Extended Truncated-Differential Distinguishers on Reduced-Round AES

Zhenzhen Bao¹ Jian Guo¹ Eik List²

 1 CATF, Nanyang Technical University, Singapore

²Bauhaus-Universität Weimar, Germany

November 2020

Section 1

[Motivation](#page-1-0)

Sum of Independent Permutations

Simple approach to turn PRPs into a PRF:

$$
\Sigma_k(x) \stackrel{\text{def}}{=} \bigoplus_{i=1}^k \pi_i(x)
$$

Assume:
$$
\pi_i \leftarrow \text{Perm}(\mathbb{F}_2^n)
$$

Goal of distinguisher \mathbf{A} : Distinguish \sum_k from random function

 $X \leftarrow \mathcal{X} = X$ is sampled uniformly at random and independently from other samplings from a set \mathcal{X} .

- XOR of *k* PRPs gives a PRF with security at least in $O(2^{\frac{k}{k+1}n})$ [\[Luc00\]](#page-45-0).
- **Intensive analysis, mostly on** Σ_2 [\[BI99,](#page-42-0) [CLP14,](#page-43-0) [Luc00,](#page-45-0) [MP15,](#page-46-0) [Pat08a,](#page-46-1) [Pat08b,](#page-46-2) [Pat10,](#page-46-3) [Pat13\]](#page-46-4)
- Indistinguishable from PRF up to $q \in O(2^n)$ queries [\[BN18a,](#page-42-1) [DHT17,](#page-44-0) [MN17\]](#page-46-5)
- Indifferentiable from PRF up to $q \in O(2^n)$ queries [\[BN18b\]](#page-42-2)

Sum of PRPs [\[Pat08b,](#page-46-2) [Pat13\]](#page-46-4)

- Security maximum: $q < 2^n$:
- \blacksquare Interest of most provable security ends here
- What if few responses are random? \implies other distinguishing approaches needed
- Motivated Patarin's studies [\[Pat08b,](#page-46-2) [Pat13\]](#page-46-4)

Sum of PRPs [\[Pat08b,](#page-46-2) [Pat13\]](#page-46-4)

- **A** has access to function generator $\mathcal{G}(F)$
	- $q \geq 1$ random constructions
	- $q \leq 2^n$ queries on each
- \blacksquare Approach: Count $\#$ collisions
- Expectations (and standard deviations) differ slightly
	- \implies distinguisher given sufficiently many queries

Example: Sum of 2 PRPs Example

$$
\blacksquare~q=2^8~\text{queries}/\text{experiment}
$$

```
1.7 \text{ test\_sum_of\_prps.py -k 2 -n 8 -e 65536}Sum of 2 PRPs
3 127.922623 11.393390
4 PRF
5 127.584320 11.303495
```


$$
\Sigma_2: \quad \mu=\frac{\binom{q}{2}}{2^n-1}\qquad \text{PRF}: \quad \mu=\frac{\binom{q}{2}}{2^n}
$$

Distinguishing Complexity for Sum of *k* PRPs [\[Pat08b,](#page-46-2) [Pat13\]](#page-46-4)

Table: #Collisions $\mathbb{E}[N_k]$ after q queries and distinguishing complexity for $q \simeq 2^n$ [\[Pat08b\]](#page-46-2).

$$
\Pr[\text{COLL}] = \frac{1}{2^n} + \frac{(-1)^k}{2^n (2^n - 1)^{k-1}}.
$$

 $N_k = #$ Collisions for Σ_k ; $q = #$ Functions; $q = #$ Queries

Zhenzhen Bao, Jian Guo, Eik List [Extended Truncated-Differential Distinguishers on Reduced-Round AES](#page-0-0) November 2020 8/53

Expectation Cryptanalysis Chen et al. [\[CMSZ15\]](#page-43-1)

- \blacksquare First to observe applicability of expectation cryptanalysis for extending integrals
- Start: Propagation of ALL-subsets in SPNs (**A**, iterate over all elements)
- Affine layer \mathcal{L} :
	- $ALL (A) \xrightarrow{\mathcal{L}} BALANCED (B)$
- Next non-linear layer S :

BALANCED $(\mathbf{B}) \xrightarrow{S}$ UNKNOWN $(?)$

Expectation Cryptanalysis (cont'd)

