On the Security Margin of TinyJAMBU with Refined Differential and Linear Cryptanalysis

Dhiman Saha¹ Yu Sasaki² Danping Shi^{3,4} Ferdinand Sibleyras⁵ Siwei Sun^{3,4} Yingjie Zhang^{3,4}

 1 de.ci.phe.red Lab, Department of Electrical Engineering and Computer Science, IIT Bhilai ²NTT Secure Platform Laboratories

 3 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences

⁴University of Chinese Academy of Sciences

5 Inria

FSE 2020

K ロ > K 倒 > K ミ > K ミ > 三 ミ → の Q Q →

High-level Description - AEAD

イロト (個) (ミ) (ミ) (ミ) ミークダベ

- ▸ Designed by Hongjun Wu and Tao Huang
- ▶ A small variant of JAMBU [WH15]
- ▸ A family of AEAD schemes
- ▸ Currently a Round-2 candidate in NIST LWC

[▸] WH15 - JAMBU Lightweight Authenticated Encryption Mode and AES-JAMBU. Submission to CAES[AR,](#page-1-0) [201](#page-3-0)[5](#page-1-0)

Step 1: Initialization

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Inside Init. (Key Setup $+$ Nonce Setup)

イロト イ部 トイモト イモト

高。 OQ

Init.

 $\mathcal{P}_K, \hat{\mathcal{P}}_K \rightarrow$ Keyed Permutations

Step 2: Associated Data Processing

イロト イ部 トイモト イモト

ミー OQ

Step 3: Encryption

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ... 高。 $\mathcal{O}\propto\mathcal{O}$

Step 4: Finalization

イロト イ部 トイミト イミト È. $2Q$

The Three Variants of TinyJAMBU

▶ Note: The number of rounds of $\hat{\mathcal{P}}_K$ is much **larger** than that of P_K

←ロト (何) → (ヨ) → (ヨ)

 $2Q$

▸ Used in Key Setup and Encryption

イロト (個) (ミ) (ミ) (ミ) ミークダベ

- ▸ NLFSR based keyed-permutation
- ▸ Computes only a single NAND gate as a non-linear component per round

Previous Cryptanalysis and Research Challenges

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Strategy

Counts the number of active AND gates to find differential and linear trails with the minimum of such active gates by MILP

Why is this insufficient? \rightarrow Fast but inaccurate

- ▸ Ignores the correlation between multiple AND gates which can impact probabilities of the differential or linear trails $[KLT15, AEL+18]$
- ▸ Designers have ignored effect of differentials which can amplify the probabilities of the trails [AK18]
- ▸ For linear cryptanalysis designer only analyzed internal permutation assuming access to all input bits
- ▶ KLT15 Kölbl et al. Observations on the SIMON block cipher family. CRYPTO 2015
- ▸ AEL+18 Ashur et al. Cryptanalysis of MORUS ASIACRYPT 2018
- ▸ AK18 Ankele and K¨olbl. Mind the Gap A Closer Look at the Security of Block Ciphers against Diff[eren](#page-10-0)t[ial](#page-12-0) [Cr](#page-10-0)[ypt](#page-11-0)[an](#page-12-0)[alysi](#page-0-0)[s. S](#page-39-0)[AC](#page-0-0) [2018](#page-39-0)

A Note on Existing Literature on MILP Modeling

▸ Techniques exists to evaluate the exact probability by limiting the search space to only valid trails $[SHW+15a, SHW+15b]$

What is the issue? \rightarrow Accurate but too slow

- ▸ Such models involve too many variables and constraints
- ▸ Cannot be solved in practical time
- ▸ Good for verifying the validity of a given trail
- \triangleright Not so efficient to find optimal ones [SHW+15a]

[▸] SHW+15a - Sun et al. Constructing mixed-integer programming models whose feasible region is exactly the set of all valid differential characteristics of SIMON. ePrint 2015

[▸] SHW+15b - Sun et al. Extending the applicability of the mixed- integer programming technique in automatic differential cryptanalysis. ISC 2015**KED KARD KED KED E YORA**

A Note on Existing Literature on MILP Modeling

▸ Techniques exists to evaluate the exact probability by limiting the search space to only valid trails $[SHW+15a, SHW+15b]$

What is the issue? \rightarrow Accurate but too slow

- ▸ Such models involve too many variables and constraints
- ▸ Cannot be solved in practical time
- ▸ Good for verifying the validity of a given trail
- \triangleright Not so efficient to find optimal ones [SHW+15a]

Our Motivation: Strike a good balance of efficiency and accuracy while modeling

[▸] SHW+15a - Sun et al. Constructing mixed-integer programming models whose feasible region is exactly the set of all valid differential characteristics of SIMON. ePrint 2015

[▸] SHW+15b - Sun et al. Extending the applicability of the mixed- integer programming technique in automatic differential cryptanalysis. ISC 2015**YO A REPART AND A REPAIR**

Our Contributions

K ロ ▶ K 리 ▶ K 로 ▶ K 로 ▶ 그로 → 9 Q Q ·

What happens in the simple model?

