct
indices j, j′ ∈ {1, . . . , w}; and

3. T−1 contains no zero entries, i.e., t′i,j 6= 0 for all i, j ∈ {1, . . . , w}, and

4. No row of T−1 contains redundant entries, i.e., for every i, t′i,j 6= t′i,j′ for all distinct
indices j, j′ ∈ {1, . . . , w}.

The 1st and 3rd conditions are also required for the birthday security of 3-round linear
SPNs [DKS+17, Sect. 3]. As mentioned in the Introduction, the 2nd and 4th conditions
can be seen as a “second order” extension of the 1st and 3rd ones. To justify the soundness
of this definition, we list several candidates in Appendix A. Using such a good linear
transformation T and uniform and independent round keys, SPT is beyond-birthday-bound
secure.
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Theorem 1. Assume w ≥ 2, and p+wq ≤ N/2. Let SPTk [S] be a 4-round, linear SPN as
defined by Eq. (3). If the round keys k = (k0, k1, k2, k3, k4) are uniform and independent,
and T is good as per Definition 1, then

Advsu
SPT (p, q) ≤ 3w4q2(p+ 2wq)

N2 + 9w2q(p+ 3wq)2

N2 + q2

Nw
,

Advmu
SPT (p, q) ≤ 6w4q2(p+ 3wq)

N2 + 18w2q(p+ 4wq)2

N2 + 2q2

Nw
.

The proof of Theorem 1 relies on the following point-wise proximity result and on
Lemmas 1 and 2.

Lemma 3. Assume p+wq ≤ N/2. Let D be a distinguisher in the single-user setting that
makes p primitive queries to each of S1, S2, S3, and S4, and makes q construction queries.
Then for any attainable transcript τ = (QC ,QS), one has

p2(τ)
p1(τ) ≥ 1− 3w4q2(p+ 2wq)

N2 − 9w2q(p+ 3wq)2

N2 − q2

Nw
. (4)

3.1 Terminology, and Outline of the Proof
Throughout the proof, we fix a distinguisher D as described in the statement and fix an
attainable transcript τ = (QC ,QS) obtained by D. As we focus on the single-user setting,
we drop the user indices from Eq. (1) and assume QC = (xi, yi)1≤i≤q. Then, let

Q(0)
S1

= {(u, v) ∈ {0, 1}n × {0, 1}n : (1, u, v) ∈ QS} ,

Q(0)
S2

= {(u, v) ∈ {0, 1}n × {0, 1}n : (2, u, v) ∈ QS} ,

Q(0)
S3

= {(u, v) ∈ {0, 1}n × {0, 1}n : (3, u, v) ∈ QS} ,

Q(0)
S4

= {(u, v) ∈ {0, 1}n × {0, 1}n : (4, u, v) ∈ QS} .

and denote the domains and ranges of Q(0)
S1
,Q(0)

S2
,Q(0)

S3
,Q(0)

S4
by

U
(0)
1 =

{
u1 ∈ {0, 1}n : (1, u1, v1) ∈ Q(0)

S1

}
, V

(0)
1 =

{
v1 ∈ {0, 1}n : (1, u1, v1) ∈ Q(0)

S1

}
,

U
(0)
2 =

{
u2 ∈ {0, 1}n : (2, u2, v2) ∈ Q(0)

S2

}
, V

(0)
2 =

{
v2 ∈ {0, 1}n : (2, u2, v2) ∈ Q(0)

S2

}
,

U
(0)
3 =

{
u3 ∈ {0, 1}n : (3, u3, v3) ∈ Q(0)

S3

}
, V

(0)
3 =

{
v3 ∈ {0, 1}n : (3, u3, v3) ∈ Q(0)

S3

}
,

U
(0)
4 =

{
u4 ∈ {0, 1}n : (4, u4, v4) ∈ Q(0)

S4

}
, V

(0)
4 =

{
v4 ∈ {0, 1}n : (4, u4, v4) ∈ Q(0)

S4

}
.

3.1.1 Extending the transcripts

Point-wise proximity is usually established by enhancing the transcripts with auxiliary
random variables, defining a large enough set of “good” randomness, and then, for each
choice of a good random variable, lower bounding the probability of observing this
transcript. Such random variables typically include the keys, and are usually called good
if the adversary cannot use the randomness to follow the path of computation of the
encryption/decryption of a query up to a contradiction. To this end, we follow [CDK+18,
Sect. 4.2] and define an extension of the transcript in order to gather enough information
to allow simple definition of bad randomness. Then, instead of summing over the choice
of the randomness, we will define an extension of the transcript, that will provide the
necessary information, and then sum over every possible good extension. In detail, a
transcript τ is first extended in the following manner:
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• At the end of the interaction between D and the real world (S,SPTk [S]), we append τ
with the keys k = (k0, k1, k2, k3, k4) and the two random permutations S1, S4 in use;

• At the end of the interaction between D and the ideal world (S, P̃ ), we append τ with
randomly sampled keys k = (k0, k1, k2, k3, k4) and the two random permutations
S1, S4 in use.

Note that, in either case, it is equivalent to sampling two new random permutations S1, S4
such that S1 ` QS1 and S4 ` QS4 and appending them to τ . With the above, for any
(x, y) ∈ QC we define

a = T
(
S1 (x⊕ k0)

)
, b = T−1(S−1

4 (y ⊕ k4)
)
.

This extends the list QC into a list as follows:

Q′C =
(
(x1, a1, b1, y1), . . . , (xq, aq, bq, yq)

)
.

