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Abstract. Among the few works realising the search of truncated differentials (TD)
and multidimensional linear approximations (MDLA) holding for sure, the optimality
of the distinguisher should be confirmed via an exhaustive search over all possible
input differences/masks, which cannot be afforded when the internal state of the
primitive has a considerable number of words. The incomplete search is also a
long-term problem in the search of optimal impossible differential (ID) and zero-
correlation linear approximation (ZCLA) since all available automatic tools operate
under fixed input and output differences/masks, and testing all possible combinations
of differences/masks is impracticable for now. In this paper, we start by introducing an
automatic approach based on the constraint satisfaction problem for the exploration
of deterministic TDs and MDLAs. Since we transform the exhaustive search into an
inherent feature of the searching model, the issue of incomplete search is settled. This
tool is applied to search for related-key (RK) TDs of AES-192, and a new related-key
differential-linear (DL) distinguisher is identified with a TD with certainty. Due to
the novel property of the distinguisher, the previous RK DL attack on AES-192 is
improved. Also, the new distinguisher is explained from the viewpoint of differential-
linear connectivity table (DLCT) and thus can be regarded as the first application
of DLCT in the related-key attack scenario. As the second application of the tool,
we propose a method to construct (RK) IDs and ZCLAs automatically. Benefiting
from the control of the nonzero fixed differential pattern and the inherent feature
of exhaustive search, the new searching scheme can discover longer distinguishers
and hence possesses some superiorities over the previous methods. This technique
is implemented with several primitives, and the provable security bounds of SKINNY
and Midori64 against impossible differential distinguishing attack are generalised.
Keywords: Truncated differential · Multidimensional linear approximation · Differential-
linear attack · Impossible differential · Zero-correlation linear approximation

1 Introduction
Differential cryptanalysis [BS90] was introduced by Biham and Shamir in the early 1990s.
For the target cipher, differential cryptanalysis studies how the input difference in the
plaintext propagates to the output difference in the ciphertext. If a pair of input and
output differences behaves differently from a random case, this pair can be used to create
a distinguisher or even launch a key-recovery attack. Over almost the same period, Matsui
[Mat93] proposed the linear cryptanalysis. With the biased linear relation among the
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plaintext, ciphertext, and secret key, the adversary can realise distinguishing and key-
recovery attacks. As the most profound cryptanalytic approaches, these two methods
showed significant effects on many of the subsequent methods.

As a generalisation of the differential cryptanalysis, the truncated differential (TD),
for which only a part of the difference in the ciphertext is predicted, was proposed by
Knudsen [Knu94]. The intuition of truncated differential lies in that determining the
partial information of the difference is relatively easy, and this partial message also can
be exploited to accomplish distinguishing and key-recovery attacks. This technique has
been widely used in the analyses of various primitives [KB96, BKR97, KRW99]. One
particular class of truncated differentials consists of differentials holding with probability
one. This kind of differentials can be employed to assemble distinguishers of some combined
attacks, such as differential-linear (DL) attack [LH94] and impossible differential (ID)
attack [Knu98, BBS99]. A counterpart of the truncated differential in the field of linear
cryptanalysis is the multidimensional linear approximation (MDLA) [BN14]. The strength
of the multidimensional linear approximation is measured by its capacity. Similarly, those
MDLAs with capacity being zero have an influence on the construction of zero-correlation
linear approximations (ZCLA) for zero-correlation linear cryptanalysis [BW12, BLNW12,
BR14], which is regarded as the dual of impossible differential cryptanalysis under linear
attack setting.

Theoretically, U -method [KHS+03] and UID-method [LLWG14], which are automated
tools relying on the miss-in-the-middle approach for the search of truncated impossible
differentials, can be utilised to develop deterministic TD/MDLA. In order to identify
the optimal TD/MDLA, the program should be performed under all possible input
differences/masks. However, when the internal state of the primitive has a considerable
number of words `, the exhaustive search cannot be afforded since its complexity is O(2`).

In the last decade, the automatic tools [SHW+14a, SHW+14b, KLT15, LWR16,
SGL+17, AST+17, SWW18, GLMS18] for cryptanalysis obtained rapid development.
Nevertheless, few works concentrated on the deterministic TD/MDLA. Although the auto-
matic tools based on the mixed integer linear programming (MILP) [CJF+16, AST+17]
and constraint programming (CP) [SGL+17] supported the search of impossible differential
trail/zero-correlation linear characteristic, they mainly focused on the existence of trail
under the fixed input and output differences/masks. Considering the computing power in
existence does not allow us to exhaustively verify all combinations of input and output
differences/masks, these approaches only check the trails with input and output differ-
ences/masks belonging to a predetermined set. A common choice for the set is the one
containing all vectors with only one active cell or bit. Note that the tool in [AST+17] under
arbitrary S-box mode targeting TD IDs also encounters the problem of the incomplete
search when ` is relatively large as the complexity of the complete search is O(22`), roughly.

For the lack of an automatic tool targeting deterministic TD/MDLA, we start by
creating an automatic method for the search of TD/MDLA holding for sure. Since the
feature of the exhaustive search is incorporated in the new model, we settle the long-term
problem of incomplete search in the field of discovering truncated (impossible) differential
and multidimensional (zero-correlation) linear approximation distinguishers.

Our Contributions.

An automatic tool for the search of deterministic (RK) TDs and MDLAs. In light of
an absence of the automatic tool for the search of deterministic (RK) TDs and MDLAs,
we propose a method based on constraint programming (CP) to fulfil this goal. The
principle is to create a constraint satisfaction problem (CSP) depicting the cryptanalytic
features that we are interested in and invoke some CP solvers to get the solution of the
problem. The reason that we employ CP lies in the conciseness in the model-generation
phase and the convenience in the model-verification phase. Note that the first step of
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the tool with CP in [GLMS18] only realised a rough search for nondeterministic TDs,
and the solution might be byte inconsistent, i.e., no actual trail follows the TD. While
in our searching scheme, to trace the propagation of the differential pattern precisely, we
introduce more variables to describe more subtle features of the internal state and generate
a more comprehensive model. Thus, our model is promising in search of deterministic TDs.
Besides, since we convert the exhaustive search into an inherent feature of the model, the
long-term problem of inadequate search in the area of detecting deterministic TDs and
MDLAs is settled.

Improved related-key differential-linear attack on AES-192. The tool targeting deter-
ministic TDs is applied to search for RK TDs of AES-192. A new related-key differential-
linear distinguisher is constructed with a RK TD holding for sure. Since the new distin-
guishing property enables us to guess fewer subkey bytes in the key-recovery attack, the
previous attack result [ZZWF07] on seven rounds can be improved. To precisely evaluate
the complexity, we adjust the statistical model in conventional linear cryptanalysis to this
setting and formulate the relation among the data requirement, the success probability
and the advantage of the attack. The theoretical statistical model is verified with random
tests. With the new model, the time complexity of the attack is reduced from 2187 to
2170.5, and the data requirement is decreased, slightly. Moreover, we interpret the new
distinguisher from the aspect of differential-linear connectivity table (DLCT) [BDKW19],
which is intended to exploit the dependence between the two subciphers in the DL attack.
Thus, the new distinguisher can be seen as the first application of the DLCT in the
related-key attack scenario.

Constructing (RK) IDs with TDs and ZCLAs with MDLAs. As the second application
of the automatic tool, we propose the U∗-method relying on CP to construct (RK) IDs and
ZCLAs. The U∗-method is based on the miss-in-the-middle approach and serves as a basic
version for the search of (RK) IDs and ZCLAs. Benefiting from the control of the nonzero
fixed differential pattern and the inherent feature of exhaustive search, the U∗-method
can identify longer distinguishers and thus is superior over the U-method [KHS+03] and
UID-method [LLWG14]. We also invent an optimised version of the U∗-method so that
the contradictions recognised by the model are not limited to those located at the meeting
point. Comparing to the system proposed by Wu and Wang [WW12], the optimised
U∗-method supports the exhaustive search even when the number of words regarding the
objective is considerable, which illustrates its better performance. For instance, the number
of runs to search for the optimal ID of Minalpher-P [STA+14] is reduced from 2128 to
210.9. Given the practical computing power, the complexity of 2128 is out of reach anyhow,
while our method spending a few thousands of minutes can be afforded. A comprehensive
comparison of all tools targeting (RK) IDs for SPN ciphers is also comprised in the paper
(see Table 1).