Core Observation by Chen et al. [\[CMSZ15\]](#page-43-1)

- Affine layers $\mathcal{L}(x) = \mathbf{M} \cdot x + \mathbf{b}$
	- \blacksquare **M** = circ(**v**) where

$$
\mathbf{v}=(a_1,\ldots,a_m),\qquad a_i\in\mathbb{F}
$$

Often: $k = wt(v) > 1$: **v** is Σ_k -sum of components

$$
\mathbf{A} \xrightarrow{\mathcal{L}} \Sigma_k
$$

- Distribution of collisions preserved by subsequent non-linear layer S
- Focused on Type-II and Nyberg Feistel Networks with 4-bit S-boxes

An Interesting Application Target: AES

- \blacksquare MixColumns: $\mathbf{M} = \text{circ}(2, 3, 1, 1)$
- \blacksquare \implies Σ_4 for the well-known 3-round integral:

$$
(\mathbf{A},\mathbf{A},\mathbf{A},\mathbf{A})\xrightarrow{\text{MC}}(\Sigma_4,\Sigma_4,\Sigma_4,\Sigma_4)
$$

Distinguishers on 5^+ -round AES

- \blacksquare Intensive studies since 2016
	- Sun et al.'s key-dependent integral $[SLG^+16]$ $[SLG^+16]$
	- Open question: why only chosen ciphertext, full codebook
- **Improvements:**
	- Key-dependent impossible differentials [\[GRR16,](#page-45-1) [Gra18a,](#page-45-2) [HCGW18\]](#page-45-3)
	- Key-dependent integral [\[HCGW18\]](#page-45-3).
- Second direction: differential-based, subspace trail, invariant
	- Multiple-of- n [\[GRR17,](#page-45-4) [BCC19\]](#page-42-3)¹
	- Mixture differentials [\[Gra18b\]](#page-45-5)
	- Best current distinguishers: Yoyo/Exchange [\[BR19b\]](#page-43-2) 2
- Similar to our focus:
	- Expectation and variance cryptanalysis [\[GR18,](#page-44-1) [GR19\]](#page-44-2)
- Interesting topic, many things still in the dark

¹The key-recovery attack complexity was reduced by $[BDK+18]$ $[BDK+18]$.

 2 The key-recovery attacks by [\[DKRS20\]](#page-44-3) represent a follow-up work that follows this direction, but considers conditional boomerangs distinguishers on fewer rounds.

Section 2

[Four-round Distinguisher](#page-12-0)

Statistical Framework [\[Gra18b\]](#page-45-5)

For success probability $\geq p_S$, $\#$ Experiments *n* must satisfy:

$$
n \geq \frac{2\left(p_{\text{rand}}(1-p_{\text{rand}}) + \frac{\sigma_{\text{AES}}^2}{\sigma_{\text{rand}}^2}p_{\text{AES}}(1-p_{\text{AES}})\right)}{(p_{\text{AES}}-p_{\text{rand}})^2} \cdot \left(\text{erfinv}(2 \cdot p_S - 1)^2\right),
$$

erfinv(*x*) = Pr[*X* ∈ [−*x*, +*x*]], *X* ∼ $\mathcal{N}(0, 0.5)$ $p_{\text{rand}} =$ probability for random experiment $p_{\text{AES}} =$ probability for the reduced AES $\sigma^2 =$ variance

Four-round Distinguisher

For 4-round Δ ES:

$$
\Pr_{\text{AES}} \left[S_{r,c}^{3,i} = S_{r,c}^{3,j} \right] \simeq \frac{1}{2^8} + \frac{1}{2^8 (2^8 - 1)^3} \simeq 2^{-8} + 2^{-31.983}
$$

For random truncated permutation:

$$
\Pr_{\text{rand}}\left[S_{r,c}^{3,i} = S_{r,c}^{3,j}\right] = \frac{2^{120} - 1}{2^{128} - 1} \simeq 2^{-8} - 2^{-128}.
$$

■
$$
p_S \ge 0.95
$$
:
\n $\Rightarrow n \ge 2^{58.402}$ pairs
\n $\Rightarrow 2^{43.41}$ δ -sets of $2^{51.41}$ CPs

Optimizations: use all output bytes, build plaintext structures

 $r, c \in \{0, 1, 2, 3\}$ = row, column.

