

On the Usage of Deterministic (Related-Key) Truncated Differentials and Multidimensional Linear Approximations for SPN Ciphers

Ling Sun¹, David Gerault², Wei Wang¹, Meiqin Wang¹(⊡)

- 1. Shandong University, Jinan & Qingdao, China
- 2. Nanyang Technological University, Singapore

FSE 2020 @ November, 2020

Background & Contributions

Preliminaries

Finding Deterministic (RK) TDs and MDLAs

Related-Key Differential-Linear Attack on AES-192

Constructing IDs with TDs and ZCLAs with MDLAs

Finding (RK) IDs and ZCLAs with the CP Method

Background & Contributions

Automatic Search

- Automatic tools for cryptanalysis obtained rapid development.
- Few works concentrated on the deterministic TD/MDLA.

Essential Problems

- The optimality of TD/MDLA must be confirmed via an exhaustive search.
- The incomplete search is also a long-term problem for optimal ID/ZCLA.

Contributions

- An automatic tool for the search of deterministic (RK) TDs and MDLAs.
- Improved related-key differential-linear attack on AES-192.
- Constructing (RK) IDs with TDs and ZCLAs with MDLAs.
 - ▶ Provable security against ID attack of SKINNY and Midori64.

Background & Contributions

Preliminaries

Finding Deterministic (RK) TDs and MDLAs

Related-Key Differential-Linear Attack on AES-192

Constructing IDs with TDs and ZCLAs with MDLAs

Finding (RK) IDs and ZCLAs with the CP Method

Preliminaries

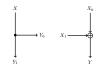
THE TONG UNIVERSE

Basics of Differential and Linear Cryptanalyses

- The difference of the state $\Delta X = (\Delta X_0, \Delta X_1, \dots, \Delta X_{\ell-1}), \ \Delta X_i \in \mathbb{F}_{2^s}$.
- The differential pattern $\Delta_X = (\Delta_{X_0}, \Delta_{X_1}, \dots, \Delta_{X_{\ell-1}})$.
 - ▶ zero differential pattern (Z).
 - ▶ nonzero fixed differential pattern (N).
 - ▶ nonzero varied differential pattern (N*).
 - ▶ varied differential pattern (U).

Lemma 1 (Branching)

$$\Delta_{Y_0} = \Delta_{Y_1} = \Delta_X$$
.



Lemma 2 (XOR)

$$(\Delta_{X_0}, \Delta_{X_1}) \rightarrow \Delta_Y$$
.

- 1	Δ_Y		Δ_{X_i}						
l			Z	N	$N \oplus N^*$	N+	U		
	Δ_{X_0}	Z	Z	N	$N \oplus N^*$	N*	U		
		N	N	Z/N	$N^*/N \oplus N^*$	N ⊕ N*	U		
		$N \oplus N^*$	$N \oplus N^*$	$N^*/N \oplus N^*$	U	U	U		
		N+	N*	N ⊕ N*	U	U	U		
l		U	U	U	U	U	U		

Preliminaries

1901 E

Basics of Differential and Linear Cryptanalyses

Lemma 3 (S-box)

$\Delta_X o \Delta_Y$.								
Δ_X	Z	N	$N\oplusN^*$	N*	U			
Δ_Y	Z	N*	U	N*	U			

Lemma 4 (MDS matrix)

$$\Delta_X \to \Delta_Y$$
.

Δ	Δx	(Z,Z,\ldots,Z)	$(Z,\dots,Z,N/N^*,Z,\dots,Z)$	Remaining cases
Δ	Λ_Y	(Z,Z,\ldots,Z)	(N^*,N^*,\dots,N^*)	(U,U,\ldots,U)

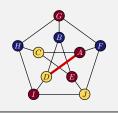
- The linear mask of the state $\Gamma X = (\Gamma X_0, \Gamma X_1, \dots, \Gamma X_{\ell-1}), \Gamma X_i \in \mathbb{F}_{2^s}$.
- The linear pattern $\Gamma_X = (\Gamma_{X_0}, \Gamma_{X_1}, \dots, \Gamma_{X_{\ell-1}})$.
 - ▶ zero linear pattern (Z).
 - ▶ nonzero fixed linear pattern (N).
 - ▶ nonzero varied linear pattern (N*).
 - ▶ varied linear pattern (U).