We acknowledge that some of the newly identified distinguishers are extensions with
probability one of the ones that were published in previous literature. However, we think
that the centre of the paper is more the new technique. Since the new tool can realise the
exhaustive search in a surprisingly rapid manner, we hope it may play an essential role in
the designing phase of new ciphers.

Provable security against ID distinguishing attack of SKINNY and Midori64. By in-
voking the automatic tool with MILP, Sasaki and Todo [ST17] claimed that the maximum
length of impossible differential characteristics for SKINNY-64 is less than 12-round under
the restriction that the input and output differences have one active nibble. With the aid
of CP, we generalise this conclusion and prove that under the keyed (uniform) bijective
S-box assumption, 13.5-round encryption of SKINNY is secure against impossible differential
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distinguishing attack for arbitrary differential with nonzero input and output differences.
Likewise, we update the security bound of Midori64.

Organisation of the paper.

In Sect. 2, we review fundamental conceptions in differential and linear cryptanalyses as well
as the constraint satisfaction problem. Then, the method relying on CSP for the search of de-
terministic truncated differentials and multidimensional linear approximations is presented
in Sect. 3. In Sect. 4, this approach is applied to search for related-key truncated differen-
tials of AES-192. With the newly identified non-random property, the previous related-key
differential-linear attack regarding AES-192 is improved. Sect. 5 demonstrates the second
usage of the tool in Sect. 3. More specifically, we explain how it can be used to construct
(related-key) impossible differentials and zero-correlation linear approximations. The appli-
cations on several designs updating the previous results can be found in Sect. 6. We conclude
the paper in Sect. 7. Some details can be found in Supplementary Material, which is publicly
available at https://github.com/Deterministic-TD-MDLA/auxiliary_material. The
source codes can be obtained at the same web address.

2 Preliminary
2.1 Basics of Differential and Linear Cryptanalyses
A differential that predicts only parts of an n-bit difference is called a truncated dif-
ferential (TD) [Knu94]. Since we focus on the TD holding for sure, instead of propa-
gating the real difference, we only pay attention to the pattern of the difference. Let
∆X = (∆X0,∆X1, . . . ,∆X`−1) be the difference of the internal state X, where ∆Xi ∈ F2s ,
n = ` · s. The differential pattern ∆X = (∆X0 ,∆X1 , . . . ,∆X`−1) of X is an `-dimensional
vector with each ∆Xi being the linear combination1 of the following four patterns of
differences:

• zero differential pattern (Z): if ∆Xi = 0;

• nonzero fixed differential pattern (N): if ∆Xi is non-zero and fixed;

• nonzero varied differential pattern (N∗): if ∆Xi can be any value except zero;

• varied differential pattern (U): if ∆Xi can take any value.

Note that [KHS+03] is the first paper proposing these patterns of differences, and many
subsequent works [WW12, LLWG14] followed these symbols.

With the iteration of the round function, the differential patterns of the inner states
gradually lose information and will turn into a vector with all elements being U, eventually.
The following lemmas are supplied to depict the propagations of differential patterns
through three basic operations. Note that the certainties of all propagations enable us to
construct deterministic TDs.

Lemma 1 (Branching). For the branching operation presented in Figure 1(a), the propa-
gation of the differential pattern is ∆Y0 = ∆Y1 = ∆X .

Lemma 2 (XOR). For the XOR operation illustrated in Figure 1(b), the correspondences
among the differential pattern ∆Y of the output branch and the two input patterns ∆X0

and ∆X1 are given in the following table.
1In this paper, we only consider one kind of linear combination N ⊕ N∗ comprising more than one

pattern. Nevertheless, it is not included in our model for SPN ciphers. Please refer to Sect. 3 for an
explanation.

https://github.com/Deterministic-TD-MDLA/auxiliary_material
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∆Y
∆X1

Z N N⊕ N∗ N∗ U

∆X0

Z Z N N⊕ N∗ N∗ U
N N Z/N N∗/N⊕N∗ N⊕ N∗ U

N⊕ N∗ N⊕ N∗ N∗/N⊕N∗ U U U
N∗ N∗ N⊕ N∗ U U U
U U U U U U

When the differential patterns of the two input branches are nonzero and fixed, the output
pattern depends on the values of ∆X0 and ∆X1. If ∆X0 = ∆X1, the output pattern is Z;
otherwise, ∆Y = N.

Lemma 3 (S-box). For the s-bit S-box displayed in Figure 1(c), all the possible propagations
from ∆X to ∆Y are listed in the following table.

∆X Z N N⊕N∗ N∗ U
∆Y Z N∗ U N∗ U

X

Y1

Y0

(a) Branching.

X0

X1

Y

(b) XOR.

S

X

Y

(c) S-box.

M

X0

Y0

X1

Y1

Xm−1

Ym−1

· · ·

· · ·

(d) MDS matrix.

Figure 1: Frequently-used operations.

Apart from the rules for the basic operations, we give the propagation of differential
pattern for the Maximum Distance Separable (MDS) matrix, which is a frequently-used
building block for the diffusion layer.

Lemma 4 (MDS matrix). As illustrated in Figure 1(d), suppose that M is an m ×m
MDS matrix. All the possible propagations from ∆X to ∆Y are given in the following table.

∆X (Z,Z, . . . ,Z) (Z, . . . ,Z,N/N∗,Z, . . . ,Z) Remaining cases
∆Y (Z,Z, . . . ,Z) (N∗,N∗, . . . ,N∗) (U,U, . . . ,U)

In the area of linear cryptanalysis, an approximation is called a multidimensional
linear approximation (MDLA) if only parts of input and output masks are known and
fixed. With a multidimensional linear approximation L, multidimensional linear crypt-
analysis [JR94, BJV04, BCQ04, HCN09] intends to exploit the statistical behaviour
of the correlations concerning all the linear approximations belonging to L. Denote
ΓX = (ΓX0,ΓX1, . . . ,ΓX`−1) the linear mask of X, where ΓXi ∈ F2s for 0 6 i 6 `− 1. The
linear pattern ΓX = (ΓX0 ,ΓX1 , . . . ,ΓX`−1) of X is an `-dimensional vector with each ΓXi
being the linear combination of the following four patterns of linear masks:

• zero linear pattern (Z): if ΓXi = 0;

• nonzero fixed linear pattern (N): if ΓXi is nonzero and fixed;

• nonzero varied linear pattern (N∗): if ΓXi can be any value except zero;

• varied linear pattern (U): if ΓXi can take any value.
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The propagations of linear patterns are similar to those of differential patterns given in
Lemma 1 - 4 since the propagations of linear masks and differences inside the SPN and
Feistel ciphers are dual [SLG+16] to a certain extent. Thus, we do not expand on the rules
of propagation under the linear setting.

2.2 Constraint Satisfaction Problem
The constraint satisfaction problem (CSP) is a kind of mathematical problems, in which
the set of variables must satisfy a series of constraints.

Definition 1 (Constraint Satisfaction Problem, [SGL+17]). A constraint satisfaction
problem is represented as a triple 〈X ,D, C〉.

• X = {x0, x1, . . . , xn−1} is a set of variables.

• D = {D(x0),D(x1), . . . ,D(xn−1)} is a set of nonempty sets. D(xi) specifies the
domain of xi.