With this new list, a colliding query is defined as a construction query (x, y, a, b) ∈ Q′C
that fulfills any of the following conditions:

1. there exists an index i ∈ {1, . . . , w} such that (a⊕ k1) [i] ∈ U (0)
2 .

2. there exists an index i ∈ {1, . . . , w} such that
(
b⊕ T−1(k3)

)
[i] ∈ V (0)

3 .

3. there exist a construction query (x′, a′, b′, y′) ∈ Q′C and two indices i, j ∈ {1, . . . , w}
such that (x, a, i) 6= (x′, a′, j) and (a⊕ k1) [i] = (a′ ⊕ k1) [j].

4. there exist a construction query (x′, a′, b′, y′) ∈ Q′C and two indices i, j ∈ {1, . . . , w}
such that (x, a, i) 6= (x′, a′, j) and i ∈ {1, . . . , w} such that

(
b⊕ T−1(k3)

)
[i] =(

b′ ⊕ T−1(k3)
)

[j].

Now we further introduce a new set Q′S of S-box evaluations to complete the tran-
script extension. In detail, for each colliding query (x, a, b, y) ∈ Q′C , we will add tuples
(2, (a⊕ k1)[i], v′)1≤i≤w (if (a, b) collides at the input of S2) or

(
3, u′, (b⊕ T−1(k3))[i]

)
1≤i≤w

(if (a, b) collides at the output of S3) to Q′S by lazy sampling v′ = S2((a ⊕ k1)[i]) or
u′ = S−1

3 ((b⊕ T−1(k3))[i]), as long as it has not been determined by any existing query in
QS .

We remark that S1, S4, and Q′S are auxiliary variables rather than something given to
the distinguisher at the end of the interaction. The latter paradigm was used in [CS14],
but it appears incompatible with point-wise proximity.

An extended transcript of τ includes all the above additional information, i.e.,

τ ′ = (Q′C ,QS ,Q′S , S1, S4,k).

For each collision between a construction query and a primitive query, or between two
construction queries, the extended transcript will contain enough information to compute
a complete round of the evaluation of the SPN. This will be useful to lower bound the
probability to get the transcript τ in the real world.

Below in Sect. 3.2, we will show that the number of bad extended transcripts is small
enough; then in Sect. 3.3, we show that the probability to obtain good extension in the
real world is sufficiently close to that in the ideal world. These will complete the proof.
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3.2 Bad Transcript Extensions and Probability
The first step is to define the set of bad extended transcripts. Consider an attainable
extended transcript τ ′ = (Q′C ,QS ,Q′S , S1, S4,k). Let

Q(1)
S2

= {(u, v) ∈ {0, 1}n × {0, 1}n : (2, u, v) ∈ QS ∪Q′S} ,

Q(1)
S3

= {(u, v) ∈ {0, 1}n × {0, 1}n : (3, u, v) ∈ QS ∪Q′S} .

In words, Q(1)
Si

summarizes each constraint that is forced on Si by QS and Q′S . Let

U
(1)
2 =

{
u2 ∈ {0, 1}n : (2, u2, v2) ∈ Q(1)

S2

}
, V

(1)
2 =

{
v2 ∈ {0, 1}n : (2, u2, v2) ∈ Q(1)

S2

}
,

U
(1)
3 =

{
u3 ∈ {0, 1}n : (3, u3, v3) ∈ Q(1)

S3

}
, V

(1)
3 =

{
v3 ∈ {0, 1}n : (3, u3, v3) ∈ Q(1)

S3

}
.

be the domains and ranges of Q(1)
S2

and Q(1)
S3

respectively.

Definition 2. We say an extended transcript τ ′ is bad if at least one of the following
conditions is fulfilled. The conditions are classified into two categories depending on the
relevant randomness. In detail, regarding k0, k1, k3, k4:

(B-1) there exist (not necessarily distinct) (x, a, b, y), (x′, a′, b′, y′), (x′′, a′′, b′′, y′′) ∈ Q′C
and three distinct indices i, i′, i′′ ∈ {1, . . . , w} such that:

– (x⊕ k0)[i] = (x′ ⊕ k0)[i′] = (x′′ ⊕ k0)[i′′], or
– (a⊕ k1)[i] = (a′ ⊕ k1)[i′] = (a′′ ⊕ k1)[i′′], or
– (b⊕ T−1(k3))[i] = (b′ ⊕ T−1(k3))[i′] = (b′′ ⊕ T−1(k3))[i′′], or
– (y ⊕ k4)[i] = (y′ ⊕ k4)[i′] = (y′′ ⊕ k4)[i′′].

(B-2) there exist (x, a, b, y) ∈ Q′C and distinct indices i, i′ ∈ {1, . . . , w} such that:

– (x⊕ k0)[i] ∈ U (0)
1 and (x⊕ k0)[i′] ∈ U (0)

1 , or

– (a⊕ k1)[i] ∈ U (0)
2 and (a⊕ k1)[i′] ∈ U (0)

2 , or

– (b⊕ T−1(k3))[i] ∈ V (0)
3 and (b′ ⊕ T−1(k3))[i′] ∈ V (0)

3 , or

– (y ⊕ k4)[i] ∈ V (0)
4 and (y ⊕ k4)[i′] ∈ V (0)

4 .

Regarding k2, S1, S4, and Q′S :

(B-3) there exist (x, a, b, y) ∈ Q′C and i, j ∈ {1, . . . , w} such that:

– (a⊕ k1)[i] ∈ U (1)
2 and (b⊕ T−1(k3))[j] ∈ V (1)

3 , or

– (a⊕ k1)[i] ∈ U (1)
2 and (T (S2(a⊕ k1))⊕ k2)[j] ∈ U (1)

3 , or

– (T−1(S−1
3 (b⊕ T−1(k3))⊕ k2))[i] ∈ V (1)

2 and (b⊕ T−1(k3))[j] ∈ V (1)
3 .