Four-round Distinguisher Small-AES

 \blacksquare For 4-round Small-AFS:

$$
\Pr_{\text{Small-AES}}\left[S_{r,c}^{3,i}=S_{r,c}^{3,j}\right]\simeq\frac{1}{2^4}+\frac{1}{2^4(2^4-1)^3}\simeq2^{-4}+2^{-15.721}
$$

For a truncated random permutation:

$$
\Pr_{\text{rand}}\left[S_{r,c}^{3,i} = S_{r,c}^{3,j}\right] = \frac{2^{60} - 1}{2^{64} - 1} \simeq 2^{-4} - 2^{-64.093}
$$

■ $p_S \ge 0.95$: $\implies n > 2^{29.878}$ pairs \implies 2^{23} δ -sets of 2^{27} CPs

Four-round Distinguisher Small-AES

100 random independent keys and 2^s random δ-sets. Experimental values are rounded. $\pi =$ Speck-64-96

Section 3

[Five-round Distinguisher](#page-17-0)

Five-round Distinguisher

- Goal: At least one inactive inverse diagonal after 5 rounds
- Probabilities for concrete inactive anti-diagonal:

$$
\Pr_{\text{AES}}\left[S^3 \in \mathcal{D}_{\{c\}}\right] \simeq \left(2^{-8} + \frac{1}{2^8 \cdot (2^8 - 1)^3}\right)^4 \simeq 2^{-32} + 2^{-53.983}
$$
\n
$$
\Pr_{\text{rand}}\left[S^3 \in \mathcal{D}_{\{c\}}\right] \simeq \frac{2^{96} - 1}{2^{128} - 1} \simeq 2^{-32} - 2^{-128}
$$

Probability for at least one inactive anti-diagonal:

$$
p_{\text{AES}} \simeq 1 - \left(1 - \Pr_{\text{AES}}\left[S^3 \in \mathcal{D}_{\{c\}}\right]\right)^4 \simeq 2^{-30} + 2^{-51.985}
$$
\n
$$
p_{\text{rand}} \simeq 1 - \left(1 - \Pr_{\text{rand}}\left[S^3 \in \mathcal{D}_{\{c\}}\right]\right)^4 \simeq 2^{-30} - 2^{-61.415}
$$

 $c \in \{0, 1, 2, 3\} = \text{column.}$

Five-round Distinguisher

Complexities

- For a success probability of approximately $p = 0.95$: $n>2^{76.406}$ pairs
- Data: 2^{36} structures of 2^{32} texts each
- Form $4 \cdot 2^{24} \cdot \binom{2^8}{2}$ $\binom{2^{\circ}}{2}$ pairs

$$
2^{36}\cdot 4\cdot 2^{24}\cdot \binom{2^8}{2}\simeq 2^{77} \text{ pairs }
$$

- Memory: Dominated by 2^{32} states in $\mathcal Q$ and four lists L_i of 4×2^{32} columns at a time
- $Time: 2^{73.3}$ MAs $+ 2^{68.3}$ Encs

Five-round Distinguisher Small AES

Probability for at least one inactive anti-diagonal:

$$
p_{\mathsf{Small}\text{-}\mathsf{AES}} \simeq 1 - \left(1 - \Pr_{\mathsf{Small}\text{-}\mathsf{AES}}\left[S^3 \in \mathcal{D}_{\{c\}}\right]\right)^4 \simeq 2^{-14} + 2^{-23.748}
$$

For a truncated random permutation:

$$
p_{\text{rand}} \simeq 1 - \left(1 - \Pr_{\text{rand}}\left[S^3 \in \mathcal{D}_{\{c\}}\right]\right)^4 \simeq 2^{-14} - 2^{-29.415}
$$

$$
\bullet \ \ p_S \geq 0.95 \implies n > 2^{35.878}
$$

Five-round Distinguisher

Verification with Small-scale AES

 100 random independent keys and 2^{30} random $δ$ -sets. W/o MC in final round and tested on first column. Experimental values are rounded. π = Speck-64-96.