• C = {C0, C1, . . . , Cm−1} stands for a set of constraints. Each constraint Cj is a pair
〈Xj ,Rj〉, where Xj is a subset of X composed of kj , |Xj | variables, and Rj is a
relation that limits the values of the kj variables in Xj can take. These relations
can be given intentionally as a formula (see Model 2), or extensionally as a set (see
Model 4), or procedurally with an appropriate generating or recognising function
(see Model 1, 3, and 5).

An evaluation fulfils the constraint Cj if the values assigned to the variables in Xj validate
the relation Rj . An evaluation is consistent if it does not violate any constraints. An
evaluation is complete if it includes all variables in X . An evaluation is a solution if it is
consistent and complete.

The Boolean satisfiability problem (SAT) and the satisfiability modulo theories (SMT)
can be viewed as individual cases of the CSP. Besides, the CSP can describe much harder
cases, which may not be expressible with some of these relatively simpler instances.

The constraint programming (CP) is to search for solutions of the CSP. Although
solving a CSP on a finite domain is an NP-complete problem, many CP solvers are
available to solve problems of practical interest. In this paper, we use MiniZinc2, which is a
programming language used to describe decision problems over integers and real numbers,
to format the issues of concern and optionally invoke CP solvers Gecode3 and OSICBC4

to solve the problems.

3 Finding Deterministic TDs and MDLAs
Typically, among all the possible differential patterns, Z, N, N ⊕ N∗, and N∗ contain
effective information, with which we can realise distinguishing attacks. However, the model
we are going to introduce only includes Z, N, and N∗. We give a few words to explain why
ignoring the propagation of N⊕ N∗ for SPN ciphers does not prevent us from locating the
optimal distinguisher. Note that after the nonlinear layer (see Lemma 3), N is replaced
with N∗, and N⊕ N∗ turns into U, which indicates that after passing through at most two
nonlinear layers, N⊕N∗ will be absent from the pattern propagating phase of SPN ciphers
under the single-key attack scenario. So, the optimal deterministic TDs covering more
than two rounds do not predict the patterns of the output words as N⊕ N∗, and ignoring

2https://www.minizinc.org/software.html
3https://www.gecode.org/flatzinc.html
4https://projects.coin-or.org/Cbc

https://www.minizinc.org/software.html
https://www.gecode.org/flatzinc.html
https://projects.coin-or.org/Cbc
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N⊕ N∗ is reasonable. Under the related-key attack scenario, N⊕ N∗ may reappear after
more than two nonlinear layers for the influence of the subkey difference. Nonetheless, we
note that the presence of N⊕ N∗ relies on the existence of N. Thus, if we notice that the
pattern of a certain internal word is N, which may result from a known subkey difference,
we can infer the survival of N⊕ N∗, manually. In this sense, employing the properties of
the three patterns Z, N, and N∗ for SPN ciphers is sufficient. So, the searching method in
this section does not involve the pattern N⊕ N∗, and we regard N⊕ N∗ as U.

For Feistel ciphers, the propagation of N⊕N∗ is of great importance. A generalisation of
the searching method is proposed in Supplementary Material A.3, which fulfils the function
of propagating N⊕ N∗ to a certain degree.

Now, we turn to the deterministic TDs and MDLAs finding method. The main idea is
to convert the problem under consideration into a CSP P = 〈X ,D, C〉. In the following,
after introducing the set X and the set D, we expand upon the set C of constraints, which
is split into two parts. The first part propagates the differential pattern, while the second
one clarifies the searching scopes of the input and output patterns. The reason that we
exploit the CSP is explained at the end of this section, briefly.

3.1 Initialising Variables
For each entry of the inner state X = (X0, X1, . . . , X`−1), we introduce an integer variable
δXi to stand for the differential pattern of Xi. The domain D(δXi) of δXi is {z ∈ Z | 0 6
z 6 3}, and the correspondence between the differential pattern of Xi and δXi is

δXi =


0, if ∆Xi = Z
1, if ∆Xi = N
2, if ∆Xi = N∗

3, if ∆Xi = U

.

Note that the difference ∆Xi is known if ∆Xi = N. To utilise the information of the
nonzero fixed difference, we import another integer variable ζXi for each Xi to represent
the actual s-bit difference ∆Xi. The domain of ζXi is D(ζXi) = {z ∈ Z | −2 6 z 6 2s−1}.
The data range of ζXi varies with the value of δXi , that is,

ζXi ∈


{0}, if δXi = 0
{1, 2, . . . , 2s − 1}, if δXi = 1
{−1}, if δXi = 2
{−2}, if δXi = 3

.

If δXi is equal to 0 or 1, the value of ζXi , which records the value of ∆Xi, is useful;
otherwise, the value of ζXi does not have practical meaning, but this assignment method
is convenient for us to create constraints in the CSP.

With X and D mentioned above, we study how to generate constraints in C according to
our requirement. Suppose that Xj = {x0, x1, . . . , xkj−1} is a set of variables, and D(Xj) =
D(x0) × D(x1) × · · · × D(xkj−1) is the domain of the kj-tuple x = 〈x0, x1, . . . , xkj−1〉.
Note that one constraint implies one relation of variables, and the relation Rj on Xj
restricts the data range of x to a set V(Xj) ⊆ D(Xj) containing all valid values of x. With
the knowledge of V(Xj), we can apply one of the following two methods to generate the
expression of Rj .

• The inclusion method focuses on the vectors belonging to V(Xj) and manages to
describe the characters of these vectors (see Model 1, 2, 3, and 5).
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• The exclusion method adopts an indirect strategy and attempts to remove the invalid
vectors in D(Xj)\V(Xj) from D(Xj) (see Model 4). Hence, this method pays more
attention to the set D(Xj)\V(Xj).

According to our experience, the selection of the method depends on the sizes of the
sets V(Xj) and D(Xj)\V(Xj). Intuitively, the smaller the size of the set, the simpler the
features of the vectors belonging to it. If |V(Xj)| < |D(Xj)\V(Xj)|, we prefer to employ
the inclusion method; otherwise, we turn to the exclusion method. When the size of the
domain D(Xj) is not very large, both of the two methods are optional since the sizes of
the two subsets do not have significant differences.

To depict the features of a given set, we can use some logical and mathematical
expressions. MiniZinc supports various descriptions, such as the primary logic operations
‘and(/\)’, ‘or(\/)’, and the conditional ‘if-then-else-endif’ expression, with which we
can flexibly formulate the relation. Please refer to https://www.minizinc.org/doc-2.2.
3/en/index.html for more details.

The following model constructed with the inclusion method shows the constraint on
the set of variables {δXi , ζXi}.

Model 1 (Relation between δXi and ζXi). Adding the following expression on δXi and
ζXi into C will ensure that ζXi falls into the correct range.

if δXi = 0 then ζXi = 0
elseif δXi = 1 then ζXi > 0
elseif δXi = 2 then ζXi = −1
else ζXi = −2 endif

In the case of δXi = 1, we do not assign a fixed value to ζXi . In the solving phase, if
the CSP is solvable, the CP solver will return a suitable value for it.

3.2 Propagating Differential Patterns
To propagate the differential pattern across one round of encryption, we decompose the
round function into multiple simple operations. In this subsection, we generate CSP models,
i.e., constraints, for four frequently-used operations. The constraints corresponding to the
round function are the composition of these basic models.

Model 2 (Branching). The following constraint restricts the pattern propagation for the
Branching operation in Figure 1(a).

δY0 = δX and ζY0 = ζX and δY1 = δX and ζY1 = ζX

Model 3 (XOR). The following constraint specifies the propagation of the differential
pattern for the XOR operation in Figure 1(b).

if δX0 + δX1 > 2 then δY = 3 and ζY = −2
elseif δX0 + δX1 = 1 then δY = 1 and ζY = ζX0 + ζX1

elseif δX0 = δX1 = 0 then δY = 0 and ζY = 0
elseif ζX0 + ζX1 < 0 then δY = 2 and ζY = −1
elseif ζX0 = ζX1 then δY = 0 and ζY = 0
else δY = 1 and ζY = ζX0 ⊕ ζX1 endif

Model 4 (S-box). The following constraint clarifies all the possible pattern propagations
for the S-box in Figure 1(c).

