Practical Seed-Recovery for the PCG Pseudo-Random Number Generator

Charles Bouillaguet, Florette Martinez and Julia Sauvage

November 2, 2020

What?

Cryptanalysis of the Permuted Congruential Generator (PCG).

PCG, A Better Random Number Generator Download Docs Paper Video Blog

PCG, A Family of Better Random Number Generators

PCG is a family of simple fast space-efficient statistically good algorithms for random number generation. Unlike many general-purpose RNGs, they are also hard to predict.

At-a-Glance Summary

	Statisti	rd prediction	Rep	solucit Mutter	ple period	Usetul	ures time tom	space	Usage code	pleasing spinet
PCG Family	Excellent	Challenging	Yes	Yes (e.g. 2 ⁶³)	Arbitrary	Jump ahead, Distance	Very fast	Very compact	Very small	Arbitrary
Mersenne Twister	Some Failures	Easy	Yes	No	Huge 2 ¹⁹⁹³⁷	Jump ahead	Acceptable	Huge (2 KB)	Complex	623
Arc4Random	Some Issues	Secure	Not Always	No	Huge 2 ¹⁶⁹⁹	No	Slow	Large (0.5 KB)	Complex	No
ChaCha20 [†]	Good	Secure	Yes	Yes (2 ¹²⁸)	2 ¹²⁸	Jump ahead, Distance	Fairly Slow	Plump (0.1 KB)	Complex	No

the the test

Bouillaguet, Martinez, Sauvage (SU)

Seed-Recovery for PCG

… ⊠ ☆

G, A Family of Better Random Number G

PCG is a family of simple fast space-efficient statistically good algorith Unlike many general-purpose RNGs, they are also hard to predict.

At-a-Glance Summary

What?

Cryptanalysis of the Permuted Congruential Generator (PCG).

Results

Practical seed-recovery / prediction.

How?

- "Guess-and-Determine" attack.
- Most expensive part : many small CVP problems.
- Actually done in \leq 20 000 CPU-hours.

- Conventional (non-crypto) pseudo-random generators
- Designed in 2014 by Melissa O'Neil
- PCG64
 - Internal state : 128-bit state and 128-bit increment
 - 64-bit outputs
 - 256-bit seed (or 128-bit with default increment)
 - Default pseudo-random generator in NumPy

- Conventional (non-crypto) pseudo-random generators
- Designed in 2014 by Melissa O'Neil
- PCG64
 - Internal state : 128-bit state and 128-bit increment
 - 64-bit outputs
 - 256-bit seed (or 128-bit with default increment)
 - Default pseudo-random generator in NumPy

- Conventional (non-crypto) pseudo-random generators
- Designed in 2014 by Melissa O'Neil
- PCG64
 - Internal state : 128-bit state and 128-bit increment
 - 64-bit outputs
 - 256-bit seed (or 128-bit with default increment)
 - Default pseudo-random generator in NumPy

- Conventional (non-crypto) pseudo-random generators
- Designed in 2014 by Melissa O'Neil
- PCG64
 - Internal state : 128-bit state and 128-bit increment
 - 64-bit outputs
 - 256-bit seed (or 128-bit with default increment)
 - Default pseudo-random generator in NumPy

- Guess some bits in a few successive states.
 - Least-significant bits
 - Rotations
- \Rightarrow Turn it into a (regular) truncated congruential generator.
 - Reconstruct hidden information using lattice techniques.

• Discard bad guesses.

- Guess some bits in a few successive states.
 - Least-significant bits
 - Rotations

 \Rightarrow Turn it into a (regular) truncated congruential generator.

- Reconstruct hidden information using lattice techniques.
 - Easy case (c known): full state
 - Hard case (c unknown): only partial information
- Discard bad guesses.

Easy Case: Known increment

If the increment (c) is known...

Get rid of it!	
• $S_0' \leftarrow S_0$	
• $S_1' \leftarrow S_1 - c$	
• $S_2' \leftarrow S_2 - (a+1)c$	
• $S'_{3} \leftarrow S_{3} - (a^{2} + a + 1)c$	
• :	

Yields S': sequence of states with c = 0 \rightarrow Geometric sequence.

CI	
~ I	

S_2	

S1	<i>r</i> ₁	
01		

S_2	r ₂	
-------	----------------	--

Bouillaguet, Martinez, Sauvage (SU)

Remove the "Constant Component"

Bouillaguet, Martinez, Sauvage (SU)

Truncated Linear Congruential Generators

- Internal state : 2^k-bit state.
- Multiplier a: known constant.
- Initial state: unknown 2^k -bit seed.

Reconstructing Truncated Geometric Sequences

• Sequence $u_{i+1} = a \times u_i \mod 2^k$.

- T = Truncated version (low-order bits unknown).
- $\mathcal{L} =$ lattice spawned by the rows of

Main Idea

- $\mathbf{u} = (u_0, u_1, \dots, u_{n-1})$ belongs to the lattice \mathcal{L} .
- T (truncated geometric series) is an approximation of u.
- \Rightarrow T is close to a point of \mathcal{L} .
- $\Rightarrow \text{ Closest point to } \mathcal{T} \text{ in } \mathcal{L} \rightsquigarrow u.$

Lattices and Basis reduction

• Lattice : subgroup of \mathbb{R}^n isomorphic to \mathbb{Z}^m

Lattices and Basis reduction

• Lattice : subgroup of \mathbb{R}^n isomorphic to \mathbb{Z}^m

Closest Vector Problem

- Standard NP-hard problem on lattices.
- Given arbitrary $\mathbf{x} \in \mathbb{Z}^n$, find closest lattice point.