(B-4) there exist (x, a, b, y), (x′, a′, b′, y′) ∈ Q′C and i, i′, j, j′ ∈ {1, . . . , w}, (a, b, j) 6=
(a′, b′, j′), such that (a⊕ k1)[i] ∈ U (1)

2 , (a′ ⊕ k1)[i′] ∈ U (1)
2 , and(

T (S2(a⊕ k1))⊕ k2
)
[j] =

(
T (S2(a′ ⊕ k1))⊕ k2

)
[j′].

(B-5) there exist (x, a, b, y), (x′, a′, b′, y′) ∈ Q′C and i, i′, j, j′ ∈ {1, . . . , w}, (a, b, j) 6=
(a′, b′, j′), such that

(
b⊕ T−1(k3)

)
[i] ∈ V (1)

3 ,
(
b′ ⊕ T−1(k3)

)
[i′] ∈ V (1)

3 , and(
T−1(S−1

3 (b⊕ T−1(k3))⊕ k2)
)
[j] =

(
T−1(S−1

3 (b′ ⊕ T−1(k3))⊕ k2)
)
[j′].
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Any extended transcript that is not bad will be called good. Given an original transcript
τ , we denote Θgood(τ) (resp. Θbad(τ)) the set of good (resp. bad) extended transcripts of
τ and Θ′(τ) the set of all extended transcripts of τ .

We start by upper bounding the probability of getting bad transcripts in the ideal
world.

Lemma 4. Assuming p+wq ≤ N/2, then the probability to obtain bad extended transcripts
in the ideal world is bounded to

Pr
[
τ ′ ∈ Θbad(τ)

]
≤ 5w2q(p+ 2wq)2

N2 + 3w4q2(p+ 2wq)
N2 . (5)

The remaining of this subsection is devoted to establish Eq. (5). To this end, we
analyze the conditions in turn.

3.2.1 Conditions (B-1) and (B-2)

For (B-1), consider each of the q3w(w−1)(w−2)/3! ≤ w3q3/6 choices (x, a, b, y), (x′, a′, b′, y′),
(x′′, a′′, b′′, y′′) ∈ Q′C and distinct i, i′, i′′ ∈ {1, . . . , w}. Since k0[i], k0[i′], and k0[i′′] are
uniform and independent, the probability to have (x⊕ k0)[i] = (x′ ⊕ k0)[i′] = (x′′ ⊕ k0)[i′′]
is 1/N2. Similarly, the probability to have (a ⊕ k1)[i] = (a′ ⊕ k1)[i′] = (a′′ ⊕ k1)[i′′], or
(b ⊕ k3)[i] = (b′ ⊕ k3)[i′] = (b′′ ⊕ k3)[i′′], or (y ⊕ k4)[i] = (y′ ⊕ k4)[i′] = (y′′ ⊕ k4)[i′′], is
3/N2. Thus

Pr [(B-1)] ≤ 4w3q3

6N2 ≤
w3q3

N2 .

Regarding (B-2), for each of the q
(
w
2
)
≤ w2q/2 choices of (x, a, b, y) ∈ Q′C and distinct

i, i′ ∈ {1, . . . , w}, since k0[i] and k0[i′] are uniform and independent, the probability to
have (x⊕ k0)[i] ∈ U (0)

1 and (x⊕ k0)[i′] ∈ U (0)
1 is at most

∣∣U (0)
1
∣∣2/N2 = p2/N2. The same

bound holds for the other three conditions. Thus

Pr [(B-2)] ≤ w2q

2 · 4p2

N2 ≤
2w2qp2

N2 .

3.2.2 Useful intermediate results

To analyze the remaining conditions, we will rely on the following lemma, which character-
izes some useful properties of the t-th round of the linear SPN.

Lemma 5. For any t ∈ {1, 2}, r ∈ {3, 4}, z, z′, δ ∈ {0, 1}n, and i, i′, j, j′ ∈ {1, . . . , w},
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define

pcoll+1 (t, z, z′, j, j′) := Pr
[(
T
(
St(z ⊕ kt−1)

)
⊕ kt

)
[j] =

(
T
(
St(z′ ⊕ kt−1)

)
⊕ kt

)
[j′]∣∣∣ ¬(B-1) ∧ ¬(B-2) ∧ St ` Q(0)

St
∧ ∀` ∈ {1, . . . , w} : (z ⊕ kt−1)[`] /∈ U (0)

t

]
,

pcoll+2 (t, z, z′, i, i′, j, j′) := Pr
[(
T
(
St(z ⊕ kt−1)

)
⊕ kt

)
[j] =

(
T
(
St(z′ ⊕ kt−1)

)
⊕ kt

)
[j′]∣∣∣ ¬(B-1) ∧ ¬(B-2) ∧ St ` Q(0)

St
∧ (z ⊕ kt−1)[i] ∈ U (0)

t ∧ (z′ ⊕ kt−1)[i′] ∈ U (0)
t

]
,

pcoll+3 (t, z, i, δ) := Pr
[(
T
(
St(z ⊕ kt−1)

)
⊕ kt

)
[i] = δ∣∣∣ ¬(B-1) ∧ ¬(B-2) ∧ St ` Q(0)

St
∧ ∀` ∈ {1, . . . , w} : (z ⊕ kt−1)[`] /∈ U (0)

t

]
,

pcoll−1 (r, z, z′, j, j′) := Pr
[(
T−1(S−1

r (z ⊕ kr)
)
⊕ kr−1

)
[j] =

(
T−1(S−1

r (z′ ⊕ kr)
)
⊕ kr−1

)
[j′]∣∣∣ ¬(B-1) ∧ ¬(B-2) ∧ Sr ` Q(0)