δY 6= 1 and δX + δY ∈ {0, 3, 4, 6} and δY > δX and δY − δX 6 1

https://www.minizinc.org/doc-2.2.3/en/index.html
https://www.minizinc.org/doc-2.2.3/en/index.html
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The constructions of Model 3 and Model 4 are based on the inclusion and exclusion
methods, respectively. Please find more details in Supplementary Material A.1.
Model 5 (MDS matrix). The following constraint is sufficient to specify all possible
propagations for the MDS matrix in Figure 1(d).

if
m−1∑
i=0

δXi ≡ 0 then δY0 = δY1 = · · · = δYm−1 = 0

elseif
m−1∑
i=0

δXi ≡ 1 then δY0 = δY1 = · · · = δYm−1 = 2

elseif
m−1∑
i=0

δXi ≡ 2 and
m−1∑
i=0

ζXi < 0 then δY0 = δY1 = · · · = δYm−1 = 2

else δY0 = δY1 = · · · = δYm−1 = 3 endif

Model 5 is generated with the inclusion method. Since the construction is straightfor-
ward, we do not elaborate on it. For other word-oriented diffusion layers without using the
MDS matrices, the propagation of the differential pattern can be established by iterating
the models for Branching and XOR operations, sequentially.

Generally, the four frequently-used models are adequate for us to handle most of the
primitives. When the round function of the objective involves novel designs which cannot
be fully expressed with the above models, the users may build new models with the
inclusion or exclusion method.

By organising these basic models, we can create constraints representing the pattern
propagation across the cipher. For ciphers with word-oriented key schedules, the constraints
about the key schedule can be integrated into the whole CSP so that we can realise the
search of related-key truncated differentials.

3.3 Clarifying the Searching Scopes of the Input and Output Patterns
The searching scope of the input pattern. Previously, the usual way to set up the
searching scope of the input pattern is to fix it as a predetermined value, and the format
of the input pattern will influence the length of the TD. A general method is to select
those patterns with only one active word. However, in some cases, the optimal trail does
not originate from this kind of input patterns. An ideal solution for the optimal TD is
an exhaustive search over all possible input patterns, which cannot be afforded when the
internal state of the primitive has a considerable number of words. On the other side,
identifying the input pattern resulting in a longer trail requires sophisticated experience.

To overcome this long-term problem, in the new model, we do not fix the format
of the input pattern and only claim that the input difference is nonzero. Denote
(Xr−1

0 , Xr−1
1 , . . . , Xr−1

`−1 ) the input state of the r-th round (r > 1). We add the constraint
`−1∑
i=0

δX0
i
6= 0 into the CSP. Then, in the searching phase, the CP solver will automatically

traverse all possible input patterns, and the exhaustive search turns into an inherent
feature of our model.

Under the fixed input pattern searching mode, the program should be implemented
for about 2` times. While with the new model, to ensure the existence of R-round
TDs/MDLAs, at most, we invoke the searching program for 3 ·R · ` times. For instance,
the number of runs5 to search for the optimal ID of Minalpher-P introduced in Sect. 6 is
reduced from 2128 to 210.9(≈ 2 · 3 · 5 · 64).

5We know that the comparison is not entirely fair since the new model spends much time. However,
given the practical computing power, the complexity of 2128 is out of reach anyhow, while our method
consuming a few thousands of minutes can be afforded.
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When it comes to the search under the related-key setting, the initial condition should
be updated, accordingly.

The searching scope of the output pattern. With the iteration of the round function,
the differential patterns of the internal states gradually lose information. The output
differential patterns that we are interested in are Z, N and N∗ since they carry useful
information, which can be exploited in various attacks. Thus, the searching scope of the
output pattern is set to assert that a certain word follows one of the three functional
differential patterns. To be specific, after adding the assertion δXr

i
= 0 (resp. 1, 2) into

the CSP, the solver searches for TDs with ∆Xr
i being zero (resp. nonzero and fixed, any

value except zero).
Since the propagations of differences and linear masks are dual [SLG+16], the method

for the search of truncated differentials can be adjusted to search for multidimensional
linear approximations, naturally, and we omit it for the space limitation.

3.4 The Reason to Use the CP
We do not claim that the CP is the unique method which can accomplish the search
of (RK) TDs and MDLAs. The first reason we employ the CP lies in its conciseness.
Since it supports high-level descriptions, the construction of the model is comparatively
transparent. To demonstrate this advantage, we try to reconstruct Model 1 with the
MILP and SAT methods, respectively. Please refer to Supplementary Material A.2 for more
details. Besides, since the CP model is more readable than the MILP and SAT models, it
is convenient for us to locate mistakes in the model.

At last, we remind the readers that, for a given operation, the way to generate the CP
model is not unique, and we only provide one option.

4 Related-Key Differential-Linear Attack on AES-192
Differential-linear (DL) cryptanalysis [LH94] attempts to create a long distinguisher by
connecting a short differential trail and a short linear approximation for primitives that
are immune to differential and linear attacks. It is a combined attack and can be regarded
as linear cryptanalysis under the chosen plaintext attack scenario. Related-key differential-
linear cryptanalysis introduces a difference in the master key and manages to exploit
potential weaknesses in the encryption and key schedule, simultaneously.

∆I ∆O

P EK
0 S EK

1
ΓI ΓO

C

EK

1/2± q
ΓI · S ΓO · C

1/2 + p/2

ΓI · S ′ ΓO · C ′
1/2± q

P ′ EK ′
0 S ′ EK ′

1

ΓI ΓO

C ′

EK ′

Figure 2: Related-key differential-linear distinguisher.

As in Figure 2, let EK be a cipher with the secret key K that can be decomposed into
a cascade, i.e., EK = EK1 ◦ EK0 . Denote the plaintexts as P , P ′, the ciphertexts as C,
C ′, and the intermediate states between E0 and E1 as S, S′, respectively. Suppose that
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we have a related-key differential (∆I ,∆K) p−→ ∆O for E0 with probability p and a linear
approximation ΓI ±q−−→ ΓO for E1 with bias ±q. To launch the distinguishing attack, the
attacker sieves the plaintext pair (P, P ′) respectively encrypted with K and K ′ satisfying
P ⊕P ′ = ∆I , K ⊕K ′ = ∆K and checks whether the corresponding ciphertext pair (C,C ′)
validates the equation ΓO ·C⊕ΓO ·C ′ = 0. Denote the overall bias of the DL distinguisher
as E∆I ,ΓO . Under some randomness assumptions [BDKW19], we have E∆I ,ΓO ≈ 2pq2.

While many subsequent works of the DL attack endeavoured to formalise basic assump-
tions [BLN17] and explored its generalisation [LGZL09, Lu15], the dependence between
E0 and E1 is seldom to be studied. Enlightened by the boomerang connectivity table
[CHP+18] intended to exploit the dependence between the subciphers in the boomerang
attack [Wag99], Bar-On et al. [BDKW19] proposed the conception of differential-linear
connectivity table (DLCT) to handle the dependence in the DL attack. With a more
accurate expression for the overall bias of the DL distinguisher, the deviations of the overall
biases in several instantiations [DIK08, DEMS15] get reasonable explanations.

In this section, we revisit the related-key differential-linear attack on AES-192 [ZZWF07].
Since the 5-round RK DL distinguisher in [ZZWF07] (see Figure 3) relies on a 4-round RK
TD with probability one for the first subcipher, we try to implement the method in Sect. 3
to search for better RK TDs for AES-192 so that we can construct better related-key DL
distinguishers. After the complete search with the model in Sect. 3 traversing all possible
combinations of differences for the plaintext and master key, we find that the length of the
optimal TD cannot be extended due to the well-designed diffusion layer. Nevertheless, we
discover another non-trivial property in the DL distinguisher6, which can be verified with
fewer internal bytes. With this new feature, we improve the complexity of the previous
key-recovery attack. The theoretical result is confirmed with random tests. Furthermore,
the new distinguisher is explained from the aspect of DLCT.