Section 4

[Six-round Key Recovery](#page-22-0)

Key-recovery on Six-round AES

Overview

Prepend one round

Recover $K^0[0, 5, 10, 15]$

Key-recovery on Six-round AES

Optimizing Complexities

Key-recovery on Six-round AES

Experimental Results on Small-AES

- Goal: Recover *K*⁰ [0*,* 5*,* 10*,* 15]
- 2^{15} structures:
	- 53 \times among top 100 keys
- 2^{16} structures:
	- 92 \times among top 100 keys
	- Worst: rank 313

Ranks for the correct key from 100 runs; random keys and 2^{15} or 2^{16} structures of 2^{16} texts each.

Section 5

[Six-round Distinguisher](#page-26-0)

■ Diagonal $\mathcal{D}_0 = \mathcal{X}_0 \cup \mathcal{X}_1$ (disjoint)

 $4\cdot 2^{24}\cdot \binom{2^8}{2}$

 $p_{\text{AES}_6} \simeq$

$$
\simeq 2^{-30} - 2^{-61.415} + 2^{-73.989}
$$

■ Diagonal $\mathcal{D}_0 = \mathcal{X}_0 \cup \mathcal{X}_1$ (disjoint) \mathcal{X}_1 = good pairs \mathcal{S}^1 p_{AES_5} for all $x=4\cdot\binom{2^8}{2}$ $\binom{2^{\circ}}{2} \cdot 2^{24}$ pairs in δ -sets $\begin{array}{|c|c|c|c|}\nA & A & A & A \\
\hline\nA & A & A & A\n\end{array}$ A A A A **AAA** K^4 -54 K^5 -25 $4\cdot 2^{24}\cdot \binom{2^8}{2}$ $\binom{2^8}{2} \cdot \left(2^{-30} + 2^{-51.985}\right) + \binom{2^{32}}{2}$ $\binom{3^2}{2} - \left(4 \cdot 2^{24} \cdot \binom{2^8}{2} \right)$ $\binom{2^8}{2}$ \cdot $\left(2^{-30} - 2^{-61.415}\right)$ $p_{\text{AES6}} \simeq$ $\binom{2^{32}}{2}$ $\binom{32}{2}$ $\simeq 2^{-30} - 2^{-61.415} + 2^{-73.989}$

- Diagonal $\mathcal{D}_0 = \mathcal{X}_0 \cup \mathcal{X}_1$ (disjoint)
- \mathcal{X}_1 = good pairs p_{AES_5} for all $x=4\cdot\binom{2^8}{2}$ $\binom{2^{\circ}}{2} \cdot 2^{24}$ pairs in δ -sets
- $\mathcal{X}_0 = \bigl(\begin{smallmatrix} 2^{32} \ 2 \end{smallmatrix} \bigr)$ $\binom{32}{2}$ – x "random" pairs Assumption: They behave "randomly"

$$
p_{\text{AES}_6} = \frac{|\mathcal{X}_0| \cdot p_{\text{rand}} + |\mathcal{X}_1| \cdot p_{\text{AES}_5}}{|\mathcal{D}_0|}
$$

Random truncated permutation:

$$
p_{\rm rand} \simeq 2^{-30} - 2^{-61.415}
$$

$$
p_{\text{AES}_6} \simeq \frac{4 \cdot 2^{24} \cdot {2 \choose 2} \cdot \left(2^{-30} + 2^{-51.985}\right) + {2 \choose 2} - \left(4 \cdot 2^{24} \cdot {2 \choose 2}\right) \cdot \left(2^{-30} - 2^{-61.415}\right)}{{2 \choose 2}}
$$

$$
\simeq 2^{-30} - 2^{-61.415} + 2^{-73.989}
$$

- Diagonal $\mathcal{D}_0 = \mathcal{X}_0 \cup \mathcal{X}_1$ (disjoint)
- \mathcal{X}_1 = good pairs p_{AES_5} for all $x=4\cdot\binom{2^8}{2}$ $\binom{2^{\circ}}{2} \cdot 2^{24}$ pairs in δ -sets
- $\mathcal{X}_0 = \bigl(\begin{smallmatrix} 2^{32} \ 2 \end{smallmatrix} \bigr)$ $\binom{32}{2}$ – x "random" pairs Assumption: They behave "randomly"

$$
p_{\text{AES}_6} = \frac{|\mathcal{X}_0| \cdot p_{\text{rand}} + |\mathcal{X}_1| \cdot p_{\text{AES}_5}}{|\mathcal{D}_0|}
$$

