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Background & Contributions

Automatic Search

� Automatic tools for cryptanalysis obtained rapid development.

� Few works concentrated on the deterministic TD/MDLA.

Essential Problems

� The optimality of TD/MDLA must be confirmed via an exhaustive search.

� The incomplete search is also a long-term problem for optimal ID/ZCLA.

Contributions

� An automatic tool for the search of deterministic (RK) TDs and MDLAs.

� Improved related-key differential-linear attack on AES-192.

� Constructing (RK) IDs with TDs and ZCLAs with MDLAs.

I Provable security against ID attack of SKINNY and Midori64.
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Preliminaries
Basics of Differential and Linear Cryptanalyses

� The difference of the state ∆X = (∆X0,∆X1, . . . ,∆X`−1), ∆Xi ∈ F2s .
� The differential pattern ∆X = (∆X0 ,∆X1 , . . . ,∆X`−1).

I zero differential pattern (Z).
I nonzero fixed differential pattern (N).
I nonzero varied differential pattern (N∗).
I varied differential pattern (U).

Lemma 1 (Branching)

∆Y0 = ∆Y1 = ∆X .

X

Y1

Y0

X0

X1

Y

Lemma 2 (XOR)

(∆X0 ,∆X1)→ ∆Y .

∆Y
∆X1

Z N N⊕ N∗ N∗ U

∆X0

Z Z N N⊕ N∗ N∗ U
N N Z/N N∗/N⊕ N∗ N⊕ N∗ U

N⊕ N∗ N⊕ N∗ N∗/N⊕ N∗ U U U
N∗ N∗ N⊕ N∗ U U U
U U U U U U



Preliminaries
Basics of Differential and Linear Cryptanalyses

Lemma 3 (S-box)

∆X → ∆Y .
∆X Z N N⊕N∗ N∗ U

∆Y Z N∗ U N∗ U

S

X

Y

M

X0

Y0

X1

Y1

Xm−1

Ym−1

· · ·

· · ·

Lemma 4 (MDS matrix)

∆X → ∆Y .
∆X (Z,Z, . . . ,Z) (Z, . . . ,Z,N/N∗,Z, . . . ,Z) Remaining cases

∆Y (Z,Z, . . . ,Z) (N∗,N∗, . . . ,N∗) (U,U, . . . ,U)

� The linear mask of the state ΓX = (ΓX0, ΓX1, . . . , ΓX`−1), ΓXi ∈ F2s .
� The linear pattern ΓX = (ΓX0 , ΓX1 , . . . , ΓX`−1).

I zero linear pattern (Z).
I nonzero fixed linear pattern (N).
I nonzero varied linear pattern (N∗).
I varied linear pattern (U).



Preliminaries
Constraint Satisfaction Problem

Definition 1 (Constraint satisfaction problem @ SGL+17)

A constraint satisfaction problem (CSP) is represented as a triple 〈X ,D, C〉.
� X = {x0, x1, . . . , xn−1} is a set of variables.

� D = {D(x0),D(x1), . . . ,D(xn−1)} is a set of nonempty sets.

� C = {C0, C1, . . . , Cm−1} stands for a set of constraints.

A

B

C

D E

F

G

H

I J

� X = {A,B, . . . , J}.

� D = {D(A),D(B), . . . ,D(J)}.

� D(·) = {“red”, “yellow”, “blue”}.
� C = {C0, C1, . . . , C14}, C∗ = 〈X∗,R∗〉.

� C∗ = 〈{A,D}, A 6= D〉.

� SAT/SMT problems can be viewed as individual cases of the CSP.

� The CSP can describe much harder cases.

� Many CP solvers are available to solve problems of practical interest.
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Finding Deterministic TDs and MDLAs
Step 1: Initialising Variables

X0 X1 Xr−1 Xr

f f

� δXi : pattern ∆Xi .

δXi =


0, if ∆Xi = Z
1, if ∆Xi = N
2, if ∆Xi = N∗

3, if ∆Xi = U

.

