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Abstract. Misuse-resistant AE (MRAE) is a class of authenticated encryption (AE)
that has a resistance against a potential misuse (repeat) of nonce. MRAE has received
significant attention from the initial proposal by Rogaway and Shrimpton. They
showed a generic MRAE construction called SIV. SIV becomes a de-facto scheme for
MRAE, however, one notable drawback is its two-pass operation for both encryption
and decryption. This implies that MRAE built on SIV is slower than the integrated
nonce-based AE schemes, such as OCB.
In this paper, we propose a new method to improve this situation. Particularly, our
MRAE proposal (decryption-fast SIV or DFV) allows to decrypt as fast as a plain
decryption, hence theoretically doubles its speed from the original SIV, while keeping
the encryption speed equivalent to SIV. We present several generic compositions for
DFV and their instantiations.
Keywords: Authenticated Encryption · Nonce Misuse · MRAE · Decryption ·
SIV · OCB · Provable Security

1 Introduction
Authenticated encryption (AE) is a symmetric-key cryptographic function for simultane-
ously providing confidentiality and integrity of plaintexts/ciphertexts. Many popular AE al-
gorithms, such as GCM [MV04], OCB [RBBK01,Rog04,KR11], and ChaCha20-Poly1305 [NL18]
are nonce-based AE (NAE), where a nonce is a value that never repeats at encryptions.
The security of NAE crucially relies on the uniqueness of nonce. In principle, the nonce
uniqueness is easy to maintain, say by using a counter, nonce may repeat in practice due
to various reasons, e.g., by misconfiguration of software or low-entropy random source for
nonce derivation. The problem of repeating nonce is often called nonce misuse. Recently,
it received significant attentions from the research community, and it is becoming a real
concern as shown by [BZD+16].

Nonce misuse attacks against NAE can be devastating. Most notably, GCM reveals
its authentication key only with a single nonce misuse [Jou06], which implies universal
forgery attacks. Although these attacks do not invalidate the original security proofs
assuming a nonce-respecting adversary, they are extensively studied for various NAE
algorithms due to its practical relevance [HP08,PSWZ15,SW14,ADL17]. Vaudenay and
Vizár [VV18] showed a thorough study of robustness of the 3rd-round candidates of
CAESAR competition [CAE14], including the security against nonce misuse.

To overcome this weakness of NAE, Rogaway and Shrimpton [RS06] introduced the
notion of Misuse-resistant AE (MRAE) and proposed a generic MRAE scheme called SIV.
Specifically, to encrypt a plaintext M with an associated data (AD) A, SIV first derives a
initialization vector (IV), Tiv, by applying a pseudorandom function (PRF) to the tuple
(A,M), and encrypts M by an IV-based encryption scheme taking Tiv as IV. To decrypt,
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SIV first decrypts the ciphertext C with IV Tiv, and checks if the received IV is identical
to the one computed from the decrypted plaintext and the received AD. See Figure 1
on page 89. Here, A may contain a nonce N but N is not necessarily unique for each
encryption. This structure achieves the best-possible security against nonce misuse, namely
the confidentiality up to the whole input repetition and the unforgeability [RS06]. Since
the proposal, SIV has been extensively studied and it has many concrete instantiations and
variants. For example, Deoxys-II [JNPS14], one of the winners of CAESAR competition,
adopts a variant of SIV called SCT proposed by Peyrin and Seurin [PS16]. SCT is a TBC-
based design, and Iwata et al. [IMPS17a] proposed another TBC-based one, ZAE, that has
a higher efficiency and security than SCT. GCM-SIV and AES-GCM-SIV are MRAE schemes
reusing the components of GCM proposed by Gueron and Lindell [GL15] and Gueron
et al. [GLL19]. RIV [AFL+16] is a security-enhanced variant of SIV. NIST Lightweight
Cryptography, which is a national standardization project for lightweight AE, received 57
submissions [NIS19]. The current second-round candidates include multiple MRAE schemes,
ESTATE [CDJ+19], SUNDAE-GIFT [BBP+19,BBLT18], and Romulus-M [IKMP20].