4.1 Improved RK DL Attack on AES-192
The AES algorithm [DR02] encrypts 128-bit data blocks and accepts 128, 192, and 256-bit
keys, which are written as AES-128, AES-192, and AES-256, respectively. The internal
state is arranged in a 4 × 4 byte matrix, and the round function updates the state
by applying the four operations SubBytes (SB), ShiftRows (SR), MixColumns (MC), and
AddRoundKey (AK), sequentially. We denote the input of round i as xIi and use xSi , xRi , xMi ,
xOi to represent the internal values after the applications of SB, SR, MC, AK operations of
round i, respectively. Let ki be the subkey of the i-th round. In some cases, we interchange
the order of MC and AK and denote the equivalent subkey of ki as wki , MC-1(ki). The
internal state after the AddRoundKey operation with the equivalent subkey wki is signified
as xWi . For a state x∗∗, x∗∗[i, j] is referred to as the byte in the i-th row and j-th column,
where 0 6 i, j 6 3.

Previous distinguishing property. As in Figure 3, the differences ∆P and ∆k0 cancel
each other out so that zero difference in xI1 is maintained after two rounds of encryption.
With the propagation of the difference, ∆xR4 [0, 0] , δ̃ is nonzero, although its value is
unknown. The following MixColumns operation guarantees ∆xM4 [1, 0] = ∆xM4 [2, 0] = δ̃. In
[ZZWF07], the authors appended a 1-round linear approximation to the 4-round related-
key truncated differential. To make sure that ∆xI5 · ΓxI5 = 0 holds with probability one,
they set ΓxI5[1, 0] = ΓxI5[2, 0] = λ̃ 6= 0, ΓxI5[i, j] = 0 for the remaining bytes. Then, with
experimental verifications, the authors observed that for each nonzero 8-bit linear mask λ,
the bias of the linear equation

λ · (∆xW5 [1, 3]⊕∆xW5 [2, 2]) = 0 (1)
6We do not claim the new DL distinguisher is optimal.
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Figure 3: 5-round related-key differential-linear distinguisher [ZZWF07].

is about 2−9. Based on this distinguisher, they proposed a 7-round key-recovery attack
with 222 chosen plaintexts. Note that the distinguishing property should be confirmed
with the two bytes xW5 [1, 3] and xW5 [2, 2].

New distinguishing property. The new distinguishing property only depends on one
output byte of the TD with a nonzero difference. We take ∆xI5[1, 0] as an example. It can
be observed that the difference of this byte stems from nonzero difference ∆xI3[0, 0], and
the difference is propagated as follows,

∆xI3[0, 0] = α −→
S

∆xS3 [0, 0],
(
0x02 ·∆xS3 [0, 0]

)
−→
S
δ̃, δ̃ −→

S
∆xS5 [1, 0].

Since there are about 128 possible output differences under one fixed input difference of
the S-box, it is reasonable to assume that ∆xS5 [1, 0] takes all 255 nonzero values with equal
probability7. Thus, for any nonzero mask λ, the linear equation λ ·∆xS5 [1, 0] = 0 holds
with probability 127/255. The absolute value8 of the bias for the linear equation

λ ·∆xW5 [1, 3] = 0 (2)
7The intuitive explanation and experimental verification of this artificial randomness property are

provided in Supplementary Material B.1
8The sign of the bias is related to the value of MC-1(∆k5)[1, 3].



274 On the Usage of Deterministic (RK) TDs and MDLAs for SPN Ciphers

is about ε = 2−8.99, which is a nonrandom property and allows us to launch a distinguishing
attack. Considering the complexity of the distinguishing attack is influenced by the overall
bias of the DL distinguisher, and the biases of Eq. (1) and Eq. (2) are almost the same, the
complexity of the distinguishing attack with the new property basically remains unchanged.
However, the complexity of the key-recovery attack drops because less key bytes get
involved in the key-recovery phase.

Improved key-recovery attack. Given N pairs of plaintexts, we use a counter Σ to record
the number of times that Eq. (2) is fulfilled. With the Central Limit Theorem, the statistic
|Σ/N − 0.5| follows the normal distribution N (ε, 1/4N) when the oracle corresponds to
the real cipher; otherwise, |Σ/N − 0.5| follows the folded normal distribution N (0, 1/4N).
These theoretical distributions are checked with random tests, and the results can be found
in Supplementary Material B.2.

With the distributions of the statistic, the complexity of the distinguishing attack can
be accurately quantified by the statistical hypothesis testing method. To be specific, we
set the threshold as τ . The null assumption that the oracle is an encryption algorithm will
be accepted if |Σ/N − 0.5| > τ . Denote α0 (resp. α1) the probability that we wrongfully
discard the cipher (resp. accept the random permutation). With the method in [BN17],
the complexity of the distinguisher is N = (q1−α0 +q1−α1/2)2

4ε2 , where q1−α0 and q1−α1/2 are
the quantiles of the standard normal distribution evaluated at 1−α0 and 1−α1/2. We set
α0 = 2−4.32, α1 = 2−8 and compute the success probability PS ≈ 95% and N ≈ 220.3. In
summary, the key-recovery attack requires 221.3 chosen plaintexts, and the time complexity
is reduced from 2187 to 2170.5. The detailed attack procedure can be found in Supplementary
Material B.3

4.2 Explanation of the New Distinguisher with DLCT
From the viewpoint of DLCT [BDKW19], we decompose the 5-round encryption covered
by the distinguisher as E = Em ◦ E′0, where E′0 covers the first four rounds, and Em is
referred to as the fifth round. With the property of DLCT [CKW19, Nyb19], we know
that ∑

δ̃∈F8
2\{0}

DLCTS
(
δ̃, λ
)

= −128 for all λ 6= 0,

holds for all 8-bit bijective S-boxes. According to Eq. (5) in [BDKW19], for any nonzero
mask λ, the overall bias of the DL distinguisher should be computed as

E∆I ,ΓO =

∑
∆∈Fn2

Pr
[(

∆I ,∆K
)
−−→
E′0

∆
]
·
DLCTEm

(
∆,ΓO

)
+ 2n−1

2n

− 1
2

=

 ∑
δ̃∈F8

2\{0}

1
255 ·

DLCTS
(
δ̃, λ
)

+ 27

28

− 1
2 ≈ −2−8.99,

(3)

where

DLCTEm(∆,ΓO) ,
∣∣∣{x ∈ Fn2

∣∣∣ ΓO · Em(S) = ΓO · Em(S ⊕∆)
}∣∣∣− 2n−1.

Thus, the new distinguisher is explained from the aspect of DLCT9 and can be regarded
as the first application of DLCT in the related-key attack scenario.

9We remind the readers that Eq. (3) is based on the randomness assumption upon ∆xS
5 [1, 0].
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More related-key truncated differentials with probability one. Although the length of
the optimal RK TD cannot be extended with the method in Sect. 3, we get three more
distinguishers apart from the one in [ZZWF07]. Please find in Supplementary Material B.4
for more information.

5 Constructing IDs with TDs and ZCLAs with MDLAs
In this section, we illustrate how to use the method in Sect. 3 to construct impossible
differentials and zero-correlation linear approximations for SPN ciphers. We will start with
a basic version, which applies the miss-in-the-middle approach. Then, the basic tool is
advanced so that the solver may recognise more categories of contradictions. At last, a
comprehensive comparison of all available searching tools targeting (related-key) impossible
differentials for SPN ciphers is supplemented. Since the search of impossible differentials
and zero-correlation linear approximations can be carried out similarly, we only elaborate
on the search of impossible differentials and leave the search of zero-correlation linear
approximations as a trivial generalisation.

