Practical Seed-Recovery for the PCG Pseudo-Random Number Generator

Charles Bouillaguet, Florette Martinez and Julia Sauvage

November 2, 2020

What?

Cryptanalysis of the Permuted Congruential Generator (PCG).

O A https://www.pcg-random.org

PCG. A Better Random Number Generator

PCG, A Family of Better Random Number Generators

PCG is a family of simple fast space-efficient statistically good algorithms for random number generation. Unlike many general-purpose RNGs, they are also hard to predict.

At-a-Glance Summary

Bouillaguet, Martinez, Sauvage (SU) [Seed-Recovery for PCG](#page-0-0) November 2, 2020 3/31

 \cdots \heartsuit \rightsquigarrow

G, A Family of Better Random Number G

PCG is a family of simple fast space-efficient statistically good algorit Unlike many general-purpose RNGs, they are also hard to predict.

At-a-Glance Summary

What?

Cryptanalysis of the Permuted Congruential Generator (PCG).

Results

Practical seed-recovery / prediction.

How?

- **.** "Guess-and-Determine" attack.
- Most expensive part : many small CVP problems.
- Actually done in $<$ 20 000 CPU-hours.

- Conventional (non-crypto) pseudo-random generators
- Designed in 2014 by Melissa O'Neil
- \bullet PCG64
	- Internal state : 128-bit state and 128-bit increment
	- 64-bit outputs
	- 256-bit seed (or 128-bit with default increment)
	- Default pseudo-random generator in NumPy

- Conventional (non-crypto) pseudo-random generators
- Designed in 2014 by Melissa O'Neil
- \bullet PCG64
	- Internal state : 128-bit state and 128-bit increment
	- 64-bit outputs
	- 256-bit seed (or 128-bit with default increment)
	- Default pseudo-random generator in NumPy

- Conventional (non-crypto) pseudo-random generators
- Designed in 2014 by Melissa O'Neil
- \bullet PCG64
	- Internal state : 128-bit state and 128-bit increment
	- 64-bit outputs
	- 256-bit seed (or 128-bit with default increment)
	- Default pseudo-random generator in NumPy

- Conventional (non-crypto) pseudo-random generators
- Designed in 2014 by Melissa O'Neil
- \bullet PCG64
	- Internal state : 128-bit state and 128-bit increment
	- 64-bit outputs
	- 256-bit seed (or 128-bit with default increment)
	- Default pseudo-random generator in NumPy

- **Guess some bits in a few successive states.**
	- **•** Least-significant bits
	- **e** Rotations
- \Rightarrow Turn it into a (regular) truncated congruential generator.
	- Reconstruct hidden information using lattice techniques.

• Discard bad guesses.

- **Guess some bits in a few successive states.**
	- Least-significant bits
	- **Botations**

 \Rightarrow Turn it into a (regular) truncated congruential generator.

- Reconstruct hidden information using lattice techniques.
	- Easy case $(c \text{ known})$: full state
	- \bullet Hard case (c unknown): only partial information
- Discard bad guesses.

Easy Case: Known increment

If the increment (c) is known...

Yields S' : sequence of states with $\overline{c}=0$ \rightarrow Geometric sequence.

Bouillaguet, Martinez, Sauvage (SU) [Seed-Recovery for PCG](#page-0-0) November 2, 2020 11/31

Remove the "Constant Component"

Bouillaguet, Martinez, Sauvage (SU) [Seed-Recovery for PCG](#page-0-0) November 2, 2020 12/31

Truncated Linear Congruential Generators

- Internal state : 2^k -bit state.
- Multiplier a: known constant.
- Initial state: unknown 2^k -bit seed.

Reconstructing Truncated Geometric Sequences

Sequence $u_{i+1} = a \times u_i \bmod 2^k$.

- \bullet τ = Truncated version (low-order bits unknown).
- \mathcal{L} = lattice spawned by the rows of

Main Idea

- $u = (u_0, u_1, \ldots, u_{n-1})$ belongs to the lattice \mathcal{L} .
- \bullet T (truncated geometric series) is an approximation of u.
- \Rightarrow T is close to a point of L.
- \Rightarrow Closest point to T in $\mathcal{L} \rightsquigarrow$ u.

Lattices and Basis reduction

Lattice : subgroup of \mathbb{R}^n isomorphic to \mathbb{Z}^m

Lattices and Basis reduction

Lattice : subgroup of \mathbb{R}^n isomorphic to \mathbb{Z}^m

Closest Vector Problem

- **Standard NP-hard problem on lattices.**
- Given arbitrary $x \in \mathbb{Z}^n$, find closest lattice point.

Babai Rounding Algorithm

• Approximately solves CVP.

$$
Babai\text{Rounding}(\mathbf{x}, \mathcal{L}) = H \times \text{round} \left(H^{-1} \times \mathbf{x} \right)
$$

Where H is a "good" (LLL-reduced) basis of the lattice \mathcal{L} .

- FAST (two matrix-vector products $+$ rounding)
- Exponentially bad approximation (in the lattice dimension).
- \rightarrow Often exact in small dimension though.