� ζXi : s-bit difference ∆Xi .

ζXi ∈


{0}, if δXi = 0
{1, 2, . . . , 2s − 1}, if δXi = 1
{−1}, if δXi = 2
{−2}, if δXi = 3

.

Model 1 (Relation between δXi and ζXi )

The following expression will ensure that ζXi falls into the correct range.
if δXi = 0 then ζXi = 0

elseif δXi = 1 then ζXi > 0

elseif δXi = 2 then ζXi = −1
else ζXi = −2 endif



Finding Deterministic TDs and MDLAs
Step 2: Propagating Differential Patterns

X0 X1 Xr−1 Xr

f f

Model 2 (Branching)

The constraint restricts the pattern propagation for the Branching operation.
δY0 = δX and ζY0 = ζX and δY1 = δX and ζY1 = ζX

Model 3 (XOR)

The constraint restricts the pattern propagation for the XOR operation.
if δX0 + δX1 > 2 then δY = 3 and ζY = −2
elseif δX0 + δX1 = 1 then δY = 1 and ζY = ζX0 + ζX1

elseif δX0 = δX1 = 0 then δY = 0 and ζY = 0

elseif ζX0 + ζX1 < 0 then δY = 2 and ζY = −1
elseif ζX0 = ζX1 then δY = 0 and ζY = 0

else δY = 1 and ζY = ζX0 ⊕ ζX1 endif



Finding Deterministic TDs and MDLAs
Step 2: Propagating Differential Patterns

X0 X1 Xr−1 Xr

f f

Model 4 (S-box)

The constraint restricts the pattern propagation for the S-box.
δY 6= 1 and δX + δY ∈ {0, 3, 4, 6} and δY > δX and δY − δX 6 1

Model 5 (MDS matrix)

The constraint restricts the pattern propagation for the MDS matrix.

if
m−1∑
i=0

δXi ≡ 0 then δY0 = δY1 = · · · = δYm−1 = 0

elseif
m−1∑
i=0

δXi ≡ 1 then δY0 = δY1 = · · · = δYm−1 = 2

elseif
m−1∑
i=0

δXi ≡ 2 and
m−1∑
i=0

ζXi < 0 then δY0 = δY1 = · · · = δYm−1 = 2

else δY0 = δY1 = · · · = δYm−1 = 3 endif



Finding Deterministic TDs and MDLAs
Step 3: Clarifying the Searching Scopes of the Input Patterns

X0 X1 Xr−1 Xr

f f

Old-fashion

� Fix the input pattern as a predetermined value.

� The optimal TD requests an exhaustive search over all possible patterns.

� The program should be implemented for about 2` times.

New-fashion

� Do not fix the format of the input pattern.

� Denote (X 0
0 ,X

0
1 , . . . ,X

0
`−1) the input state. Add

`−1∑
i=0

δX0
i
6= 0.

� The CP solver will automatically traverse all possible input patterns.

� To ensure the existence of R-round TDs/MDLAs, at most, we invoke the
searching program for 3 · R · ` times.

� The number of runs to search for the optimal ID of Minalpher-P is
reduced from 2128 to 210.9.



Finding Deterministic TDs and MDLAs
Step 4: Clarifying the Searching Scopes of the Output Patterns

X0 X1 Xr−1 Xr

f f

� The output differential patterns we are interested in are Z, N and N∗.

I ∆X r
i being zero corresponds to δX r

i
= 0.

I ∆X r
i being nonzero and fixed corresponds to δX r

i
= 1.

I ∆X r
i being any value except zero corresponds to δX r

i
= 2.

Generalisation

� The method for the search of TDs can be adjusted to search for MDLAs.

� For ciphers with word-oriented key schedules, this method can be applied
to search for related-key truncated differentials.
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Related-Key Differential-Linear Attack on AES-192
Improved RK DL Attack on AES-192
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Known nonzero difference

Unknown nonzero difference

Unknown difference

Known nonzero mask

Unknown nonzero mask

Zero difference/mask

Previous distinguishing property

λ · (∆xW
5 [1, 3]⊕∆xW

5 [2, 2]) = 0
� The bias is about 2−9.