If there is a difference on at least one of the two input bits, the output of the AND gates has a difference with probability 2^{-1} or does not with probability 2^{-1}

- ▸ It considers independently every AND gate and
- ▸ Treats every AND gate in the same way

Table: Restrictions on the values of a and b in $a \cdot b = z$ when $\Delta z = 1$.

Simple model fails to capture these restrictions

KED KARD KED KED E YORA

Introducing Refined Model

Main Observation

The same value, as it is shifted, will enter twice in two different AND gates.

イロト イ母 トイミト イミト ニヨー りんぺ

The Internal State $(S_{127},...S_0)$

K ロ > K 倒 > K ミ > K ミ > 三 ミ → の Q Q →

S_{85} Enters AND gate Twice (First: $b \cdot c$)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

After 15 rounds (Second: a ⋅ b)

$$
S_{100} S_{05} S_{05} S_{06} S_{100} S_{100} S_{08} S_{100} S_{11} S_{12} S_{13} S_{14} S_{15} S_{16} S_{17} S_{18} S_{19} S_{100} S_{101} S_{11} S_{12} S_{13} S_{14} S_{15} S_{16} S_{17} S_{18} S_{19} S_{101} S_{102} S_{103} S
$$

First Order Correlations

And Gate - 2 $(a \cdot b)$

Correlation of $a \cdot b$ and $b \cdot c$ for some values a, b, c

> $A\cap A\rightarrow A\oplus A\rightarrow A\oplus A\rightarrow A$ E. Ω

Dependency of two AND gates

イロト (個) (ミ) (ミ) (ミ) ミークダベ

Dependency of two AND gates *Case-1: b* = 0
Case-1: b = 0

イロト (個) (ミ) (ミ) (ミ) ミークダベ

-
- $\Delta ab = \Delta bc = 0$
- Probability $=2^{-1}$

Dependency of two AND gates

 $\begin{aligned} \textit{Case-1:} \ \ b=0 \ \Delta ab=\Delta bc=0 \ \text{Probability}=&2^{-1} \ \textit{Case-2:} \ \ b=1 \end{aligned}$ $\Delta ab = \Delta bc = 1$ Probability $=2^{-1}$

KED KARD KED KED E YORA

Dependency of two AND gates

In this scenario **Refined model** and the contract of the contract of the Refined model

 $\begin{aligned} \textit{Case-1:} \ \ b=0 \ \Delta ab=\Delta bc=0 \ \text{Probability}=&2^{-1} \ \textit{Case-2:} \ \ b=1 \end{aligned}$ $\Delta ab = \Delta bc = 1$ Probability $=2^{-1}$

 \equiv ΩQ

イロト イ押ト イヨト イヨト

- ▸ Forces that both differences jointly propagate, or not, and
- ▶ Only counts this as a single active gate.

The Refined Model

MILP model variables:

- \triangleright d₂ modelizes Δa
- ► d_{ab} modelizes $\triangle ab$
- $\rightarrow \gamma_{abc}$ indicates if there's a correlation between the two AND gates ab and bc.

Finally

Subtract all values γ_{abc} in the objective function to only count this once, whereas the simple model would count two active gates.

- ▸ It adds additional constraints on top of the simple model
- ▸ All chained AND gates are recorded

Example Recorded Chains - $\{(d_{ab}, d_a, d_b), (d_{bc}, d_b, d_c), \dots\}$

Then for all consecutive couples $((d_{ab}, d_a, d_b), (d_{bc}, d_b, d_c))$ the following constraint is added:

$$
\gamma_{abc} = d_a \overline{d_b} d_c
$$

\n
$$
d_{ab} - d_{bc} \le 1 - \gamma_{abc}
$$

\n
$$
d_{bc} - d_{ab} \le 1 - \gamma_{abc}
$$

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigoplus \bullet & \leftarrow \Xi \right\} \end{array} \right. \right\}$ ÷. $2Q$

Differential Cryptanalysis

K ロ → K 御 → K 差 → K 差 → → 差 → の Q Q →

▸ Designers searched for the differential trail that has the minimum number of active AND gates in the **simple** model

Type 1: Input differences only exist in the 32 MSBs. No constraint on the output. Type 2: No constraint on the input. Output differences only exist in the 32 MSBs. Type 3: Both of the input and output differences only exist in the 32 MSBs. Type 4: No constraint.

