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Abstract. Distinguishers on round-reduced AES have attracted considerable attention
in the recent years. While the number of rounds covered in key-recovery attacks did
not increase, subspace, yoyo, mixture-differential, and multiple-of-n cryptanalysis
advanced the understanding of the properties of the cipher.
For substitution-permutation networks, integral attacks are a suitable target for
extension since they usually end after a linear layer sums several subcomponents.
Based on results by Patarin, Chen et al. already observed that the expected number
of collisions for a sum of permutations differs slightly from that for a random primitive.
Though, their target remained lightweight primitives.
The present work illustrates how the well-known integral distinguisher on three-round
AES resembles a sum of PRPs and can be extended to truncated-differential distin-
guishers over 4 and 5 rounds. In contrast to previous distinguishers by Grassi et al.,
our approach allows to prepend a round that starts from a diagonal subspace. We
demonstrate how the prepended round can be used for key recovery with a new differ-
ential key-recovery attack on six-round AES. Moreover, we show how the prepended
round can also be integrated to form a six-round distinguisher. For all distinguishers
and the key-recovery attack, our results are supported by implementations with Cid
et al.’s established Small-AES version. While the distinguishers do not threaten the
security of the AES, they try to shed more light on its properties.
Keywords: Cryptanalysis · AES · Permutation · Collision · Differential · Expec-
tation · Distinguisher

1 Introduction
During the previous two decades, the Advanced Encryption Standard (AES) [Nat01] has
withstood vast amounts of cryptanalysis. Besides the biclique-based accelerated exhaustive
search [BKR11],1 the best-known attacks on AES-128 in the secret-key model cover seven
rounds, as had been the state of the art close after its announcement [FKL+00]. However,
the community’s efforts led to attacks with considerably reduced resources. Among the key-
recovery attacks that cover that most rounds [BLNS18, DFJ13, FKL+00, MDRM10], the
meet-in-the-middle attacks by Derbez et al. possess the lowest time and data complexities
since 2013 [DFJ13]. Their attacks were based on Demirci and Selçuk’s [DS08] variant of
the earlier collision attack by Gilbert and Minier [GM00].

1Instead of exploiting dedicated properties of a given cipher, biclique-based attacks [BKR11] usually
represent a general approach to speed up brute force since their outer loop iterates over all possible keys.
Some works consider it therefore as accelerated exhaustive search instead of an attack cf. [DDKS13].
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Although the number of rounds covered in key-recovery attacks has stagnated, the recent
years were filled with research on distinguishers on round-reduced AES that significantly
raised the understanding of the cipher’s components. This direction appears promising –
metaphorically, it is comparable to heuristics that sometimes also have to leave a local
optimum to improve in the long run.

1.1 Distinguishers on Round-reduced AES
Negative results paved a rocky start for the search for new distinguishers. Sun et al.
[SLG+16b] proved the absence of impossible differentials over more than four rounds for the
AES structure, which was tantamount with the absence of zero-correlation distinguishers
over more than four rounds [SLR+15].2 Since [SLG+16b] ignored the details of the AES
S-box and its key schedule, there remained a spark of hope for longer distinguishers of those
kinds. The works by Wang and Jin [WJ18, WJ19] extinguished this spark. Under the
assumption of independent random round keys, they showed the absence of any (truncated)
impossible differentials over more than four-round of the AES taking also the details of
the S-box into account.

Key-dependent Distinguishers. Despite the negative results, a series of works has been
focusing on novel properties for distinguishers on fewer rounds than the best known attacks.
First, several key-dependent distinguishers were crafted, e.g., the chosen-ciphertext zero-
correlation hull on five rounds by Sun et al. [SLG+16a] exploited a known difference in
two key bytes to cover five rounds. While their distinguisher required the full codebook
when converted to the single-key model, it re-ignited the community’s efforts on analyzing
round-reduced AES. Subsequent works [CCM+18, GRR16, Gra18a, HCGW18] improved
on their result and proposed further key-dependent results. To the best of our knowledge,
among the attacks on round-reduced AES with a single secret S-box [TKKL15], the lowest
complexity so far is achieved by that by Dunkelman et al. [DKRS20]. Besides others, their
work proposed two attacks in that setting: one with 225.8 adaptive chosen ciphertexts and
the same computational complexity, and a second one with 229 computations and 217.5

adaptive chosen ciphertexts.

1.2 Key-independent Distinguishers on Round-reduced AES
Besides key-dependent results, several powerful key-independent distinguishers have
been proposed recently. In a series of works [GRR16, GRR17, GR18, Gra18b], Grassi
et al. outlined novel observations and distinguishers on five-round AES. At their core,
[GRR17] observed a strong property dubbed multiple-of-n: using all pairs from a diagonal
space, the number of different ciphertext pairs that belonged to the same coset of a mixed
space was always a multiple of n after five rounds. Boura et al. [BCC19] revisited the
multiple-of-n property and derived similar distinguishers for further AES-like primitives.

Mixture-differential Distinguishers. In [Gra17, Gra18b], Grassi proposed mixture-diff-
erential distinguishers. Mixtures are couples of pairs that start from a pair of plaintexts
(P, P ′) that differ in multiple components, say values (x, y) in P and (x′, y′) in P ′. A
second plaintext pair (P ′′, P ′′′) with byte values (x, y′) and (x′, y) is created from mixing
the differing components such that the input difference remains invariant, and their
corresponding ciphertext pairs lie in a coset of the same subspace. In [Gra18b], Grassi
published an efficient four-round distinguisher and a five-round key-recovery attack from

2Sun et al. [SLR+15] showed that the existence of an impossible differential on a cipher E implies the
existence of affine layers A1 and A2 such that there is an integral and a zero-correlation distinguisher on
A2 ◦ E ◦ A1.
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Table 1: Existing secret-key distinguishers on five and more rounds of the AES-128, ordered by
rounds (descending) then time (ascending). MAs = memory accesses; Encs. = r-round AES
encryptions; CP = chosen plaintexts; (A)CC = (adaptive) chosen ciphertexts; MD = mixture
differential; TD = truncated differential. ?: We employ the updated parameters from [GR19].
The original distinguishers had been proposed in [GR18].

Attack type Time Data Ref.

Five Rounds
Integral 2128 XORs 2128 CC [SLG+16a]
Impossible Differential 2107 MAs 298.2 CP [GRR16]
Threshold MD 298.1 MAs 289 CP [Gra17]
Impossible MD 297.8 MAs 282 CP [Gra17]
Truncated differential 273.3 MAs 268 CP Sect. 5
Probabilistic MD 271.5 MAs 252 CP [Gra19, Gra17]
Truncated differential? 252.6 MAs 248.96 CP [GR18, GR19]
Variance of TD? 237.6 MAs 234 CP [GR18, GR19]
Multiple-of-8 235.6 MAs 232 CP [GRR17]
Yoyo 226.2 XORs 227.2 ACC [BR19a]
Yoyo 225.8 XORs 226.8 ACC [RBH17]

Six Rounds
Impossible Yoyo 2121.83 XORs 2122.83 ACC [RBH17]
Truncated differential 296.52 MAs 289.43 CP Sect. 7
Exchange 288.2 Encs. 288.2 CP [BR19b, BR19c]
Exchange 283 Encs. 283 ACC [Bar19]

[Gra17]. Bar-On et al. [BODK+18, BDK+20] improved the key-recovery to the attack
on five-round AES to 224 chosen plaintexts and operations. Dunkelman et al. [DKRS20]
introduced conditional boomerangs for five-round attacks with the lowest time and data
complexities so far: one with 29 adaptive chosen plain- and ciphertexts (ACCs) and 223

encryptions, and one with 215 ACCs and 216.5 operations.
In [Gra19], Grassi further published a probabilistic mixture-differential distinguisher on
five rounds as well as a key-recovery attack on six rounds from [Gra17]. The latter version
also contained further threshold as well as an impossible mixture-differential distinguisher.
The probabilistic distinguisher exploited a tiny difference between two expectations: the
expected number of sets with at least one pair whose both ciphertexts belong to the same
coset of a subspace is a little lower for five-round AES than for a random permutation.
Grassi’s threshold distinguisher exploited different expectations between sets of couples.
Each set was formed by couples whose both plaintexts mixed the byte values in two
diagonals and differed only in those two diagonals. Finally, he considered an impossible
mixture-differential distinguisher.

To the best of our knowledge, the best previously published distinguishers on round-
reduced AES-128 in terms of minimal complexity are the exchange/yoyo-based proposals
by Rønjom and Bardeh [BR19b, BR19c]. They extended their earlier yoyo attacks from
[RBH17] and reduced the complexity to about 288 encryptions and chosen plaintexts.
Bardeh [Bar19] recently proposed a variant with adaptively chosen ciphertexts with 283

data and time complexity. Note that the attacks by [DKRS20] represent a follow-up work
that follows this direction, but considers distinguishers on fewer rounds. Table 1 provides
a summary of existing distinguishers on five or more rounds of AES-128; note that many
results hold for diverse versions of the AES; however, the focus of this work lies on the
128-bit variant.
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1.3 From Integral to Truncated-differential Distinguishers
Integral Distinguishers map multi-sets of inputs that iterate over all values to multi-sets
of outputs that are balanced. Traditionally, the properties of bits or bytes are either
constant (C), iterate over all values (A), are balanced (B), or unknown (U). A traditional
integral distinguisher usually ends directly before all parts of the state become unknown.
For the AES, the three-round integral distinguisher [DKR97] that maps sets of a single
active byte to a set of states where each byte is balanced after three rounds is understood
well, and so is the extension to a distinguisher on four rounds [DKR97, FKL+00] that
prepends a round and starts from an active diagonal.

Extending Integrals To Truncated-differential Distinguishers. The core observation at
the beginning of this work was that an integral distinguisher usually ends with a sum
operation. In many Substitution-Permutation Networks (SPNs), the linear layer often
consists of a sum of multiple words. At the end of an integral distinguisher, such a sum
is equivalent to the sum of words that iterate over all values in the subspace—hence, a
sum of permutations. The sum still has a Balanced (i.e., zero-sum) property, which is
usually destroyed by the subsequent non-linear layer. As illustrated in [Pat08, Pat13], the
number of collisions induced by a sum of permutations differs slightly from that of an
ideal function. The sum in the linear layer preserves this number of collisions through the
subsequent S-box operation. Therefore, an integral distinguisher can be extended through
the subsequent non-linear operation.
We point out that Chen et al. [CMSZ15] had already considered this approach of Patarin’s
analysis for extending integrals of SPNs. They considered Type-II and Nyberg-type Feistel
networks and conducted experiments on lightweight ciphers for which they could confirm
that this strategy can lead to extended attacks. This work, however, focuses on the AES.
We view such extended integrals as truncated differentials because we consider partial
collisions in particular words.
A similar direction was followed by Heys (and Liu) [Hey14] for extending integrals on
BSPN [YTH96], a byte-wise variant of [HT96]. Besides adapting the deterministic integrals
on three- and four-round AES, they studied a probabilistic extension of obtaining a zero
sum in the individual bytes after three rounds that allows them to be traced through the
subsequent round. We added similar experiments on Small-AES in Appendix G.

Probabilistic Integrals. Integral distinguishers map a structure of 2s inputs that iterate
over all values to b pairwise disjoint sets of t output bits each that are uniformly distributed.
Wang et al. [WCC+16] proposed so-called statistical integrals, whereing they could reduce
the data requirements to 2s−t/2 texts. Cui et al. [CSCW17, CCM+18] transferred the
approach to the AES and AES-like ciphers and exploited multiple structures on input
and several integral properties on output. If Ns structures are necessary and consider b
pairwise disjoint sets of t-bit output, their approach reduced the data complexity further to
O(
√
Ns/b·2s−t/2). Though, this approach does not directly aim at extending distinguishers

but represents a data-reduction technique instead. The statistical integral distinguisher on
five-round AES in [CSCW17, CCM+18] has been built upon the zero-correlation linear hull
for five-round decryption of AES by Sun et al. in [SLG+16a], but has a great improvement
in terms of data and time complexity (from 2128 to 2114.32 chosen ciphertexts). Moreover,
inherited from [SLG+16a], the distinguisher by Cui et al. was in the secret-S-box setting.

Previous Truncated-differential Distinguishers on the AES. In [GR18], Grassi and
Rechberger also considered truncated differentials and exploited smaller statistical differ-
ences. The core results are five-round distinguishers that exploit the following property
of the AES: A structure of 232 plaintexts from a single diagonal space is mapped to a
mixed space through two rounds of AES with probability one; With a certain probability,



Zhenzhen Bao, Jian Guo and Eik List 201

it is mixed again to a single diagonal space after Round 3, from which it is mapped to
a mixed space through two further rounds as before. Grassi and Rechberger observed
that the probability for the transition in the middle is slightly higher for five-round AES
than for a random permutation. Furthermore, they show how to exploit the considerably
different variances. Their results are similar to ours; however, we start from a different
angle (from integrals), whereas their work did not depend on Patarin’s result. In contrast,
the mean-based distinguishers in [Gra17, Gra19] considered the expectation of couples,
whereas we consider pairs.

Contribution. This work tries to extend the known integral to truncated-differential
distinguishers. As a result, it describes a five-round distinguisher from a single byte to a
mixed space. Since inputs start from single-byte differences, plaintext structures can form
fewer pairs than in e.g., the structures from diagonals as in [GR18]. As a consequence,
the data and computational complexity of the five-round distinguisher here are higher
than those of the probabilistic distinguishers in [GR18], but our proposal allows a straight-
forward extension to a six-round key-recovery attack by prepending a round. We present
the results of a practical implementation of the five-round distinguisher and the six-round
key-recovery attacks with a small-scale variant of the AES. Finally, we propose a possible
extension to a six-round truncated-differential distinguisher and report our results of its
implementation for the small variant.

Outline. The remainder is structured as follows. Next, Section 2 revisits the necessary
preliminaries, as well as the known results by Patarin on sums of independent permutations
and subspaces of the AES by Grassi et al. [GRR16], and briefly recalls the integral
distinguishers of round-reduced AES. Section 3 provides a statistical model. Thereupon,
Section 4 develops from them a four-round truncated distinguisher. Section 5 proceeds
similarly for a five-round distinguisher. Section 6 describes a key-recovery attack on six
rounds based on our five-round distinguisher. Section 7 derives a six-round distinguisher.
We provide theoretical analysis for all distinguishers for both the AES as well as for
Small-AES, and report on our results of experimental verification with the latter. Similarly,
we implemented also the key-recovery on six rounds with Small-AES and provide insights
to our results. The code to all our experiments is freely available online.3 Section 8
discusses and concludes this work.

2 Preliminaries
General Notations. We denote by F2 the finite field of characteristic two. We represent
functions and variables by upper case letters and indices by lowercase letters, sets by
calligraphic letters. We employ typewriter font for hexadecimal values. Let X,Y ∈ Fn2 for
some positive integer n in the following. Then, we denote by X ‖Y the concatenation of X
and Y , byX⊕Y their bitwise XOR. For allX ∈ Fn2 , we index the bitsX = (Xn−1 . . . X1X0)
where Xn−1 is the most significant and X0 the least significant bit of X. For integers x ≥ y,
we write Xx..y as short form of (XxXx−1 . . . Xy). We denote by E [X] the expectation of a
random variable X, by σX its standard deviation, and by σ2

X = Var [X] its variance. µ and
σ represent the mean and the standard deviation of a distribution.

Functions and Permutations. For sets X and Y , we define Func(X ,Y) =def {F |F : X →
Y} and Perm(X ) for the set of all permutations over X . We define Funcn =def Func(Fn2 ,Fn2 )
and write Permn = Perm(Fn2 ). Note that |Funcn| = (2n)2n and |Permn| = (2n)!. We call π
an ideal permutation (over Fn2 ) if π � Permn, i.e., if it is sampled uniformly at random

3https://github.com/medsec/expectation-cryptanalysis-on-round-reduced-aes.

https://github.com/medsec/expectation-cryptanalysis-on-round-reduced-aes
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Table 2: Expected numbers of collisions E [Nk] after q queries for the sums of k permutations and
distinguishing complexity for q ' 2n from [Pat08].

2 3 4 k

E [Nk] g(q2)
2n + g(q2)

2n(2n−1)
g(q2)
2n −

g(q2)
2n(2n−1)2

g(q2)
2n + g(q2)

2n(2n−1)3
g(q2)
2n + (−1)kg(q2)

2n(2n−1)k−1

Complexity O(22n) O(24n) O(26n) O(2(2k−2)n)

from Permn. Similarly, we call ρ an ideal function (over Fn2 ) if ρ � Funcn. For integers
m ≤ n and arbitrary X ∈ Fn2 , we define truncm(X) =def msbm(X) =def X(n−1)..(n−m) to
truncate the input x and return only the most-significant (i.e., leftmost) m bits of x.

2.1 Distinguishers for Sums of Permutations
In the following, we recall briefly the results by [Pat08, Pat13]. Given a function set F , we
define by Gen(F) a function generator that gives access to multiple pairwise independent
instances from F . Let π1, . . . , πk � Permn be independent ideal random permutations, and
let ρ� Funcn. We define a k-sum of permutations as Σk[π1, . . . , πk](x) =def ⊕k

i=1 πi(x)
and write Σk as short form.
The goal of a k-sum-distinguisher is to distinguish ρ from Σk. The setting where the
adversary has access to only a single instance of ρ or Σk is usually irrelevant in the context
of provable security since the query complexity of such distinguisher is close or exceeds
O(2n), i.e., the codebook. Patarin studied a setting where the distinguisher has access to
multiple independent functions in the generator Gen(F) and can ask more queries. We
denote by g the number of available functions from the generator, and by q the number of
queries xi asked to each of the functions.
Let N be a random variable for the number of output collisions yi, i.e., N = |{i, j ∈ [q] :
i 6= j ∧ yi = yj}|. For a function F , we define the random variable NF for the number
of collisions of F after q queries. So, let Nρ be the number of collisions for ρ. Since all
responses yi are sampled independently uniformly at random, it holds that [Pat08]

E [Nρ] =
g
(
q
2
)

2n and σ(Nρ) = O

(√
gq
√

2n

)
.

Let Nk be a random variable for the number of collisions of Σk (Nk is short for NΣk).
Scenario 2 in [Pat08] gives

E [Nk] =
g
(
q
2
)

2n ·
(

1 + (−1)k
(2n − 1)k−1

)
and σ(Nk) = O

(√
gq
√

2n

)
.

Patarin argues with Chebyshev’s theorem Pr [|X − µ|] ≥ cσ] ≤ 1/c2, that the distinguishing
advantage between the collision distributions of two functions F and G becomes non-
negligible if

σ(NF )� |E [NF ]− E [NG]| and σ(NG)� |E [NF ]− E [NG]| ,

hold. For example, the sum of k = 2 permutations has

E [N2] =
g
(
q
2
)

2n

(
1 + 1

2n − 1

)
.

Thus, if
√
gq
√

2n
�

g
(
q
2
)

22n ,
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both distributions can be distinguished with non-negligible advantage. So, for q ' 2n, the
adversary can distinguish both settings in g ≥ 2n, i.e., the adversary needs O(22n) queries.
For k permutations, Patarin showed that the advantage is non-negligible when

√
gq
√

2n
� gq2

2kn .

For q ' 2n, this yields that g ≥ 2(2k−3)n functions are necessary. The probability of a
single collision is then given by

1
2n + (−1)k

2n(2n − 1)k−1 . (1)

Table 2 illustrates the expected number of collisions and distinguishing efforts for different
values k.