SIV offers a strong defense in depth. That is, it hides the plaintext up to a repetition
of whole input and protects the integrity of the ciphertext, even if nonce repeats. However,
it comes with a drawback in its computation because it needs two passes over the input
for both encryption and decryption. This implies roughly twice more computation than
the efficient one-pass, rate-11 NAE schemes, such as OCB, whose complexity is almost
as small as plain, unauthenticated encryption schemes (e.g., counter mode). The block
cipher-based instantiation of SIV shown in [RS06] is indeed rate-1/2. Known variants of
SIV also share this property, that is, it is not possible to achieve rate 12. This increased
computation has been considered as the price we have to pay for MRAE.

In this paper, we propose a way to improve the situation by reducing the computation
cost for decryption. More precisely, our core proposal is a new generic scheme of MRAE
whose decryption is one-pass. The encryption is two-pass as for SIV, which is inevitable,
because the security requirements of MRAE require that any ciphertext bit must depend
on the whole input. To our knowledge, all previous MRAE schemes are variants of SIV
or encode-then-encipher scheme [BR00] (such as AEZ [HKR15]), which is even costlier
than SIV. Our proposal is the first kind of MRAE that has a smaller decryption cost than
SIV. Essentially it allows to reduce the decryption cost to that of an unauthenticated
decryption, thus rate-1 decryption. It is observed that the two-pass encryption structure
is unavoidable for any MRAE, since every ciphertext bit must depend on the whole input
(A,M) to ensure confidentiality. This implies that, our proposal achieves the best-possible
total efficiency of MRAE in the sense that its computation cost cannot be substantially
improved for both directions. Moreover, fast decryption is a desirable feature in practice.
It is possible to think of applications that require a fast operation for (authenticated)
decryption but not for encryption, due to the asymmetry of the protocol or the computing
devices between the sender and the receiver. Storage encryption is one example, where
encryption can be done in the background, however decryption should be close to real-time
as it affects the latency of read operations.

Our idea is basically simple. While SIV composes a PRF and an IV-based encryption,
we compose a PRF and an NAE. The nonce (or random IV3) for NAE, V , is derived from
the input tuple (A,M) for an AD A and a plaintext M using one or two calls of the PRF.
The NAE taking the nonce V encrypts M to generate a ciphertext C and a tag T . This
process is similar to the IV-derivation of SIV, however, since we use an NAE, the output of
encryption process is a tuple (V,A,C, T ) instead of (Tiv, A,C) as SIV did. The bandwidth

1Rate is the number of input blocks per one primitive call. See Section 2 for details.
2The maximum achievable rate of SIV and its variants may be larger than 1/2 as it depends on the

input size of the primitive, as shown by Table 1.
3We interchangeably call V a nonce or a random IV, assuming its generation process is clear from the

context and thus no confusion is possible.
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Figure 1: SIV.

overhead will be increased from |Tiv| to |V |+ |T |, but it is basically the same as that of
NAE. The decryption is nothing but a decryption of the NAE scheme we use. Assuming
this NAE scheme is efficient (one-pass and rate-1), the decryption is as efficient as a plain,
unauthenticated decryption. We name this scheme decryption-fast SIV, or DFV.

Although the above idea may sound trivial, the realization of it needs some non-trivial
considerations. In particular, a straightforward approach incurs an increased computation
for encryption, and a naive attempt to remove it can lead to insecure schemes (See
Section 5).

We show three generic compositions for DFV, called DFV1, DFV2 and DFV3, and prove
their security bounds that are comparable to the original SIV. It turns out that building
an efficient DFV is closely related to the conversion of an AD-less NAE to an NAE with
AD (NAEAD), and we adopt the known generic conversions proposed by Rogaway [Rog02].
To demonstrate the effectiveness of DFV, we also present two concrete instantiations of
DFV. The first one (OCB-DFV) is block cipher-based and uses OCB and PMAC [Rog04].
The second one (ΘCB-DFV) is based on a tweakable block cipher [LRW02] and uses
ΘCB3 [KR11] and ZMAC [IMPS17a]. The former gives the classical up-to-birthday-bound
(upBB) security as for (the original block cipher-based instantiation of) SIV, while the
latter gives a higher security, namely beyond-the-birthday-bound (BBB) security. See
Table 1 for the comparison with some known MRAE schemes. We also provide a brief
consideration on permutation-based instantiations at Section 6.