Preliminaries

Definition 1 (Constraint satisfaction problem @ SGL+17)

A constraint satisfaction problem (CSP) is represented as a triple $\langle \mathcal{X}, \mathcal{D}, \mathcal{C} \rangle$.

- $\mathcal{X} = \{x_0, x_1, \dots, x_{n-1}\}$ is a set of variables.
- $\mathcal{D} = {\mathcal{D}(x_0), \mathcal{D}(x_1), \dots, \mathcal{D}(x_{n-1})}$ is a set of nonempty sets.
- $\blacksquare \ \mathcal{C} = \{\mathcal{C}_0, \mathcal{C}_1, \dots, \mathcal{C}_{m-1}\}$ stands for a set of constraints.



$$\blacksquare \ \mathcal{X} = \{A, B, \dots, J\}.$$

$$\blacksquare \mathcal{D} = \{\mathcal{D}(A), \mathcal{D}(B), \dots, \mathcal{D}(J)\}.$$

$$\blacktriangleright \ \mathcal{D}(\cdot) = \{\text{``red''}, \text{``yellow''}, \text{``blue''}\}.$$

$$\blacksquare \ \mathcal{C} = \{\mathcal{C}_0, \mathcal{C}_1, \dots, \mathcal{C}_{14}\}, \, \mathcal{C}_* = \langle \mathcal{X}_*, \mathcal{R}_* \rangle.$$

$$\triangleright \ \mathcal{C}_* = \langle \{A, D\}, A \neq D \rangle.$$

- SAT/SMT problems can be viewed as individual cases of the CSP.
- The CSP can describe much harder cases.
- Many CP solvers are available to solve problems of practical interest.

Background & Contributions

Preliminaries

Finding Deterministic (RK) TDs and MDLAs

Related-Key Differential-Linear Attack on AES-192

Constructing IDs with TDs and ZCLAs with MDLAs

Finding (RK) IDs and ZCLAs with the CP Method

Step 1: Initialising Variables

$$\xrightarrow{X^0} f \xrightarrow{X^1} \cdots \xrightarrow{X^{r-1}} f \xrightarrow{X^r}$$

 \bullet δ_{X_i} : pattern Δ_{X_i} .

$$\delta_{X_i} = \begin{cases} 0, & \text{if } \Delta_{X_i} = \mathsf{Z} \\ 1, & \text{if } \Delta_{X_i} = \mathsf{N} \\ 2, & \text{if } \Delta_{X_i} = \mathsf{N}^* \\ 3, & \text{if } \Delta_{X_i} = \mathsf{U} \end{cases}$$

 \blacksquare ζ_{X_i} : s-bit difference ΔX_i .

$$\delta_{X_{i}} = \begin{cases} 0, & \text{if } \Delta_{X_{i}} = \mathsf{Z} \\ 1, & \text{if } \Delta_{X_{i}} = \mathsf{N} \\ 2, & \text{if } \Delta_{X_{i}} = \mathsf{N}^{*} \\ 3, & \text{if } \Delta_{X_{i}} = \mathsf{U} \end{cases} \qquad \zeta_{X_{i}} \in \begin{cases} \{0\}, & \text{if } \delta_{X_{i}} = \mathsf{0} \\ \{1, 2, \dots, 2^{s} - 1\}, & \text{if } \delta_{X_{i}} = 1 \\ \{-1\}, & \text{if } \delta_{X_{i}} = 2 \end{cases}.$$

Model 1 (Relation between δ_{X_i} and ζ_{X_i})

The following expression will ensure that ζ_{X_i} falls into the correct range.

if
$$\delta_{X_i}=0$$
 then $\zeta_{X_i}=0$ elseif $\delta_{X_i}=1$ then $\zeta_{X_i}>0$ elseif $\delta_{X_i}=2$ then $\zeta_{X_i}=-1$ else $\zeta_{X_i}=-2$ endif