Random truncated permutation:

$$
p_{\rm rand} \simeq 2^{-30} - 2^{-61.415}
$$

Theoretical p_{AES} **after six rounds:**

$$
p_{\text{AES}_6} \simeq \frac{4 \cdot 2^{24} \cdot \binom{2^8}{2} \cdot \left(2^{-30} + 2^{-51.985}\right) + \binom{2^{32}}{2} - \left(4 \cdot 2^{24} \cdot \binom{2^8}{2}\right) \cdot \left(2^{-30} - 2^{-61.415}\right)}{\binom{2^{32}}{2}}
$$

$$
\simeq 2^{-30} - 2^{-61.415} + 2^{-73.989}
$$

Six-round Distinguisher

Six-round Distinguisher

Verification with Small-AES

Six-round Distinguisher

Verification with Small-AES

- Results with Small-AES of 5 Rounds $+$ $SB + AK$
- 100 experiments
- \blacksquare #collisions in at least one ciphertext column per structure of 2^{16} texts
- \blacksquare π = Speck-64-96

3 approaches for verifications of the theoretical probabilities:

- **1** Patarin's sum of permutation
- ² Proof following the footsteps of Grassi and Rechberger [\[GR19\]](#page-44-2) under assumptions:
	- Ideal S-box
	- Any combination of input-output cells is equally successful
- **3** Rønjom's truncated-differential propagation matrices [\[Røn19\]](#page-47-3)
- Equal theoretical probabilities for all three
- \blacksquare But... not completely the real-world setting

We analyzed dependencies

- \blacksquare Index dependencies of active input cells and concerned output cells
- **F** Fffects of the S-box

In appendix and in paper

Section 6

[Summary](#page-37-0)

Summary Truncated-differential distinguishers

- On 4-round AFS
- On 5-round AES
- On 6-round AFS
- Theoretical probabilities verified with approach by Rønjom [\[Røn19\]](#page-47-3)
- All implemented with Small-AES

 $MAs =$ memory accesses; $CP =$ chosen plaintexts; $(A)CC =$ (adaptive) chosen ciphertexts; $ID =$ impossible differential; $TD =$ truncated differential; $MD =$ mixture differential

<https://github.com/medsec/expectation-cryptanalysis-on-round-reduced-aes>

■ 6-round AES

Implemented with Small-AES

- Small-bias distinguishers are highly useful Good paper prior to ours: [\[GR19\]](#page-44-2)
- \blacksquare Interesting: S-box and index dependencies
- Claim: The more uniform the S-box, the lower deviations from theory [\[GR19\]](#page-44-2) Reason still unclear, but indications
- **Example 2** Large deviations mostly due to the small size of Small-AES

Questions?

Bibliography I

Navid Ghaedi Bardeh.

A Key-Independent Distinguisher for 6-round AES in an Adaptive Setting. IACR Cryptology ePrint Archive, 2019:945, 2019. [http://eprint.iacr.org/2019/945.](http://eprint.iacr.org/2019/945)

Christina Boura, Anne Canteaut, and Daniel Coggia.

A general proof framework for recent AES distinguishers. IACR Trans. Symmetric Cryptol., 2019(1):170–191, 2019.

Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir.

Improved Key Recovery Attacks on Reduced-Round AES with Practical Data and Memory Complexities. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO II, volume 10992 of Lecture Notes in Computer Science, pages 185–212. Springer, 2018.

Mihir Bellare and Russell Impagliazzo.

A tool for obtaining tighter security analyses of pseudorandom function based constructions, with applications to PRP to PRF conversion. IACR Cryptology ePrint Archive, 1999:24, 1999.

Christina Boura, Virginie Lallemand, María Naya-Plasencia, and Valentin Suder.

Making the Impossible Possible. J. Cryptology, 31(1):101–133, 2018. [https://doi.org/10.1007/s00145-016-9251-7.](https://doi.org/10.1007/s00145-016-9251-7)

F

Srimanta Bhattacharya and Mridul Nandi.

A note on the chi-square method: A tool for proving cryptographic security. Cryptography and Communications, 10(5):935–957, 2018.

Srimanta Bhattacharya and Mridul Nandi.