A possible high-level question is when our proposals improve on SIV. Assuming the use
of identical primitive, DFV improves SIV, in the sense that it enables a higher decryption
rate while keeping the encryption rate unchanged, when the underlying NAE for DFV is
rate-1 for both encryption and decryption. This holds for DFV2 and DFV3, though DFV1
has some limitations. See Appendix A for a more detailed comparison.

Related Work on Generic Composition. Generic composition was studied by the sem-
inal work of Bellare and Namprempre [BN00] and Krawczyk [Kra01]. Namprempre et
al. [NRS14] extended [BN00] and showed a number of compositions for both NAE and
MRAE, where the latter generalizes SIV. Sarkar [Sar14] studied compositions using a
stream cipher. Berti et al. [BPP18] extended [NRS14] and Imamura et al. [IMI16] showed
a refined analysis of [Sar14]. The problem of converting an AD-less NAE into an NAEAD
was first studied by Rogaway [Rog02]. A variant was proposed by Sarkar [Sar10].

2 Preliminaries
Let {0, 1}∗ be the set of all finite bit strings. For X ∈ {0, 1}∗, |X| is its length in bits.
The empty string is denoted by ε and |ε| = 0. For an integer i ≥ 0, {0, 1}i is the set of all
bit strings of i bits, and {0, 1}≤i is the set of all bit strings of at most i bits, including ε.
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Table 1: Comparison of MRAE schemes. BC(n) (TBC(t, n)) denotes n-bit block cipher
(t-bit effective tweak and n-bit block TBC). ERate (DRate) denotes the encryption
(decryption) rate for messages. Bandwidth OH denotes the overhead of bandwidth in
bits. Security denotes the MRAE advantage in bits. For OCB-DFV we assume n/2-bit
tag.

Scheme Primitive ERate DRate Security Bandwidth OH Ref
SIV BC(n) 1/2 1/2 n/2 n [RS06]
SUNDAE BC(n) 1/2 1/2 n/2 n [BBLT18]
OCB-DFV BC(n) 1/2 1 n/2 1.5n This work
SCT TBC(n, n) 1/2 1/2 n/2 n [PS16]
ZAE TBC(n, n) 2/3 2/3 n 2n [IMPS17a]
Romulus-M TBC(2n, n) 2/3 2/3 n/2 n [IKMP20]
ΘCB-DFV TBC(n, n) 2/3 1 n 3n This work

For an integer ` ≥ 1, |X|` is the length of X ∈ {0, 1}∗ in `-bit blocks, which is defined as
|X|` = d|X|/`e if X 6= ε, and |X|` = 1 if X = ε. For two bit strings X and Y , X ‖Y is
their concatenation. We also write this as XY if it is clear from the context. Let 0i be the
string of i zero bits, and for instance we write 10i for 1 ‖ 0i. For X ∈ {0, 1}∗ with |X| ≥ i,
msbi(X) is the first (left) i bits of X, and lsbi(X) is the last (right) i bits of X. If X is
uniformly chosen from the set X , we write X $← X .

For any x ∈ {0, 1}≤n, pad(x) denotes a so-called one-zero (non-injective) padding:
pad(x) = x‖10n−|x|−1 when |x| < n and pad(x) = x when |x| = n. We also define a simple,
non-injective zero padding pad0(∗) as pad0(x) = x ‖ 0n−|x|. For a positive integer i, let
[i] := {1, 2, . . . , i} and JiK := {0, 1, . . . , i}.

In the pseudocodes, [X if E else Y] is a shorthand for [if E then X else Y].

2.1 Cryptographic Primitives
(Tweakable) Block Ciphers. A tweakable block cipher (TBC) [LRW02] is a keyed func-
tion Ẽ : K × T W ×M → M such that for each (K,T ) ∈ K × T W, Ẽ(K,T, ·) is a
permutation over M. Here, K is a key and T is a public value called tweak. The en-
cryption of a plaintext M ∈ M with a key K ∈ K and a tweak T ∈ T W is a ciphertext
C = Ẽ(K,T,M). It is also written as ẼK(T,X) or ẼTK(X). Similarly, the decryption
is written as M = Ẽ−1(K,T,C) or Ẽ−1

K (T,C) or (ẼTK)−1(C). When T W is written as
T W ′ ×D for a set of integers D, we call T W ′ the effective tweak space of Ẽ. The set D is
typically for domain separation, that is, a small set to generate a number of distinct TBC
instances. Note that a conventional block cipher E : K ×M→M is equivalent to a TBC
with |T W| = 1. We write E−1

K (∗) to denote the decryption function.