2.2 The AES-128 and Its Subspaces
Brief Definition of The AES-128. We assume that the reader is familiar with the details
of the AES and provide only a very brief summary here. Details can be found in, e.g.,
[DR02, Nat01]. The AES-128 is a substitution-permutation network that transforms 128-
bit inputs through ten rounds, consisting of SubBytes (SB), ShiftRows (SR), MixColumns
(MC), and a round-key addition with a round key Ki. Before the first round, a whitening
key K0 is XORed to the state; the final round omits the MixColumns operation. We write
Si for the state after Round i, and Si[j] for the j-th byte, for 0 ≤ i ≤ 10 and 0 ≤ j ≤ 15.
Though, we interchangeably also use the indices for a 4×4-byte matrix, i.e., 0, 0 for Byte 0,
and 3, 3 for Byte 15. So, the byte ordering is given by either0 4 8 12

1 5 9 13
2 6 10 14
3 7 11 15

 or

0, 0 0, 1 0, 2 0, 3
1, 0 1, 1 1, 2 1, 3
2, 0 2, 1 2, 2 2, 3
3, 0 3, 1 3, 2 3, 3

 .
When using two-dimensional indices, we assume that all indices are taken modulo four.
R[Ki] =def AK[Ki] ◦ MC ◦ SR ◦ SB denotes one application of the round function and
denote by Sr,SB, Sr,SR, and Sr,MC the states in the r-th round directly after the application
of SubBytes, ShiftRows, and MixColumns, respectively. Moreover, we denote by R̂r =def

SR◦SB◦R[Kr−1]◦ · · · ◦R[K1]◦AK[K0] the sequence of r rounds, without the key addition
and MixColumns operation in the final round. Plus, we denote by Ř the AES round
function without the final AddRoundKeys, and restricted to work on one diagonal and
output the corresponding column. Finally, we use M to denote the MixColumns matrix in
F4×4

28 .

Subspaces of The AES. We adopt the notation of subspaces for the AES from Grassi
et al. [GRR16]. Let W denote a vector space and V ⊆ W be a subspace. If a is an element
of W, then a coset V ⊕ a of V in W is a subset V ⊕ a = {v ⊕ a|∀v ∈ V}. We consider
vectors and vector spaces over F4×4

28 , and denote by {e0,0, . . . , e3,3} the unit vectors of
F4×4

28 , i.e., ei,j has a single 1 in the i-th row and j-th column. For a vector space V and a
function F : F4×4

28 → F4×4
28 , we let F (V) =def {F (v)|v ∈ V}. For a subset I ⊆ {1, 2, . . . , n}

and a subset of vector spaces {V1,V2, . . . ,Vn}, we define VI =def ⊕
i∈I Vi. We adopt the

definitions by Grassi et al. of four families of subspaces for the AES for each i ∈ {0, 1, 2, 3}:

• the column spaces C{i} = 〈e0,i, e1,i, e2,i, e3,i〉,

• the diagonal spaces D{i} = SR−1(C{i}),
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• the inverse-diagonal spaces ID{i} = SR(C{i}), and

• the mixed spacesM{i} = MC(ID{i}).

For I ⊆ {0, 1, 2, 3}, the spaces CI , DI , IDI , andMI are defined as

CI
def=
⊕
i∈I
C{i} , DI

def=
⊕
i∈I
D{i} , IDI

def=
⊕
i∈I
ID{i} , and MI

def=
⊕
i∈I
M{i} .

Small-AES. Cid et al. [CMR05] proposed small-scale variants of the AES to help
cryptanalysts study attacks whose complexity prohibited tests on the full-fledged cipher.
We employ the four-bit variant in the following, which differs from the AES only in the
following aspects:

• It operates on a 4× 4-nibble state of 64 bits. States and keys are elements of F4×4
24 .

• The S-box operates on nibbles; it is given in Table 5 for completeness.

• The MixColumns multiplications operate in F24 modulo p(x) = x4 + x + 1. The values
in the MixColumns matrix are equal to those of M in the original AES.

• The round constants to derive the round key Ki are xi−1 in F24/p(x).

2.3 S-box Properties
We study variants of Small-AES with different S-boxes. For this purpose, this section
revisits some relevant S-box properties from [GR18, GR19] .

Mean. For ∆I ,∆O ∈ Fn2 , we denote the number of solutions for a differential ∆I → ∆O

through the S-box S : Fn2 → Fn2 as δS(∆I ,∆O), defined as

δS(∆I ,∆O) def= |{x ∈ Fn2 : S(x)⊕ S(x⊕∆I) = ∆O}| .

Independently of the S-box details, the expected number of solutions x for arbitrary
non-zero input-output differences (∆I ,∆O) is simply the mean over all non-zero columns
or rows in the differential-distribution table: E [δS(∆I ,∆O)] = 2b

2b−1 = 256
255 for the AES

S-box.

Differential Uniformity. Let ∆I ,∆O ∈ Fb2. A mapping S : Fb2 → Fb2 is called differentially
δ-uniform [Nyb93] iff for all non-zero ∆I ∈ Fb2 and all ∆O ∈ Fb2, it holds that∣∣X ∈ Fb2|S(X)⊕ S(X ⊕∆I) = ∆O

∣∣ ≤ δ .
In this work, we use the interpretation of

DU = max
∆I 6=0

δS(∆I ,∆O) .

An S-box that has DU = 2 is called almost perfect(ly) non-linear (APN).

Variance. In contrast to the mean, the variance Var [δS(∆I ,∆O)] depends on the S-box
internals. For each non-zero input difference ∆I , the S-box of the AES has one output
difference ∆O, s. t. δS(∆I ,∆O) has four solutions, 126 differences ∆I , for which there
exist two solutions, and 128 differences without solutions. For the S-box of the AES, the
variance is therefore given by

Var [δSAES(∆I ,∆O)] = 22 · 126
255 + 42 · 1

255 −
(

256
255

)2
= 67 064

65 025 .
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Differential Spectrum. The differential spectrum of an S-box is a histogram of the
number of values δS(∆I ,∆O).

Homogeneity. Let ∆I ,∆O ∈ Fb2 be non-zero. An S-box is called homogeneous if the
distribution of δS(∆I ,∆O) w.r.t. ∆O 6= 0 is independent of the value ∆I . It is called
inverse homogeneous if the distribution of δS(∆I ,∆O) w.r.t. ∆I 6= 0 is independent of
the value ∆O. For example, the S-box of the AES is homogenous since each non-zero ∆I

has one output difference ∆O with four solutions, 126 output differences ∆O with two
solutions, and 128 non-zero output differences ∆O with no solutions.

2.4 Known Integral Distinguishers on Round-reduced AES
Integral attacks consider the propagation of sets of inputs through a cryptographic transform
such that the sum of their corresponding output parts sums to zero, similarly as cubes
[DS09]. The principle had been extended and generalized in the division property by Todo
[Tod15]. Integral distinguishers consider parts of the state in a given set and label the
parts at certain states as either

• CONSTANT (C) if all texts in a set have a constant value in the considered parts,

• BALANCED (B) if the sum of all texts in the considered parts is zero,

• ALL (A) (or PERMUTATION) if the texts in a set cover all values of the part
exactly once, or

• UNKNOWN (U) if no further knowledge of the part is known.

We briefly recall the well-known three-round integral distinguisher for the AES [DKR97].

Three-round Integral Distinguisher. Let I, I ′,J ,J ′ ⊆ {0, 1, 2, 3}. Let Xi denote the i-
th element in S and define Sr,i = Rr(Xi) denote the encryption ofXi through r consecutive
rounds of AES. Let r, c ∈ {0, 1, 2, 3}. We denote by S =

(
D{r} ∩ C{c}

)
⊕A a δ-set, that is

a set of 28 texts that iterate over all values xc−r mod 4,c (the byte at Row (c− r) mod 4
and Column c is indicated as A) and are constant at all other bytes (C). A ∈ F4×4

28 is any
given text. Then, the texts in S iterate over all 28 values in each byte of S2 after two
rounds of AES.[A C C C

C C C C
C C C C
C C C C

]
R2
−−→

[A A A A
A A A A
A A A A
A A A A

]
SR◦SB−−−−→

[A A A A
A A A A
A A A A
A A A A

]
MC−−→

[B B B B
B B B B
B B B B
B B B B

]
.

The ALL property is preserved through SubBytes and ShiftRows of the third round, but is no
longer guaranteed after the MixColumns operation at the end of Round 3. Since MixColumns
is linear, it preserves balanced input sets, i.e., the sum of all 28 states

⊕28

i=1 S
3,i = 0. This

is indicated by B. The subsequent SubBytes operation in Round 4 destroys this Balanced
property.

Four-round Integral Distinguisher. It is well-known that the three-round distinguisher
can be extended to a four-rounds higher-order distinguisher [DKR97]. Let DI for |I| = 1
be a diagonal space. Then, the texts in DI iterate over all 232 values in each column of S3

after almost three rounds of AES.[A C C C
C A C C
C C A C
C C C A

]
R3
−−→

[A A A A
A A A A
A A A A
A A A A

]
SR◦SB−−−−→

[A A A A
A A A A
A A A A
A A A A

]
MC−−→

[B B B B
B B B B
B B B B
B B B B

]
.
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The ALL property is no longer guaranteed by the MixColumns operation at the end of
Round 3. Since MixColumns is linear, it preserves the balancedness of the outputs, i.e.,
the sum of all 232 states

⊕232

i=1 S
4,i = 0. The SubBytes operation in the subsequent round

destroys the Balanced property.

3 Statistical Framework
We follow the framework by [GR19]. The binomial distribution B(N, p) yields the number
of successes in a sequence of N independent Boolean experiments, each of which is
successful with probability p. The values µ and variance σ2 are given by µ = N · p and
σ2 = N · p · (1− p). The theorem by De Moivre and Laplace allows us to approximate the
binomial distribution by a normal distribution if the skew is close to zero. Moreover, the
difference as well as the sum of two normal distributions also yields a normal distribution.
Let X0 ∼ N (µ0, σ

2
0) follow a normal distribution with mean µ0 and variance σ2

0 . Moreover,
let X1 ∼ N (µ1, σ

2
1). Then, X0 − X1 ∼ N (µ0 − µ1, σ

2
0 + σ2

1).
We consider two normal distributions, where we approximate that their difference is
normally distributed with N (µ, σ2), with

µ = N · |p0 − p1| and (2)
σ2 = σ2

0 + σ2
1 = N · p0 · (1− p0) +N · p1 · (1− p1) . (3)

We distinguish between at least two settings. In the setting when the distribution for
the AES follows a single binomial distribution, we can replace the rightmost term of
Equation (3) by σ2

1 = N · p1 · (1− p1).
In the other setting, the distribution N (µ1, σ

2
1) are composed of several binomial distribu-

tions. While this affects its mean slightly, it has a strong effect on the variance. In this
case, we determine the quotient σ2

1/σ
2
0 , and obtain for the distribution of their differences

that

σ2 = σ2
0 + σ2

1 = N ·
(
p0 · (1− p0) + σ2

1
σ2

0
· p1 · (1− p1)

)
. (4)

Note that Equation (4) generalizes Equation (3), and we can continue to use the latter.
Since the probability density of the normal distribution is

F
(
x|µ, σ2) def= e−

(x−µ)2

2σ2 · 1
σ
√

2π
,

it follows that

PS =
∫ +∞

0

e−
(x−µ)2

2σ2

σ
√

2π
dx =

∫ +∞

−µσ

e−
x2
2

√
2π

dx = 1
2

(
1 + erf

(
−µ
σ
√

2

))
,

where erf(x) is the error function, i.e., the probability that a normally distributed random
variable X ∼ N (0, 0.5) falls into the interval [−x, x]. To obtain a success probability of at
least PS , the number of trials N has to satisfy

N ≥
2
(
p0(1− p0) + σ2

1
σ2

0
p1(1− p1)

)
(p0 − p1)2 ·

(
erfinv(2 · PS − 1)2) , (5)

where erfinv(x) is the inverse error function.
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4 Four-round Truncated-differential Distinguisher
We extend the deterministic three-round integral distinguisher to a probabilistic four-round
truncated-differential distinguisher in the following.
We consider a δ-set of 28 plaintexts that iterate over all values in a single plaintext byte and
leave all other plaintext bytes constant. For a δ-set, all output bytes after the operation
sequence R̂3 (that is after two rounds and SubBytes as well as ShiftRows of Round 3) iterate
over all values. So, for each column, the MixColumns operation in Round 3 can be viewed
as the sum of the results of four permutations where the inputs iterate over all values.
In this section, we try to provide insights on the following aspects: (1) We adapt Patarin’s
setting to three-round AES. (2) Thereupon, we provide theoretical bounds for the proba-
bility collisions in a single cell after almost four rounds for the AES and Small-AES. (3)
Next, we report on our experiments with Small-AES.
Additionally, we could observe interesting effects. (4) On one hand, we observed that the
collision probability depends strongly on the positions of the active cell in the plaintexts
as well as the considered cell for partial collisions after almost four rounds. We report our
findings in Appendix E.1. (5) Moreover, we found more deviations when investigating
Small-AES different S-boxes. We provide the S-box details in Appendix A and our results
and an explanation that correlates the S-box variance to the expected number of collisions
in Appendix C.2.

4.1 Adapting Patarin’s Setting to Three-round AES
We denote by M i the i-th plaintext message in a δ-set, and let xi denote the iterated
byte. Let vi0, vi1, vi2, and vi3 be the four bytes of the first column after R̂3 that correspond
to xi. For j ∈ {0, 1, 2, 3}, we denote by π′j : F8

2 → F8
2 the permutations that map xi to

vij−1. In MixColumns, the bytes are multiplied by 1, 2, or 3 in F28 , whose results are
summed together finally. We denote by Pj : F8

2 → F8
2 the permutations, consisting of the

multiplications from the topmost row of the MixColumns matrix and the byte rotation for
the XOR operation when our target is Byte yi = S3,MC

i [0]. We write 3,MC
i as the state in

Round 3 directly after the application of MixColumns for an input xi. So, P0(x) = 2x,
P1(x) = 3x, P2(x) = x, P3(x) = x, in F28 .
To be compatible with Patarin’s setting, the permutations π′j would have to be random and
independent. Then, if the permutations Pj are independent from the maps π′j , the resulting
compositions Pj ◦ π′j are also random permutations. Though, neither the permutations
π′j nor Pj can be fully random; it is an approximation to consider their composition as
random to apply Patarin’s setting. Our setting focuses on q = 2n queries per permutation
evaluation. Of course, the setting can be generalized also to the other columns.

Assumptions. We can adopt the assumptions from [GR19]:

(1) The number of solutions for non-trivial differentials ∆I
S−→ ∆O through the S-box S

S(X)⊕ S(X ⊕∆I) = ∆O , (6)

are uniformly distributed, for X,∆I ,∆O ∈ Fb2 for b ∈ {4, 8} (b = 8 for AES and
b = 4 for Small-AES, respectively) and all non-zero differentials ∆I ,∆O.

(2) There is no non-trivial relation between the solutions of several equations (14) that
we study. This means that the probability of one equation must not be a solution of
a different one with probability different from that in Equation (15).

Later, we provide proofs for the mean and variances of our truncated differentials under
those assumptions. Moreover, we also study the behavior of Small-AES experimentally
and outline deviations from this idealized model in practice.
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Figure 1: Our distinguishers over four (left) and five (right) rounds of AES. Darkened cells
represent bytes with active (non-zero) difference, white cells represent bytes with zero difference.

Byte-collision Probabilities. As a result of our assumption above, we approximate by
E [N4] the expected number of byte collisions S3,i

r,c = S3,j
r,c . According to Equation (1), the

probability for a byte collision is approximately

Pr
AES

[
S3,i
r,c = S3,j

r,c

]
' 1

28 + 1
28 · (28 − 1)3 ' 2−8 + 2−31.983. (7)

For a random permutation, the probability is roughly

Pr
rand

[
S3,i
r,c = S3,j

r,c

]
= 2120 − 1

2128 − 1 ' 2−8. (8)

Thus, the difference between those two probabilities can be exploited to build a truncated-
differential distinguisher on four-round AES, because S3,i

r,c = S3,j
r,c directly implies a collision

between the corresponding bytes in S4,SB, which can be computed from the ciphertext by
inverting the final ShiftRows operation (and the final MixColumns operation if present).
The distinguisher is depicted on the left side of Figure 1.

Settings. Throughout this work, we consider two settings:

(1) We form pairs from δ-sets that have no non-trivial relation to each other.

(2) We form pairs from δ-sets such that all
(4

1
)
· 224 δ-sets of a single-diagonal space are

contained exactly once.

The former provides more flexibility to the adversary. We consider the latter only since it
serves as a subset of the diagonal space. This allows us to show our theoretical results. The
means of the differentials do not deviate considerably between both settings. However, as
Appendix B.1 shows, the latter inherits the multiple-of-eight property from the five-round
distinguisher by Grassi et al. [GRR17]. As a consequence, the variances differ considerably.
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4.2 Theoretical Analysis
Let Y be a random variable for the number of single-byte collisions after four rounds.
Both settings consider the distribution of k collisions from N pairs. In Setting (1), this
distribution can be approximated by a binomial distribution, Y ∼ B(N, p), where p is the
probability of Equation (7) or Equation (8), respectively.
In Setting (2), the distribution is more complex. Here, it holds that N = x · 4 · 224 ·

(28

2
)

stems from x diagonal spaces D{c}. Since the number of byte collisions in this setting
possesses a multiple-of-eight property, it is reasonable to assume that the distribution of
eight-tuples would approximately follow a binomial distribution, similar to [GR19]. Let
X3 be a random variable for the number of eight-tuples of collisions. Given N3 ways of
eight-tuples, according to [GR19],

Pr [X3 = `3] =
{(

N3
`3

)
(p3)`3(1− p3)N3−`3

where p3 = pAES from Equation (7). For the total number of collisions Y, we can derive
similarly as Lemma 1 in [GR19] that

Pr [Y = `] =
{

0 if ` mod 8 6≡ 0,(
N3
`3

)
(p3)`3(1− p3)N3−`3 otherwise,

where ` = 23 ·`3, N3 = 231 ·2554/8 and p3 = 2−8 +2−31.983. In other words, Pr [Y] = 23 ·X3,
where X3 ∼ B(N3, p3) is a binomial distribution. The factor `3 represents the number of
pairs in the input space that follow the distribution.
We conduct a proof that shows that the theoretical mean of collisions in the first byte
matches our claims above, following the footsteps of the expectation proof in [GR19].
The first two rounds of the well-known integral distinguisher on three-round AES can be
represented easily as a subspace trail. Let the δ-set iterate over all values of plaintext byte
S0
r,c, and let k =def c− r mod 4 be the zero diagonal after three rounds. Then, there exists

the deterministic subspace trail

C{c} ∩ D{k} ⊕A
R−→
1
C{k} ⊕A′

R−→
1
M{k} ⊕A′′ .

The interesting part consists of the probabilistic transition to

M{k} ⊕A′′
R−→
p
DJ ∩ C{c} ⊕A′′′

through Round 3 where J ⊂ {0, 1, 2, 3}, |J | = 3, and c ∈ {0, 1, 2, 3}. We denote by
` ∈ {0, 1, 2, 3} the index of the zero-difference diagonal ` 6∈ J . A,A′, A′′, A′′′ are arbitrary
constants in F4×4

28 .

Theorem 1. Let X = {Xi ∈ F4×4
28 }, for 0 ≤ i < 232, denote a set of all texts in

a coset M{k} ⊕ A for some A ∈ F4×4
28 , A ∈ X⊥, where all columns are active. Let

Y = {Y i ∈ F4×4
28 : Y i = R(Xi)}, 0 ≤ i < 232, denote the set of corresponding outputs after

one round of AES. Let Y be a random variable for the number of different ciphertext
pairs (Y i, Y j) s. t. Y i, Y j ∈ DJ ∩ C{c} ⊕A′, for some A′ ∈ F4×4

28 , J ⊂ {0, 1, 2, 3}, |J | = 3,
and c ∈ {0, 1, 2, 3}. Then, under the assumption of the uniform distribution of non-trivial
solutions of differentials through the S-box in Equation (6),

Pr
[
M{k} ⊕A

R−→ DJ ∩ C{c} ⊕A′
]
' 2−8 + 2−31.983 .

Our proof is described in Appendix C.2. The analysis is conducted in Setting (2), which
consists of two steps: First, determine the average number of solutions which yield a
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collision in a single byte after three rounds for all pairs from δ-sets from a full single-diagonal
plaintext space. Second, divide the number of pairs by the number of all pairs in a single-
diagonal space. A proof of our claim about the mean in Setting (1) of independent δ-sets
can use a similar argumentation. A study of the variance can be found in Appendix D.2.

Complexity. The complexity of our four-round distinguisher is approximated by Equa-
tion (5) (plugging PrAES

[
S3,i
r,c = S3,j

r,c

]
into pAES and Prrand

[
S3,i
r,c = S3,j

r,c

]
into prand).