Babai Rounding Algorithm

• Approximately solves CVP.

$$Babai Rounding(\mathbf{x}, \mathcal{L}) = H imes ext{round} \left(H^{-1} imes \mathbf{x}
ight)$$

Where H is a "good" (LLL-reduced) basis of the lattice \mathcal{L} .

- FAST (two matrix-vector products + rounding)
- Exponentially bad approximation (in the lattice dimension).
- \rightarrow Often exact in small dimension though.

Lattices and Basis reduction

• Lattice : subgroup of \mathbb{R}^n isomorphic to \mathbb{Z}^m

Lattices and Basis reduction

• Lattice : subgroup of \mathbb{R}^n isomorphic to \mathbb{Z}^m

Implementation (Easy case, known increment)

Summary

- Observe 3 outputs X_0, X_1, X_2 (192 bits).
- Guess 37 bits:
 - n = 3 successive rotations (6 bits each),
 - $\ell = 19$ least significant bits of S_0 ,
- Solve 2³⁷ instances of CVP in dimension 3 (Babai Rounding).
- Reconstruct initial state, check outputs.

Caveat

Attack proved correct for $\ell=20$, works fine for $\ell=19...$

Concretely...

• 25 CPU cycles per guess, 23 CPU-minutes in total.

Summary so far (the Easy Case)

- The increment (c) is known:
 - Remove it, get truncated geometric sequence, CVP.

Now the Hard Case

• The increment (c) is unknown:

- How to get truncated geometric sequence?
- Use $\Delta S_i = S_{i+1} S_i$ $(\Delta S_{i+1} = a \times \Delta S_i \mod 2^{128}).$

Summary so far (the Easy Case)

- The increment (c) is known:
 - Remove it, get truncated geometric sequence, CVP.

Now the Hard Case

• The increment (c) is unknown:

- How to get truncated geometric sequence?
- Use $\Delta S_i = S_{i+1} S_i$ $(\Delta S_{i+1} = a \times \Delta S_i \mod 2^{128}).$
- Same attack as before, but...
 - Must guess one more rotation.
 - Must guess least-significant bits of *c*.

	_	
C	r.,	
\mathcal{S}_1	11	
-		

S ₂ r ₂	
-------------------------------	--

<u> </u>		
54	14	
04		

Bouillaguet, Martinez, Sauvage (SU)

Seed-Recovery for PCG

Bouillaguet, Martinez, Sauvage (SU)

Seed-Recovery for PCG

Attack Details (cont'd)

Summary so far

- **Guess** parts of the states (*S_i*).
- Attack state differences (ΔS_i) .
- CVP in dim. 4 \rightsquigarrow reconstruct partial ΔS_i (for all *i*).

Problem

How to check if guesses are valid?

Bouillaguet, Martinez, Sauvage (SU)

Bouillaguet, Martinez, Sauvage (SU)

November 2, 2020 22 / 31

Attack Details (cont'd)

Summary so far

- **Guess** parts of the states (S_i).
- Attack state differences (ΔS_i) .
- CVP in dim. 4 \rightsquigarrow reconstruct partial ΔS_i (for all *i*).

Problem

How to check if guesses are valid?

Solution

- $S_i[64:64+\ell]$ from guesses + X_i (output) + r_i (rotation).
- $S_i[64:64+\ell]$ from guesses + partial ΔS_i .
- \Rightarrow Try all possible r_i 's. No match \rightsquigarrow bad guess.

Bouillaguet, Martinez, Sauvage (SU)

Seed-Recovery for PCG

Finishing it Off

Summary so far

- **Guessed** parts of the states (*S_i*).
- Isolated **correct** guess \rightsquigarrow correct partial differences ΔS_i .

Problem

How to get full initial state S_0 ?

Bouillaguet, Martinez, Sauvage (SU)

November 2, 2020 25 / 31

Finishing it Off

Summary so far

- **Guessed** parts of the states (*S_i*).
- Isolated **correct** guess \rightsquigarrow correct partial differences ΔS_i .

Problem

How to get full initial state S_0 ?

Solution

- Correct partial ΔS_i + consistency check \rightsquigarrow all rotations r_i .
- \Rightarrow MSB of all $S_i \rightsquigarrow$ MSB of all ΔS_i .
- \Rightarrow CVP in dim. 64 \rightsquigarrow full ΔS_0 .

Reconstructing the Full Differences (CVP in dim. 64)

Finishing it Off

Summary so far

- **Guessed** parts of the states (*S_i*).
- Isolated correct guess \rightsquigarrow correct partial differences ΔS_i .

Problem

How to get full initial state S_0 ?

Solution

- Correct partial ΔS_i + consistency check \rightsquigarrow all rotations r_i .
- \Rightarrow MSB of all $S_i \rightsquigarrow$ MSB of all ΔS_i .
- \Rightarrow CVP in dim. 64 \rightsquigarrow full ΔS_0 .
 - The rest is easy.

Implementation (Hard case, unknown increment)

Summary

- Observe 64 outputs (4096 bits).
- Guess k = 51-55 bits:
 - n = 5 successive rotations (6 bits each),
 - $\ell = 11-13$ least significant bits of S_0 and c.
- Solve 2^k instances of CVP in dimension 4 (Babai Rounding).
- Consistency Check.

Caveat

- Attack proved correct for $\ell = 14$ (works fine for $\ell = 13$).
- Succeeds with p = 0.66 with $\ell = 11$.

Concretely...

• 55 CPU cycles per guess, 12.5k-20k CPU-hours in total.

Bouillaguet, Martinez, Sauvage (SU)

Seed-Recovery for PCG

Doing it for Real

- Used 512 nodes
 - 2×20-core Xeon Gold 6248 @ 2.5Ghz
- Running time: 35 minutes.

- Reconstructing the seed for PCG is **practical**.
- PCG is not cryptographically secure (never claimed to be).
- Don't use Numpy to generate nonces...