Full Indifferentiable Security of the Xor of Two or More Random Permutations Using the \chi ˆ2 Method. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT I, volume 10820 of Lecture Notes in Computer Science, pages 387-412. Springer, 2018.

Bibliography II

Navid Ghaedi Bardeh and Sondre Rønjom.

Practical Attacks on Reduced-Round AES.

In Johannes Buchmann, Abderrahmane Nitaj, and Tajje-eddine Rachidi, editors, Africacrypt, volume 11627 of LNCS, pages 297-310. Springer, 2019. [https://doi.org/10.1007/978-3-030-23696-0_15.](https://doi.org/10.1007/978-3-030-23696-0_15)

Navid Ghaedi Bardeh and Sondre Rønjom.

The Exchange Attack: How to Distinguish 6 Rounds of AES with 2 88*.*2 chosen plaintexts. In Mitsuru Matsui, Steven Galbraith, and Shiho Moriai, editors, ASIACRYPT, volume 11273 of LNCS. Springer, 2019. To appear.

Navid Ghaedi Bardeh and Sondre Rønjom.

The Exchange Attack: How to Distinguish 6 Rounds of AES with 2 88*.*2 chosen plaintexts. IACR Cryptology ePrint Archive, 2019:652, 2019. [https://eprint.iacr.org/2019/652.](https://eprint.iacr.org/2019/652)

Jung Hee Cheon, MunJu Kim, Kwangjo Kim, Jung-Yeun Lee, and SungWoo Kang.

Improved Impossible Differential Cryptanalysis of Rijndael and Crypton. In Kwangjo Kim, editor, *ICISC*, volume 2288 of LNCS, pages 39-49. Springer, 2001. [https://doi.org/10.1007/3-540-45861-1_4.](https://doi.org/10.1007/3-540-45861-1_4)

Benoit Cogliati, Rodolphe Lampe, and Jacques Patarin.

```
The Indistinguishability of the XOR of k Permutations.
In Carlos Cid and Christian Rechberger, editors, FSE, volume 8540 of LNCS, pages 285–302. Springer, 2014.
```


Jiageng Chen, Atsuko Miyaji, Chunhua Su, and Liang Zhao.

A New Statistical Approach for Integral Attack.

In Meikang Qiu, Shouhuai Xu, Moti Yung, and Haibo Zhang, editors, NSS, volume 9408 of Lecture Notes in Computer Science, pages 345-356. Springer, 2015.

Bibliography III

F

Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean.

Improved Key Recovery Attacks on Reduced-Round AES in the Single-Key Setting. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages 371-387. Springer, 2013.

Wei Dai, Viet Tung Hoang, and Stefano Tessaro.

Information-Theoretic Indistinguishability via the Chi-Squared Method. In Jonathan Katz and Hovav Shacham, editors, CRYPTO Part III, volume 10403 of LNCS, pages 497–523. Springer, 2017. Full version at http://eprint.iacr.org/2017/537, latest version 20170616:190106.

Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir.

The Retracing Boomerang Attack. In Anne Canteaut and Yuval Ishai, editors, *EUROCRYPT I, volume 12105 of LNCS*, pages 280–309. Springer, 2020. [https://doi.org/10.1007/978-3-030-45721-1_11.](https://doi.org/10.1007/978-3-030-45721-1_11)

Lorenzo Grassi and Christian Rechberger.

New Rigorous Analysis of Truncated Differentials for 5-round AES. IACR Cryptology ePrint Archive, 2018:182, 2018.

Lorenzo Grassi and Christian Rechberger.

Rigorous Analysis of Truncated Differentials for 5-round AES. IACR Cryptology ePrint Archive, 2018:182, April 06 2019. [http://eprint.iacr.org/2018/182,](http://eprint.iacr.org/2018/182) updated version 20190604:090617.

Lorenzo Grassi.

Mixture Differential Cryptanalysis: a New Approach to Distinguishers and Attacks on round-reduced AES. IACR Cryptology ePrint Archive, 2017:832, 2017.

Bibliography IV

Lorenzo Grassi.

MixColumns Properties and Attacks on (Round-Reduced) AES with a Single Secret S-Box. In Nigel P. Smart, editor, CT-RSA, volume 10808 of Lecture Notes in Computer Science, pages 243–263. Springer, 2018.