Step 2: Propagating Differential Patterns

$$X^0 \longrightarrow f \longrightarrow X^1 \longrightarrow X^{r-1} \longrightarrow f \longrightarrow X^r$$

Model 2 (Branching)

The constraint restricts the pattern propagation for the Branching operation.

$$\delta_{Y_0} = \delta_X$$
 and $\zeta_{Y_0} = \zeta_X$ and $\delta_{Y_1} = \delta_X$ and $\zeta_{Y_1} = \zeta_X$

Model 3 (XOR)

The constraint restricts the pattern propagation for the XOR operation.

if
$$\delta_{X_{\mathbf{0}}} + \delta_{X_{\mathbf{1}}} > 2$$
 then $\delta_{Y} = 3$ and $\zeta_{Y} = -2$

elseif
$$\delta_{X_0} + \delta_{X_1} = 1$$
 then $\delta_Y = 1$ and $\zeta_Y = \zeta_{X_0} + \zeta_{X_1}$

elseif
$$\delta_{X_0} = \delta_{X_1} = 0$$
 then $\delta_Y = 0$ and $\zeta_Y = 0$

elseif
$$\zeta_{X_0} + \zeta_{X_1} < 0$$
 then $\delta_Y = 2$ and $\zeta_Y = -1$

elseif
$$\zeta_{X_0} = \zeta_{X_1}$$
 then $\delta_Y = 0$ and $\zeta_Y = 0$

else
$$\delta_Y=1$$
 and $\zeta_Y=\zeta_{X_0}\oplus\zeta_{X_1}$ endif

Step 2: Propagating Differential Patterns

$$\xrightarrow{X^0} f \xrightarrow{X^1} \cdots \xrightarrow{X^{r-1}} f \xrightarrow{X^r}$$

Model 4 (S-box)

The constraint restricts the pattern propagation for the S-box.

$$\delta_Y \neq 1$$
 and $\delta_X + \delta_Y \in \{0, 3, 4, 6\}$ and $\delta_Y \geqslant \delta_X$ and $\delta_Y - \delta_X \leqslant 1$

Model 5 (MDS matrix)

The constraint restricts the pattern propagation for the MDS matrix.

if
$$\sum_{i=0}^{m-1} \delta_{X_i} \equiv 0$$
 then $\delta_{Y_0} = \delta_{Y_1} = \cdots = \delta_{Y_{m-1}} = 0$

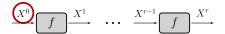
elseif
$$\sum_{i=0}^{m-1} \delta_{X_i} \equiv 1$$
 then $\delta_{Y_0} = \delta_{Y_1} = \cdots = \delta_{Y_{m-1}} = 2$

elseif
$$\sum_{i=0}^{m-1} \delta_{X_i} \equiv 2$$
 and $\sum_{i=0}^{m-1} \zeta_{X_i} < 0$ then $\delta_{Y_0} = \delta_{Y_1} = \cdots = \delta_{Y_{m-1}} = 2$

else
$$\delta_{Y_0} = \delta_{Y_1} = \cdots = \delta_{Y_{m-1}} = 3$$
 endif

NOONG UNIVERSITY

Step 3: Clarifying the Searching Scopes of the Input Patterns



Old-fashion

- Fix the input pattern as a predetermined value.
- The optimal TD requests an **exhaustive search** over all possible patterns.
- lacksquare The program should be implemented for about 2^ℓ times.

New-fashion

- Do **not fix** the format of the input pattern.
- Denote $(X_0^0, X_1^0, \dots, X_{\ell-1}^0)$ the input state. Add $\sum_{i=0}^{\ell-1} \delta_{X_i^0} \neq 0$.
- The CP solver will **automatically traverse** all possible input patterns.
- To ensure the existence of R-round TDs/MDLAs, at most, we invoke the searching program for $3 \cdot R \cdot \ell$ times.
- The number of runs to search for the optimal ID of Minalpher-P is reduced from 2^{128} to $2^{10.9}$.