Consider Setting (1) first. For a success probability of PS = 0.95, we obtain N > 258.402

pairs. In total, a δ-set contains
(28

2
)
' 215 pairs. So, the distinguisher needs approximately

243.402 δ-sets with 251.402 chosen plaintexts. For PS = 0.99, we obtain N > 259.402 pairs,
and therefore a data complexity of approximately 252.402 chosen plaintexts.
Setting (2) has a stronger multiple-of-n property. In theory, it also possesses a considerably
higher variance of approximately a factor of eight. Therefore, the data complexity increases
by a factor of about 2σ2

AES/σ
2
rand = 16. For PS = 0.95, we obtain 262.402 pairs and 247.402

δ-sets of 255.402 chosen plaintexts. For PS = 0.99, we obtain N > 263.402 pairs, and
therefore a data complexity of approximately 256.402 chosen plaintexts.
Remark 1. We note that in the second setting, a far more efficient distinguisher that
exploits the multiple-of-n property can be built. Moreover, there exist even more efficient
distinguishers such as the usual integral. However, our focus here is on the concept of
extending the integral probabilistically, to four and more round subsequently.

Reduced Variant. In order to allow a practical verification, we derive the corresponding
probabilities for four rounds of Small-AES, the downscaled variant from [CMR05] which
employs four-bit S-boxes. Again, we view the downscaled variant of MixColumns as a sum
of four independent permutations on F24 . Then, the probability that, after three rounds, a
fixed nibble has zero difference is approximately

Pr
Small-AES

[
S3,i
r,c = S3,j

r,c

]
' 1

24 + 1
24 · (24 − 1)3 ' 2−4 + 2−15.721.

For a random permutation, the probability can be approximated by

Pr
rand

[
S3,i
r,c = S3,j

r,c

]
= 260 − 1

264 − 1 ' 2−4 − 2−64.093.

Applying Equation (5) yields N > 229.878 for PS = 0.95 in Setting 2. Since a δ-set yields(24

2
)

= 120 pairs, we need about 223 δ-sets with 227 chosen plaintexts. For PS = 0.99, we
obtain N > 230.878 pairs, and therefore a data complexity of approximately 228 chosen
plaintexts.

4.3 Index Dependencies of The Four-round Distinguisher
The mean of the four-round truncated differential depends strongly on the index of (1) the
input cell that is iterated over in the δ-sets as well (2) the index of the inactive output cell
after three rounds. Let iin and iout denote the cell indices of the relevant input and output
cells. We obtain an equation system through three full rounds. Let x = S(P [iin]⊕K0[iin]).
Since we consider all values of x, K0[iin] is a constant, and the S-box a permutation, we
can simply iterate over all values x and neglect K0. For simplicity, let us define xi =def i.
Note that the position of xi is relevant, and the ShiftRows operations affect the coefficients
of the equation system. We define by (ai, bi, ci, di) ∈ F4

2b variables in terms of xi at S2
SB,

i.e., after the SubBytes operation in the second round. Note that b = 4 for the Small-AES
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Table 3: Means and standard deviations for the number of pairs that collided in a fixed output
byte for our four-round distinguisher with Small-AES in Setting (1). Each experiment employed
100 random independent keys and 2s random δ-sets. Experimental values are rounded. Full-round
Speck-64-96 was used as pseudorandom permutation π. ×σ denotes (µSmall-AES − µπ)/σSmall-AES
with respect to the theoretical values.

π Small-AES

Theory Experiments Theory Experiments
s µπ σπ µπ σπ µSmall-AES σSmall-AES ×σ µSmall-AES σSmall-AES ×σ

20 7 863 200 2 715 7 864 396 2 566 7 866 650 2 716 1.27 7 870 789 2 918 2.60
21 15 728 600 3 840 15 728 650 3 957 15 733 300 3 841 1.22 15 742 188 3 809 3.54
22 31 457 300 5 431 31 457 205 5 096 31 466 600 5 431 1.71 31 484 544 6 007 4.54
23 62 914 600 7 680 62 915 004 7 820 62 933 200 7 681 2.42 62 967 244 7 030 6.85

and b = 8 for the AES. For iin = 0, we define
ai
bi
ci
di

 def=


S(2xi ⊕K1[0])
S(xi ⊕K1[1])
S(xi ⊕K1[2])
S(3xi ⊕K1[3])

 .

Note that K1 also covers the constant values of the plaintext bytes 1, 2, 3 here. Since we
iterate over all values of all constants, we consider all possible values. After the second
round, and the subsequent SubBytes operation in Round 3, we obtain an equation system
of

S(2ai ⊕K2[0]) S(di ⊕K2[4]) S(ci ⊕K2[8]) S(3bi ⊕K2[12])
S(di ⊕K2[5]) S(3ci ⊕K2[9]) S(2bi ⊕K2[13]) S(ai ⊕K2[1])
S(2ci ⊕K2[10]) S(bi ⊕K2[14]) S(ai ⊕K2[2]) S(3di ⊕K2[6])
S(bi ⊕K2[15]) S(3ai ⊕K2[3]) S(2di ⊕K2[7]) S(ci ⊕K2[11])

 = (. . .), (9)

where the right-hand side reflects the left-hand side with (aj , bj , cj , dj) for some j 6= i.
For each output cell, we require only a column of the state in Equation (9), i.e., four
variables after the MixColumns operation at the end of Round 3. Each output cell contains a
dependency of a, b, c, and d exactly once. So, we have to consider only four key variables of
K2. Since we consider collisions in single cells after four rounds and can invert MixColumns
and ShiftRows in that row, neither K4 nor the S-box of Round 4 nor K3 influence the
number of collisions. For example, the equation system for a cell collision at position
iout = 0 becomes

2S
(
2S(2xi ⊕K1[0])⊕K2[0]

)
⊕ 3S

(
S(3xi ⊕K1[1])⊕K2[5]

)
⊕ S

(
2S(xi ⊕K1[2])⊕K2[10]

)
⊕ S

(
S(xi ⊕K1[3])⊕K2[15]

)
= 2S

(
2S(2xj ⊕K1[0])⊕K2[0]

)
⊕ 3S

(
S(3xj ⊕K1[1])⊕K2[5]

)
⊕ S

(
2S(xj ⊕K1[2])⊕K2[10]

)
⊕ S

(
S(xj ⊕K1[3])⊕K2[15]

)
(10)

for i 6= j. For different in- or output positions, the equations differ naturally.

Application to The AES. For each output cell, Equation (10) consists of eight key-
dependent variables. While this is infeasible to be computed naively for the AES, we can
observe that it consists of four terms whose key cells are pair-wise independent. Thus, we
could split it into four terms that could be computed individually. For each of the

(28

2
)

combinations of xi, xj , and each term ` ∈ {0, 1, 2, 3}, we have 28 · 28 solutions that could
be stored in a table L`. Let f0(K1[0],K2[0], xi) =def 2S(2S(2xi ⊕K1[0])⊕K2[0]) = Y ,
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Figure 2: Theoretical index-dependent means from the equation system for our four-round
distinguisher for the AES, in multiples of |µAES − µrand| deviations from the mean of the PRP.
Each cell represents the result for the active input cell in the plaintexts (y-axis) and the tested
inactive cell (x-axis) after four rounds without the final MixColumns operation. 1.0 means that
the distinguisher matches our prediction closely.

where K1[0], K2[0], and Y are variables in F8
2 and xi is the iterating variable from the

δ-set. Then, L0 contains the 216 solutions for each possible value of xi. Thus, L0 has 28

lists of 216 elements.
Having fixed xi, xj , we can derive the differences of f`(K1,K2, xi)⊕ f`(K1,K2, xj) and
create a histogram table of all differences, ∆L`. This means ∆L`[∆] contains the number
of pairs (xi, xj) that f`(K1[0],K2[4], xi)⊕ f`(K1[0],K2[4], xj) = ∆. We can repeat this
step for all values of ` and merge the histogram tables ∆L0 and ∆L1 by taking the product
and create a table ∆L0,1. The same step can be computed for ∆L2 and ∆L3 to create a
table ∆L2,3. Finally, we consider the number of collisions by multiplying ∆L0,1[∆] and
∆L2,3[∆] element-wise for each ∆ ∈ F28 and accumulate all results. This yields the number
of (K1[0, 1, 2, 3],K2[0, 5, 10, 15], xi, xj) that collide in a particular output byte. We repeat
this step for all input-output combinations. In total, this approach needs

16 · 16 ·
((

4 ·
(

28

2

)
· 28 · 28

)
+ 3 ·

(
28 · 28))

which is feasible with O(241) lookups.
For an ideal permutation, we would expect

µrand = (28)8 ·
(

28

2

)
· 2−8 ' 2 351 959 869 397 967 831 040 and

σrand ' 48 402 195 468.37 ,
whereas we would expect for AES in theory – that is, without an influence of the indices
from the MixColumns matrix or the S-box:

µAES = (28)8 ·
(

28

2

)
· (2−8 + 2−31.983) ' 2 351 960 011 247 373 747 803. and

σAES ' 48 402 196 922.24 .
The results are depicted Figure 2 in multiples of |pAES − prand| of the deviation from the
mean of the PRP. The most important observations are the following that our proposed
distinguisher seems to work: all deviations are close to 1.0 – more precisely, in the range
[0.987..1.256] of the difference |pAES − prand| – and there exists no significant deviations
from it. Moreover, we can observe the regular structure where each row (results of each
input cell) is a permutation of the numbers of solutions of the row (of the results for input
cell 0).
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Application to Small-AES. We also conducted similar experiments on Small-AES. In
that case, we observed much stronger deviations from our expected values. For Small-AES,
we could not only compute the theoretical index-dependent expectations but also implement
it for all combinations to experimentally verify it, which supported our analysis. The
details are provided in Appendix E.1.

4.4 Verification
Experimental Verification Using Small-AES. We also verified the distinguisher exper-
imentally with 100 random keys and 2s δ-sets, for s ∈ {20, . . . , 23}, and for the index
positions of index cell 1 and output cell 0. Note that an experiment means to compute the
number of collisions for 2s δ-sets and a random independent key. For each experiment, we
evaluated the number of collisions of the first nibble of the output. As an approximation
of a random permutation, we employed full-round Speck-64-96 with 100 random keys. Our
results are listed in Table 3. The values µ denote the obtained means of the number of
pairs that collide in at least on inactive inverse diagonal, over all experiments, e.g. for
220 δ-sets, one could expect 220 ·

(24

2
)
· (2−4 + 2−15.721) ≈ 7 866 650 colliding pairs per

experiment.

Transition-based Verification. Rønjom [Røn19] proposed a general approach of trans-
ition-distribution matrices for substitution-permutation networks. Starting from a vector
that represents the distribution of active-bytes-per-column in plaintexts, Rønjom’s approach
allows us to derive the probability of active bytes per column after r rounds of an SPN.
Thus, his results can be viewed as a different view on the same distinguishing events
that verify our attacks under idealized assumptions of the AES S-box. We employed his
implementation for a second form of verification. We obtained

pAES ' 0.00390625023558 . . . ' 2−8 + 2−31.98306 and
pSmall-AES ' 0.06251851851852 . . . ' 2−4 + 2−15.72067 ,

which supports our analysis.

Effects of the Variance. From our theoretical considerations, we initially expected that
the number of collisions for every single diagonal yielded always a multiple of eight. Since
the variance is defined as σ2 = N · p · (1 − p), one would expect that the variance in
Setting (2) is about eight times higher than that in Setting (1) due to the multiple-of-
eight property. So, we conducted experiments on the variance in both settings, whose
results are provided in Appendix D.2. Interestingly, our experiments with Small-AES
yielded that the numbers of collisions were always multiples of 32. From experiments with
alternative S-boxes, it seemed that this is not a property of the S-box. More thoughts and
a multiple-of-32 distinguisher are summarized in Appendix B.2.
Our experiments show that the variance differed significantly between the S-boxes. The
variance for the original S-box of Small-AES was about 15.3 times higher in Setting (2)
than the variance in Setting (1). For Small-AES with the S-box of PRESENT, the factor
was roughly 12.7. Using the S-box of PRIDE, we obtained a huge deviation with a factor of
roughly 40. This property affects the mean of our distinguisher only marginally. However,
the reason for the strong deviations in the variances remains an interesting future work.

5 Five-round Truncated-differential Distinguisher
We can extend the four-round distinguisher from Section 4 to five rounds.
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5.1 Setting
Consider some diagonal space D{c} for some index c ∈ {0, 1, 2, 3}. Then, the expected
probability that all four bytes in that diagonal space collide for two texts in a δ-set can be
approximated by:

Pr
AES

[
S3 ∈ D{c}

]
'
(

2−8 + 1
28 · (28 − 1)3

)4
'
(
2−8 + 2−31.983)4 ,

Naively, we can approximate the same probability for a random permutation by

Pr
rand

[
S3 ∈ D{c}

]
= 296 − 1

2128 − 1 ' 2−32 − 2−128.

This approximation is naive since the texts are not independent. In [GR18, Appendix
C], Grassi and Rechberger provide arguments for the number of collisions for 232 input
texts that can be combined to pairs with each other to a mixed space MI for |I| = 3.
They consider the dependency between multiple texts. Still, they show that the collision
probability can be well approximated by 2−32.
Say, we observe the ciphertexts after five rounds that correspond to a δ-set of 28 plaintexts.
Again, the final MixColumns operation can be simply inverted to obtain the differences
before it. Then, the probability to have at least one all-zero anti-diagonal in the difference
is given for five-round AES by

pAES ' 1−
(

1− Pr
AES

[
S3 ∈ D{c}

])4
' 2−30 + 2−51.985,

whereas for a random permutation, it is approximately

prand ' 1−
(

1− Pr
rand

[
S3 ∈ D{c}

])4
' 2−30 − 2−61.415.

The distinguisher is depicted on the right side of Figure 1.

5.2 Theoretical Analysis
As for our four-round distinguisher, we show the theoretical probability of inverse-diagonal
collisions after almost five rounds in Setting (2). Our proof follows the mean-based proof
by Grassi and Rechberger [GR19]. A proof of our claim for the mean in Setting (1) is
similar, and the mean should not change. Moreover, Appendix D.1 calculates the variance
in both settings for the AES and argues for Small-AES.
The core of our truncated-differential distinguisher is the probabilistic transition

M{k} ⊕A
R−→
p
DJ ⊕B

through Round 3 where J ⊂ {0, 1, 2, 3} and |J | = 3. Let ` ∈ {0, 1, 2, 3} be the index of
the zero-difference diagonal ` 6∈ J . Here, A,B ∈ F4×4

28 are arbitrary constants. Theorem 2
aims to approximate the probability p for the transition of the third round, under the
condition that all columns after two rounds are active.

Theorem 2. Let X = {Xi ∈ F4×4
28 }, for 0 ≤ i < 232, denote a set of all texts in

a coset M{k} ⊕ A for some A ∈ F4×4
28 , A ∈ X⊥, where all columns are active. Let

Y = {Y i ∈ F4×4
28 : Y i = R(Xi)}, 0 ≤ i < 232, denote the set of corresponding outputs after

one round of AES. Then, under the assumption of the uniform distribution of non-trivial
solutions of S-box differential transitions,

Pr
[
M{k} ⊕A

R−→ DJ ⊕B
]
' 2−30 + 2−51.985 .
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The analysis is described in Appendix C.1, and is again conducted in Setting (2). A
proof of our claim about the mean in Setting (1) of independent δ-sets can use the same
argumentation.
Let Y be a random variable for the number of single-column collisions after four rounds.
Both settings consider the distribution of k collisions from N pairs. In Setting (1), the
distribution is approximately a binomial one, Y ∼ B(N, p), with p as above.
In Setting (2), the distribution is more complex. Here, it holds that N = x·4·224 ·

(28

2
)
stems

from x diagonal spaces D{c}. Since this setting maintains a multiple-of-eight property, it
is reasonable to assume that the distribution can be approximated by

Pr [Y = `] =
{

0 if ` mod 8 6≡ 0,(
N3
`3

)
(p3)`3(1− p3)N3−`3 otherwise,

where ` = 23 · `3, N3 = 228 · 2554 and p3 = 2−30 + 2−51.985. The factor `3 represents the
number of pairs in the input space that follow the distribution.

Steps. The steps of our distinguisher are as follows:

1. Initialize a collision counter.

2. For i = 1..2s, collect a structure Si of 232 texts that iterate over all values in any four
bytes and leave the remaining bytes constants. Query the plaintexts of a structure
and ask for their ciphertexts. Invert the final ShiftRows operations to get the states
S5,SB and store them in some list Q.

3. Form 4 · 224 δ-sets from a structure, i.e., the texts in each δ-set iterate over the 28

values in one byte and are constant in the 15 remaining bytes. For each δ-set:

(a) Initialize four lists Li, for i = 0, 1, 2, 3 of 232 elements.
(b) For each column i of S5,SB, interpret the column as 32-bit integer and append

the text to Li the index corresponding to the column value for each list.
(c) For each of the lists Li, look for collisions, e.g., multiple values at the same

index. For each collision, look up those pairs in other columns if they have
already been counted. If not, increment the counter.

4. If the counter is higher than the threshold θ, output real; otherwise, output random.

We can use the approximation for single differential characteristics from [SS17] for an
approximation for threshold. The success probability corresponds to 1 − α, where α is
the probability of the Type-I error, that the distinguisher decides that it were a random
permutation, but is the AES. A possible choice for a threshold is, according to [SS17],

θ = N · |pAES − prand| −

√
3 ·N · pAES · ln

(
1
α

)
(11)

Setting PS = 0.95 implies α = 0.05.

Complexity. Consider Setting (1) first. For a success probability of approximately
PS = 0.95, we obtain N ≥ 276.406; for PS = 0.99, we obtain N ≥ 277.406 pairs. By fixing
any set of four distinct bytes in the plaintexts, we can form 232 texts by iterating over all
values of those four bytes and leaving the remaining twelve bytes constant for a structure.
So, one structure provides

4 · 224 ·
(

28

2

)
' 240.994 ' 241 pairs .
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236 structures with 268 chosen plaintexts with approximately 277 pairs suffice for a success
probability of more than 0.95 on average. The memory complexity is given by storing 232

states in Q and four lists Li of 4 · 232 columns at a time. The time complexity consists of
• 268 encryptions and 1/5 partial decryptions or 268.3 encryption equivalents.

• 268 + 268 · 4 ' 270.4 memory accesses for inserting the texts. Depending on the data
structure, insertions or lookups need sorting, which requires N log2(N) operations
on average with e.g., quicksort. Given four lists of 28 elements, sorting needs
approximately 236 · 224 · 4 · 28 · 8 ' 273 memory accesses.

• At most 236 · 224 · 4 ·
(28

2
)
· 2−32 · 3 ' 246.6 additional memory accesses when collisions

occur to look up if other columns collide in the other lists.

• Approximately 236 · 224 · 4 ·
(28

2
)
· 2−32 ' 246 memory accesses to increment the

counter.
So, the computational complexity can be approximated by 270.4 + 273 + 246.6 + 246 ' 273.3

memory accesses and 268.3 encryptions. From Equation (11), we obtain as an approximation
for θ for PS = 0.95

θ ' 276.406 · 2−51.985 −
√

3 · 276.406 · 2−51.985 · ln(1/0.05) ' 224.420 .

Setting (2) inherits the multiple-of-eight property. We study its variance in Appendix D.1.
The variance for the AES is approximately a factor of eight higher in this setting than that
for a random permutation. Therefore, the data complexity increases theoretically by a
factor of about 2 · σ2

AES/σ
2
rand ≈ 16. For PS = 0.95, we obtain 280.402 pairs and therefore a

data complexity of approximately 240 structures with 272 chosen plaintexts. For PS = 0.99,
we obtain N > 281.406 pairs, and therefore a data complexity of approximately 273 chosen
plaintexts. From Equation (11), we obtain as an approximation for θ for PS = 0.95

θ ' 280.402 · 2−51.985 −
√

3 · 280.402 · 2−51.985 · ln(1/0.05) ' 228.417 .

Remark 2. The distinguisher employs structures composed of 232 texts, e.g., from diagonals
each, which are close to our analyzed setting. A more efficient approach, used in an earlier
version of this paper, is to employ structures of 264 texts that iterate over eight bytes, and
form pairs from the 8 · 256 ·

(28

2
)
structures. This approach would approximately halve the

necessary data and computational complexities, but increases the memory complexity. Its
disadvantage is an approximating assumption that the so-created structures are independent.
We decided in favor of the more conservative approach here.