Lorenzo Grassi.

Mixture Differential Cryptanalysis: a New Approach to Distinguishers and Attacks on round-reduced AES. IACR Transactions on Symmetric Cryptology, 2018(2):133–160, 2018.

Lorenzo Grassi.

Probabilistic Mixture Differential Cryptanalysis on round-reduced AES. In Douglas Stebila and Kenneth G. Paterson, editors, SAC, LNCS. Springer, 2019. 22 pages (to appear).

Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. Subspace Trail Cryptanalysis and its Applications to AES. IACR Trans. Symmetric Cryptol., 2016(2):192–225, 2016.

Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom.

A New Structural-Differential Property of 5-Round AES. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT II, volume 10211 of Lecture Notes in Computer Science, pages 289–317, 2017.

Kai Hu, Tingting Cui, Chao Gao, and Meiqin Wang.

Towards Key-Dependent Integral and Impossible Differential Distinguishers on 5-Round AES. In Carlos Cid and Michael J. Jacobson Jr., editors, SAC, volume 11349 of Lecture Notes in Computer Science, pages 139–162. Springer, 2018.

Stefan Lucks.

The Sum of PRPs Is a Secure PRF. In Bart Preneel, editor, EUROCRYPT, volume 1807 of LNCS, pages 470–484. Springer, 2000.

Bibliography V

Bart Mennink and Samuel Neves.

Encrypted Davies-Meyer and Its Dual: Towards Optimal Security Using Mirror Theory. In Jonathan Katz and Hovav Shacham, editors, CRYPTO, Part III, volume 10403 of LNCS, pages 556–583. Springer, 2017. Full version at https://eprint.iacr.org/2017/473.

Bart Mennink and Bart Preneel.

On the XOR of Multiple Random Permutations. In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors, ACNS, volume 9092 of LNCS, pages 619-634. Springer, 2015.

Jacques Patarin.

A Proof of Security in O(2n) for the Xor of Two Random Permutations. In Reihaneh Safavi-Naini, editor, ICITS, volume 5155 of LNCS, pages 232–248. Springer, 2008. Full version at https://eprint.iacr.org/2008/010.

Jacques Patarin.

Generic Attacks for the Xor of k random permutations. IACR Cryptology ePrint Archive, 2008:9, 2008.

Jacques Patarin.

Introduction to Mirror Theory: Analysis of Systems of Linear Equalities and Linear Non Equalities for Cryptography. IACR Cryptology ePrint Archive, 2010:287, 2010.

Jacques Patarin.

Generic Attacks for the Xor of k Random Permutations.

In Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors, ACNS, volume 7954 of Lecture Notes in Computer Science, pages 154–169. Springer, 2013.

Bibliography VI

Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth.

Yoyo Tricks with AES. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT I, volume 10624 of Lecture Notes in Computer Science, pages 217–243. Springer, 2017.

Sondre Rønjom.

A Short Note on a Weight Probability Distribution Related to SPNs. IACR Cryptology ePrint Archive, 2019:750, 2019.

Ali Aydin Selçuk.

On Probability of Success in Linear and Differential Cryptanalysis. J. Cryptology, 21(1):131–147, 2008. [http://dx.doi.org/10.1007/s00145-007-9013-7.](http://dx.doi.org/10.1007/s00145-007-9013-7)

Bing Sun, Meicheng Liu, Jian Guo, Longjiang Qu, and Vincent Rijmen.

New Insights on AES-Like SPN Ciphers. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO I, volume 9814 of Lecture Notes in Computer Science, pages 605-624. Springer, 2016.

Subhabrata Samajder and Palash Sarkar.

Rigorous upper bounds on data complexities of block cipher cryptanalysis. J. Mathematical Cryptology, 11(3):147–175, 2017. [https://doi.org/10.1515/jmc-2016-0026.](https://doi.org/10.1515/jmc-2016-0026)

Yosuke Todo and Kazumaro Aoki.

FFT Key Recovery for Integral Attack.

In Dimitris Gritzalis, Aggelos Kiayias, and Ioannis G. Askoxylakis, editors, CANS, volume 8813 of LNCS, pages 64–81. Springer, 2014. [https://doi.org/10.1007/978-3-319-12280-9_5.](https://doi.org/10.1007/978-3-319-12280-9_5)

Bibliography VII

Yosuke Todo.