New distinguishing property

λ ·∆xW
5 [1, 3] = 0

� The bias is about 2−8.99.

� The biases are almost the same.
� The complexity of the distinguishing attack basically remains unchanged.
� The complexity of the key-recovery attack drops.



Related-Key Differential-Linear Attack on AES-192
Improved RK DL Attack on AES-192
� Given N pairs of plaintexts, Σ records the number of good pairs.
� For the real cipher, |Σ/N − 0.5| follows the distribution N (ε, 1/4N).
� Otherwise, |Σ/N − 0.5| follows the distribution N (0, 1/4N).
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� The key-recovery attack requires 221.3 chosen plaintexts.
� The time complexity is reduced from 2187 to 2170.5.
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Constructing IDs with TDs and ZCLAs with MDLAs
Basic Tool Relying on Miss-in-the-Middle Approach

Miss-in-the-Middle approach

� Constructing two TDs ∆I1 −−−−−−→
R1-round

∆O1 and ∆O2 ←−−−−−−
R2-round

∆I2 .

� Checking the compatibility of the two output patterns ∆O1 and ∆O2 .

Distinctions between U-method and our U∗-method

� The way to implement the search.

� The set of differential patterns applied to yield contradictions.

I The U-method considers the set U = {Z,N,N⊕ N∗,N∗}.
I The U∗-method takes the smaller set U∗ = {Z,N,N∗}.

� The searching scopes of the input and output patterns.

� Regarding SPN ciphers

I The U∗-method has almost the same performance as the U-method.



Constructing IDs with TDs and ZCLAs with MDLAs
Optimising IDs and ZCLAs Obtained with the U∗-method

∆α[0] ∆α[1] · · · ∆α[`− 1]∆α
· · ·

Round function f
· · ·

∆1
α[0] ∆1

α[1] · · · ∆1
α[`− 1]∆1

α
· · ·

...
...

...

· · ·
∆R1−1
α [0] ∆R1−1

α [1] · · · ∆R1−1
α [`− 1]∆R1−1

α
· · ·

Round function f
· · ·

∆R1
α [0] ∆R1

α [1] · · · ∆R1
α [`− 1]∆R1

α

Meeting
point 3 3 37

Contradiction!

∆R1
α [i] ∈ ∆R2

β [i]

∆β [0] ∆β [1] · · · ∆β [`− 1]∆β

· · ·
Round function f

· · ·
∆1
β [0] ∆1

β [1] · · · ∆1
β [`− 1]∆1

β

· · ·
...

...
...

· · ·
∆R2−1
β [0] ∆R2−1

β [1] · · · ∆R2−1
β [`− 1]∆R2−1

β

· · ·
Round function f

· · ·
∆R2

β [0] ∆R2

β [1] · · · ∆R2

β [`− 1]∆R2
β

(a) Type-I contradiction. (b) Type-II contradiction.

∆α[0] ∆α[1] · · · ∆α[`− 1]∆α
· · ·

Round function f
· · ·

∆1
α[0] ∆1

α[1] · · · ∆1
α[`− 1]∆1

α
· · ·

Round function f
· · ·

∆2
α[0] ∆2

α[1] · · · ∆2
α[`− 1]∆2

α
· · ·

...
...

...

· · ·
∆R1
α [0] ∆R1

α [1] · · · ∆R1
α [`− 1]∆R1

α
· · ·

Round function f
· · ·

∆R1+1
α [0] ∆R1+1

α [1] · · · ∆R1+1
α [`− 1]∆R1+1

α

3 3 3 fcollect

7

7

7

7

7

7

7

∆R1+1,R2

α,β [0] ∆R1+1,R2

α,β [1] · · · ∆R1+1,R2

α,β [`− 1] ∆R1+1,R2
α,β

· · ·

· · ·

∆β [0] ∆β [1] · · · ∆β [`− 1]∆β

· · ·
Round function f

· · ·
∆1
β [0] ∆1

β [1] · · · ∆1
β [`− 1]∆1

β

· · ·
...