Reduced Variant. To allow a practical verification, we derive the corresponding proba-
bilities for Small-AES. Again, we approximate the downscaled variant of MixColumns as a
sum of four independent permutations on F24 . The probability that all four bytes in a
diagonal space D{c} collide for two texts in a δ-set can be approximated by E [N4]4:

Pr
Small-AES

[
S3 ∈ D{c}

]
=
(

2−4 + 1
24(24 − 1)3

)4
'
(
2−4 + 2−15.721)4 ,

and that for a random permutation by

Pr
rand

[
S3 ∈ D{c}

]
= 248 − 1

264 − 1 ' 2−16 − 2−64.

Then, the probability to have at least one all-zero anti-diagonal in the difference is given
for five-round Small-AES by

pSmall-AES ' 1−
(

1− Pr
Small-AES

[
S3 ∈ D{c}

])4
' 2−14 + 2−23.748,
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whereas for a random permutation, it is approximately

prand ' 1−
(

1− Pr
rand

[
S3 ∈ D{c}

])4
' 2−14 − 2−29.415.

In Setting (1), Equation (5) yields, for a success probability of approximately PS = 0.95,
that the required number of pairs would have to be N ≥ 235.934, and N ≥ 236.934 pairs
for PS = 0.99. 216 structures of (24)4 = 216 texts each that iterates over four cells of a
diagonal for each structure can form 216 · 4 · 212 sets of

(24

2
)
pairs each, i.e.,

216 · 4 · 212 ·
(

24

2

)
' 236.907 pairs.

Thus, 216 structures of 216 texts each may suffice for a success probability of PS ≥ 0.95.
In Setting (2), the variance should be eight times higher, and therefore, N ≥ 2σ2

Small-AES
/ σ2

rand = 16 should be 16 times higher. Equation (5) yields, for a success probability of
approximately PS = 0.95, that the required number of pairs would have to be N ≥ 239.934,
and N ≥ 240.934 pairs for PS = 0.99. So, 220 structures of 216 texts each may suffice to
have a success probability of PS ≥ 0.95.

Testing on A Single Diagonal. A variant of the distinguisher can consider only a fixed
inverse diagonal after almost five rounds. Then, the probabilities are

pAES ' Pr
AES

[
S3 ∈ D{c}

]
' 2−32 + 2−53.983 ,

whereas for a random permutation, it is approximately
prand ' Pr

rand

[
S3 ∈ D{c}

]
' 2−32 − 2−128 .

Then, the resulting data complexities for PS = 0.95 would become N ≥ 278.402 and
N ≥ 279.402 for PS = 0.99. So, the data complexity would become 270 and 271 chosen
plaintexts, respectively.
For Small-AES, the corresponding complexities would become N ≥ 237.878 and N ≥ 238.878

pairs, i.e., 233 and 234 chosen plaintexts would be required. Therefore, our distinguisher(s)
test(s) on any inverse diagonal.

5.3 Verification
Experimental Verification. Again, we tried to verify our distinguishers experimentally
with Small-AES. Figure 3 depicts our results with 100 random keys and 230 random
δ-sets of 24 texts each. All values µ denote the means for the number of pairs in δ-
sets that collided in at least one inverse diagonal after five rounds, over all δ sets, e.g.,
µ =

(24

2
)
· 230 · pSmall-AES for Small-AES for 230 δ-sets. Besides, we tested the Small-AES

with the S-box of PRESENT. Like for our four-round distinguisher, we can observe the
following:

• Small-AES deviates significantly from the theory, in the sense that the distinguisher
is stronger. Here, the experimental mean is approximately one standard deviation
higher than the theoretical prediction.

• Small-AES with the S-box of PRESENT has again a strong deviation, by approx-
imately 1.6 standard-deviation units below the theoretical prediction. As for our
four-round distinguisher, it still yields a distinguisher, its mean is approximately
1.7 standard-deviation units above the mean of the PRP, i.e., roughly in the middle
between both theoretical predictions.

We conclude that the true distinguisher, at least for Small-AES, depends largely on the
internals of the S-box.
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Instance µ σ

π
Theory 7 864 140 2 804.22
Experiment 7 864 379. 2 492.46

Small-AES
Theory 7 873 286 2 805.85
Experiments 7 875 860. 2 844.95

Small-AES with PRESENT S-box
Experiments 7 868 881. 2 785.78

Figure 3: Means and standard deviations for the number of pairs that collided in at least
one inverse diagonal for our five-round truncated-differential with Small-AES. Each experiment
employed 100 random independent keys and 230 random δ-sets. Speck-64-96 has been used as
PRP π. We compare to Small-AES with the PRESENT S-box.

Transition-based Verification. Again, we employ the transition-based approach by Røn-
jom [Røn19] for a second form of verification, using 100-bit precision. We obtained the
probabilities

pAES ' 0.2246672325602152 . . . · 10−15 ' 2−30 + 2−51.98306

pSmall-AES ' 0.7244634283789227 . . . · 10−7 ' 2−14 + 2−23.71851 .

The results confirmed the biases of our five-round distinguishers. The slight deviations
can be due to rounding.

Effects of the Variance and Dependencies Again, we also determined the variance in
both settings experimentally. The results are given in Appendix D.1. One would expect
that the variance in Setting (2) is about eight times higher than that in Setting (1) due
to the multiple-of-eight property. Though, we found that it is roughly 11.4 times larger
as outlined in Table 9, i.e., roughly 12 times larger than the variance of Setting (1). The
reason for this gap is unknown.
The results give rise to the possibility that there exists some further multiple-of-four
property in the distribution that may be hidden by the multiple-of-eight property. Note
that this property affects the mean of our distinguisher only marginally. The variance,
however, differs significantly, as we could experimentally observe.

6 Six-round Key-recovery Attack
We can extend the five-round distinguisher from Section 5 to a key-recovery attack on
six-round AES that recovers 32 key bits. We apply the attack twice in a shifted form to
recover 64 key bits. The remaining key bits can be recovered by exhaustive search. Table 4
compares it with the state-of-the-art of attacks on six- and seven-round AES-128. We
emphasize that many more attacks have been published on the variants of AES with 192-
and 256-bit keys.

Precomputation. We construct four tables Hi for 0 ≤ i ≤ 3. For Hi, we store pairs
(X,∆X) ∈ F4

28 × F4
28 such that Ř(X) ⊕ Ř(X ⊕ ∆X) is non-zero only in Byte i of the
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output column, where Ř is the AES round function missing AddRoundKeys and restricted
to work on one diagonal and output the corresponding column (note that the computation
on each diagonal of the state can be done independently of the computation on other
diagonals). The table Hi can be constructed as follows: for each non-zero value y of the
active byte ∆Y , compute ∆O = (∆O0,∆O1,∆O2,∆O3) = MC−1((y ‖ 0 ‖ 0 ‖ 0) ≫ i)
(where≫ i stands for a circular rotation of i bytes). For each ∆Oj (0 ≤ j ≤ 3), check
the DDT of the AES S-box which is integrated with the information of correct pairs for
each compatible difference, one can get 256 pairs (Xj , X

′
j) fulfilling the output difference

∆Oj . For ∆O, obtain all possible combinations between (X0, X
′
0), (X1, X

′
1), (X2, X

′
2),

(X3, X
′
3). Each combination corresponds to a valid (X,∆X). Thus, one can get 2564 valid

pairs (X,∆X) for a non-zero value of the active byte ∆Y . In total, each table Hi contains
255 · 2564 entries. Then, the four tables need 4 · 255 · 2564 · 8 bytes, which corresponds to
approximately 4 · 255 · 2564 · 8/16 ' 240.1 state equivalents.

Steps. The steps are as follows:

1. Initialize a zeroed list K for the 232 key candidates for K0[0, 5, 10, 15].

2. Precompute the tables Hi, for 0 ≤ i ≤ 3.

3. For i = 1..2s, collect a structure Si of 232 texts in a coset of D{0}.

(a) So, the texts in each structure iterate over the 232 values in bytes P [0, 5, 10, 15]
and are constant in the 12 remaining bytes.

(b) Initialize four lists Li, for i = 0, 1, 2, 3. Query the plaintexts of a structure
to an encryption oracle to obtain the corresponding ciphertexts C. Invert
the final ShiftRows operation to get the states S6,SB and store the tuples of
(P [0, 5, 10, 15], S6,SB) into the four lists Li, where the texts are indexed by the
i-th anti-diagonal of S6,SB.

(c) For j = 0..3, consider the lists Lj :

i. Look up collisions on the j-th anti-diagonal of (S6,SB, S′
6,SB). For each

collision, look up in the lists with lower indices j if the same pair collided
already in a different anti-diagonal to prevent double counting.

ii. For each collision, consider their corresponding plaintexts P and P ′ and
derive their difference on the diagonal ∆P [0, 5, 10, 15] = P [0, 5, 10, 15] ⊕
P ′[0, 5, 10, 15]. FromH0,H1,H2, andH3, look up all possible pairs (X,∆X)
such that ∆P [0, 5, 10, 15] = ∆X. Then use the corresponding P [0, 5, 10, 15]
and X to derive the candidate, i.e., K0[0, 5, 10, 15] = P [0, 5, 10, 15] ⊕ X,
increase its counter in K.

4. Sort the list of key candidates and output the sorted list.

5. Apply the attack another time from a shifted diagonal, e.g., D{1}, and with another
2s structures to recover another 32 bits of key material.

6. Test keys in descending order of their counters to recover the remaining 64 bits.

Complexity. Each structure yields 4 · 224 δ-sets, which corresponds to approximately 241

pairs. We choose 2s structures, which corresponds to 2s+32 chosen plaintexts
The time complexity is given by the following:

• The precomputation costs 4 · 255 · 2564 · 8/16 · 1/6 ' 238.5 encryption equivalents
and 240.1 memory accesses for storing the values.
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• Encrypting the data takes 2s+32 encryptions and 1/6 partial decryptions, or at most
2s+32.3 encryption equivalents.

• We need 4 · 2s+32 = 2s+34 memory accesses for storing the 2s+32 texts into four lists.
Sorting the four lists requires 2s · 4 · 232 · 32 ' 2s+39 memory accesses.

• Each structure yields about 263 pairs, and each pair has a probability of approximately
2−30 to collide on a column. So, we expect approximately 2s+63 · 2−30 ' 2s+33

collisions. For each collision that occurs in a table Li, we need at most three memory
accesses for the three other tables in Lj , j 6= i, to prevent double counting. Thus,
we need 2s+33 · 3 ' 2s+34.6 MAs at that point.

• For each collision, we expect on average 4 · 255 suggestions (because the match
∆P [0, 5, 10, 15] = ∆X imposes 32 bits conditions) from the hash tables Hi. So, we
need about 2s+33 · 4 · 255 ' 2s+43.0 memory accesses plus the same amount in K,
plus the same amount of XORs.

Since the attack is performed twice with the same plaintext material but on 32 different
key bits, e.g., K[3, 4, 9, 14], we need the same number of encryptions (alternatively, they
could be stored) and lookups, plus 264 encryptions for the key search. Let a be the attack
advantage. The total time complexity consists of

238.5 + 2 · 2s+32.3 + 264+2·(32−a) Encryptions and
240.1 + 2 · (2s+34 + 2s+39 + 2s+34.6 + 2s+43.0) MAs.

The attack stores 232 tuples of 4 + 16 bytes at a time for the states plus 232 byte counters
candidates plus 240.1 states for the tables Hi, which dominates the memory complexity.

6.1 Relations between Success Probability, Advantage and Data
In Step 6, we apply the key-ranking approach, i.e. candidates of the attacked key bits are
tested in the order of their decreasing counts. Thus, before reaching the correct key, all
candidates ranked above are also checked with combinations of the remaining key bits to
see if they are the correct value. Suppose an m-bit key is attacked and the correct key
candidate is ranked `-th among all 2m candidates, then the key-ranking method reduces
the complexity by a factor of 2m−lg ` over the exhaustive search. Denote by a = m− lg `,
this a is referred to as the advantage by Selçuk in [Sel08].
Remark 3. We note that the original model by Selçuk considers only a single list. The
applicability to an attack that reduces the key in two independent columns may be more
complex.

Using the Model in [Sel08]. In [Sel08], Selçuk derived formulas to present the relation
between the advantage a, the success probability Ps (the probability that the correct key
candidate is ranked among the 2m−a first candidates), and the data complexity N both for
linear and differential cryptanalysis. The results were derived on order statistics and are
applicable for normally distributed random variables. The derived formula is less accurate
for differential than that for linear cryptanalysis, mainly because for classical differential
cryptanalysis, using the normal distribution to approximate binomial distribution is not
quite accurate. However, in the presented truncated differential attack, the binomial
distribution of the random variables – the number of collisions for the right key (denoted
as XR, i.e., the number of collisions for the 5-round distinguisher) and that for wrong keys
(denoted as XW , i.e., the number of collisions for random permutations) – are allowed to
be approximated with normal distributions. Recall that we have XR ∼ N (µR, σ2

R) and
XW ∼ N (µW , σ2

W ), where

µR = N · pAES, σR = N · pAES · (1− pAES), where pAES ' 2−30 + 2−51.985
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Figure 4: Relations between success probability, advantage, data complexity, and computational
complexity of the attack using the model in [Sel08]. Note that in our attack, log2(#CPs.) =
log2(N)− 41 + 32, and we assume #Encs. ' 6 · 4 ·#MAs..

µW = N · prand, σW = N · prand · (1− prand), where prand ' 2−30 − 2−61.415 .

Plugging this configuration into the following Theorem 3, we can draw the trade-off curves
(Figure 4a) between the advantage a, the success probability Ps, and the data complexity
(note that there is a difference between the required number of plaintext pairs and the
required number of plaintexts due to the using of plaintext structures) for the key-recovery
attack on six-round AES.

Theorem 3 ([Sel08]). Let the statistic for a correct key candidate follow the normal
distribution N (µR, σ2

R), and the statistic for wrong key candidate follow N (µW , σ2
W ).

Let m be the number of attacked key bits, a be the advantage of an attack, and N be
the number of available samples. Then, the success probability of the attack Ps can be
approximated by:

Ps ' Φ0,1

(
µR − µa√
σ2
R + σ2

a

)
,

where µa = µW + σWΦ−1
0,1(1− 2−a), and σ2

a '
σ2
W ·2

−(m+a)

φ2
0,1(Φ−1

0,1(1−2−a)) .

Using the Model in [SS17]. In [SS17], Samajder and Sarkar provide closed-form upper
bounds on the data complexity in terms of the success probability and the advantage of a
multiple (truncated) differential attack (the upper bound on the data complexity shows
how much data is sufficient to mount an attack with specified advantage and success
probability). By employing the Chernoff bounds, they do not need any approximations
(e.g., the Gaussian approximation of the binomial distribution or the Poisson approximation
of the binomial distribution tails). Using their result presented below (Proposition 1) and
substituting p1 with pAES , and q1 with prand, we obtain the trade-off curves (Figure 5a)
between the advantage a, the success probability Ps, and the upper bound on the data
complexity (note that there is a difference between the required number of plaintext pairs
N and the required number of chosen plaintexts due to the use of plaintext structures) for
the key-recovery attack on six-round AES.

Proposition 1 ([SS17]). Let 0 < α, β < 1 and N be such that

N ≥
3
(√

p1 ln(1/α) +
√
q1 ln(1/β)

)2

(p1 − q1)2 .
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Figure 5: Relations between success probability, advantage, data complexity, and computational
complexity of the attack using the model in [SS17]. Note that in our attack, log2(#CPs.) =
log2(N)− 41 + 32, and we assume #Encs. ' 6 · 4 ·#MAs..

Then the probabilities of the Type-1 and Type-2 errors in Hypothesis Test-1 are upper
bounded by α and β respectively. Putting α = 1− Ps and β = 2−a, it follows that for

N ≥
3
(√

p1 ln(1− Ps) +
√
aq1 ln(2)

)2

(p1 − q1)2 .

the success probability is at least Ps and the advantage at least a.

Optimal Computational Complexity. To optimize the computational complexity of the
attack, we need to balance the time of the exhaustive search (combining 2m−a candidates
ranked at the top of each of the two lists with the 64 remaining key bits. So, we can see if they
are the correct value) and that of the attack steps (dominated by the 2 · 2s+63−30 · 4 · 255 '
2s+44.0 memory accesses), where m = 32 is the number of attacked key bits, a is the
advantage, 2s is the number of plaintext structure (s = log2(N) − 41, where N is the
required number of pairs and 241 is the number of pairs in each structures). To do that, we
assume that one 6-round AES encryption (Encs.) costs equivalently to 6× 4 ' 24.585 times
of memory access (MAs.) to a data structure of size no more than 232. Thus, we need to find
a balance between 264 · 22·(m−a) = 2128−2a and 2 · 2log2(N)−41+44.0/(6 · 4) ' 2log2(N)−1.591.
Figure 4b shows the trade-off curves under different success probability based on the
result obtained using the model in [Sel08], and Figure 5b shows that using the model
in [SS17]. With a moderate success probability 63% (note that the success probability
of the six-round key-recovery attack in [BODK+18] is approximately 63%), based on the
model by [Sel08], we pick the balance point with a = 25.5. At that point, the required
number of plaintext pairs is N = 279.045, the data complexity is approximately 270.045

chosen plaintexts. The computational complexity is approximately 277.454 encryption
equivalents. Using the model from Samajder and Sarkar [SS17], we choose the balance
point with a = 25. At that point, the required number of plaintext pairs is N = 280.285,
the data complexity is approximately 271.285 chosen plaintexts, and the computational
complexity is approximately 278.695 six-round encryptions. In Table 4, we chose the more
conservative higher complexities from the model by [SS17].

6.2 Experimental Verification
We verified our attack in a variant that omits the second execution on Small-AES. The
resulting S-box is inherited 4-differential-uniformity; for each input difference α, there
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Figure 6: Rank distribution for the correct key among 216 candidates from 100 runs of our
six-round attack with Small-AES, with random keys and 215, 216, or 217 structures of 216 texts
each.

exist six output differences β with Pr[S(x)⊕ S(x⊕ α) = β] = 2/16, and one difference β
for which Pr[S(x)⊕ S(x⊕ α) = β] = 4/16. Similar properties hold for the inverse S-box
for Small-AES. So, each hash table Hi, for 0 ≤ i ≤ 3 contains 216 16-bit entries for each
input difference ∆P on average. This corresponds to 220 bytes or 217 64-bit states for
Small-AES.
We chose 2s structures of 216 texts each, which yielded 2s · 4 · 212 δ-sets. For s = 16, this
corresponds to approximately 236.907 pairs. The time complexity is given by

• 4 · 15 · 15 · 216 · 8/16 · 1/6 ' 222.3 encryptions for the hash tables.

• 232 encryptions and 1/6 partial decryptions, or at most 232.22 encryption equivalents.

• 234 memory accesses for storing the texts and 4 · 216 · 16 · 216 = 238 memory accesses
for sorting the lists.

• It yields about 216 · 4 · 212 ·
(24

2
)
· 2−14 ' 222.91 collisions. Given that we need at most

three accesses to the lists L per collision, this corresponds to at most 225.49 memory
accesses.

• Per collision, we expect on average 4 · 15 suggestions from the hash tables. So, we
require 2 · (222.91 · 4 · 15) ' 229.82 XORs for deriving the keys in K and the same
maximum number of MAs to increment the counters in K.

We omit the second execution; the attack requires

222.3 + 232.22 ' 232.23 encryptions and 234 + 238 + 224.49 + 229.82 ' 238.1 MAs

to reduce the key space for K0[0, 5, 10, 15]. The attack stores 216 tuples of 4 + 16 nibbles
at a time for the states plus 216 four-nibble key candidates, plus 217 states for the hash
tables, which corresponds to less than 217.9 states.
Figure 6 illustrates the results of 100 experiments that employed independent random
keys for 215, 216, and 217 structures of 216 plaintexts each. Our experiments aimed at
recovering the 16 key bits K0[0, 5, 10, 15] from the first diagonal. The experiments yielded
mean advantages of 7.070, 10.550, and 14.243 bits, respectively.
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Table 4: Comparison of the best secret-key key-recovery attacks on six-round AES-128 and the
best attacks on seven rounds, ordered by rounds (descending) then time (ascending). Enc. =
encryptions; MAs = memory accesses; CP = chosen plaintexts, PS = success probability.

Time Data
#Rds. Attack type (Enc.) (CP) PS Ref.