Sr
∧ ∀` ∈ {1, . . . , w} : (z ⊕ kr)[`] /∈ V (0)

r

]
,

pcoll−2 (r, z, z′, i, i′, j, j′) := Pr
[(
T−1(S−1

r (z ⊕ kr)
)
⊕ kr−1

)
[j] =

(
T−1(S−1

r (z′ ⊕ kr)
)
⊕ kr−1

)
[j′]∣∣∣ ¬(B-1) ∧ ¬(B-2) ∧ Sr ` Q(0)

Sr
∧ (z ⊕ kr)[i] ∈ V (0)

r ∧ (z′ ⊕ kr)[i′] ∈ V (0)
r

]
,

pcoll−3 (r, z, i, δ) := Pr
[(
T−1(S−1

r (z ⊕ kr)
)
⊕ kr−1

)
[i] = δ∣∣∣ ¬(B-1) ∧ ¬(B-2) ∧ Sr ` Q(0)

Sr
∧ ∀` ∈ {1, . . . , w} : (z ⊕ kr)[`] /∈ V (0)

r

]
,

where the probabilities are taken over the random choices of St, kt−1, kt, Sr, kr−1, and kr.
Then, as long as (z, j) 6= (z′, j′), it holds

pcoll+1 (t, z, z′, j, j′) ≤ 1
N − p− wq

, pcoll+2 (t, z, z′, i, i′, j, j′) ≤ 1
N − p− wq

,

pcoll−1 (r, z, z′, j, j′) ≤ 1
N − p− wq

, pcoll−2 (r, z, z′, i, i′, j, j′) ≤ 1
N − p− wq

.

pcoll+3 (t, z, i, δ) ≤ 1
N
, pcoll−3 (r, z, i, δ) ≤ 1

N
.

Proof. First, consider pcoll+1 (t, z, z′, j, j′). When j 6= j′, the probability to have
(
T
(
St(z⊕

kt−1)
)
⊕kt

)
[j] =

(
T
(
St(z′⊕kt−1)

)
⊕kt

)
[j′] is 1/N ≤ 1/(N −p−wq), since kt[j] and kt[j′]

are uniform and independent. In the remaining we focus on the case of j = j′, which means
z 6= z′ while T

(
St(z⊕kt−1)

)
[j] = T

(
St(z′⊕kt−1)

)
[j]. Note that z 6= z′ implies there exists

i0 such that (z ⊕ kt−1)[i0] 6= (z′ ⊕ kt−1)[i0]. By the assumption, (z ⊕ kt−1)[i0] /∈ U (0)
1 . By

construction, we have

T (St(z ⊕ kt−1))[j]⊕ T (St(z′ ⊕ kt−1))[j]

=
( ⊕

1≤`≤w
tj,` · St

(
(z ⊕ kt−1)[`]

))
⊕
( ⊕

1≤`≤w
tj,` · St

(
(z′ ⊕ kt−1)[`]

))
.

Below we distinguish 3 cases:

Case 1: (z ⊕ kt−1)[i0] is “unique”, i.e., (z ⊕ kt−1)[i0] 6= (z′ ⊕ kt−1)[`] for all ` ∈
{1, . . . , w}, and (z⊕ kt−1)[i0] 6= (z⊕ kt−1)[`] for all ` 6= i0. Then, conditioned on St ` Q(0)

St

and on the 2w − 1 values {St((z ⊕ kt−1)[`])}1≤`≤w, 6̀=i0 ∪ {St((z′ ⊕ kt−1)[`])}1≤`≤w, the
value of St

(
(z ⊕ kt−1)[i0]

)
remains uniform in at least N − p− wq possibilities. Moreover,

the coefficient tj,i0 is non-zero as per our assumption. Therefore, in this case we have

Pr
[
T (St(z ⊕ kt−1))[j]⊕ T (St(z′ ⊕ kt−1))[j] = 0

]
≤ 1
N − p− wq

. (6)
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Case 2: (z ⊕ kt−1)[i0] = (z ⊕ kt−1)[i1] for some i1 6= i0. Then by ¬(B-1), (z ⊕
kt−1)[i0] 6= (z ⊕ kt−1)[`] and (z ⊕ kt−1)[i0] 6= (z′ ⊕ kt−1)[`] for any ` 6= i0, i1. We further
distinguish two subcases:

• Subcase 2.1: (z ⊕ kt−1)[i1] = (z′ ⊕ kt−1)[i1]. Then, with the two terms tj,i1 · St
(
(z ⊕

kt−1)[i1]
)
and tj,i1 · St

(
(z′ ⊕ kt−1)[i1]

)
canceled, it can be seen

T (St(z ⊕ kt−1))[j]⊕ T (St(z′ ⊕ kt−1))[j]

=
( ⊕

1≤`≤w, 6̀=i1

tj,` · St
(
(z′ ⊕ kt−1)[`]

))
⊕
( ⊕

1≤`≤w, 6̀=i1

tj,` · St
(
(z′ ⊕ kt−1)[`]

))
.

Conditioned on St ` Q(0)
St

and on the 2w − 3 values {St((z′ ⊕ kt−1)[`])}1≤`≤w, 6̀=i1 ∪
{St((z ⊕ kt−1)[`])}1≤`≤w, 6̀=i0, 6̀=i1 , the value of St((z ⊕ kt−1)[i0]) remains uniform in
at least N − p− wq possibilities. Therefore, in this case Eq. (6) still holds.