FFT-Based Key Recovery for the Integral Attack. IACR Cryptology ePrint Archive, 2014:187, 2014. [http://eprint.iacr.org/2014/187.](http://eprint.iacr.org/2014/187)

Michael Tunstall.

Improved Partial Sums-based Square Attack on AES.

In Pierangela Samarati, Wenjing Lou, and Jianying Zhou, editors, SECRYPT, pages 25–34. SciTePress, 2012.

Michael Tunstall.

Improved "Partial Sums"-based Square Attack on AES. IACR Cryptology ePrint Archive, 2012:280, 2012. [http://eprint.iacr.org/2012/280.](http://eprint.iacr.org/2012/280)

Yale.

The Yale Literary Magazine. Number 47 in The Yale Literary Magazine. Herrick & Noyes, 1882.

Section 7

[Supporting Slides](#page-49-0)

"In theory, there is no difference between theory and practice. But, in practice, there is." Benjamin Brewster [\[Yal82,](#page-48-3) p.202]

We analyzed

- Index dependencies of active input cells and concerned output cells
- \blacksquare Effects of the S-box

How do different combinations of input (*i*in) and output (*i*out) indices behave?

- Active cell in $S^0[i_{\sf in}]$
- Collision search in $S^4[i_{\text{out}}]$ (no final MC)
- Compare in terms of $|p_{Small-AES} p_{rand}|$

Index Dependencies: Theory

- **Equation system**
- Four terms per output cell:

For example, for $(i_{in}, i_{out}) = (0, 0)$:

$$
2S(2S(2x_i \oplus K^1[0]) \oplus K^2[0]) \oplus 3S(S(3x_i \oplus K^1[1]) \oplus K^2[5])
$$

\n
$$
\oplus S(2S(x_i \oplus K^1[2]) \oplus K^2[10]) \oplus S(S(x_i \oplus K^1[3]) \oplus K^2[15])
$$

\n
$$
= 2S(2S(2x_j \oplus K^1[0]) \oplus K^2[0]) \oplus 3S(S(3x_j \oplus K^1[1]) \oplus K^2[5])
$$

\n
$$
\oplus S(2S(x_j \oplus K^1[2]) \oplus K^2[10]) \oplus S(S(x_j \oplus K^1[3]) \oplus K^2[15])
$$

for $i \neq j$. For different in- or output positions, the equations differ naturally.

Index Dependencies: Experimental Results on Small-AES

- **In multiples of** $|p_{Small-AES} p_{rand}|$
- $0.0 =$ no distinguisher
- $1.0 =$ distinguisher as expected
- $\vert \bullet \vert > \vert \pm 1 \vert =$ good distinguisher

Range of $[0, +7]$: most combinations better than expected, but not $(i_{in}, i_{out}) = (0, 0)$

Index Dependencies: Theoretical Results on The AES

- In multiples of |*p*AES − *p*rand|
- Range of $[0.99..1.35] \implies$ any (i_{in}, i_{out}) works well
- **Potential interpretation: Small size and few rounds produce side effects**

S-box Dependencies Small-AES

Which S-box Properties Cause The Deviations?

- Variance? (Already suspected by [\[GR19\]](#page-44-2))
- $D_S =$ distance to expected #collisions for input cell

$$
D_S \stackrel{\text{def}}{=} \sqrt{\sum_{i_{\text{out}}=0}^{15} \left| \mathbf{X}_{i_{\text{out}}}^S - \mathbb{E} \left[\mathbf{X} \right] \right|^2}
$$

 \blacksquare Pearson correlation of variance and D_S

$$
\rho_{X,Y} \stackrel{\text{def}}{=} \frac{\text{cov}(X,Y)}{\sigma_X \cdot \sigma_Y},
$$

- $(r, p) \simeq (0.812, 1.637 \cdot 10^{-13})$ high correlation, low error probability
- \blacksquare But not full story...

 $cov(X, Y) = det \mathbb{E} [(X - \mu_X) \cdot (Y - \mu_Y)]$ is the covariance of X and Y.

Correlation

Zhenzhen Bao, Jian Guo, Eik List [Extended Truncated-Differential Distinguishers on Reduced-Round AES](#page-0-0) November 2020 53/53