6 Impossible Differential 2122.0 291.5 ≈ 1 [CKK+01]
6 MitM 2106.2 28 ≈ 1 [DFJ13]
6 Prob. Mixture-differential 2105.0 272.8 ≥ 0.95 [Gra17, Gra19]
6 Mixture-differential 281.0 227.5 0.632 [BODK+18]
6 Truncated differential 278.7 271.3 0.632 Sect. 6
6 Integral 251.7 235 ≈ 1 [Tod14, TA14]
6 Partial Sum 242.0 232 ≈ 1 [Tun12a, Tun12b]

7 Impossible Differential 2106.88 2105 ≈ 1 [BLNS18]
7 MitM 299.0 297 ≈ 1 [DFJ13]

7 Six-round Truncated-differential Distinguisher
Core Idea. We can derive a six-round distinguisher that shares the higher-level concept of
our six-round key-recovery attack. Our five-round distinguisher started from a single-byte
difference that was transformed through five rounds to a mixed spaceMJ for arbitrary
J ⊆ {0, 1, 2, 3} and |J | = 3. The idea is to extend the five-round distinguisher at the
beginning by starting from a single-diagonal space. Let X,X ′ ∈ (F28)4×4 be distinct and
∆X = X ⊕X ′ ∈ D{c} for some fixed c ∈ {0, 1, 2, 3}. Let Y and Y ′ be the corresponding
ciphertexts of X and X ′, respectively; either generated by transforming them through
six-round AES, or through a random permutation π � Perm((F28)4×4). We define the
space B{r,c} =def C{c} ∩ D{r}, i.e., the space of the single Byte in Row r and Column c for
r, c ∈ {0, 1, 2, 3}. With a certain probability that we denote as p1, R(X)⊕ R(X ′) ∈ B{r,0}
possesses a single-byte difference after the first round. Then, the probability that the
difference in their ciphertexts is in ∆Y ∈ MJ is approximately the probability of our
five-round distinguisher. We denote that probability as pAES,5. Let us define the random
variable Y to be 1 iff Y ⊕ Y ′ ∈ MJ for arbitrary J ⊆ {0, 1, 2, 3} and |J | = 3, and 0
otherwise. In the case that multiple bytes are active in the difference after the first round,
we can approximate the probability of Y by that for a random permutation.
For a random permutation, the probability is always q ignorant of the plaintext pair. So,
for a fraction of pairs, we have a higher probability that their ciphertext difference is in
MJ . If p1 is not too small, we can build a distinguisher with a smaller mean than before,
which can still be used in a distinguisher.

Formulation. In the following, we omit writing the condition X ⊕X ′ ∈ D{c} explicitly
for brevity. By the law of total probability,

Pr [Y ⊕ Y ′ ∈MJ ]
= Pr

[
R6(X)⊕ R6(X ′) ∈MJ

]
= Pr

[
R6(X)⊕ R6(X ′) ∈MJ |R(X)⊕ R(X ′) ∈ B{r,c}

]
· Pr

[
R(X)⊕ R(X ′) ∈ B{r,c}

]
+

Pr
[
R6(X)⊕ R6(X ′) ∈MJ |R(X)⊕ R(X ′) 6∈ B{r,c}

]
· Pr

[
R(X)⊕ R(X ′) 6∈ B{r,c}

]
.

Under the Markov-cipher assumption, we know from our five-round distinguisher that

p5,AES
def= Pr

[
R6(X)⊕ R6(X ′) ∈MJ |R(X)⊕ R(X ′) ∈ B{r,c}

]
' 2−30 + 2−51.985 − 2−61.415 .
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Figure 7: Six-round distinguisher. Darkened cells represent bytes with active (non-zero) difference,
white cells represent bytes with zero difference.

For X ∈ (F28)4×4, let wt : (F28)4×4 → Z16 represent the byte weight, which yields the
number of non-zero cells in the input:

wt(X) def=
15∑
i=0

δ(X[i]) where δ(X[i]) def=
{

1 if X[i] 6= 0,
0 otherwise.

The probability for a difference with a single active byte after the first round is simply

p1,AES
def= Pr

[
R(X)⊕ R(X ′) ∈ B{r,c}

]
(12)

= Pr
[
R(X)⊕ R(X ′) ∈ B{r,c}|wt(X ⊕X ′) = 4

]
· Pr [wt(X ⊕X ′) = 4] +

Pr
[
R(X)⊕ R(X ′) ∈ B{r,c}|wt(X ⊕X ′) < 4

]
· Pr [wt(X ⊕X ′) < 4]

= 4 · 255
2554 ·

2554

232 − 1 + 0 = 4 · 255
232 − 1 .

Furthermore, we approximate

Pr
[
R6(X)⊕ R6(X ′) ∈MJ |R(X)⊕ R(X ′) 6∈ B{r,c}

]
' Pr [π(X)⊕ π(X ′) ∈MJ ] def= prand ' 2−30 − 2−61.415 .

Thus, we obtain from simple calculation that

p6,AES ' p5,AES ·
4 · 255
232 − 1 + prand ·

(
1− 4 · 255

232 − 1

)
' 2−30 − 2−61.415 + 2−73.98856 . (13)

This implies a difference of |prand − p6,AES| ' 2−73.989. This difference is very small, but
may still be high enough to distinguish between the distributions. The setting is illustrated
in Figure 7.
Equation (5) yields, again for a success probability of PS ≥ 0.95, that one would need
approximately N ≥ 2120.43 pairs, and N ≥ 2121.43 pairs for PS ≥ 0.99. Assuming that a
diagonal structure of 232 texts contains

(232

2
)
pairs, this amount of pairs can be obtained

by querying 257.43 structures or 289.43 chosen plaintexts.

Steps. The steps are as follows:

1. Initialize a collision counter.

2. For i = 1..2s, collect a structure Si of 232 texts that iterate over all values in D{0}
and leave the remaining bytes constant. Query the plaintexts of a structure and ask
for their corresponding ciphertexts after six rounds. Invert the final MixColumns and
ShiftRows operations to get the states S6,SB and store them in a list Q.
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3. For each structure and each state S6,SB therein:

(a) Initialize four lists Li, for i = 0, 1, 2, 3 of 232 elements.
(b) For each column i ∈ {0, 1, 2, 3} of S6,SB, interpret the i-th column as 32-bit

integer c and append the text to Li[c] at the index corresponding to the column
value c, e.g., c = S6,SB[0, 1, 2, 3] for Column 0.

4. For each list Li:

(a) Look for collisions, e.g., multiple values at the same index.
(b) For each collision, look up those pairs in other lists Lj , for i 6= j, if they have

already been counted. Otherwise, increment the corresponding key counter.

5. If the counter exceeds a given threshold θ, output real; otherwise, output random.

An approximation for θ can be 257.43 ·
(232

2
)
· (p6,AES + prand)/2.

Complexity. The attack employs 257.43 structures or 289.43 chosen plaintexts for a success
probability of about 0.95. The memory complexity is given by storing 232 states in Q and
four lists Li of 4 · 232 columns at a time. The time complexity consists of

• 289.43 encryptions and 1/6 partial decryptions or 289.7 encryption equivalents.

• 289.43 · 4 ' 291.43 memory accesses for inserting the texts. Sorting requires approxi-
mately 257.43 · 4 · 32 · 232 ' 296.43 memory accesses.

• If a collision occurs when inserting for a column, at most 2·257.43 ·
(232

2
)
·2−32 ·3 ' 291.02

additional memory accesses are needed to look up if other columns collide in the
other lists.

• Approximately 2 · 257.43 ·
(232

2
)
· 2−32 ' 289.43 memory accesses to increment the

counter.

So, the computational complexity is given by approximately 289.7 encryptions and 291.43 +
296.43 + 291.02 + 289.43 ' 296.52 memory accesses.

Small Variant. For the small-scale variant of AES with four-bit S-boxes, we obtain from
the adapted Equations (12) and (13) that

pSmall-AES,1 = 4 · 15
154 ·

154

216 − 1 = 4 · 15
216 − 1 and

pSmall-AES,6 ' pSmall-AES,5 ·
4 · 15

216 − 1 + prand ·
(

1− 4 · 15
216 − 1

)
' 2−14 − 2−29.415 + 2−33.869 .

This yields a mean of pSmall-AES,6 ·
(216

2
)
' 131 067.137 colliding pairs per structure. For a

random permutation, the probability of a pair to collide is approximately

prand ' 2−14 − 2−29.415 ,

which gives a mean of prand ·
(216

2
)
' 131 067.000 colliding pairs per structure. So, a similar

distinguisher on the small-scale version of the AES would need 256.18 experiments, which
corresponds to 225.18 structures of 216 texts each, or 241.18 chosen plaintexts. For both
variants AES and Small-AES, we provide theoretical trade-offs of success probability and
data complexity in Figure 9.
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Per structure Per experiment
Instance µ σ σ∗ µ σ

π Theory 131 067.000 362.021 5 085 047 291 904.000 2 254 936.126
Experiment 131 066.993 362.022 0.056 5 085 047 013 804.869 2 182 652.286

Small-AES Theory 131 067.137 362.021 5 085 052 607 135.744 2 254 937.303
Experiments 131 067.191 362.041 0.053 5 085 054 704 906.403 2 040 063.345
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Figure 8: Distribution of the means (µ) and fitted normals from 100 experiments that counted the
number of collisions in at least one ciphertext column per structure of 216 texts of our six-round
distinguisher on Small-AES and full Speck-64 as pseudorandom permutation π. σ∗ is the observed
standard deviation of the means per structure among the 100 experiments.

Experimental Verification. We implemented the distinguisher for Small-AES with 100
random keys. For each of them, we encrypted 37 · 220 ' 225.21 structures of 216 texts each.
For Small-AES, we used five full rounds plus SubBytes and AddRoundKeys in the last round
since MixColumns and ShiftRows are easily invertible. As a pseudorandom permutation
π, we employed full Speck-64-96. For each primitive, the 100 experiments required about
three CPU years of computations.
For reproducibility, we employed the most significant (leftmost) eight bytes from the first
100 output values from the NIST random Beacon service4 as (pseudo)random independent
keys. For each structure, we counted the number of pairs that collided in at least one
column. For Small-AES, we observed a mean of µ = 131 067.191 pairs per structure, and
µ = 131 066.993 for our pseudorandom permutation. Figure 8 illustrates the results of our
experiments. Both illustrate that the difference in the distributions is even slightly higher
in our experiments than in the theory. Most importantly, while the standard deviation per
structure (σ) is far too high, an experiment consists of sufficiently many structures so that
the standard deviation per structure over the experiment (σ∗) allows us to distinguish
both distributions very well.

Transition-based Verification. Again, we employ the transition-based approach by Røn-
jom [Røn19] for a second form of verification. The results basically confirmed the biases of

4See https://beacon.nist.gov/beacon/2.0/chain/1/pulse/<i> for 1 ≤ i ≤ 100.

https://beacon.nist.gov/beacon/2.0/chain/1/pulse/<i>
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Figure 9: Success probability for the plausible range of the data complexity (number of pairs) for
our six-round distinguisher, derived from Equation (5) from [GR19].

our six-round distinguishers as

pAES,6 ' 0.533575144973 . . . · 10−22 ' 2−30 − 2−61.415 + 2−73.98866

pSmall-AES,6 ' 0.674785648935 . . . · 10−10 ' 2−14 − 2−29.415 + 2−33.78678 ,

which have again slight deviations that can be due to rounding.

S-box and Index Dependencies. Again, we emphasize that our assumptions are an
approximation of ideal structures for the AES and Small-AES. Our six-round distinguisher
does not directly employ a single cell as input and considers all four possible positions for
δ-sets after the first round. So, the position-dependent considerations from our four- and
five-round distinguishers do not apply here.

8 Discussion and Conclusion
This work extends the well-known integral distinguisher on three-round AES to truncated-
differential distinguishers. Our attacks exploit a small difference in the average number of
byte collisions between the sum of four permutations and the number of collisions for a
truncated random permutation. In the AES, this sum is approximated by almost three
rounds plus the MixColumns operation. The small but significant difference allowed us
to extend the integral attack to four rounds. By extending this approach to collisions in
the four bytes of an inverse diagonal, we proposed a novel five-round distinguisher for the
AES.
Compared to the five-round distinguisher by Grassi and Rechberger [GR19], our distin-
guishers start from a single active byte. Thus, they could benefit from the fact that one
can easily prepend one round for an attack and start from a diagonal structure of 232

texts. Thus, although inferior to previous key-recovery results on the AES, we could
extend it to a key-recovery attack on six rounds in Section 6. Moreover, Section 7 showed
that even this prepended round could still be included in a secret-key distinguisher, with
considerably lower but still distinguishable bias.

Verifiability. We note that it is infeasible to verify the proposed distinguishers for the
AES directly. Where possible, we tried where possible to implement small-scale variants
with Cid et al.’s established version of Small-AES with four-bit cells. We employed the
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transition-distribution approach by Rønjom as a second means of verification. All our
implementations are freely available online.3

Open Questions. We observe that the distinguishers ask interesting follow-up questions:

• Which properties in the S-box and the cipher structure lead to the position-dependent
diverse distribution of means in our four- and five-round distinguishers?

• Can we predict a-priori which input-output indices yield particularly strong distin-
guishers for the three-round differential in our four-round distinguisher, given the
S-box? Can we predict the behavior for the S-box of the AES?

• Which property leads to the multiple-of-32 collision counts for Small-AES?

• Is it the same or a different property that leads to higher variances in our five-round
distinguisher for Small-AES?

• Is it the same or a different property that leads to the multiple-of-four property
when concerning a full diagonal space to a single cell through four full rounds of
Small-AES?

• Which property leads to the significant deviation in the variance of Small-AES with
the PRIDE S-box for our four-round distinguisher?

We think that the simple three-round truncated-differential that ignited this work seems
particularly well-suited to further investigate those and related questions.
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A Alternative S-boxes
Inspired by the experiments from [GR18, GR19], we conducted further studies with variants
of Small-AES that employed different four-bit S-boxes. Often, we considered six additional
S-boxes: three real-world ciphers PRESENT [BKL+07], PRINCE [BCG+12], and PRIDE
[ADK+14], as well as three artificial constructions called Toy-6, Toy-8, and Toy-10 from
[GR19]. For the sake of self-containment, the details of those S-boxes and their differential
spectra are listed in Table 5. The S-box of Small-AES had been constructed in a similar
manner as that of the AES, whereas the real-world examples had been selected for security
and lightweight properties. The S-boxes of PRINCE and PRIDE contain one-dimensional
linear structures. In this context, the x in Toy-x denotes the differential uniformity of an
artificial S-box, i.e., the maximal number of pairs occurring for some differential.

Table 5: Properties of the employed S-boxes and differential spectra.
S(x) Differential spectra pm

x 0 1 2 3 4 5 6 7 8 9 a b c d e f 0 2 4 6 8 10

Small-AES 6 b 5 4 2 e 7 a 9 d f c 3 1 0 8 120/225 90/225 15/225 – – –
PRESENT c 5 6 b 9 0 a d 3 e f 8 4 7 1 2 129/225 72/225 24/225 – – –
PRINCE b f 3 2 1 5 e 9 2 7 a c e 5 d 4 120/225 90/225 15/225 – – –
PRIDE 0 4 8 f 4 5 6 7 8 9 a b b d 6 3 129/225 72/225 24/225 – – –
Toy-6 1 3 6 4 2 5 9 a 0 f 7 e c b d 8 125/225 81/225 18/225 1/225 – –
Toy-8 1 3 6 4 2 5 a c 0 f 7 8 e b d 9 130/225 74/225 18/225 2/225 1/225 –
Toy-10 6 4 c 5 0 7 2 e 1 f 3 d 8 a 9 b 140/225 60/225 17/225 7/225 – 1/225

B Multiple-of-n Properties
B.1 Five-round Multiple-of-Eight Property
Consider the five-round distinguisher from Setting (2), which takes pairs of plaintexts
from δ-sets of a diagonal. This section shows briefly that this setting preserves the
multiple-of-eight property of the full-diagonal distinguisher.
We define a cell-mixing function ρ : Fm2 × Fm2b × Fm2b → Fm2b similar to that in [RBH17].
Moreover, we define δ : F2×Fb2×Fb2 → Fb2. Let X = (X[0], . . . X[m− 1]) ∈ Fm2 be a vector
of m bits, Pi, Pj ∈ Fm2b be two arbitrary elements. Then, the mixture P = ρ(X,Pi, Pj)
according to X is defined as

δ(X[k], P i[k], P j [k]) def=
{
P i[k] if X = 0,
P j [k] otherwise,

ρ(X,P i, P j) def= (δ(X[0], P i[0], P j [0]), . . . , δ(X[m− 1], P i[m− 1], P j [m− 1])) .

We slightly abuse the notation, by interpreting AES states as inputs as elements of F16
2b .

Moreover, we consider also non-full states but also columns or diagonals.

Theorem 4. Let I,J ⊂ {0, 1, 2, 3} and assume |I| = |J | = 1. Fix two cell indices
k ∈ {0, . . . , 15}. Given a diagonal space DI and constants A ∈ F4×4

2b . Let P denote the set
of all plaintexts in a single-diagonal coset P i ∈ DI ⊕A, for 0 ≤ i < 24b. Let C denote the
set of their corresponding ciphertexts after almost five rounds without the final MixColumns
operation containing Ci = Ci = MC−1(R4(P i)), for 0 ≤ i < 24b. Then, the number of
distinct pairs (Ci, Cj) for 0 ≤ i < j < 24b such that P i ⊕ P j differ only in a single byte
and (Ci ⊕ Cj)[k] = 0 is a multiple of eight, i.e., ∃N ′ ∈ N such that

C def=
∣∣{0 ≤ i < j < 24b : P i ⊕ P j ∈ DI ∩ CJ ∧ (Ci ⊕ Cj)[k] = 0

}∣∣ = 8 ·N ′ .
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Figure 10: Left: A pair that maps a single-byte difference to a four-byte difference ∆S1 through
the first round. If this pair produces a desired difference after almost five rounds, then, there exist
seven further mixture pairs (e.g., one is depicted right) of the variables after the first round that
have the same difference ∆S1. Thus, they must have had the same difference before MixColumns,
and therefore must also stem from δ-sets of the first diagonal.

Proof. Let P i and P j denote two plaintexts from a δ-set, i.e., that differ only in a single
cell. W.l.o.g., we assume that they differ only in their first cell, P i[0] 6= P j [0]. Let Si
and Sj denote their corresponding states after the first round, respectively. P i and P j
are encrypted to Si and Sj through one round, and differ in four variables due to the
branch number of MixColumns. We let (a0, b0, c0, d0) ∈ F4

2b denote the variables of the first
column of Si and (a1, b1, c1, d1) ∈ F4

2b denote those of Sj , as before. For this purpose, we
also denote Si = S0000 and Sj = S1111.
In general, let I = (i0, i1, i2, i3) ∈ F4

2. We define SI = ρ(I, Si, Sj). For example,
(S0001, S1110) is a mixture of (S0000, S1111), which also differs only in the same column,
in the sense that the leftmost column of S0001 consists of the values (a0, b0, c0, d1), and
that of S1110 of (a1, b1, c1, d0). All other columns are equal in them and equal with the
corresponding columns of S0000 and S1111). We extend the definitions in the natural
manner to

(S0010, S1101), (S0011, S1100), (S0100, S1011),
(S0101, S1010), (S0110, S1001), (S0111, S1000).