Random Primitives. Let X , Y and T W be non-empty finite sets. Let Func(X ,Y) be the
set of all functions from X to Y, and let Perm(X ) be the set of all permutations over X .
Moreover, let Perm(T W,X ) be the set of all functions f : T W × X → X such that for
any T ∈ T W, f(T, ·) is a permutation over X .

A uniform random function (URF) with a domain X and a range Y, R : X → Y,
is a random function with uniform distribution over Func(X ,Y). Similarly, a uniform
random permutation (URP) over X , P : X → X , is a random permutation with uniform
distribution over Perm(X ). An n-bit URP is a URP over {0, 1}n. A tweakable URP
(TURP) with a tweak space T W and a message space X , P̃ : T W ×X → X , is a random
tweakable permutation with uniform distribution over Perm(T W,X ). The decryption is
written as P−1(∗) for URP and (P̃

−1
)T (∗) for TURP given tweak T .
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Efficiency Measure. Rate is a popular efficiency measure for (tweakable) block cipher
modes. It is the number of input message blocks per cryptographic primitive call, assuming
the message block size and the input and output sizes of the primitive are fixed and
understood. Throughout the paper, we use n to denote the input block size and the block
size of a block cipher. In case of tweakable block cipher, we assume the input block size is
n and the tweak size is a function of n, say 2n. Typically, constant primitive calls that
are needed for any inputs, irrespective of the possibility of pre-computation, are ignored.
Therefore, when a mode with an n-bit block cipher needs x`+ c block cipher calls for an
`-block (n`-bit) message for some non-negative constant c, its rate is said to be 1/x. For
example, (any version of) OCB has rate 1 for both encryption and decryption.

We stress that, although it is convenient, the notion of rate is not universal. First
of all, comparing rates of different modes using different primitives is basically pointless.
Moreover, there is no ultimate consensus when a mode uses multiple primitives, e.g., when
an n-bit block cipher and an n-bit full multiplier over GF(2n) are combined (say for GCM),
or when a reduced-round block cipher is used together with a full-round one, etc. None of
the schemes discussed in this paper will deal with such cases.

2.2 Authenticated Encryption
We describe the syntax of NAE and MRAE schemes.

NAE. Let NAE = (NAE.Enc,NAE.Dec) be an NAE scheme. The (deterministic) encryp-
tion algorithm NAE.Enc takes a key K ∈ K and a tuple (N,A,M) of a nonce N ∈ N ,
an AD A ∈ A, and a plaintext M ∈ M as input, and returns a ciphertext C ∈ M and
a tag T ∈ T . Typically, M = {0, 1}∗ and T = {0, 1}τ for a fixed, small τ . The tuple
(N,A,C, T ) will be sent to the receiver. The (deterministic) decryption algorithm NAE.Dec
takes K ∈ K and the tuple (N,A,C, T ) as input, and returns M ∈M or the reject symbol
⊥.

Our definition of NAE covers both cases of A 6= ∅ and A = ∅, where the former is often
called AE with AD (AEAD) [Rog02]. To avoid confusion, if we explicitly mean an NAE
scheme without AD (A = ∅), we will call it a plain NAE (pNAE). For a pNAE scheme, we
omit the notation of A from its syntax. Note that an pNAE is trivially derived from any
non-plain NAE by dropping AD from the syntax.

MRAE. Let MRAE = (MRAE.Enc,MRAE.Dec) be an MRAE scheme. The encryption
MRAE.Enc takes key K ∈ K, AD A ∈ A, and plaintext M ∈M and outputs a ciphertext
C ∈M and a tag T ∈ T . Nonce N is absent (in which case it is also called a deterministic
AE or DAE) or exists but may repeat at encryption. For the latter case, N is typically
assumed to be a part of AD A. The tuple (A,C, T ) will be sent to the receiver. The
decryption MRAE.Dec takes K and the tuple (A,C, T ) and returns a plaintext M or the
reject symbol ⊥.