5.1 Basic Tool Relying on Miss-in-the-Middle Approach
The basic method is motivated by the U -method [KHS+03]. With the miss-in-the-middle
approach [Bir05], after constructing two deterministic truncated differentials ∆I1 −−−−−−→

R1-round
∆O1 and ∆O2 ←−−−−−−

R2-round
∆I2 in opposite directions, we check the compatibility of the two

output differential patterns ∆O1 and ∆O2 . If there exists at least one word (e.g., the i-th
word) such that the corresponding difference of the pattern ∆O1 [i] cannot be interpreted
by ∆O2 [i], ∆I1 9 ∆I2 forms an (R1 +R2)-round impossible differential distinguisher. The
position of the internal state that the two truncated differentials intersect with each other
is called the meeting point.

Aside from the way to implement the search, the distinction between our tool and the
U -method is the set of differential patterns applied to yield contradictions. The U -method
considers the set U = {Z,N,N⊕ N∗,N∗}, while we take the smaller set U∗ = {Z,N,N∗}.
In this sense, we name our approach the U∗-method. At first sight, our tool is weaker than
the U-method since U∗ ( U implies that the contradictions recognised by the U∗-method
only occupy a part of those identified by the U -method. However, as we mentioned at the
beginning of Sect. 3, for any input differential pattern, after passing through at most two
nonlinear layers, N⊕ N∗ disappears from the pattern propagating phase of SPN ciphers
under the single-key setting. Under the related-key attack scenario, since the survival of
N⊕ N∗ can be inferred from the existence of N, the contradictions related to the pattern
N⊕N∗ can be derived after identifying the position of N that results in this nonzero varied
pattern. This procedure can be finished by fine-tuning the searching program. Therefore,
the U∗-method has almost the same performance as the U -method regarding SPN ciphers.

With a similar approach as in the U-method, for the element X in U∗, we define its
auxiliary set X ⊂ U∗ as Z = {N,N∗}, N = {Z,N}, N∗ = {Z}. Note that the corresponding
differences of the patterns in X cannot be interpreted by X. The two patterns X and
Y are said to be compatible with each other if Y /∈ X. Given an input difference α, let
∆i
α = (∆i

α[0],∆i
α[1], . . . ,∆i

α[`− 1]) be the differential pattern after i rounds of encryption.
For the output difference β, we denote ∆j

β = (∆j
β [0],∆j

β [1], . . . ,∆j
β [`− 1]) the differential

pattern after j rounds of decryption. With these notations, the maximum number of
rounds regarding impossible differential distinguishers identified by the U∗-method is
summarised in the following proposition.

Proposition 1. For all possible nonzero input differences α, the maximum number of
encryption rounds such that the differential pattern of the i-th subblock in the internal state
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follows the pattern X is denoted as

E(X)[i] = max
α6=0

{
r > 0

∣∣∣ ∆r
α[i] = X

}
.

Similarly, for all possible nonzero output differences β, the maximum number of decryption
rounds so that the differential pattern of the i-th subblock in the internal state satisfies the
pattern X is denoted as

D(X)[i] = max
β 6=0

{
r > 0

∣∣∣ ∆r
β [i] = X

}
.

The maximum number of rounds for impossible differential distinguishers that can be
discovered with the U∗-method is

L = max
06i6`−1

{
E(X)[i] +D(Y)[i]

∣∣∣ X ∈ U∗,Y ∈ X
}
.

Algorithm 1 Basic method for the search of impossible differential distinguishers
Require: CSPs TDcipher

〈Forward〉 and TDcipher
〈Backward〉 for the primitive cipher

Ensure: The length L of the optimal impossible differential distinguisher
1: for all 0 6 i 6 `− 1, X ∈ U∗ do
2: E(X)[i] = 0, D(X)[i] = 0
3: end for
4: for all Propagation ∈ {Forward, Backward} do
5: for all X ∈ U∗ do
6: for i = 0; i < `; i+ + do
7: r = 1, flag = true
8: while flag ≡ true do
9: flag = Propagation(r, ∆r

α[i] = X)
10: r = r + 1
11: end while
12: if Propagation ≡ Forward then
13: E(X)[i] = r − 1
14: else
15: D(X)[i] = r − 1
16: end if
17: end for
18: end for
19: end for
20: L = max

{
E(X)[i] +D(Y)[i]

∣∣ 0 6 i 6 `− 1,X ∈ U∗,Y ∈ X
}

21: return L
22: function Forward(r, obj)
23: if TDcipher

〈Forward〉(r, obj) solvable then
24: return true
25: else
26: return false
27: end if
28: end function

29: function Backward(r, obj)
30: if TDcipher

〈Backward〉(r, obj) solvable then
31: return true
32: else
33: return false
34: end if
35: end function

A complete description of the U∗-method can be found in Algorithm 1. With the
method in Sect. 3, for a specific primitive cipher, we generate two CSPs TDcipher

〈Forward〉 and
TDcipher
〈Backward〉, which search for truncated differentials in the forward and backward directions,
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respectively. The values of E(X)[i] and D(X)[i] can be determined by invoking the CP
solver under different parameter settings. Then, we acquire the length L of the optimal
impossible differential distinguisher.

5.2 Optimising IDs and ZCLAs Obtained with Algorithm 1
As discussed in [WW12], the U -method only centres on the contradictions at the meeting
point (see Figure 4(a)). However, in some cases, although the two differential patterns at
the meeting point are compatible with each other, the given input and output differences
still encompass inconsistencies. Based on this observation, we intend to generalise the
basic approach so that we can detect impossible differentials with contradictions belonging
to the category illustrated in Figure 4(b). Before we look into the details of the optimising
method, we introduce the definition of message collecting function, which is used to unify
information of two compatible differential patterns.

Definition 2 (Message Collecting Function). The message collecting function fcollect
is a function over two differential patterns ∆X and ∆Y with ∆Y /∈ ∆X . The output
fcollect(∆X ,∆Y ) is a differential pattern, and its evaluations regarding two inputs ∆X and
∆Y are specified in the following table. The position of the token ‘×’ corresponds to the
case where (∆X ,∆Y ) does not fall into the domain of fcollect.

fcollect(∆X ,∆Y ) ∆Y

Z N N∗ U

∆X

Z Z × × Z
N × N N N
N∗ × N N∗ N∗

U Z N N∗ U
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Figure 4: Different categories of contradictions.

Now, we consider the possibility of extending the optimal trail found with Algorithm 1.
Suppose that α 9 β is an R(= R1 + R2)-round impossible differential distinguisher
returned by Algorithm 1. Denote ∆α and ∆β the input and output differential patterns,
respectively. The miss-in-the-middle approach implies that the two patterns ∆R1

α and ∆R2
β

at the meeting point contradict with each other. We wonder whether α9 β constitutes
an (R+ 1)-round impossible differential.
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As in Figure 4(b), we extend the R1-round subcipher by one round and claim that
∆R1+1
α and ∆R2

β are compatible since Algorithm 1 never leaves out the contradiction
at the meeting point. Then, we apply fcollect to the two patterns ∆R1+1

α and ∆R2
β and

denote the output pattern as ∆R1+1,R2
α,β , i.e., ∆R1+1,R2

α,β [i] = fcollect(∆R1+1
α [i],∆R2

β [i]) for all
0 6 i 6 `− 1. Since the message collecting function unifies the information of ∆R1+1

α and
∆R2
β , ∆R1+1,R2

α,β should contain the information of the input pattern ∆α and the output
pattern ∆β , simultaneously. Then, we propagate ∆R1+1,R2

α,β in the forward and backward
directions, respectively, and use ∆R1+1−r

α,new (resp. ∆R2−r
β,new) to represent the pattern after

r rounds of decryption (resp. encryption). Note that ∆r1
α,new carries the information

originating from the output pattern ∆β , and ∆r2
β,new keeps the information deriving from

the input pattern ∆α. Therefore, the inconsistencies between ∆r1
α,new and ∆r1

α and (or)
∆r2
β,new and ∆r2

β somehow exhibit the inconsistency between ∆α and ∆β . If ∆α → ∆β is a
possible TD over (R+ 1) rounds of encryption, then

∆r1
α,new[i] /∈ ∆r1

α [i],∆r2
β,new[i] /∈ ∆r2

β [i] for all 0 6 r1 6 R1, 0 6 r2 < R2, 0 6 i 6 `− 1. (4)

In contrast, if there is at least one assertion in Eq. (4) is not satisfied, the consistency
between ∆α and ∆β is broken, and α9 β turns out to be an (R+ 1)-round impossible
differential.