Note that for each of those eight mixtures, the difference between their pair after the first
round is the same. Since SR−1 ◦MC−1 ◦ AK[K1] is linear, this means that their difference
Si0i1i2i3SB ⊕ Si

′
0i
′
1i
′
2i
′
3

SB is the same for each pair. Since S0000
SB ⊕ S1111

SB is active in a single (the
first) cell, so is each pair of all other seven mixtures. Hence, they are all guaranteed to be
in δ-sets. Since AK[K0] ◦SB−1 is a permutation, they are guaranteed to be sixteen distinct
texts. Though, note that the values S1 differ in less than four bytes between each text of
each pair. Thus, each of the eight pairs in a mixture is produced by a different δ-set.
It remains to show that if one pair of an eight-tuple of mixtures has an inactive diagonal
after three rounds, the other seven mixture pairs also have. We denote by Ci the encryption
of P i after four rounds of AES without the final MixColumns operation. Assume, C0000
and C1111 lie in the coset of an inverse-diagonal space IDI , for I ⊂ {0, 1, 2, 3} and |I| < 4.
Then, the differences of the seven further pairs

(C0001 ⊕ C1110), (C0010 ⊕ C1101), (C0011 ⊕ C1100), (C0100 ⊕ C1011),
(C0101 ⊕ C1010), (C0110 ⊕ C1001), (C0111 ⊕ C1011)

lie also in IDI . Though, this is exactly the well-known multiple-of-eight property that has
already been shown by Grassi et al. in [GRR17]. Therefore, the multiple-of-eight property
of our distinguisher in Setting (2) follows.
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B.2 Four-round Multiple-of-32 Property for Small-AES
Consider the four-round distinguisher in Setting (2), which takes pairs of plaintexts from
δ-sets of a diagonal. This section outlines briefly that the distinguisher in this setting
possesses a multiple-of-32 property.
Note the peaked plots that represent the experimental distribution in Setting (2) in
Figure 15. Those peaks (can only) indicate that the number of collisions are a multiple
of 32, e.g., the first ten random keys and δ-sets for the Small-AES yield the sequence of
collisions: (123 456, 123 040, 120 512, 120 736, 123 744, 121 504, 122 368, 120 896, 123 136,
123 808). This phenomenon repeated for the other S-boxes as well, though, not for the AES
with eight-bit S-boxes. 32 is also the largest power of two, e.g., the number of collisions is
no multiple of 64 in general.
Clearly, the number of collisions has to be a multiple of eight since our four-round
distinguisher can be seen as a subset of the five-round distinguisher that we studied in
Section B.1. Our five-round distinguisher itself inherited that property from the well-known
multiple-of-eight distinguisher by Grassi and Rechberger [GRR17]. Given that the other
S-boxes yield similar results, we conjecture that there exists an additional multiple-of-four
property for the AES when operating with four-bit S-boxes. Thus, we state the following
claim, but cannot prove it at the moment.

Claim. Let I,J ⊂ {0, 1, 2, 3} and assume |I| = |J | = 1. Fix a cell index k ∈ {0, . . . , 15}.
Given a coset of DI containing all 24b plaintexts of a diagonal and their corresponding
ciphertexts after four rounds (P i, Ci) with i ∈ {0, . . . , 24b − 1} and Ci = MC−1(R4(P i)),
that is after four rounds of AES with the final MixColumns operation omitted. Then, the
number of distinct pairs (Ci, Cj) for i 6= j and 0 ≤ i < j < 24b such that P i ⊕ P j differ
only in a single byte and (Ci ⊕ Cj)[k] = 0 is a multiple of 32, i.e., ∃N ′ ∈ N such that

C def=
∣∣{0 ≤ i < j < 24b : P i ⊕ P j ∈ DI ∩ CJ ∧ (Ci ⊕ Cj)[k] = 0

}∣∣ = 32 ·N ′ .

Four-round Distinguisher. It is straight-forward to formulate a distinguisher from the
multiple-of-32 property with the following steps:

1. Initialize 16× 16 collision counters Xi,j for each byte and each value.

2. Collect a structure S of 216 texts that iterate over all δ-sets of a diagonal, e.g., using
texts from D{0}⊕A for arbitrary A ∈ F4×4

24 , and leave the remaining bytes constants.
Query the plaintexts of a structure and ask for their ciphertexts.

3. For each ciphertext, invert the final MixColumns operations to get the states S4,SR.
Increment its value j for Byte i, for i ∈ {0, . . . , 15}, in Xi,j .

4. For each byte i ∈ {0, . . . , 15}, test if (
∑15
j=0

(
Xi,j

2
)
) mod 32 = 0. If yes, return “real”;

return “random” otherwise.

Complexity. The distinguisher requires 216 chosen plaintexts, 216 encryptions and 216 ·
16 = 220 memory accesses. The success probability is one for the real construction; the
probability is (2−5)16 = 2−80 to wrongly identify a random permutation as the real four-
round Small-AES. The memory is negligible, 256 16-bit values or 26 states of memory
plus some constant overhead suffices.

Alternative MixColumns Matrices. We further tested whether the multiple-of-k property
depends on the employed MixColumns matrix. We denote circulant matrices by the elements
of their topmost row circ(a1, . . . , am), e.g., the MixColumns matrix can be described as
circ(2, 3, 1, 1). We employed variants of Small-AES with alternative MixColumns matrices
and for comparison with different S-box:
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Table 6: Means, standard deviations, and maximal k for multiple-of-k for the number of collisions
in at least one anti-diagonal after four rounds of 100 000 experiments with random key each of 216

texts from a full single-diagonal space. k is the maximum factor.
S-box MC Matrix µ σ k

Small-AES circ(2, 3, 1, 1) 122 921.676 1 329.731 25

Small-AES circ(1, 3, 2, 2) 122 946.734 1 347.866 25

Small-AES circ(0, 1, 1, 1) 123 980.022 47 151.760 214

PRESENT circ(2, 3, 1, 1) 122 908.033 1 209.539 25

PRESENT circ(1, 3, 2, 2) 122 911.852 1 226.596 25

PRESENT circ(0, 1, 1, 1) 124 763.341 47 429.148 214

• Small-AES with its original S-box and the circulant matrix generated by circ(1, 3, 2, 2).
This is also an MDS matrix.

• Small-AES with its original S-box and the matrix generated by circ(0, 1, 1, 1) from
Midori, which is not MDS.

• Small-AES with the S-box of PRESENT and the circulant matrix generated by
circ(1, 3, 2, 2).

• Small-AES with the S-box of PRESENT and the matrix circ(0, 1, 1, 1).

All other components remained unchanged. Table 6 visualizes our results and compares
the result with the original matrix. It illustrates that the multiple-of-k property depends
strongly on the employed MixColumns matrix; the variants with the Midori matrix yielded
even a multiple-of-16 384 property. The variance differs greatly as a direct consequence.

B.3 Multiple-of-four Distinguisher on Five-round Small-AES
Let S be a structure that iterates over all 216 values of one diagonal space of Small-AES
and fixes all other cells to a constant. Then, after four rounds, the number of pairs that
collide in any fixed byte is a multiple of four. This implies that, after five rounds without
the final MixColumns operation (or inverted), the number of pairs that collide in any fixed
byte is a multiple of four. This property is absent in the real AES with eight-bit S-boxes;
it seems independent, however, from the S-box. It has been found also when using e.g., in
variants of Small-AES with the S-boxes of PRESENT or Toy-10.

Five-round Distinguisher. The distinguisher is depicted in Figure 11.

Steps. The steps of our distinguisher are as follows:

1. Initialize 16× 16 collision counters Xi,j for each byte and each value.

2. Collect a structure S of 216 texts that iterate over all values in four cells of a diagonal,
e.g., using texts from D{0}⊕A for arbitrary A ∈ F4×4

24 , and leave the remaining bytes
constants. Query the plaintexts of a structure and ask for their ciphertexts.

3. For each ciphertext, invert the final MixColumns operations to get the states S5,SR.
Increment its value j for Byte i, for i ∈ {0, . . . , 15}, in Xi,j .

4. For each byte i ∈ {0, . . . , 15}, test if (
∑15
j=0

(
Xi,j

2
)
) mod 4 = 0. If yes, return real;

return random otherwise.
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Figure 11: Multiple-of-four distinguisher on five-round Small-AES (left), and the key-recovery
attack on six rounds (right).

Complexity. The distinguisher requires 216 chosen plaintexts, 216 encryptions and 216 ·
16 = 220 memory accesses. The success probability is one for the real construction; the
probability is (2−2)16 = 2−32 to wrongly identify a random permutation as the real five-
round Small-AES. The memory is negligible, 256 16-bit values or 26 states of memory
plus some constant overhead suffices.

B.4 Multiple-of-four Key-recovery Attack on Six-round Small-AES
The five-round distinguisher can be extended to a six-round key-recovery attack in a
straight-forward manner.

Steps. The steps are as follows:

1. Initialize 4 · 216 · 16× 16 collision counters Xi,j for each candidate of K6[0, 7, 10, 13],
K6[3, 4, 9, 14], K6[2, 7, 8, 13], K6[1, 6, 11, 12], each byte, and each byte value. Initialize
four lists K`, for ` ∈ {0, 1, 2, 3}.

2. Collect a structure S of 216 texts that iterate over all values in four cells of a diagonal,
e.g., using texts from D{0}⊕A for arbitrary A ∈ F4×4

24 , and leave the remaining bytes
constants. Query the plaintexts of a structure and ask for their ciphertexts.

3. For each candidate of K6[0, 7, 10, 13]:

(a) For each ciphertext, decrypt to the state Ŝ5,SR[0, 1, 2, 3] and increment its value
j for Byte i, for i ∈ {0, . . . , 15}, in Xi,j .



240 Extended Truncated-differential Distinguishers on Round-reduced AES

(a) Small-AES (b) Small-AES with PRESENT S-box

Figure 12: Distribution of the number of collisions in the first byte after five rounds in both
settings, with the final MixColumns operation omitted. Both distributions used 100 000 random
keys and counted the collisions from 214 δ-sets per key that were independent in Setting (1) or
the 214 δ-sets from D{0}. Thin lines are fitted normal distributions, thick lines the best fitted
distributions.

(a) Small-AES (b) Small-AES with PRESENT S-box

Figure 13: Distribution of the number of collisions in the first byte after five rounds taking all(216

2

)
pairs from a single plaintext diagonal. All distributions used 100 000 random keys and

counted the collisions for one diagonal per key. Thin lines are fitted normal distributions, thick
lines the best fitted distributions.

(b) For each counter, test if
(
Xi,j

2
)

mod 4 = 0, for i ∈ {0, 1, 2, 3}. If yes, add the
surviving inverse-diagonal key candidate to list K0.

(c) Repeat the same procedure for the other inverse diagonals of K6 and add the
surviving lists K` for the corresponding values of `.

4. Test the remaining key candidates.

Complexity. The distinguisher requires 216 chosen plaintexts, 216 encryptions, and 216 ·
216 · 4 · 1

4 ·
1
6 decryptions of one column through one of six rounds for each of four anti-

diagonal key candidate and each of 216 texts. This yields 229.415 encryption equivalents.
Each value of each inverse diagonal of the key has a chance of 216 · (2−2)4 = 2−8 to survive.
Thus, we can expect about 24·8 = 232 key candidates that can be tested with an exhaustive
search. Thus, the computational complexity is upper bounded by 232 + 229.415 ' 232.223

Encryptions. The attack needs 4 · 216 · 16 · 16 = 226 memory accesses. The memory is
4 · 216 · 16 · 16 = 226 64-bit values or states, and 4 · 28 = 210 values for the key candidates.
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We note that the time complexity of the attack can be decreased further with the meet-in-
the-middle technique by Sasaki and Wang [SW12] that was adapted by Bar-On et al. to
attacks on final-round AES [BODK+18] to about 216 · 2 · 28 ' 225 last-round decryptions.
However, the property is the relevant thing in this section, and we provide a distinguisher
and key-recovery attack only for the sake of completeness.

C Expectation of The Distinguishers
C.1 Expectation of The Five-round Distinguisher
This section shows Theorem 2 in Setting (2). It is rooted on the existing rigorous study by
Grassi and Rechberger [GR18] of the number of solutions for the transition of pairs in a
mixed spaceM{k} to a diagonal space DJ with J ⊂ {0, 1, 2, 3} and |J | = 3.

Notation. The subspace notation does not always express easily that certain cells are zero
or not. Therefore, we can adapt the notation by [RBH17]. Though, we use the active-byte
pattern, whereas the work by [RBH17] employs the zero-byte pattern convention. We
decide for the former only since it is more intuitive that the hamming weight represents
the number of active cells from our point of view.
We use bit vectors u = (u0, u1, u2, u3) and v = (v0, v1, v2, v3) with u,v ∈ F4

2 to represent
the active-byte patterns of a column or diagonal. For a column or diagonal vector
x = (x0, x1, x2, x3) ∈ F4

28 , we further define the function ρ : F4
28 → F4

2 to map x to
its active-byte pattern: u = (u0, u1, u2, u3) = ρ((x0, x1, x2, x3)), where ui = 1 iff xi is
active and 0 otherwise. For a state S ∈ F4×4

28 , we define ν : F4×4
28 → F4×4

2 to produce its
active-column pattern:

ν(S) def= (ρ(S0), ρ(S1), ρ(S2), ρ(S3)) .

Thus, we search for all pairs u R−→ v with wt(u) > 1 and wt(v) = 4. Below, we briefly
restate Theorem 2 for readability.

Theorem 2. Let X = {Xi ∈ F4×4
28 }, for 0 ≤ i < 232, denote a set of all texts in

a coset M{k} ⊕ A for some A ∈ F4×4
28 , A ∈ X⊥, where all columns are active. Let

Y = {Y i ∈ F4×4
28 : Y i = R(Xi)}, 0 ≤ i < 232, denote the set of corresponding outputs after

one round of AES. Let Y be a random variable for the number of different unordered
ciphertext pairs (Y i, Y j) s. t. Y i, Y j ∈ DJ ⊕B, for some B ∈ F4×4

28 , J ⊂ {0, 1, 2, 3}, and
|J | = 3. Then, under the assumption of the uniform distribution of non-trivial solutions
of differential transitions through the S-box,

Pr
[
M{k} ⊕A

R−→ DJ ⊕B
]
' 2−30 + 2−51.985 .

The analysis of Theorem 2 employs two Lemmas. Lemma 1 reconsiders the number of
solutions, Lemma 2 the fraction of solutions that start from a single active byte.

Lemma 1. Under the assumption of the uniform distribution of non-trivial solutions of
differential transitions through the S-box, the number of solutions from a mixed space
with no equal generating variables is approximately 2 114 125 822.5 ' 230.977.

Proof. The proof of Lemma 1 is given from the third case of the proof of Theorem 2 by
Grassi and Rechberger [GR19, Sect. 5.3.3]. We restate it only for the sake of completeness.
In the following, we consider J = {1, 2, 3} as the set of active diagonals after the round, or
` = 0 as the index of the zero-difference diagonal after the round. the cases for other values
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of ` are analogous. We denote X1, X2 ∈M{k} ⊕A. Then, there exist xi, yi, zi, wi ∈ F28 ,
for 1 ≤ i ≤ 2, s. t.

Xi =


2xi wi zi 3yi
xi wi 3zi 2yi
xi 3wi 2zi yi

3xi 2wi zi yi

⊕A .
In the context here, all variables are distinct, i.e. x1 6= x2, y1 6= y2, z1 6= z2, and w1 6= w2.
Let ∆Y = Y 1 ⊕ Y 2. We consider the following four equations:

∆Y [0] =
2⊕
i=1

2S
(
2xi ⊕A[0]

)
⊕ 3S

(
wi ⊕A[5]

)
⊕ S

(
2zi ⊕A[10]

)
⊕ S

(
yi ⊕A[15]

)
= 0

(14)

∆Y [5] =
2⊕
i=1

S
(
wi ⊕A[4]

)
⊕ 2S

(
3zi ⊕A[9]

)
⊕ 3S

(
yi ⊕A[14]

)
⊕ S

(
3xi ⊕A[3]

)
= 0

∆Y [10] =
2⊕
i=1

S
(
zi ⊕A[8]

)
⊕ S

(
2yi ⊕A[13]

)
⊕ 2S

(
xi ⊕A[2]

)
⊕ 3S

(
2wi ⊕A[7]

)
= 0

∆Y [15] =
2⊕
i=1

3S
(
3yi ⊕A[12]

)
⊕ S

(
xi ⊕A[1]

)
⊕ S

(
3wi ⊕A[6]

)
⊕ 2S

(
zi ⊕A[11]

)
= 0 .

All four equations possess a form of
2⊕
i=1

A · S
(
B · xi ⊕ b

)
⊕ C · S

(
D · wi ⊕ d

)
⊕ E · S

(
F · zi ⊕ f

)
⊕G · S

(
H · yi ⊕ h

)
= 0 .

We rewrite x̂ = B · xi ⊕ b, ŵ = D · wi ⊕ d, ẑ = F · zi ⊕ f , and ŷ = H · yi ⊕ h. We denote
the input differences between the variable pairs as ∆x

I = x1 ⊕ x2, and ∆y
I = y1 ⊕ y2,

∆z
I = z1 ⊕ z2, and ∆w

I = w1 ⊕ w2. We can reformulate the equation systems to

S (x̂)⊕ S (x̂⊕∆x
I ) = ∆x

O

S (ŵ)⊕ S (ŵ ⊕∆w
I ) = ∆w

O

S (ẑ)⊕ S (ẑ ⊕∆z
I) = ∆z

O

S (ŷ)⊕ S (ŷ ⊕∆y
I ) = ∆y

O .

From ∆x
I , ∆w

I , ∆z
I , ∆y

I 6= 0, it follows that ∆x
O, ∆w

O, ∆z
O, ∆y

O 6= 0. Moreover, one variable
is defined from the equation system of the others as

∆y
O = G−1 · (A ·∆x

O ⊕ C ·∆w
O ⊕ E ·∆z

O) .

Since they cannot be zero, there exist in total 2553 solutions for ∆x
O, ∆w

O, ∆z
O. Though,

having fixed ∆x
O, 255 · 254 pairs ∆w

O,∆z
O solutions would lead to ∆y

O = 0. So, there are
2553− 255 · 254 possible tuples (∆x

O, ∆w
O, ∆z

O, ∆y
O). The next step is to obtain the number

of different non-trivial solutions [(x1, y1, z1, w1), (x2, y2, z2, w2)] to the four equations
from Equation (14). For ∆I ,∆O ∈ F8

2, we denote the number of solutions by

δS(∆I ,∆O) def= |{x ∈ Fn2 : S(x)⊕ S(x⊕∆I) = ∆O}| .

Independently of the S-box details, the expected number of solutions x for arbitrary
non-zero input-output differences (∆I ,∆O) is simply the mean over all non-zero columns
or rows in the DDT:

E [δS(∆I ,∆O)] = 256
255 .
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Given a fixed ∆I , the average number of solutions for one equation is 256/255. There exist
255 values of ∆I , and four pairs (∆x

I ,∆x
O), . . . , (∆y

I ,∆
y
O), which yields(

255 · 256
255

)4
= 232

solutions of values (x1, y1, z1, w1), (x2, y2, z2, w2) for fixed differences (∆x
I ,∆

y
I ,∆z

I ,∆w
I ) on

average. To prevent double counting solutions [(x1, y1, z1, w1), (x2, y2, z2, w2)] and [(x2,
y2, z2, w2), (x1, y1, z1, w1)], we employ a partial order, e.g., require that w1 < w2. The
total number of different solutions (x1, y1, z1, w1), (x2, y2, z2, w2), for the order w1 < w2,
to the four Equations 14 is then given by

1
2 ·
(
2553 − 255 · 254

)
·
(

255 · 256
255

)4
=
(
2553 − 255 · 254

)
· 231 .

So, we have the number of solutions for one (arbitrary equation) of the four equations
in Equation 14. Next, we have to determine the probability that the solutions for the
remaining three equations match the fixed equation. Fix [(x1, y1, z1, w1), (x2, y2, z2,
w2)] for the first equation. Consider a second equation [(x̂1, ŷ1, ẑ1, ŵ1), (x̂2, ŷ2, ẑ2, ŵ2)].
The probability that (x1, y1, z1, w1) = (x̂1, ŷ1, ẑ1, ŵ1) is(

1
256

)4
.

Having fixed (x1, y1, z1, w1), there remain only 255 possible values for x2 and x̂2 since
they must be distinct. So, the probability that (x2, y2, z2, w2) = (x̂2, ŷ2, ẑ2, ŵ2) is 1/2554.
The same can apply if (x1, y1, z1, w1) = (x̂2, ŷ2, ẑ2, ŵ2) and (x2, y2, z2, w2) = (x̂1, ŷ1,
ẑ1, ŵ1). So, there are two ways to combine each pair of equations. Thus, the probability
that two equations are equal is

2 ·
(

1
256

)4
·
(

1
255

)4
. (15)

We obtain that

((
2553 − 255 · 254

)
· 231)4 ·(2 ·

(
1

256

)4
·
(

1
255

)4
)3

' 2 114 125 822.5 ' 230.977, (16)

which yields the claim of Lemma 1.