• Subcase 2.2: (z ⊕ kt−1)[i1] 6= (z′ ⊕ kt−1)[i1]. Then we write

T (St(z ⊕ kt−1))[j]⊕ T (St(z′ ⊕ kt−1))[j]

=
(
tj,i0 · St

(
(z ⊕ kt−1)[i0]

)
⊕ tj,i1 · St

(
(z ⊕ kt−1)[i1]

))
︸ ︷︷ ︸(

tj,i0⊕tj,i1

)
·St

(
(z⊕kt−1)[i0]

)
⊕
( ⊕

1≤`≤w
tj,` · St

(
(z′ ⊕ kt−1)[`]

))
⊕
( ⊕
6̀=i0, 6̀=i1

tj,` · St
(
(z ⊕ kt−1)[`]

)
.

Conditioned on St ` Q(0)
St

and on the 2w−2 values {St((z′⊕kt−1)[`])}1≤`≤w∪{St((x⊕
kt−1)[`])}1≤`≤w, 6̀=i0, 6̀=i1 , St((z ⊕ kt−1)[i0]) remains uniform in at least N − p− wq
possibilities. Moreover, the coefficient tj,i0 ⊕ tj,i1 is non-zero as per our assumption.
Therefore, Eq. (6) remains.

Case 3: (z⊕kt−1)[i0] = (z′⊕kt−1)[i1] for some i1 6= i0. The subcase and discussion
are similar to Case 2.

By the above, in any case, the probability to have T (St(z⊕kt−1))[j] = T (St(z′⊕kt−1))[j]
is at most 1/(N−p−wq), which establishes pcoll+1 (t, z, z′, j, j′) ≤ 1/(N−p−wq). Similarly
by symmetry, pcoll−1 (r, z, z′, j, j′) ≤ 1/(N − p− wq).

The analysis of pcoll+2 (t, z, z′, i, i′, j, j′) bears some resemblance. In particular, we focus
on the case of j = j′ (and thus z 6= z′), as otherwise the uniformness of kt[j] and kt[j′] is
sufficient for pcoll+2 (t, z, z′, i, i′, j, j′) = 1/N .

First, consider pcoll+2 (t, z, z′, i, i′, j, j) with i 6= i′. Since z 6= z′, there exists i0 such
that (z ⊕ kt−1)[i0] 6= (z′ ⊕ kt−1)[i0]. Then either i 6= i0 or i′ 6= i0. Wlog assume i 6= i0.
Note that this means (z ⊕ kt−1)[i] 6= (z′ ⊕ kt−1)[i0], as otherwise both (z ⊕ kt−1)[i] and
(z ⊕ kt−1)[i0] fall in U (0)

1 and it contradicts ¬(B-2). In the same vein as the analysis of
pcoll+1 (t, z, z′, j, j′), we then distinguish three cases. In detail,

• Case 1: (z ⊕ kt−1)[i0] 6= (z′ ⊕ kt−1)[`] for all ` ∈ {1, . . . , w}, and (z ⊕ kt−1)[i0] 6=
(z ⊕ kt−1)[`] for any ` 6= i0. Then the analysis is similar to Case 1 in the analysis of
pcoll+1 (t, z, z′, j, j′).

• Case 2: (z ⊕ kt−1)[i0] = (z ⊕ kt−1)[i1] for some i1 6= i0. Then, if (z ⊕ kt−1)[i1] =
(z′⊕kt−1)[i1], then the two terms tj,i1 ·St

(
(z⊕kt−1)[i1]

)
and tj,i1 ·St

(
(z′⊕kt−1)[i1]

)
cancel, and the remaining term tj,i0 ·St

(
(z⊕kt−1)[i0]

)
ensures that the probability is

at most 1/(N − p−wq); otherwise, the term (tj,i0 ⊕ tj,i1) · St((z ⊕ kt−1)[i0]) ensures
that the probability is at most 1/(N − p− wq).
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• Case 3: (z ⊕ kt−1)[i0] = (z′ ⊕ kt−1)[i1] for some i1 6= i0. This subcase is similar to
Case 2.

In all, the uniformness of St((z ⊕ kt−1)[i0]) is sufficient to ensure Pr
[
T (St(z ⊕ kt−1))[j] =

T (St(z ⊕ kt−1))[j]
]
≤ 1/(N − p− wq).

Then, consider the case of i = i′, i.e., pcoll+2 (t, z, z′, i, i, j, j). Assume that St((z ⊕
kt−1)[i]) = ut and St((z′ ⊕ kt−1)[i]) = u′t for (ut, vt), (u′t, v′t) ∈ Q

(0)
St

. Then it holds

T (St(z ⊕ kt−1))[j]⊕ T (St(z ⊕ kt−1))[j]

=(tj,i · v1)⊕ (tj,i · v′1)⊕
( ⊕

1≤`≤w, 6̀=i

tj,` ·
(
S1((x⊕ k0)[`])⊕ S1((x′ ⊕ k0)[`])

))
. (7)

Now:

• If x[`] = x′[`] for any ` 6= i, then z 6= z′ implies v1 6= v′1. In this case, Eq. (7)
collapses to tj,i · v1 = tj,i · v′1 which is not possible since tj,i 6= 0;

• Else, there exists i0 6= i such that (z ⊕ kt−1)[i0] 6= (z′ ⊕ kt−1)[i0]. This means
(z′ ⊕ kt−1)[i] /∈ U

(0)
t (and thus (z′ ⊕ kt−1)[i] 6= (z ⊕ kt−1)[i0]) by ¬(B-2). The

remaining analysis just follows the previous one for pcoll+1 (t, z, z′, j), establishing
that the uniformness of St((z⊕kt−1)[i0]) is sufficient to ensure that T (St(z⊕kt−1))[j]
equals T (St(z ⊕ kt−1))[j] with probability at most 1/(N − p− wq).