Lattices and Basis reduction

Lattice : subgroup of \mathbb{R}^n isomorphic to \mathbb{Z}^m

Lattices and Basis reduction

Lattice : subgroup of \mathbb{R}^n isomorphic to \mathbb{Z}^m

Implementation (Easy case, known increment)

Summary

- Observe 3 outputs X_0, X_1, X_2 (192 bits).
- **Guess 37 bits:**
	- $n = 3$ successive rotations (6 bits each),
	- $\bullet \ell = 19$ least significant bits of S_0 ,
- \bullet Solve 2^{37} instances of CVP in dimension 3 (Babai Rounding).
- Reconstruct initial state, check outputs.

Caveat

Attack proved correct for $\ell = 20$, works fine for $\ell = 19...$

Concretely...

• 25 CPU cycles per guess, 23 CPU-minutes in total.

Summary so far (the Easy Case)

- The increment (c) is known:
	- Remove it, get truncated geometric sequence, CVP.

Now the Hard Case

• The increment (c) is unknown:

- How to get truncated geometric sequence?
- Use $\Delta S_i = S_{i+1} S_i$ ($\Delta S_{i+1} = a \times \Delta S_i$ mod 2^{128}).

Summary so far (the Easy Case)

- The increment (c) is known:
	- Remove it, get truncated geometric sequence, CVP.

Now the Hard Case

• The increment (c) is unknown:

- How to get truncated geometric sequence?
- Use $\Delta S_i = S_{i+1} S_i$ ($\Delta S_{i+1} = a \times \Delta S_i$ mod 2^{128}).
- Same attack as before, but...
	- Must guess one more rotation.
	- Must guess least-significant bits of c.

Bouillaguet, Martinez, Sauvage (SU) [Seed-Recovery for PCG](#page-0-0) November 2, 2020 20/31

Bouillaguet, Martinez, Sauvage (SU) [Seed-Recovery for PCG](#page-0-0) November 2, 2020 20/31

Attack Details (cont'd)

Summary so far

- Guess parts of the states (S_i) .
- \bullet Attack state differences (ΔS_i).
- CVP in dim. 4 \rightsquigarrow reconstruct partial ΔS_i (for all *i*).

Problem

How to check if guesses are valid?

Bouillaguet, Martinez, Sauvage (SU) [Seed-Recovery for PCG](#page-0-0) November 2, 2020 22/31

Bouillaguet, Martinez, Sauvage (SU) [Seed-Recovery for PCG](#page-0-0) November 2, 2020 22/31

Bouillaguet, Martinez, Sauvage (SU) [Seed-Recovery for PCG](#page-0-0) November 2, 2020 22/31

Attack Details (cont'd)

Summary so far

- Guess parts of the states (S_i) .
- Attack state differences (ΔS_i) .
- CVP in dim. 4 \rightsquigarrow reconstruct partial ΔS_i (for all *i*).

Problem

How to check if guesses are valid?

Solution

- $S_i[64:64+\ell]$ from guesses $+$ X_i (output) $+$ r_i (rotation).
- $S_i[64:64+\ell]$ from guesses + partial ΔS_i .
- \Rightarrow Try all possible r_i 's. No match \leadsto bad guess.

Bouillaguet, Martinez, Sauvage (SU) [Seed-Recovery for PCG](#page-0-0) November 2, 2020 23/31

Finishing it Off

Summary so far

- Guessed parts of the states (S_i) .
- Isolated correct guess \leadsto correct partial differences $\Delta S_i.$

Problem

How to get full initial state S_0 ?

Bouillaguet, Martinez, Sauvage (SU) [Seed-Recovery for PCG](#page-0-0) November 2, 2020 25/31

Finishing it Off

Summary so far

- Guessed parts of the states (S_i) .
- Isolated correct guess \leadsto correct partial differences $\Delta S_i.$

Problem

How to get full initial state S_0 ?

Solution

- Correct partial ΔS_i + consistency check \leadsto all rotations r_i .
- \Rightarrow MSB of all $S_i \rightsquigarrow$ MSB of all ΔS_i .
- \Rightarrow CVP in dim. 64 \rightsquigarrow full ΔS_0 .

Reconstructing the Full Differences (CVP in dim. 64)

Finishing it Off

Summary so far

- Guessed parts of the states (S_i) .
- Isolated correct guess \leadsto correct partial differences $\Delta S_i.$

Problem

How to get full initial state S_0 ?

Solution

- Correct partial ΔS_i + consistency check \leadsto all rotations r_i .
- \Rightarrow MSB of all $S_i \rightsquigarrow$ MSB of all ΔS_i .
- \Rightarrow CVP in dim. 64 \rightsquigarrow full ΔS_0 .
	- The rest is easy.

Implementation (Hard case, unknown increment)

Summary

- Observe 64 outputs (4096 bits).
- Guess $k = 51-55$ bits:
	- $n = 5$ successive rotations (6 bits each),
	- $\bullet \ell = 11$ –13 least significant bits of S_0 and c.
- Solve 2^k instances of CVP in dimension 4 (Babai Rounding).
- Consistency Check.

Caveat

- Attack proved correct for $\ell = 14$ (works fine for $\ell = 13$).
- Succeeds with $p = 0.66$ with $\ell = 11$.

Concretely...

55 CPU cycles per guess, 12.5k–20k CPU-hours in total.

Doing it for Real

- Used 512 nodes
	- \bullet 2×20-core Xeon Gold 6248 @ 2.5Ghz
- Running time: 35 minutes.
- • Reconstructing the seed for PCG is practical.
- PCG is not cryptographically secure (never claimed to be).
- Don't use Numpy to generate nonces...