Equation (16) uses all pairs that come from a mixed space M{k} with four different
variables. Clearly, such a mixed space must have resulted from a diagonal space D{k} two
rounds earlier. Here, we do not consider all pairs from the diagonal space D{k}. Among
the

(232

2
)
pairs from a full diagonal space, we restrict our focus on δ-sets. Assume, we

consider all δ-sets from a diagonal space. This yields 224 · 4 δ-sets, each of which contains(28

2
)
pairs. We have to determine the fraction of solutions that is covered by the δ-sets.

For this purpose, we have to count the number of pairs that translate from a single active
diagonal to a mixed space with two restrictions: (1) their plaintext pairs have come from a
diagonal space, and (2) their mixed space after two rounds has four active columns, which
implies that after the first round, all bytes in Column k are active.

Lemma 2. Let X = {Xi ∈ F4×4
28 }, for 0 ≤ i < 232, denote a set of all texts in a coset

D{k} ⊕A for some A ∈ F4×4
28 . Then, the fraction of pairs Xi, Xj whose difference ∆Xi,j

lies in C{c} ∩ D{k}, for any c ∈ {0, 1, 2, 3}, among all pairs in X , is 4/2553.
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Table 7: Number of differences that translate from a diagonal vector x with active-byte pattern
u to a column vector y with active-byte pattern v through one round of the AES, depending on
the weight of u and v.

wt(v)
wt(u) 1 2 3 4

1 – – –
(4

1

)(4
4

)
255

2 – –
(4

2

)(4
3

)
255

(4
2

)(4
4

)
64 005

3 –
(4

3

)(4
2

)
255

(4
3

)(4
3

)
64 005

(4
3

)(4
4

)
16 323 825

4
(4

4

)(4
1

)
255

(4
4

)(4
2

)
64 005

(4
4

)(4
3

)
16 323 825

(4
4

)(4
4

)
4 162 570 275∑ (4

1

)
· 255

(4
2

)
· 2552 (4

3

)
· 2553 (4

4

)
· 2554

Proof of Lemma 2. Table 7 lists the number of differences that follow the transitions from
u R−→ v. The rightmost column of that table lists all input differences that lead to four
active bytes in C{k} after the first round. In sum, there are 2554 such differences. In
total, there are 232 − 1 differences. So, from 232 · (232 − 1)/2 pairs, we can multiply each
entry in Table 7 by 232/2 = 231 to obtain the number of pairs with such a difference in a
diagonal. We obtain that a diagonal contains 4 · 224 ·

(28

2
)
pairs in δ-sets that differ in a

single plaintext byte. This is a fraction of(4
1
)(4

4
)
· 255 · 231

2554 · 231 = 4
2553

pairs, which yields the claim in Lemma 2.

It remains to combine the results of Lemma 1 and 2 to show Theorem 2.

Proof of Theorem 2. A diagonal space has 2 114 125 822.5 solutions, on average, when we
consider pairs generated from a mixed space with four pair-wise different variables x1 6= x2,
y1 6= y2, w1 6= w2, z1 6= z2 after two rounds. Among all the pairs with four pair-wise
different variables, our expectation distinguisher considers a fraction of 4/2553 of the pairs,
namely only those that were mapped from a diagonal space of one active plaintext byte
among to a column of four active bytes after the first round. Thus, we have on average

2 114 125 822.5 · 4
2553 ' 510.000123

solutions if we consider all interesting pairs among a diagonal space of 232 plaintexts.
There exist 4 · 224 ·

(28

2
)
such pairs in such a diagonal space. Thus, we obtain a probability

of
2 114 125 822.5 · 4

2553

4 · 224 ·
(28

2
) ' 2−32 + 2−53.9831 .

Since there are four diagonals, the probability to have one inactive diagonal after three
rounds is on average

pAES ' 1−
(
1−

(
2−32 + 2−53.9831))4 ' 2−30 + 2−51.98515 .

This yields the claim of our five-round distinguisher.

C.2 Expectation of The Four-round Distinguisher
This section shows Theorem 1 in Setting (2). We restate it below for readability. Our goal
in the remainder is to obtain an approximate for the probability p for the transition of the
third round, under the condition that all columns after two rounds are active.
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Theorem 1. Let X = {Xi ∈ F4×4
28 }, for 0 ≤ i < 232, denote a set of all texts in

a coset M{k} ⊕ A for some A ∈ F4×4
28 , A ∈ X⊥, where all columns are active. Let

Y = {Y i ∈ F4×4
28 : Y i = R(Xi)}, 0 ≤ i < 232, denote the set of corresponding outputs after

one round of AES. Let Y be a random variable for the number of different ciphertext
pairs (Y i, Y j) s. t. Y i, Y j ∈ DJ ∩ C{c} ⊕A′, for some A′ ∈ F4×4

28 , J ⊂ {0, 1, 2, 3}, |J | = 3,
and c ∈ {0, 1, 2, 3}. Then, under the assumption of the uniform distribution of non-trivial
solutions of S-box differential transitions in Equation (6),

Pr
[
M{k} ⊕A

R−→ DJ ∩ C{c} ⊕A′
]
' 2−8 + 2−31.983 .

Note that the analysis of Theorem 1 is a simpler variant of the proof strategy of our five-
round distinguisher. To show Theorem 1, we employ two Lemmas. Lemma 3 reconsiders
the number of solutions, Lemma 2 provides us with the fraction of solutions that start
from a single active byte.

Lemma 3. Under the assumption of the uniform distribution of non-trivial solutions of
S-box differential transitions, the number of solutions from a mixed space with no equal
generating variables is approximately 254.9774.

Proof. Again, we can prove Lemma 3 from adapting the third case of the proof of Theorem
2 by Grassi and Rechberger [GR19, Sect. 5.3.3]. Let J = {1, 2, 3} as the set of active
diagonals after the round, and let ` = 0 and c = 0; the cases for other values of ` and c
are analogous. We denote X1, X2 ∈M{k} ⊕A. Then, there exist xi, yi, zi, wi ∈ F28 , for
1 ≤ i ≤ 2, s. t.

Xi =


2xi wi zi 3yi
xi wi 3zi 2yi
xi 3wi 2zi yi

3xi 2wi zi yi

⊕A .
All variables are distinct, i.e. x1 6= x2, y1 6= y2, z1 6= z2, and w1 6= w2. We consider the
following equation:

∆Y [0] =
2⊕
i=1

2S
(
2xi ⊕A[0]

)
⊕ 3S

(
wi ⊕A[5]

)
⊕ S

(
2zi ⊕A[10]

)
⊕ S

(
yi ⊕A[15]

)
= 0 ,

(17)

which can be generalized to
2⊕
i=1

A · S (x̂)⊕ C · S (ŵ)⊕ E · S (ẑ)⊕G · S (ŷ) = 0 .

We denote the input differences between the variable pairs as ∆x
I = x1⊕x2, and ∆y

I = y1⊕y2,
∆z
I = z1 ⊕ z2, and ∆w

I = w1 ⊕ w2. We can reformulate the equation systems to

S (x̂)⊕ S (x̂⊕∆x
I ) = ∆x

O

S (ŵ)⊕ S (ŵ ⊕∆w
I ) = ∆w

O

S (ẑ)⊕ S (ẑ ⊕∆z
I) = ∆z

O

S (ŷ)⊕ S (ŷ ⊕∆y
I ) = ∆y

O .

From ∆x
I , ∆w

I , ∆z
I , ∆y

I 6= 0, it follows that ∆x
O, ∆w

O, ∆z
O, ∆y

O 6= 0. Moreover, one variable
is defined from the equation system of the others as

∆y
O = G−1 · (A ·∆x

O ⊕ C ·∆w
O ⊕ E ·∆z

O) .
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Again, there exist 2553 solutions for ∆x
O, ∆w

O, ∆z
O. Though, having fixed ∆x

O, 255 · 254
pairs ∆w

O,∆z
O solutions would lead to ∆y

O = 0. So, there are 2553 − 255 · 254 possible
tuples (∆x

O, ∆w
O, ∆z

O, ∆y
O). Given a fixed ∆I , the average number of solutions for one

equation is 256/255. There exist 255 values of ∆I , and four pairs (∆x
I ,∆x

O), . . . , (∆y
I ,∆

y
O),

which yields (
255 · 256

255

)4
= 232

solutions of values (x1, y1, z1, w1), (x2, y2, z2, w2) for fixed differences (∆x
I ,∆

y
I ,∆z

I ,∆w
I ) on

average. To prevent double counting solutions [(x1, y1, z1, w1), (x2, y2, z2, w2)] and [(x2,
y2, z2, w2), (x1, y1, z1, w1)], we employ a partial order, e.g., require that w1 < w2. The
total number of different solutions (x1, y1, z1, w1), (x2, y2, z2, w2), for the order w1 < w2,
to the four Equations 14 is then given by

1
2 ·
(
2553 − 255 · 254

)
·
(

255 · 256
255

)4
=
(
2553 − 255 · 254

)
· 231 (18)

= 35469139157975040 ' 254.9774 . (19)

which yields the claim of Lemma 3.

Equation (18) uses all pairs that come from a mixed space M{k} with four different
variables. Such a mixed space must have resulted from a diagonal space D{k} two rounds
earlier. Here, we do not consider all pairs from the diagonal space D{k}. Among the

(232

2
)

pairs from a full diagonal space, we restrict our focus on δ-sets. Assume, we consider all
δ-sets from a diagonal space. Then, Lemma 2 showed that the fraction of pairs Xi, Xj

whose difference ∆Xi,j lies in C{c} ∩ D{k}, for any c ∈ {0, 1, 2, 3}, among all pairs in X , is
4/2553. This yields 224 · 4 δ-sets, each of which contains

(28

2
)
pairs.

Proof of Theorem 1. A diagonal space has
(
2553 − 255 · 254

)
· 231 solutions when we con-

sider pairs generated from a mixed space with four pair-wise different variables x1 6= x2,
y1 6= y2, w1 6= w2, z1 6= z2 after two rounds. Among all the pairs with four pair-wise
different variables, our expectation distinguisher considers a fraction of 4/2553 of the pairs,
namely only those that were mapped from a diagonal space of one active plaintext byte
among to a column of four active bytes after the first round. Among a diagonal space of
232 plaintexts, there exist 4 · 224 ·

(28

2
)
such pairs in such a diagonal space. Thus, we obtain

a probability of

35469139157975040 · 4
2553

4 · 224 ·
(28

2
) ' 2−8 + 2−31.983 .

which yields the claim of our four-round distinguisher.

D Variance of The Distinguishers
D.1 Variance of The Five-round Distinguisher
D.1.1 Recap of the Variance from [GR19]

Grassi and Rechberger [GR19] considered all pairs in a diagonal space DI to an inverse-
diagonal space after five rounds. They showed that their distribution of collisions could be
modeled by the sum of three binomial distributions. Let Y be the random variable for the
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number of collisions after five rounds. Then, the probability of k collisions from N trials
follows

Pr [Y = k] =
{

0 if k mod 8 6≡ 0∑
k3,k10,k17∈KN

(∏
i∈{3,10,17}

(
Ni
ki

)
· (pi)ki · (1− pi)Ni−ki

)
otherwise,

where

KN
def=
{

(k3, k10, k17) ∈ N3 |0 ≤ ki ≤ Ni ∧ 23 · k3 + 210 · k10 + 217 · k17 = k
}
,

and
N3 = 1 · 228 · 2554 p3 = 2−32 + 2−53.983

N10 = 4 · 221 · 2553 p10 = 2−32 − 2−45.989

N17 = 6 · 214 · 2552 p17 = 2−32 + 2−37.986 .

Note that, in contrast to pi and Ni, the tuples (k3, k10, and k17) are no single values but
can take potentially many combinations
Or said easier: the distribution of the number of a fixed single anti-diagonal collisions after
five-round AES from a diagonal space Y is described by

Pr [Y] = 23 · X3 + 210 · X10 + 217 · X17 ,

where Xi ∼ B(Ni, pi) are binomial distributions for i ∈ {3, 10, 17}. The factors 23, 210,
and 217 represent the number of pairs in the input space that follow this distribution.
They correspond to the pairs with four, three, and two (in that order) different generating
variables in the expectation proof.
[GR19] determined the variance Var [Y] as

Var [Y] def= Var
[
23 · X3

]
+ Var

[
210 · X10

]
+ Var

[
217 · X17

]
.

Since Var [α · X] = α2 · Var [X] holds for any constant α, it followed that

Var [Y] = (23)2 · Var [X3] + (210)2 · Var [X10] + (217)2 · Var [X17]
= 26 · (N3 · p3 · (1− p3)) + 220 · (N10 · p10 · (1− p10)) + 234 · (N17 · p17 · (1− p17)) .

[GR19] employed a full diagonal space with up to four active bytes in the input. To obtain
a zero-difference diagonal after three rounds (i.e., at most three active bytes per column),
they needed at least two active bytes per column, i.e., at least two active bytes after the
first round. Under other output restrictions, the sum would also contain another term X24
for the number of pairs with a single different generating variable.

D.1.2 Variance of Our Five-round Distinguisher

The five-round distinguisher in this work does not employ a full diagonal space but starts
from a single active byte. Therefore, all pairs after one round are guaranteed to have
four active bytes and four different generating variables. In the following, we derive the
variance for both settings.

Setting (2). Here, we claim that the probability distribution of collisions of a single
inverse diagonal after five rounds is given by

Pr [Y = k] =
{

0 if k mod 8 6≡ 0(
N3
k3

)
· (p3)k3 · (1− p3)N3−k3 otherwise.
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So, we obtain actually one of the three sub-cases from [GR19]. We can determine the
variance as

Var [Y] = (23)2 · Var [X3] = 26 · (N3 · p3 · (1− p3))

= 26 · 4 · 255 · 231

8 ·
(
2−30 + 2−51.985 − 2−61.415) · (1− (2−30 + 2−51.985 − 2−61.415))

' 4 080 .

Note that the variance of a random binomial distribution is given by

Var [Y] = N · p · (1− p)

= 4 · 224 ·
(

28

2

)
·
(
2−30 − 2−61.415) · (1− (2−30 − 2−61.415))

' 509.999 . . . ' 510 .

So, the variance is about eight times higher in Setting (2).

Setting (1). This setting does not have the strong multiple-of-eight relation, The distri-
bution after N trials follows approximately a binomial distribution:

Pr [Y = k] =
(
N

k

)
· pk · (1− p)N−k .

We can determine the variance as

Var [Y] = N · p · (1− p)

= 4 · 224 ·
(

28

2

)
·
(
2−30 + 2−51.985 − 2−61.415) · (1− (2−30 + 2−51.985 − 2−61.415))

' 510.000122 . . . .

So, the variance is marginally higher than that for a random permutation.

D.1.3 Variance of Our Five-round Distinguisher for Small-AES

For Small-AES, we derive the variance similarly.

Setting (2). Here, we can determine the variance as

Var [Y] = (23)2 · Var [X3] = 26 · (N3 · p3 · (1− p3))

= 26 · 4 · 15 · 215

8 ·
(
2−14 + 2−23.748 − 2−29.415) · (1− (2−14 + 2−23.748 − 2−29.415))

' 961.094 ' 29.9085 .

Note that the variance of a random binomial distribution is given by

Var [Y] = N · p · (1− p)

= 4 · 212 ·
(

24

2

)
·
(
2−14 − 2−29.415) · (1− (2−14 − 2−29.415))

' 119.9899 . . . ' 26.907 .

So, the variance is again about eight times higher in the Setting (2).
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Table 8: Summary of the variances for our five-round distinguisher. π = random permutation.
Exp. = experiments from 100 000 random keys with 214 δ-sets each.

Setting (1) Setting (2)
Construction Theory Experiments Theory Experiments

π 509.999 – 509.999 –
AES 510.000 – 4 080.000 –

π 119.9899 – 119.9899 –
Small-AES 120.130 119.601 961.094 1 388.735
PRESENT S-box 120.130 118.796 961.094 1 375.978
PRINCE S-box 120.130 120.299 961.094 1 370.575
PRIDE S-box 120.130 119.996 961.094 1 391.445

Setting (1). Again, this setting lacks the multiple-of-eight relation, and the distribution
of collisions after N trials follows roughly a binomial distribution:

Pr [Y = k] =
(
N

k

)
· pk · (1− p)N−k .

We can determine the variance as

Var [Y] = N · p · (1− p)

= 4 · 212 ·
(

24

2

)
·
(
2−14 + 2−23.748 − 2−29.415) · (1− (2−14 + 2−23.748 − 2−29.415))

' 120.1295 . . . ' 26.908 .

So, the variance in Setting (1) is again marginally higher than that for a random permuta-
tion.

D.1.4 Experimental Verification of the Variance of Our Five-round Distinguisher for
Small-AES

We verified the variance experimentally for Small-AES. We chose 100 000 random keys.
For Setting (1), we chose 214 random independent δ-sets per key, which matches the
number of δ-sets in a diagonal of Setting (2). For each such experiment, we counted the
number of collisions in at least one of the inverse diagonals after five rounds without the
final MixColumns operation. Figure 14 visualizes the distributions for both settings.

D.1.5 Discussion

As a result, we conclude that there has to be another property in Small-AES beyond the
multiple-of-eight property that yields the observable deviation. In Setting (2), the variance
differs significantly from our expectation. One could expect that it roughly is eight times
higher than the variance in Setting (1) due to the multiple-of-eight property. Though, for
Small-AES, it is only roughly 11.4 times larger as outlined in Table 9, i.e., roughly 12
times larger than the variance of Setting (1). The reason for this gap is still unknown.

D.2 Variance of The Four-round Distinguisher
The variance of the four-round distinguisher can be derived similarly as for our five-round
distinguisher.
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(a) Small-AES (b) Small-AES with PRESENT S-box

(c) Small-AES with PRINCE S-box (d) Small-AES with PRIDE S-box

Figure 14: Distribution of the number of collisions in the first cell after five rounds in both
settings, with the final MixColumns operation omitted. Both distributions used 100 000 random
keys and counted the collisions from 214 δ-sets per key that were independent in Setting (1) or
the 214 δ-sets from D{0}. Thin lines are fitted normal distributions, thick lines the best fitted
distributions.

D.2.1 Variance of Our Four-round Distinguisher for The AES

Setting (2). Here, we claim that the probability distribution of collisions of a single
inverse diagonal after five rounds is given by

Pr [Y = k] =
{

0 if k mod 8 6≡ 0(
N3
k3

)
· (p3)k3 · (1− p3)N3−k3 otherwise.

So, we obtain actually one of the three sub-cases from [GR19]. We can determine the
variance as

Var [Y] = (23)2 · Var [X3] = 26 · (N3 · p3 · (1− p3))

= 26 · 4 · 255 · 231

8 ·
(
2−8 + 2−31.983) · (1− (2−8 + 2−31.983))

' 68 183 658 496.108 ' 235.9887 .

Note that the variance of a random binomial distribution is given by

Var [Y] = N · p · (1− p)

= 4 · 224 ·
(

28

2

)
·
(
2−8) · (1− (2−8))
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' 8 522 956 800 ' 232.9887 .

So, the variance should be about eight times higher in Setting (2).

D.2.2 Variance of Our Four-round Distinguisher for Small-AES

For Small-AES, we derive the variance similarly. However, due to the multiple-of-32
property, we have a different computation. We define p5, X5 and N5 similar as p3, X3 and
N3 before.

Setting (2). Here, we can determine the variance as

Var [Y] = (25)2 · Var [X5] = 210 · (N5 · p5 · (1− p5))

= 210 · 4 · 15 · 215

32 ·
(
2−4 + 2−15.721) · (1− (2−4 + 2−15.721))

' 3 687 419.195 ' 221.8142 .

Note that the variance of a random binomial distribution is given by

Var [Y] = N · p · (1− p)

= 4 · 212 ·
(

24

2

)
·
(
2−4 − 2−64.093) · (1− (2−4 − 2−64.093))

' 115 200 ' 216.8138 .

So, the variance should be about 32 times higher in the Setting (2).

Setting (1). Again, this setting lacks the multiple-of-32 relation, and the distribution of
collisions after N trials follows roughly a binomial distribution:

Pr [Y = k] =
(
N

k

)
· pk · (1− p)N−k .

We can determine the variance as

Var [Y] = N · p · (1− p)

= 4 · 212 ·
(

24

2

)
·
(
2−4 + 2−15.721) · (1− (2−4 + 2−15.721))

' 115 231.850 . . . ' 216.8142 .