Therefore, it still holds pcoll+2 (t, z, z′, i, i, j, j) ≤ 1/(N − p−wq). All the above cases show
that pcoll+2 (t, z, z′, i, i′, j, j′) ≤ 1/(N − p−wq) for any parameters. Similarly by symmetry,
pcoll−2 (r, z, z′, i, i′, j, j′) ≤ 1/(N − p− wq).

Finally, since kt[i] is uniform and independent of kt−1 and St, it immediately holds

pcoll+3 (t, z, i, δ) = 1
N
.

Similarly, pcoll−3 (r, z, i, δ) = 1
N . These complete the proof.

3.2.3 Conditions (B-3), (B-4), and (B-5)

Regarding (B-3), consider any choice of (x, a, b, y) and i, j. Consider the probability to
have (a⊕ k1)[i] ∈ U (1)

2 first. Note that this consists of three subevents:

• (B-31) (a⊕ k1)[i] ∈ U (0)
2 ;

• (B-32) there exists (x′, a′, b′, y′) ∈ Q′C , and j′ ∈ {1, . . . , w} such that (x, j) 6= (x′, j′),
while (a⊕ k1)[j] = (a′ ⊕ k1)[j′].

Since k1 is uniform and independent of S1, it holds Pr[(B-31)] ≤ p/N .
For (B-32), consider each ((x′, a′, b′, y′), j′) such that (x, j) 6= (x′, j′), we distinguish

three cases.

• Case 1: (x⊕k0)[`] /∈ U (0)
1 for all ` ∈ {1, . . . , w}. Then we have pcoll+1 (1, x, x′, j, j′) ≤

1/(N − p− wq) by Lemma 5.

• Case 2: there exists i1 such that (x⊕ k0)[i1] ∈ U (0)
1 , though (x′⊕ k0)[`] /∈ U (0)

1 for all
` ∈ {1, . . . , w}. Then we have pcoll+1 (1, x′, x, j′, j) ≤ 1/(N − p− wq) by Lemma 5.

• Case 3: there exists i1, i2 such that (x⊕ k0)[i1] ∈ U (0)
1 and (x′⊕ k0)[i2] ∈ U (0)

1 . Then
we have pcoll+2 (1, x, x′, i1, i2, j, j′) ≤ 1/(N − p− wq) by Lemma 5.
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Therefore, for any ((x′, a′, b′, y′), j′), the probability to have (a⊕k1)[j] = (a′⊕k1)[j′] never
exceeds 1/(N − p − wq). By this, Pr[(B-32)] ≤ wq/(N − p − wq). Using p + wq ≤ N/2,
we reach

Pr
[
(a⊕ k1)[i] ∈ U (1)

2
]
≤ Pr[(B-31)] + Pr[(B-32)] ≤ p

N
+ wq

(N − p− wq) ≤
p+ 2wq
N

.

Via deriving one round further in a similar vein, we reach,

Pr
[
(T (S2(a⊕ k1))⊕ k2)[j] ∈ U (1)

3
]
≤ p+ 2wq

N
,

and similarly by symmetry,

Pr
[
(b⊕ T−1(k3))[j] ∈ V (1)

3
]
≤ p+ 2wq

N
,

Pr
[
(T−1(S−1

3 (b⊕ T−1(k3))⊕ k2))[i] ∈ V (1)
2
]
≤ p+ 2wq

N
.

By this, the probability that (B-3) is fulfilled with respect to each choice of ((x, a, b, y), i, j)
is at most 3(p+ 2wq)2/N2. As there are at most w2q choices for (x, a, b, y) and i, j, we
eventually obtain

Pr
[
(B-3)

]
≤ 3w2q(p+ 2wq)2

N2 .

(B-4) and (B-5). For (B-4), we have

Pr[(B-4)] =
∑

(x,a,b,y),(x′,a′,b′,y′)∈Q′
C

∑
i,i′,j,j′

(
Pr
[
(a⊕ k1)[i] ∈ U (1)

2
]︸ ︷︷ ︸

≤(p+2wq)/N , as argued before

× Pr
[
(a′ ⊕ k1)[i] ∈ U (1)

2 |(a⊕ k1)[i] ∈ U (1)
2
]︸ ︷︷ ︸

≤1

× pcoll+2 (2, a, a′, i, i′, j, j′)︸ ︷︷ ︸
≤1/(N−p−wq)

)

≤
(
wq

2

)
· w2 · p+ 2wq

N
· 1
N − p− wq

≤ w4q2(p+ 2wq)
N2 .

Similarly by symmetry,

Pr[(B-5)] ≤ w4q2(p+ 2wq)
N2 .

3.2.4 Summary for bad transcripts

Summing over the above and using w3q3

N2 ≤ w4q2(p+2wq)
N2 and 2w2qp2

N2 ≤ 2w2q(p+2wq)2

N2 yield
Eq. (5):

Pr
[
τ ′ ∈ Θbad (τ)

]
≤

5∑
i=1

Pr[(B-i)]

≤ w3q3

N2 + 2w2qp2

N2 + 3w2q(p+ 2wq)2

N2 + w4q2(p+ 2wq)
N2 + w4q2(p+ 2wq)

N2

≤ 5w2q(p+ 2wq)2

N2 + 3w4q2(p+ 2wq)
N2 .
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3.3 Analyzing Good Transcript Extensions
We are now ready for the second step of the reasoning. Define

CTk [S](a) := S3(T (S2(a⊕ k1))⊕ k2)⊕ T−1(k3).