Likewise, we can extend the R2-round subcipher by one round and explore the feasibility
of optimising the trail. These procedures can be converted into CSPs. With this optimising
method, we extend some 10.5-round zero-correlation linear approximations of SKINNY to
11.5-round ones. For more details, please refer to Sect. 6.1, Supplementary Material C and
attached source codes.

5.3 Comparison of All Tools Targeting (RK) IDs of SPN Ciphers
The first automated tool for the search of TD IDs was proposed by Kim et al. [KHS+03],
which was based on the miss-in-the-middle approach [Bir05] and was known as the U-
method (¬). The round function of the block cipher structure is replaced with matrix
representation, and the propagation of difference inside the cipher is transformed into
matrix multiplication. After generating two TDs with fixed input differential pattern in
reversed directions, the compatibility of the two output differential patterns is analysed.
An impossible differential is encountered if inconsistencies are spotted at the meeting
point. Later, Luo et al. [LLWG14] introduced the UID-method (­), which generalised the
U -method by cancelling the 1-property matrix10 requirement on the characteristic matrix
of the round function and incorporating more kinds of inconsistencies. After formulating an
equation system depicting differential propagation inside the objective primitive, Wu and
Wang (®) [WW12] put forward a novel tool targeting truncated impossible differentials for
word-oriented block ciphers. This tool further generalises the U -method and UID-method.
It allows us to narrow the gap between the optimal IDs obtained with previous programmed
methods and the best ones relying on sophisticated cryptanalytic experience, although it
does not improve the lengths of IDs for existing block ciphers.

In the last decade, with the introduction of automatic tools for cryptanalysis based on
the MILP [SHW+14a, SHW+14b, AST+17], SAT/SMT [KLT15, LWR16, SWW18] and
CP [SGL+17, GLMS18], the constructions of distinguishers in differential, linear as well as
integral cryptanalyses become much more convenient. These tools significantly reduce the
workload of cryptographers in designing and analysing phases of cryptographic primitives.
Based on the automatic tool for differential cryptanalysis [SHW+14b], two independent
works [CJF+16, ST17] studied its applicability for the search of impossible differentials. The

10If the number of ‘1’ in each column of the encryption or decryption characteristic matrix is zero or
one, the matrix is called a 1-property matrix. See [KHS+03, LLWG14] for the definition of the matrix.
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main idea is adding (in)equations to fix the input and output differences in the automatic
model [SHW+14b] and verifying the solvability of the corresponding MILP problem with
some well-developed solvers. If the problem is unsolvable, an impossible differential is
discovered. Moreover, Sasaki and Todo (¯) [ST17] provided a deeper understanding of ID
from design and cryptanalysis aspects, while Cui et al. [CJF+16] mainly focused on the
utility for ARX structure. In terms of CP, Sun et al. (°) [SGL+17] realised the search of
(related-key) impossible differential characteristics, which is also adapted from a differential
characteristic searching scheme by fixing the input and output differences with specific
values. So, this method is also faced with the problem of incomplete search and is only
performed under input and output differences with low Hamming weight, typically.

The advantage of our tool over all of the previous methods rests in that it supports
an exhaustive search for all possible combinations of input and output differences as the
input and output differential patterns are not predetermined in our model. For the tools
¬ ­ ® ¯ holding the function of finding TD IDs, the exhaustive search with complexity
O(22`) is afforded only when the number ` of words in the internal state is not very large.
As a result, for the case of Minalpher-P [STA+14] with ` = 64 in Sect. 6, the tools ¬ ­ ®
¯ only perform some inadequate searches under input and output differences satisfying
some specific patterns, while our method achieves a complete search.

Compared to the programmed tools ¬ ­ ® aiming at TD IDs, the superiority of our
system originates from the control of the pattern N. As we mentioned previously, if the
differential pattern of an internal word Xi is N, its actual difference ∆Xi is recorded in ζXi .
Accompanied by the nature of exhaustive search, the new method can identify possible
cancellations among two or more nonzero fixed patterns during the first few rounds when
the message in the pattern N is not destroyed by some certain operations in the round
function. Consequently, we can get longer impossible differential distinguishers.

Theoretically, considering the kinds of inconsistencies detected by the tool, the per-
formance of ­ is better than that of ¬ owing to the refined manipulation of the pattern
N ⊕ N∗. However, when the objective is restricted to SPN ciphers, these two methods
behave almost the same since N⊕ N∗ disappears from the pattern propagation phase after
passing through at most two nonlinear layers. In this sense, the U∗-method works better
than ¬ and ­ concerning its quality of complete search. The method ® is preferred over
­ because it is capable of identifying Type-II contradiction in Figure 4(b), which is also
in the range of the optimised U∗-method. Along with the inherent feature of exhaustive
search, the optimised U∗-method attains more excellent performance than ®.

The tools ¯ (in ‘specific S-box mode’) and ° depict the differential propagation in
primitives at the bit-level. They can catch any contradictions since the inconsistencies in
the system are automatically recognised by MILP and CP solvers. Therefore, when the
input and output differences are limited to vectors with low Hamming weight, these tools
indeed maximise the number of rounds for impossible differential characteristics and thus
may outperform the optimised U∗-method. However, the optimality of the distinguisher
cannot be guaranteed for the incompetence of exhaustive search. In addition, only °
and the (optimised) U∗-method support the search of distinguishers under the related-key
attack scenario. Please find in Table 1 a comparison of all tools targeting (RK) IDs for
SPN ciphers.

6 Finding (RK) IDs and ZCLAs with the CP Method
In this section, we apply the method in Sect. 5 to search for (related-key) impossible
differentials and zero-correlation linear approximations of several SPN ciphers, including
SKINNY, Midori64, and Minalpher-P. The source codes of the searching programs can
be found at https://github.com/Deterministic-TD-MDLA/auxiliary_material. All
tests are implemented with one processor Intelr Xeonr Gold 5118 CPU @ 2.30GHz. For

https://github.com/Deterministic-TD-MDLA/auxiliary_material
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Table 1: Top: Comparison of all tools targeting (RK) IDs for SPN ciphers. Bottom:
Explanations of properties.
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P6
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ve

P7
: R

K
ID

U-method ¬ � � � � � [KHS+03]
UID-method ­ � � � � [LLWG14]
Wu and Wang ® � � � � [WW12]
Sasaki and Todo ¯ � � � � � [ST17]

Sun et al. ° � � � [SGL+17]
(Optimised) U∗-method � � � � Sect.5

Properties Explanations

P1: 1-property
The encryption and decryption characteristic matrices of the block cipher structure must be
1-property matrices.

P2: DDT
The method can take differential distribution table (DDT) of the S-box into consideration and
provides a more accurate description for the differential propagation of the S-box.

P3: truncated
The method can search for truncated IDs. In other words, the resulting impossible differential
distinguisher is valid for any bijective S-boxes.

P4: 8-bit S-box The method supports the search for ciphers with 8-bit S-box.
P5: fixed The search is implemented under the fixed input and output differences.

P6: exhaustive
The method can exhaustively check all possible combinations of input and output patterns. The
symbol � indicates that the exhaustive search is capable only when the number ` of words in
the internal state is not very large.

P7: RK ID
The method can be used to search for impossible differential distinguishers under the related-key
attack scenario.