SE THOMAS THE PROPERTY OF THE

Step 4: Clarifying the Searching Scopes of the Output Patterns

$$X^0 \longrightarrow f \longrightarrow X^1 \longrightarrow X^{r-1} \longrightarrow f \longrightarrow X^r$$

- The output differential patterns we are interested in are Z, N and N*.
 - ▶ ΔX_i^r being zero corresponds to $\delta_{X_i^r} = 0$.
 - ▶ ΔX_i^r being nonzero and fixed corresponds to $\delta_{X_i^r} = 1$.
 - ▶ ΔX_i^r being any value except zero corresponds to $\delta_{X_i^r} = 2$.

Generalisation

- The method for the search of TDs can be adjusted to search for MDLAs.
- For ciphers with word-oriented key schedules, this method can be applied to search for **related-key truncated differentials**.

Background & Contributions

Preliminaries

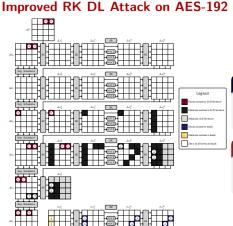
Finding Deterministic (RK) TDs and MDLAs

Related-Key Differential-Linear Attack on AES-192

Constructing IDs with TDs and 7CLAs with MDLAs

Finding (RK) IDs and ZCLAs with the CP Method

Related-Key Differential-Linear Attack on AES-192



Previous distinguishing property

 $\lambda \cdot (\Delta x_5^{\mathcal{W}}[1,3] \oplus \Delta x_5^{\mathcal{W}}[2,2]) = 0$

■ The bias is about 2^{-9} .

New distinguishing property

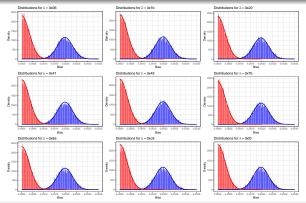
$$\lambda \cdot \Delta x_5^W[1,3] = 0$$

■ The bias is about $2^{-8.99}$

- The biases are almost the same.
- The complexity of the distinguishing attack basically remains unchanged.
- The complexity of the key-recovery attack drops.

Related-Key Differential-Linear Attack on AES-192 Improved RK DL Attack on AES-192

- Given N pairs of plaintexts, Σ records the number of good pairs.
- For the real cipher, $|\Sigma/N 0.5|$ follows the distribution $\mathcal{N}(\varepsilon, 1/4N)$.
- Otherwise, $|\Sigma/N 0.5|$ follows the distribution $\overline{\mathcal{N}}(0, 1/4N)$.



- The key-recovery attack requires 2^{21.3} chosen plaintexts.
- The time complexity is reduced from 2^{187} to $2^{170.5}$.

Background & Contributions

Preliminaries

Finding Deterministic (RK) TDs and MDLAs

Related-Key Differential-Linear Attack on AES-192

Constructing IDs with TDs and ZCLAs with MDLAs

Finding (RK) IDs and ZCLAs with the CP Method

Constructing IDs with TDs and ZCLAs with MDLAs

1901 E

Basic Tool Relying on Miss-in-the-Middle Approach

Miss-in-the-Middle approach

- $\blacksquare \ \, \mathsf{Constructing} \,\, \mathsf{two} \,\, \mathsf{TDs} \,\, \Delta^{l_1} \xrightarrow[R_1\text{-round}]{} \Delta^{O_1} \,\, \mathsf{and} \,\, \Delta^{O_2} \xleftarrow[R_2\text{-round}]{} \Delta^{l_2}.$
- Checking the compatibility of the two output patterns Δ^{O_1} and Δ^{O_2} .

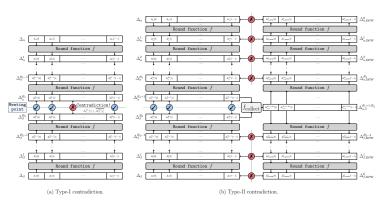
Distinctions between \mathcal{U} -method and our \mathcal{U}^* -method

- The way to implement the search.
- The set of differential patterns applied to yield contradictions.
 - ▶ The \mathcal{U} -method considers the set $\mathcal{U} = \{Z, N, N \oplus N^*, N^*\}.$
 - ▶ The \mathcal{U}^* -method takes the smaller set $\mathcal{U}^* = \{Z, N, N^*\}$.
- The searching scopes of the input and output patterns.
- Regarding SPN ciphers
 - ▶ The \mathcal{U}^* -method has almost the same performance as the \mathcal{U} -method.