For any attainable transcript τ , the ideal world probability is easy to calculate:

p1(τ) = Pr
[
(P,S) $← Perm(wn)× Perm(n)4 : (S ` QS) ∧ (P ` QC)

]
= 1

(Nw)q
·
(

1
(N)p

)4
.

To reach the real world probability p2(τ), consider any transcript extension τ ′ =
(Q′C ,QS ,Q′S , S∗1 , S∗4 ,k) from τ . Denote

pre(τ ′) = Pr
[

(k′,S) $←
(
{0, 1}wn

)5 × Perm(n)4 :
((
S1 = S∗1

)
∧
(
S4 = S∗4

)
∧(

S2 ` Q(1)
S2

)
∧
(
S3 ` Q(1)

S3

)
∧
(
CTk′ [S] ` Q′C

)
∧
(
k′ = k

))]
pmid(τ ′) = Pr

[
S $← Perm(n)4 : (CTk [S] ` Q′C)

∣∣∣ (S1 = S∗1 ) ∧ (S4 = S∗4 )∧

(S2 ` Q(1)
S2

) ∧ (S3 ` Q(1)
S3

)
]
.

and let α1 = |Q(1)
S2
| − |Q(0)

S2
| = |Q(1)

S2
| − p and α2 = |Q(1)

S3
| − p. With these, we have

p2(τ) = Pr
[
(k,S) $←

(
{0, 1}wn

)5 × Perm(n)4 :
(
SPTk [S] ` QC

)
∧
(
S ` QS

)]
≥

∑
τ ′∈Θgood(τ)

pre(τ ′) ≥
∑

τ ′∈Θgood(τ)

1
N5w

(
(N)N

)2(N)p+α1(N)p+α2

· pmid(τ ′).

Therefore,

p2(τ)
p1(τ) ≥

∑
τ ′∈Θgood(τ)

(Nw)q ·
(
(N)p

)4
N5w

(
(N)N

)2(N)p+α1(N)p+α2

· pmid(τ ′)

≥ min
τ ′∈Θgood(τ)

(
(Nw)q · pmid(τ ′)

) ∑
τ ′∈Θgood(τ)

1
N5w

(
(N − p)N−p

)2(N − p)α1(N − p)α2︸ ︷︷ ︸
B

.

Note that, the exact probability of observing the extended transcript τ ′ is

1
N5w

(
(N − p)N−p

)2(N − p)α1(N − p)α2

,

since:

1. sample keys k0, . . . , k4 ∈ {0, 1}wn uniformly and independently at random;

2. sample two random permutations S1, S4 from Perm(n) at uniform, such that S1 `
Q(0)
S1
, S4 ` Q(0)

S4
.

3. choose the partial extension of the S-box queries based on the new collisions Q′S
uniformly at random (meaning that each possible u or v is chosen uniformly at
random in the set of its authorized values).
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This means the term B captures the probability of good transcript extensions:

B =
∑

τ ′∈Θgood(τ)

1
N5w

(
(N − p)N−p

)2(N − p)α1(N − p)α2

=Pr
[
τ ′ ∈ Θgood (τ)

]
≥ 1− Pr

[
τ ′ ∈ Θbad (τ)

]
,

which further implies

p2(τ)
p1(τ) ≥ Pr

[
τ ′ ∈ Θgood (τ)

]
· min
τ ′∈Θgood(τ)

(
(Nw)q · pmid(τ ′)

)
. (8)

The term pmid(τ ′) captures the probability that CTk′ [S] ` Q′C , i.e., the inner two SPN
rounds are consistent with the pairs of inputs/outputs (a, b) defined in Q′C . We appeal
to [CL18] to have a concrete bound on (Nw)q · pmid(τ ′).

Lemma 6. Assume p+ wq ≤ N/2, then

(Nw)q · pmid(τ ′) ≥ 1− q2

Nw
− q(2wp+ 6w2q)2

N2 . (9)

Proof. It can be checked that, the transcript (Q′C ,Q
(1)
S2
,Q(1)

S3
) satisfies exactly the conditions

defining a good transcript as per [CL18, page 16]. Moreover, the ratio pmid(τ ′)/(1/(Nw)q)
is exactly the ratio of the probabilities to get τ ′ in the real and in the ideal world. The
result thus immediately follows from [CL18, Lemma 9].

Gathering Eqs. (5), (8), and (9), and using q(2wp+6w2q)2

N2 ≤ 4w2q(p+3wq)2

N2 , we obtain

p2(τ)
p1(τ) ≥

(
1− 5w2q(p+ 2wq)2

N2 − 3w4q2(p+ 2wq)
N2

)
·
(

1− q2

Nw
− q(2wp+ 6w2q)2

N2

)
≥1− 5w2q(p+ 2wq)2

N2 − 3w4q2(p+ 2wq)
N2 − q2

Nw
− 4w2q(p+ 3wq)2

N2

≥1− 3w4q2(p+ 2wq)
N2 − q2

Nw
− 9w2q(p+ 3wq)2

N2

as claimed in Eq. (4).

4 Conclusion
We show that, with four rounds and a moderately stronger linear permutation layer, a
linear substitution-permutation network is secure up to 22n/3 adversarial queries, which
overcomes the birthday barrier. This provides additional theoretic supports for the real
world SPN (tweakable) blockciphers.