...
...

· · ·
∆R2−1
β [0] ∆R2−1

β [1] · · · ∆R2−1
β [`− 1]∆R2−1

β

· · ·
Round function f

· · ·
∆R2

β [0] ∆R2

β [1] · · · ∆R2

β [`− 1]∆R2
β

∆0
β,new[0] ∆0

β,new[1] · · · ∆0
β,new[`− 1] ∆0

β,new

· · ·
Round function f

· · ·
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β,new[0] ∆1
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β,new[`− 1] ∆1
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· · ·
...

...
...
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· · ·
Round function f

· · ·
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· · ·

Round function f
· · ·

∆1
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α,new[1] · · · ∆1
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· · ·

Round function f
· · ·

∆2
α,new[0] ∆2

α,new[1] · · · ∆2
α,new[`− 1] ∆2

α,new
· · ·

...
...

...

∆R1
α,new[0] ∆R1

α,new[1] · · · ∆R1
α,new[`− 1] ∆R1

α,new
· · ·

Round function f

· · ·

Definition 2 (Message collecting function)

The message collecting function fcollect is a function over two differential
patterns ∆X and ∆Y with ∆Y /∈ ∆X . The output fcollect(∆X ,∆Y ) is a pattern
that unifies information of two compatible differential patterns.



Constructing IDs with TDs and ZCLAs with MDLAs
Comparison of All Tools Targeting (RK) IDs of SPN Ciphers

Method
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U-method � � � � �

UID-method � � � �

Wu and Wang � � � �

Sasaki and Todo � � � � �

Sun et al. � � �

(Optimised) U∗-method � � � �

� The source codes can be found at
https://github.com/Deterministic-TD-MDLA/auxiliary_material.

� One processor Intelr Xeonr Gold 5118 CPU @ 2.30GHz.

� For SKINNY and Midori64, all programs finish in several seconds.

� For Minalpher-P, it takes several minutes to return the result.

https://github.com/Deterministic-TD-MDLA/auxiliary_material
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Finding (RK) IDs and ZCLAs with the CP Method
Applications to SKINNY

Main results

� 12.5-round impossible differentials with the optimised U∗-method.

� New 12.5-round related-tweakey impossible differentials for SKINNY-n-n.

� 11.5-round zero-correlation linear approximations.

Theorem 1 (Provable security of SKINNY against ID distinguishing attack)

Under the keyed (uniform) bijective S-box assumption, 13.5-round encryption
of SKINNY is secure against impossible differentials with arbitrary nonzero input
and output differences.

Theorem 2 (Provable security of SKINNY-n-n against RT IDs)

13.5-round SKINNY-n-n is secure against related-tweakey impossible differentials
with arbitrary nonzero input and output differences under the following
assumptions:

� the S-box satisfies keyed (uniform) bijective assumption;

� the difference of tweakey only has one active cell.



Finding (RK) IDs and ZCLAs with the CP Method
Applications to Midori64 and Minalpher-P

Main results

� 480 6.5-round impossible differentials for Midori64.

� 600 8.5-round impossible differentials for Minalpher-P.

Theorem 3 (Provable security of Midori64 against ID distinguishing attack)

Under the keyed (uniform) bijective S-box assumption, 7.5-round Midori64 is
secure against impossible differentials with arbitrary nonzero input and output
differences.
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Conclusion

� An automatic tool for the search of deterministic (RK) TDs and MDLAs.

� Improved related-key differential-linear attack on AES-192.

� Constructing (RK) IDs with TDs and ZCLAs with MDLAs.

I Provable security against ID attack of SKINNY and Midori64.

Discussion

� The centre of the paper is more the new technique.

� The tool may play an essential role in the designing phase of new ciphers.

� Constructing a unified framework involving the key-recovery approach.
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