SHANDONG UNIVERSITY

Constructing IDs with TDs and ZCLAs with MDLAs

Optimising IDs and ZCLAs Obtained with the \mathcal{U}^* -method



Definition 2 (Message collecting function)

The message collecting function f_{collect} is a function over two differential patterns Δ_X and Δ_Y with $\Delta_Y \notin \overline{\Delta_X}$. The output $f_{\mathrm{collect}}(\Delta_X, \Delta_Y)$ is a pattern that unifies information of two compatible differential patterns.

Constructing IDs with TDs and ZCLAs with MDLAs

S V 1901

Comparison of All Tools Targeting (RK) IDs of SPN Ciphers

	Properties						
Method	Logody.		trungsted	& Oi; S. Got	li, ea	chaustile	\$
	8. v.	QV.	δ _{0.2} .	Sp.	Q'5.	<i>d</i> ₀ .	₹
\mathcal{U} -method	*		*	*	*	1	
UID-method			*	*	*	1	
Wu and Wang			*	*	*	₩	
Sasaki and Todo		*	*	*	*	1	
Sun et al.		*			*		*
(Optimised) \mathcal{U}^* -method			*	*		*	*

- The source codes can be found at https://github.com/Deterministic-TD-MDLA/auxiliary_material.
- One processor Intel[®] Xeon[®] Gold 5118 CPU @ 2.30GHz.
- For SKINNY and Midori64, all programs finish in several seconds.
- For Minalpher-P, it takes several minutes to return the result.

Background & Contributions

Preliminaries

Finding Deterministic (RK) TDs and MDLAs

Related-Key Differential-Linear Attack on AES-192

Constructing IDs with TDs and ZCLAs with MDLAs

Finding (RK) IDs and ZCLAs with the CP Method

Finding (RK) IDs and ZCLAs with the CP Method

Applications to SKINNY

Main results

- 12.5-round impossible differentials with the optimised U^* -method.
- New 12.5-round related-tweakey impossible differentials for SKINNY-*n*-*n*.
- 11.5-round zero-correlation linear approximations.

Theorem 1 (Provable security of SKINNY against ID distinguishing attack)

Under the keyed (uniform) bijective S-box assumption, 13.5-round encryption of SKINNY is secure against impossible differentials with arbitrary nonzero input and output differences.

Theorem 2 (Provable security of SKINNY-n-n against RT IDs)

13.5-round SKINNY-n-n is secure against related-tweakey impossible differentials with arbitrary nonzero input and output differences under the following assumptions:

- the S-box satisfies keyed (uniform) bijective assumption;
- the difference of tweakey only has one active cell.

Finding (RK) IDs and ZCLAs with the CP Method

Applications to Midori64 and Minalpher-P

Main results

- 480 6.5-round impossible differentials for Midori64.
- 600 8.5-round impossible differentials for Minalpher-P.

Theorem 3 (Provable security of Midori64 against ID distinguishing attack)

Under the keyed (uniform) bijective S-box assumption, 7.5-round Midori64 is secure against impossible differentials with arbitrary nonzero input and output differences.

Background & Contributions

Preliminaries

Finding Deterministic (RK) TDs and MDLAs

Related-Key Differential-Linear Attack on AES-192

Constructing IDs with TDs and ZCLAs with MDLAs

Finding (RK) IDs and ZCLAs with the CP Method

Conclusion

- An automatic tool for the search of deterministic (RK) TDs and MDLAs.
- Improved related-key differential-linear attack on AES-192.
- Constructing (RK) IDs with TDs and ZCLAs with MDLAs.
 - ▶ Provable security against ID attack of SKINNY and Midori64.

Discussion

- The centre of the paper is more the new technique.
- The tool may play an essential role in the designing phase of new ciphers.
- Constructing a unified framework involving the key-recovery approach.

Thank you for your attention!

Thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