We conjecture that the 22n/3 security is tight for 4 or 3 rounds. Though, we are not
aware of matching attacks. Moreover, whether 3 rounds are sufficient has been open
since [DKS+17]. We also remark that: (a) the security of t-round linear SPNs for general
t remains open, and (b) whether tweaks can be mixed into the construction via xoring,
like [CS15], to ensure beyond-birthday-bound security, remains unknown.
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A Candidate Good Transformations for Definition 1
For n = 8, the search space is sufficiently small for a naive exhaustive search. Concretely,
using the primitive polynomial x8 + x4 + x3 + x+ 1, two candidates for n = 8 and w = 8
respectively are as follows:

0x86 0xAF 0x57 0xA7 0xCE 0x42 0x9F 0xD
0x1F 0x6 0x6C 0x9A 0xDC 0xE3 0xD7 0x93
0x85 0x69 0xF F 0x28 0xDC 0x65 0x51 0xA7
0x46 0xB2 0x6 0xF 0 0x73 0x52 0xEC 0x29
0x41 0xBD 0x6A 0xB3 0xDE 0x79 0xBE 0x5C
0x2D 0xEB 0x8A 0xD6 0x6C 0x6D 0x8F 0x68
0x13 0xA1 0xB8 0xE3 0xF F 0x4 0x5A 0xD8

0xCF 0xC6 0xBA 0x8 0x8F 0xD9 0xD0 0x1C

 ,



0xF 8 0x59 0x42 0x9C 0xED 0x1B 0xDD 0xF 2
0xAF 0xF F 0x20 0x4F 0x81 0x17 0xE3 0x9A
0x82 0xA8 0xF 5 0xA7 0x3E 0xE8 0x35 0xC7
0x45 0x6D 0x67 0xA0 0x75 0x8B 0xA1 0x4C
0xB2 0xBD 0x78 0xB8 0xE7 0xAB 0xBE 0x93
0x62 0x49 0x44 0xD8 0xDA 0x87 0xEC 0xF 3
0xF 8 0xD6 0x8D 0x96 0x4D 0x63 0xC4 0xE7
0x12 0x77 0x1E 0xF 1 0xD9 0x7E 0x32 0x1

 ,

For n = 16, we resort to coding theory in order to reduce the search space. Note that, to
verify the 1st and 2nd conditions for linear matrices built upon cyclic codes, it suffices to verify
them for a single row. Moreover, the dual code of a cyclic code remains cyclic [HP03, Theorem
4.2.6], which enables efficiently verifying the 3rd and 4th conditions for its inverse. By the above,
we enumerate cyclic code-based matrices and verify if they satisfy Definition 1. Below we provide
a candidate for n = 8 and w = 16 using the primitive polynomial x8 + x4 + x3 + x2 + 1.

0x7D 0x10 0xBE 0x66 0xF 7 0x85 0xA8 0x6A 0x9A 0xA6 0x87 0x30 0x2C 0x4C 0x2 0x9D

0x10 0xBE 0x66 0xF 7 0x85 0xA8 0x6A 0x9A 0xA6 0x87 0x30 0x2C 0x4C 0x2 0x9D 0x7D

0xBE 0x66 0xF 7 0x85 0xA8 0x6A 0x9A 0xA6 0x87 0x30 0x2C 0x4C 0x2 0x9D 0x7D 0x10

0x66 0xF 7 0x85 0xA8 0x6A 0x9A 0xA6 0x87 0x30 0x2C 0x4C 0x2 0x9D 0x7D 0x10 0xBE

0xF 7 0x85 0xA8 0x6A 0x9A 0xA6 0x87 0x30 0x2C 0x4C 0x2 0x9D 0x7D 0x10 0xBE 0x66

0x85 0xA8 0x6A 0x9A 0xA6 0x87 0x30 0x2C 0x4C 0x2 0x9D 0x7D 0x10 0xBE 0x66 0xF 7

0xA8 0x6A 0x9A 0xA6 0x87 0x30 0x2C 0x4C 0x2 0x9D 0x7D 0x10 0xBE 0x66 0xF 7 0x85

0x6A 0x9A 0xA6 0x87 0x30 0x2C 0x4C 0x2 0x9D 0x7D 0x10 0xBE 0x66 0xF 7 0x85 0xA8

0x9A 0xA6 0x87 0x30 0x2C 0x4C 0x2 0x9D 0x7D 0x10 0xBE 0x66 0xF 7 0x85 0xA8 0x6A

0xA6 0x87 0x30 0x2C 0x4C 0x2 0x9D 0x7D 0x10 0xBE 0x66 0xF 7 0x85 0xA8 0x6A 0x9A

0x87 0x30 0x2C 0x4C 0x2 0x9D 0x7D 0x10 0xBE 0x66 0xF 7 0x85 0xA8 0x6A 0x9A 0xA6

0x30 0x2C 0x4C 0x2 0x9D 0x7D 0x10 0xBE 0x66 0xF 7 0x85 0xA8 0x6A 0x9A 0xA6 0x87

0x2C 0x4C 0x2 0x9D 0x7D 0x10 0xBE 0x66 0xF 7 0x85 0xA8 0x6A 0x9A 0xA6 0x87 0x30

0x4C 0x2 0x9D 0x7D 0x10 0xBE 0x66 0xF 7 0x85 0xA8 0x6A 0x9A 0xA6 0x87 0x30 0x2C

0x2 0x9D 0x7D 0x10 0xBE 0x66 0xF 7 0x85 0xA8 0x6A 0x9A 0xA6 0x87 0x30 0x2C 0x4C

0x9D 0x7D 0x10 0xBE 0x66 0xF 7 0x85 0xA8 0x6A 0x9A 0xA6 0x87 0x30 0x2C 0x4C 0x9D



.
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