Unfinished Decryption. In our second scheme, we assume that the decryption of the
underlying pNAE scheme can be decomposed into two routines: unfinished decryption
UDec : K×N ×M→M×T and comparison Cmp :M×T ×T →M∪{⊥}, where the
latter is defined as Cmp(M,T, T ′) = M iff T = T ′ and otherwise ⊥. On receiving a tuple
(N,C, T ) ∈ N ×M×T , the pNAE decryption first performs (M ′, T ′)← UDecK(N,C) and
the final output is Cmp(M ′, T ′, T ). Here, M ′ in the above corresponds to the unverified
plaintext introduced by Andreeva et al.. [ABL+14a], and T ′ is the tag value that is locally
computed. Note that UDec itself is not an unverified decryption routine, which returns M ′
for input (N,C), although it is simply derived by discarding the second output argument
of UDec. In any case, our assumption holds for many known (p)NAE schemes, such as
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GCM. Some exceptions exist, for example an encode-then-encipher scheme [BR00,HKR15],
since its verification is different – it compares a part of large block cipher’s decryption
result with a fixed value.

2.3 Security Notions
Let A be an adversary that queries an oracle O. We say A is a distinguisher if it outputs
x ∈ {0, 1} as a final outcome. If the final outcome is 1, we write AO = 1 to denote this
event. It is a probabilistic event whose randomness comes from those of A and O. Queries
of A may be adaptive unless otherwise specified. If there are multiple oracles O1,O2, . . . ,
AO1,O2,... means that A can query any oracle in an arbitrary order.

Let O and O′ be the oracles. For an adversary A who is a distinguisher for O and O′
using adaptive queries, we define the indistinguishability as

Advind
O,O′(A) := |Pr[AO = 1]− Pr[AO

′
= 1]|.

For two tuples of oracles, O = (O1,O2, . . . ,Os) and O′ = (O′1,O′2, . . . ,O′s), Advind
O,O′(A)

is defined as |Pr[AO1,O2,...,Os = 1]− Pr[AO
′
1,O
′
2,...,O

′
s = 1]|. Let F : K×X → Y be a keyed

function. The PRF-advantage of FK against A is defined as

Advprf
F (A) := Advind

F,RF
(A) = |Pr[K $← K : AFK = 1]− Pr[ARF = 1]|, (1)

where RF : X → Y is a URF. If (1) is negligibly small for any A of a practical amount of
complexity, we say FK is a pseudorandom function (PRF). The domain of FK may consist
of multiple sets, such as X = X1 × X2 for Xi = {0, 1}∗ for i = 1, 2, where we assume
(X1, X2) ∈ X and (X ′1, X ′2) ∈ X are different inputs to FK iff (X1, X2) 6= (X ′1, X ′2) (even
if X1 ‖X2 = X ′1 ‖X ′2 holds). In this case, FK is called a vector-input PRF.

For any NAE NAEK with a nonce N ∈ N , let NAE$
K be the random IV-based counter-

part. That is, N is chosen randomly by the encryption oracle instead of the value chosen
by the adversary. Specifically, NAE$.EncK is queried with a plaintext M ∈M and returns
(N,C, T ), where N $← N and (C, T )← NAE.EncK(N,M). The decryption NAE$.DecK is
identical to NAE.DecK . The same applies to pNAE schemes.

We define the following security notions for NAE and MRAE. They are all-in-one
security notions that capture both privacy (confidentiality) and authenticity (integrity).