SKINNY and Midori64, the CSPs are solved with the solver Gecode, and all programs
finish in several seconds. For Minalpher-P, we use the solver OSICBC, and it takes several
minutes to return the result due to the considerable state size.

6.1 Applications to SKINNY

SKINNY [BJK+16] is a family of tweakable block cipher proposed at CRYPTO 2016. It has
64-bit and 128-bit versions, and the internal state is viewed as a 4× 4 array of cells in both
versions. The construction of SKINNY is based on the tweakey framework [JNP14], and
the tweakey size t can be n, 2n, or 3n, where n stands for the block size. The encryption
algorithm with n-bit block and t-bit tweakey is written as SKINNY-n-t. Please find in
Supplementary Material C.1 and [BJK+16] for more details about SKINNY.

6.1.1 Impossible Differentials

Previous cryptanalysis. The designers [BJK+16] investigated all impossible differentials
with one active cell in both input and output differences and proposed an 11-round
distinguisher. Later, under the assumption that each subkey is chosen independently and
uniformly at random, Sasaki and Todo [ST17] proved that the maximum number of rounds
for impossible differential trails with one active nibble in both input and output differences
for SKINNY-64 is less than 12.

12.5-round impossible differentials with the optimised U∗-method. Since the search of
truncated differentials only employs the bijectivity of the S-box, the impossible differentials
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for SKINNY-64-∗ also operate for SKINNY-128-∗. Thus, we only execute the program for
SKINNY-64-∗. Besides, to propagate the difference for more rounds, we remove the first
SubCells operation in the forward direction, which is also adopted in [SMB18]. After
invoking Algorithm 1, we know that L = 12.5 and obtain twelve 12.5-round impossible
differentials11. The output of Algorithm 1 and the concrete distinguishers can be found in
Supplementary Material C.2.

In the following theorem, we reconsider the provable security of SKINNY against impos-
sible differentials and update the security bound under a certain assumption. Please find
the proof of the theorem in Supplementary Material C.3.

Theorem 1. Under the keyed (uniform) bijective S-box assumption, 13.5-round encryption
of SKINNY is secure against impossible differentials with arbitrary nonzero input and output
differences.

6.1.2 Related-Tweakey Impossible Differentials for SKINNY-n-n

In the related-tweakey setting, we only consider the case of t = n since the tweakey
schedules of t = 2n and t = 3n involve bit-wise operations.

Previous cryptanalysis. With the MILP and CSP methods, Liu et al. [LGS17] and Sun
et al. [SGL+17] proposed 12-round related-tweakey impossible differentials for SKINNY-
n-n, independently. Both of these methods restrict that the input, output and tweakey
differences have at most one active cell. Motivated by the observation that the positions
of active cells in the input, output and tweakey influence the key-recovery attack, Sadeghi
et al. [SMB18] revisited the construction of related-tweakey impossible differentials for
SKINNY-n-n and proposed several 12.5-round distinguishers. Likewise, the input, output
and tweakey differences are restricted to the states having at most one active cell.

New distinguishers with the U∗-method. We apply the U∗-method in the related-
tweakey setting. The experimental results show that the optimal distinguisher covers 12.5-
round. Apart from the six distinguishers mentioned in [SMB18], much more distinguishers
are detected since the search is not implemented under fixed differences.

Further, we prove the following theorem, which claims that 13.5-round SKINNY-n-n is
secure against related-tweakey impossible differentials under certain assumptions. The
proof can be found in Supplementary Material C.4.

Theorem 2. 13.5-round SKINNY-n-n is secure against related-tweakey impossible differen-
tials with arbitrary nonzero input and output differences under the following assumptions:

• the S-box satisfies keyed (uniform) bijective assumption;

• the difference of tweakey only has one active cell.

6.1.3 11.5-Round Zero-Correlation Linear Approximations

Under the restriction that the input and output masks have one active cell, Sadeghi et al.
[SMB18] created 10-round zero-correlation linear approximations, manually. We adjust
Algorithm 1 to the ZCLA searching mode and notice that the optimal zero-correlation linear
approximations obtained with the U∗-method achieve 10.5-round. Then, the optimised
U∗-method is utilised to check the possibility of extending the distinguishers at hand. At
last, we derive sixteen 11.5-round zero-correlation linear approximations12 for SKINNY,
which can be found in Supplementary Material C.5.

11The new IDs are extensions with probability one of the ones that were given by the designers.
12These new ZCLAs are extensions with probability one of the ones that were proposed in [SMB18].
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6.2 Provable Security of Midori64 against ID
Previous cryptanalysis. The designer [BBI+15] estimated that the maximum number
of rounds for impossible differential characteristics is 7-round based on the 3-round full
diffusion property. Specifically, they proposed several 6-round impossible differentials with
one active nibble in the input and output differences. Later, Shahmirzadi et al. [SAS+17]
provided two 6.5-round impossible differentials, one of which was exploited to launch
key-recovery attacks. With the tool based on the MILP method, Sasaki and Todo [ST17]
showed that under the subkey uniform assumption, 7-round Midori64 is secure against
impossible differentials with one active nibble in the input and output differences.

Provable security against ID. With Algorithm 1, we identify that the optimal impossible
differential distinguisher detected with the U∗-method attains 6.5-round. In total, we derive
480 6.5-round impossible differentials, which are summarised in Supplementary Material
D.3. Furthermore, with the output of Algorithm 1, we show that 7.5-round Midori64 is
secure against impossible differentials under a particular assumption.

Theorem 3. Under the keyed (uniform) bijective S-box assumption, 7.5-round Midori64
is secure against impossible differentials with arbitrary nonzero input and output differences.

6.3 8.5-Round Impossible Differentials of Minalpher-P
Previous cryptanalysis. The designer [STA+14] identified a 6.5-round truncated impos-
sible differential for Minalpher-P with the U-method. The meeting point is positioned
between the MixColumns and SubNibbles operations. With the tool based on the MILP
method, Sasaki and Todo [ST17] found 1152 7.5-round impossible differentials.

8.5-round impossible differentials with the U∗-method. We apply the U∗-method to
Minalpher-P, and the meeting point is placed between the XorMatrix and MixColumns
operations. In aggregate, 600 8.5-round impossible differentials are returned. Considering
the Hamming weight of the input and output differences is closely linked with the complexity
of the key-recovery attack, we sieve impossible differentials with lower Hamming weight.
The test results reveal that the minimum Hamming weight is 9, and the number of
distinguishers meeting this requirement is 160. Please find in Supplementary Material E for
more information.

7 Conclusion
In this paper, we explore the usage of deterministic TDs and MDLAs. An automatic
method based on the CSP is put forward to accomplish the search of deterministic TDs
and MDLAs. Since the new tool realises an exhaustive search, the long-standing problem
of inadequate search for the optimal TD and MDLA is settled. It is applied to search for
RK TDs of AES-192. A novel RK DL distinguisher is established, and the previous RK
DL attack on AES-192 is improved. As the second application of the tool, we propose the
(optimised) U∗-method, which enables us to construct (RK) IDs and ZCLAs, automatically.
The new searching scheme accomplishes the exhaustive search with the CP and considers
possible cancellations of more active words in the input and output differences/masks during
the forward and (or) backward propagating processes. This technique is implemented with
several primitives and discovers longer distinguishers. Moreover, the provable security
bounds of SKINNY and Midori64 against ID distinguishing attack are generalised.

We acknowledge that some of the newly identified distinguishers are extensions with
probability one of the ones that were published in previous literature. However, we think
that the centre of the paper is more the new technique. Since the new tool can realise the
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exhaustive search in a surprisingly rapid manner, we hope it may play an essential role in
the designing phase of new ciphers.

Constructing a unified framework that combines the key-recovery approach with the
new tool must be nice work. Nonetheless, estimating the cost of the key-recovery approach
in ID attack is of high technicality, and we find it is hard to create a general model that
works for a wide range of ciphers. So, we leave it as future work.
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