Designers Claim Proven Wrong in Refined Model Proven Wrong in Refined Model

- \bullet Max. probability of the 384-round trail of Type 3 is 2⁻⁸⁰
- \triangleright Max. probability of the 320-round characteristic of Type 4 is 2⁻¹³

Attacks for the AEAD Setting

$0 \rightarrow 128$ K 93 $\hat{\mathcal{P}}_K$ Nonce₀ 32 3 1 K 93 \mathcal{P}_K Nonce₁ 32 3 1 K 93 \mathcal{P}_K Nonce₂ 32 3 1 K \mathcal{P}_K 128

Forgery for TinyJAMBU Mode

- ▸ Attack the nonce setup or
- ▸ The associated data processing
- ► Recall $P_K \rightarrow 384$ Rounds

KED KARD KED KED E YORA

▸ Use Type 3 trails

Exploiting $(\Delta_i \| 0^{96}) \xrightarrow{\mathcal{P}_{\mathsf{K}}} (\Delta_{i+1} \| 0^{96})$ with probability p

- ▸ Also makes the case for MAC reforgeability [BC09]
- ▸ Unlike designers we also look at cluster of multiple trails
- ▸ BC09 Black and Cochran. MAC reforgeability. FSE 2009

Attacks for the AEAD Setting

Observations on Full 384 Rounds

- ▸ Found contradiction for simple model
- ▸ Refined model reports 88 active AND gates

▸ 14 couples are correlated

• Prob. $= 2^{-(88-14)} = 2^{-74}$

Attacks for the AEAD Setting

Differential Cryptanalysis of 338 Rounds

- ▸ Find largest number of rounds with security less than 64 bits
- ▸ Trail found with 76 active AND gates

▸ Correlation of two AND gates occurs 12 times

► Prob. =
$$
2^{-(76-12)} = 2^{-64}
$$

Interesting Observation for Type 3 Attacks for the AEAD Setting

Trail Probability for Various Number of Rounds

Vertical axis denotes the score. Horizontal axis denotes $#$ rounds

KED KARD KED KED E YORA

 \triangleright Trails experimentally verified¹ with conforming pairs

¹ <https://github.com/c-i-p-h-e-r/refinedTrailsTinyJambu>

KED KARD KED KED E YORA

- ▸ Note Type 1 Score is improved for all rounds
- ▸ Combining Type 1 and 2 for forgery (384 Rounds) as suggested in submission document
	- \blacktriangleright Designers $\rightarrow 2^{-73}$
	- ▶ Ours \rightarrow 2⁻⁶⁹

Linear Cryptanalysis

イロト イ団ト イミト イミト ニミー りんぺ

Finding Better Linear Trails

▶ We can adapt the same idea of correlated AND gates to refine our model to look for better linear approximations

Refined Analysis for Partially Restricted Keyed Permutation

KEIK@IKKEIKKEIK E YOQO

- ▶ The best linear trails were consistently having no correlated gates
- ▸ Score of the best linear trail with unrestricted input, restricted output:

Linear Bias of the Tag in the AEAD Setting

KORK@RKERKER E DAQ

- ▸ Bias 2−⁴¹ optimal linear trail for 384 rounds found with the refined model
- ▸ Does not contradict the authors' claims

- ▸ First 3rd-Part Cryptanalysis of TinyJAMBU
	- \triangleright Reveals structural weakness of the mode ← Multi-block nonce/tag processing
- ▸ Refined model efficiently finds highly accurate differential and linear trails
- ▸ With the refined model, we found
	- A forgery attack with complexity $2^{62.68}$ on 338 rounds
	- ▸ A differential trail with probability 2[−]70.⁶⁸ for the full 384 rounds
- ▸ Security margin of TinyJAMBU is smaller than originally expected
	- ▸ 12% with respect to the number of unattacked rounds
	- ▸ Less than 8 bits in the data complexity for the full rounds.
- ▸ Refined model for the linear cryptanalysis found the better bias for some number of rounds.
- ▸ One simple solution would be to increase the number of rounds of the small version, P_K from 384 to 512 rounds.
- ▸ Using the refined model may lead to a better choice of tap positions with respect to DC/LCKEL K@ K K E K LE K LE 1990

Thank You

Image Source: Google

Work initiated during group discussion sessions of ASK 2019, Japan

The source code for finding conforming pairs and the MILP trails search can be found here [https://github.com/c-i-p-h-e-r/refinedTrailsTinyJambu](https: //github.com/c-i-p-h-e-r/refinedTrailsTinyJambu)KEL KALEY KEY (E NOV