So, the variance in Setting (1) is again marginally higher than that for a random permuta-
tion.

D.2.3 Experimental Verification of the Variance of Our Four-round Distinguisher for
Small-AES

We verified the variance experimentally for Small-AES. We chose 100 000 random keys. For
Setting (1), we chose 214 random independent δ-sets per key, which matches the number
of δ-sets in a diagonal of Setting (2). For each such experiment, we counted the number
of collisions in the first byte after four rounds without the final MixColumns operation.
Figure 15 visualizes the distributions for both settings.
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(a) Small-AES (b) Small-AES with PRESENT S-box

(c) Small-AES with PRINCE S-box (d) Small-AES with PRIDE S-box

Figure 15: Distribution of the number of collisions in the first cell after four rounds in both
settings, with the final MixColumns operation omitted. Both distributions used 100 000 random
keys and counted the collisions from 214 δ-sets per key that were independent in Setting (1) or
the 214 δ-sets from D{0}. Thin lines are fitted normal distributions, thick lines the best fitted
distributions.

D.2.4 Discussion

In Setting (2), the variance differs significantly from our expectation. First, one can expect
that it roughly is 32 times higher than the variance in Setting (1) due to the multiple-of-32
property. From the experiments, we observed the multiple-of-32 property in Section B.2.
However, the variance of Small-AES in Setting (2) can then be expected to be roughly a
32 times the variance of Setting (1). Though, for Small-AES, it is only roughly 15.4 times
larger as outlined in Table 9, i.e., roughly 16 times larger than the variance of Setting (1).
The reason for this gap is still unknown.
For the five-round distinguisher, the tested S-boxes behaved quite similarly. For the
four-round distinguisher, they differ hugely, e.g., the variance for Small-AES with the
S-box of PRESENT has a factor of 12.7 instead of roughly 16, and that of PRIDE a factor
of roughly 40.9. It is equally unknown which properties cause those S-boxes to possess
such huge differences.
We conjecture that the multiple-of-four property behaves in a multiplicative fashion in the
four-round distinguisher and in an additive fashion in our five-round distinguisher. This
means, instead of 16-tuples of texts that form a multiple-of-eight property, the property
builds 64-tuples texts that yield the multiple-of-32 property. So, it is included in the
multiple-of-eight tuples. For the five-round distinguisher, we conjecture that the property
behaves additively, i.e., there exist 16-tuples of texts that yield the multiple-of-eight
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Table 9: Summary of the variances for our four-round distinguisher. RP = random permutation.
Exp. = experiments from 100 000 random keys with 214 δ-sets each.

Setting (1) Setting (2)
Construction Theory Experiments Theory Experiments

π 232.9887 – 232.9887 –
AES 232.9887 – 235.9887 –

π 115 200 – 115 200 –
Small-AES 115 231.850 115 080.346 3 687 419.195 1 768 183.658
PRESENT S-box 115 231.850 116 507.699 3 687 419.195 1 462 985.130
PRINCE S-box 115 231.850 115 049.655 3 687 419.195 1 886 523.688
PRIDE S-box 115 231.850 114 859.203 3 687 419.195 4 709 431.259

property and separate 8-tuples that yield an additional multiple-of-four property that is
hidden but notable in the variance. It is imaginable that the same property causes the
five-round multiple-of-four distinguisher in Appendix B.3.

E Index Dependencies for Small-AES
E.1 Index Dependencies of The Four-round Distinguisher
Recall Equation (10) that consisted of eight key-dependent variables for i 6= j:

2S
(
2S(2xi ⊕K1[0])⊕K2[0]

)
⊕ 3S

(
S(3xi ⊕K1[1])⊕K2[5]

)
⊕ S

(
2S(xi ⊕K1[2])⊕K2[10]

)
⊕ S

(
S(xi ⊕K1[3])⊕K2[15]

)
= 2S

(
2S(2xj ⊕K1[0])⊕K2[0]

)
⊕ 3S

(
S(3xj ⊕K1[1])⊕K2[5]

)
⊕ S

(
2S(xj ⊕K1[2])⊕K2[10]

)
⊕ S

(
S(xj ⊕K1[3])⊕K2[15]

)
.

For different in- or output positions, the equations differ naturally. In all cases, however,
we have eight cells as degrees of freedom, i.e., 232 possible values of keys and plaintexts.
For simplicity, we denote them as κ1[0..3], κ2[0..3] in all cases. For each value of the eight
κ1[0..3], κ2[0..3], we compute the equation over all 24 values of xi, form their

(24

2
)
pairs,

and count the number of collisions. For an ideal permutation, we would expect

µrand = (24)8 ·
(

24

2

)
· (2−4 − 2−64.093) ' 32 212 254 719.999 . . . and

σrand ' 173 778.563,

whereas we would expect for Small-AES in theory – that is, without an influence of the
indices from the MixColumns matrix or the S-box:

µSmall-AES = (24)8 ·
(

24

2

)
· (2−4 + 2−15.792) ' 32 221 796 920.671 . . . and

σSmall-AES ' 173 802.580.

Implementation. In practice, the influences the of S-box and MixColumns matrix cause
deviations that are predictable by the 16× 16 cell-dependent equations. We implemented
the system for Small-AES with its original and six alternative S-boxes. The results are
provided in Figure 17. For each S-box, we obtained distinct values for each output cell.
The numbers of solutions in each row are permutations of each other with strong regularity.
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Figure 16: Permutations of numbers of solutions for each input byte, where the bold index in
parentheses refers to the position of the δ-sets in the plaintext, iin, and the position in the small
squares the index of the output (colliding) cell iout. The blue cells are exemplary for the position
(iin, iout) = (0, 15), the best distinguisher for Small-AES.

Figure 17: Theoretical index-dependent means from the equation system for our four-round
distinguisher with the S-box of Small-AES and that of PRESENT, in multiples of |µSmall-AES−µrand|
deviations from the mean of the PRP. Each cell represents the mean of the result for the active
input cell in the plaintexts (y-axis) and the tested inactive cell (x-axis) after four rounds without
the final MixColumns operation. Darker color (ignorant of sign) imply better distinguishers.

More precisely, the numbers of solutions repeat as shown by equal indices in Figure 16. This
means, the first row of the left part of Figure 17 corresponds to the top-left of Figure 16.
For iin = 0, the position iout = 15 yields the highest number of collisions, 32 239 747 072.
For iin = 1, this value repeats at index iout = 0; for iin = 2, this value repeats at index
iout = 5; and for iin = 3, this value repeats at index iout = 10. This corresponds to the
darkest cells in the left part of Figure 17. The situation is the same for the distinguisher
with alternative S-boxes, e.g., compare to that of PRESENT, in the right part of Figure 17.

Practical Verification. We implemented the position-dependent four-round distinguisher
also for Small-AES with its original S-box, and with the PRESENT S-box to verify our
approach. Figure 18 illustrates the average means from our experiments with 223 δ-sets
for Small-AES on the left, in terms of the deviation from the theoretical mean of a
pseudo-random permutation 62 914 600 in multiples of its standard deviation of σ ' 7 931.
Therefore, we consider the trail from input nibble 1 to output nibble 15 for our distinguisher
for Small-AES. The corresponding figure for the PRP possessed about ±0.6σ as the highest
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Figure 18: Experimental index-dependent means from 50 experiments (random keys and 223

δ-sets) on Small-AES with (right) its original S-box and (left) the PRESENT S-box. Values are
multiplies of σ deviations from the mean of the PRP. The cell positions x, y represent the active
plaintext cell (y-axis) and the tested ciphertext cell (x-axis) after four rounds without the final
MixColumns operation.
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Figure 19: Average means of five experiments with random keys and 230 δ-sets for our five-round
distinguisher with Small-AES in ×σ deviations from the mean of the PRP. Each cell represents
the result for the active input cell in the plaintexts.

deviation. One can observe that the figures are close to our theoretical prediction.
One can further observe significant deviations between the combinations. Recall that the
range of [−σ..+ σ] yields no obvious distinguisher. In contrast, the range of [+2σ..+ 4σ]
yields roughly the theoretically expected distinguisher. Interestingly, the majority of
combinations yield distinguishers for Small-AES. More detailed, for each input index, a
single output index possesses a mean close to the pseudorandom value, and two further
indices are mostly in the range of [+σ..+ 2σ]. All further combinations give higher means.
One combination per input index peaked particularly with a derivation of about +7σ.

E.2 Index Dependencies of The Five-round Distinguisher

Again, we emphasize that our assumptions approximate the structures of AES and
Small-AES. For consistency, we iterated again over the cell at index 1 in the plaintexts in
Setting (1) in our distinguisher on five rounds. Since our distinguisher starts again from
a single cell, we expect weaker deviations due to the additional round compared to our
four-round distinguisher and due to the fact that it considers four cells after three full
rounds at a time. Figure 19 presents our preliminary results. One can observe that all
choices for the active input cell yield distinguishers that are at least 2.2σ above the mean
of the PRP, with peaks at 4.9σ.
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Table 10: Results of the four-round distinguisher on Small-AES with different S-boxes and 100
random keys. Speck-64-96 has been used as PRP. Difference = to the theoretical value; DPmax
= the maximal number of pairs for a differential through the S-box; Var = variance; hom. =
homogeneous; X/– = yes/no.

Difference to Theory
Instance µ σ π Small-AES DU Var Hom.

Theory 62 914 000. 7 680. – −19 200.
PRP 62 915 004. 7 820. +1 004. −18 196.

Theory 62 933 200. 7 681. +19 200. –
Small-AES 62 967 244. 7 030. +53 244. +34 044. 4 344/225 X
PRESENT 62 928 210. 8 321. +14 210. −4 990. 4 416/225 –
PRINCE 62 928 742. 8 387. +14 742. −4 458. 4 344/225 –
PRIDE 62 940 902. 7 761. +26 902. +7 682. 4 416/225 –
Toy-6 62 892 051. 8 151. −21 949. −41 148. 6 392/225 –
Toy-8 62 913 848. 7 443. −152. −19 352. 8 464/225 –
Toy-10 62 913 322. 7 779. −678. −19 878. 10 608/225 –

F S-box Dependencies of The Four-round Distinguisher for
Variants of Small-AES

Alternative S-boxes. The results for our four-round distinguisher from Section 4 for
Small-AES in Table 3 (µ = 62 967 244, σ ' 7 030) deviate significantly from the theoretical
prediction (µ = 62 933 200, σ ' 7 681). The deviation is as large as 6.85 standard-deviation
units, in the sense that Small-AES appears to yield a considerably better distinguisher
than anticipated. The naturally arising question is which reasons cause this phenomenon.
In the beginning, we aimed to search for additional internal properties due to the AES.
For each S-box, we employed again 223 independent δ-sets. Surprisingly, our results indicate
that the employed S-box can produce tremendous biases, both positively and negatively.
Our results are listed in Table 10 and illustrated in Figure 20. In summary:

• The three real-world S-boxes show lower, but a noticeable distance to the random
permutation. While PRESENT and PRINCE are below the prediction, the distance
to the pseudo-random permutation is significant (1.85 and 1.92 standard-deviation
units of the theoretical prediction for Small-AES).

• Two out of three toy S-boxes, Toy-8 and Toy-10, behave close to random (−0.02 and
−0.09 standard-deviation units) and do not yield a distinguisher for the employed
amount of data.

• The Toy-6 S-box strongly deviates from all others by having a significantly lower
mean than the random permutation and all others (−2.86 standard-deviation units).

Alternative S-boxes and Index Dependencies. The index pattern depends also strongly
on the employed S-box. For comparison, the right side of Figure 18 shows the corresponding
input-output pattern for Small-AES with the S-box of PRESENT. It differs strongly from
that of Small-AES with its original S-box. In general, the obtained means are lower
and the peaks lower. All input positions have in common that there exist two to three
output cells for each that input-cell position with means of [4.5σ..5.5σ], i.e., strong
distinguishers. Moreover, almost each input position (except two and five) share equally
usable distinguishers with means of [−2σ..− 3σ] below the mean of the PRP.
Figure 21 shows the details also for the S-boxes of PRINCE, PRIDE, Toy-6, Toy-8, and
Toy-10. The considerably higher number of dark spots in the representations of the latter
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Figure 20: Distribution of means from 100 experiments with random keys for our four-round dis-
tinguisher on variants of Small-AES with different S-boxes. Each experiment used 223 independent
δ-sets.
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three illustrate the strong effect of the S-box for both positive and negative biases.

S-box Properties. The question remains which S-box properties cause the deviations.
We tested also particularly well-suited S-boxes: the 16 affine-equivalent representatives
of optimal S-boxes from [LP07] with respect to differential and linear cryptanalysis.
Moreover, we also considered the 10 representatives of platinum S-boxes with minimal
CardD1 (number of 1-bit-to-1-bit differentials with non-zero probability) and CardL1
(number of 1-bit-to-1-bit linear approximations) from [ZBRL15].
To compare the S-boxes, we chose a metric that captures the average absolute deviation
of each output cell to the theoretically expected number of collisions pSmall-AES for our
four-round distinguisher. So, we used the Euclidean distance for this purpose. For an S-box
S : F4

2 → F4
2, let DS denote our distance, XSiout

the number of collisions from plaintext δ-sets
that iterate over Cell iin = 0 and count the number of pairs that collide in Cell iout after four
rounds without the final MixColumns operation. Moreover, let E [X] ' 32 221 796 921 denote
the expected number of collisions. Note that the multi-set {XSiout

}0≤iout≤15 is invariant for
different values of iin. Then

DS
def=

√√√√ 15∑
iout=0

∣∣XSiout
− E [X]

∣∣2
We tested whether the distances are correlated with particular S-box properties. Grassi
and Rechberger [GR19] already suggested that their five-round distinguisher on the AES
would be related to the variance of the S-box. Therefore, the correlation of the DS measure
to the S-box would be interesting, which could be evaluated by the Pearson correlation
coefficient ρ. We determined its r-value and p-value; Recall that for two random variables
X and Y:

ρX,Y
def= cov(X,Y)

σX · σY
,

where cov(X,Y) =def E [(X − µX) · (Y − µY)] is the covariance of X and Y. We obtained
(r, p) ' (0.812, 1.637 · 10−13), i.e., a high correlation of 0.812; the p-value denotes a
very small probability that our results were observed but would be uncorrelated. The
relationship is depicted in Figure 22. S-boxes with low variances are considerably closer to
the expected numbers of collisions. The highest deviations were observed for the random
S-boxes S17 and S3 as well as for Toy-10, whose variances were the highest 656, 608, and
608. Though, several S-boxes with a low variance of 416/256 (e.g. that of PRIDE) had
considerably large values of DS . As a result, the variance is related, though, does not
fully explain the quality of an S-box. We further observed that the ten S-boxes (nine
optimal S-boxes 3–7, 10–13, and the Small-AES S-box) whose autocorrelation-table entries
ai,j , for i, j > 0 consisted of only values ±8 and contained no ±16, (which implied the
minimal variance of 344/256) all had low values of DS . This implied the absence of linear
structures.

G Adapted Heys-Liu Probabilistic Integral Distinguisher
on Four-round Small-AES

The Heys-Liu Integral Distinguisher on BSPN. In 2014, Heys [Hey14] conducted a simi-
lar analysis BSPN [YTH96], a byte-wise variant of the involutional SPN of [HT96]. BSPN
transforms a vector of eight bytes through SubBytes, a mixing layer, and AddRoundKeys,
similar to the AES and with the same S-box, but with a mixing layer that multiplies the
state with the circulant matrix ◦(0, 1, . . . , 1). The round function of BSPN is therefore
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(a) Small-AES. (b) PRESENT S-box.
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(c) PRINCE S-box.
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(d) PRIDE S-box.
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(e) Toy-6 S-box.
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(f) Toy-8 S-box.
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(g) Toy-10 S-box.

Figure 21: Theoretical index-dependent means from the equation system for our four-round
distinguisher with different S-boxes, in ×|pSmall-AES − prand| deviations from the mean of the PRP.
Each cell represents the result for the active input cell in the plaintexts (y-axis) and the tested
inactive cell (x-axis) after four rounds without the final MixColumns operation. Darker colors
(ignorant of sign) imply better distinguishers.
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Figure 22: Correlation of DS , i.e., the squared distance to the expected number of collisions over
all output-cell positions and the variance of our tested S-boxes.

Table 11: S-box properties, in ascending order by DS . DU = differential uniformity, lin. =
linearity, NL = nonlinearity, LS = linear structures.

Name Sbox DS Var. DU Lin. NL LS

Optimal-06 [0 1 2 13 4 7 15 6 8 12 11 9 10 14 5 3] 20440130 344.00 4 8 4 –
Optimal-04 [0 1 2 13 4 7 15 6 8 12 9 11 10 14 5 3] 22521284 344.00 4 8 4 –
Optimal-03 [0 1 2 13 4 7 15 6 8 12 5 3 10 14 11 9] 22706595 344.00 4 8 4 –
Optimal-11 [0 1 2 13 4 7 15 6 8 14 11 10 5 9 12 3] 23218095 344.00 4 8 4 –
Optimal-07 [0 1 2 13 4 7 15 6 8 12 14 11 10 9 3 5] 24444860 344.00 4 8 4 –

Small-AES [6 11 5 4 2 14 7 10 9 13 15 12 3 1 0 8] 24893844 344.00 4 8 4 –
Platinum-05 [0 13 4 11 7 14 9 2 6 10 3 5 8 1 15 12] 26272446 416.00 4 8 4 X
Optimal-12 [0 1 2 13 4 7 15 6 8 14 11 10 9 3 12 5] 27188316 344.00 4 8 4 –
Platinum-02 [0 12 9 7 6 1 15 2 3 11 4 14 13 8 10 5] 27800383 416.00 4 8 4 X
Random-06 [12 4 0 7 9 6 13 3 5 14 8 10 2 15 1 11] 28205615 344.00 6 12 2 X

...

Random-02 [8 4 1 11 0 5 12 13 2 6 15 9 14 7 3 10] 73193659 512.00 6 12 2 X
PRIDE [0 4 8 15 1 5 14 9 2 7 10 12 11 13 6 3] 79057073 416.00 4 8 4 X
Random-17 [11 14 13 8 2 7 12 6 5 0 4 15 10 9 3 1] 111443494 656.00 8 16 0 X
Random-03 [7 1 5 10 4 11 12 3 13 8 9 15 14 2 0 6] 179623034 608.00 8 16 0 X
Toy-10 [6 4 12 5 0 7 2 14 1 15 3 13 8 10 9 11] 192390502 608.00 10 12 2 X
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(a) Mean and standard deviation of the Heys-Liu experiments adapted to four rounds of Small-AES with
100 experiments with random keys.

Random permutation Small-AES

δ-sets s µ σ µ σ

24 1 048 573.120 964.778 1 049 134.150 1 079.363
26 4 194 297.190 2 182.769 4 196 155.600 2 382.283
28 16 776 997.485 3 808.268 16 785 415.790 5 787.742
30 67 109 083.490 8 114.173 67 143 877.360 16 479.876

(b) For 228 δ-sets per key. (c) 230 δ-sets per key.

Figure 23: Results of the Heys-Liu experiments adapted to four rounds of Small-AES with 100
experiments with random keys.

simpler and a similar integral as for the AES applies. Heys and Liu studied a probabilistic
extension of the three-round integral. More precisely, they studied the probability of
obtaining a zero sum in the individual bytes after three rounds that naturally allows them
to be traced through the subsequent round. In contrast to our approach, they studied
the probability that the sum of an entire δ-set of 256 texts is zero with a probability
significantly deviating from random.

Adaption to Small-AES. Inspired by their approach, we conducted a similar study for
round-reduced AES. Since we expected the result to be inapplicable for the AES, we
considered Small-AES instead. More precisely, we employed 100 random keys and 2s δ-sets
that iterated over all 24 values of the first input byte for each. We counted the number
of times that we obtained a zero sum in the first output byte after almost four rounds,
i.e., without the final MixColumns operation. Our results are illustrated in Figure 23 for
s ∈ {28, 30}; detailed means and standard deviations are provided for those as well as for
s ∈ {24, 26} in Table 23a.

Interpretation. We see considerable differences in the distribution starting from s = 28,
although still a broad overlap of both distributions. For s = 30, the different distributions
become apparent. From our point of view, the distinguisher is a consequence of ours, but
significantly more sophisticated to explore. We leave its more detailed foundations as
interesting future work.
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