Definition 1. Let MRAE = (MRAE.Enc,MRAE.Dec) and NAE = (NAE.Enc,NAE.Dec) be
an MRAE scheme and an NAE scheme respectively. Suppose both have a τ -bit tag, and
NAEK has an n-bit nonce. We define

Advmrae
MRAE(A1) := |Pr[K $← K : AMRAE.EncK ,MRAE.DecK

1 = 1]− Pr[A$,⊥
1 = 1]|, (2)

Advnae
NAE(A2) := |Pr[K $← K : ANAE.EncK ,NAE.DecK

2 = 1]− Pr[A$,⊥
2 = 1]|, (3)

Advnae$
NAE (A3) := |Pr[K $← K : ANAE$.EncK ,NAE$.DecK

3 = 1]− Pr[A$,⊥
3 = 1]|, (4)

where $ (for (2) and (3)) is a random-bit oracle that returns a uniformly random string of
|M |+ τ bits for any query containing a plaintext M . If MRAE is written as MRAE[F,G],
that means F and G are the components, we assume their key spaces are understood and
independently randomly sampled in the game. For (4), the $ oracle returns |M |+ n+ τ
random bits for any query (A,M). We require A1 not to repeat encryption queries,
and A2 to be nonce-respecting, i.e., using unique nonce for each encryption, however no
requirement for those used by decryption. For all notions, any decryption query must be
non-trivial, e.g., for (3), a decryption query (N,A,C, T ) is not allowed when A2 previously
issued an encryption query (N,A,M) and received (C, T ). Similar conditions apply for (2)
and (4).
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For an adversary A against NAE/MRAE, let qe denote the number of encryption queries,
qd denote the number of decryption queries. When an i-th encryption query (decryption
query) is denoted by (Ni, Ai,Mi) ((N ′i , A′i, C ′i, T ′i )), we define σe :=

∑
i∈[qe] |Ai|n + |Mi|n

and σd :=
∑
j∈[qd] |A′j |n + |C ′j |n, and σ := σe + σd. The time complexity of A is denoted

by t.
For a list of adversarial parameters θ and a security notion sec, we write θ-SEC

adversary to mean an adversary that can be an argument of Advsec
Π (∗) for any scheme

Π compliant to the security notion. In addition, we may write Advsec
Π (θ) to mean

maxA Advsec
Π (A) where the maximum is taken for all θ-sec adversaries. To avoid confusion,

we typically do this for the case that θ is a singleton (say the number of queries) and does
not contain the time complexity, which is considered as infinity. For time complexity t
and data complexity σ, let t̃(σ) be the shorthand for t+O(σ).

Privacy and Authenticity Notions. In our analysis, we also need the following standard
individual notions for privacy and authenticity [BN00].

Definition 2. Let NAE = (NAE.Enc,NAE.Dec) be an NAE scheme.

Advpriv
NAE(A1) := |Pr[K $← K : ANAE.EncK

1 = 1]− Pr[A$
1 = 1]|,

Advauth
NAE(A2) := |Pr[K $← K : ANAE.EncK ,NAE.DecK

1 forges ],

where $ oracle is as defined as Definition 1. The adversary in the privacy notion is
nonce-respecting, and [ANAE.EncK ,NAE.DecK

2 forges ] means that A2 receives M 6= ⊥ from
NAE.DecK by a non-trivial query (N,A,C, T ).

When the authenticity adversary A has single decryption query, we may useAdvauth-1
NAE (A)

instead of Advauth
NAE(A) to emphasize that the number of decryption query is one. A

(qe, qd, σ, t)-AUTH adversary uses qe encryption queries and qd decryption queries, with
σ total blocks for all queries, and time complexity t. A (qe, σ, t)-AUTH-1 adversary is
defined similarly, with single decryption query.

Proposition 1. Let NAE be an NAE scheme of ν-bit nonce. For any (qe, qv, σ, t)-NAE$
adversary A, we have Advnae$

NAE (A) ≤ Advnae
NAE(A′) + q2

e/2ν+1 for some (qe, qv, σ, t̃(σ))-NAE
adversary A′.

The proof is easily obtained by relaxing the winning condition of nae$ notion so that a
repeat of random nonces in two encryption queries immediately gives a win, and considering
a bad event of nonce repeat in encryption queries. The probability of bad event is at
most q2

e/2ν+1, and unless the bad event occurs, the advantage is bounded by the NAE
advantage of Definition 1.

For (tweakable) block ciphers, we define SPRP (strong pseudorandom permutation)
and TSPRP (tweakable SPRP) advantages as their chosen-ciphertext security, that is,

Advsprp
E (A1) := Advind

(E,E−1),(P,P−1)(A1),

Advtsprp

Ẽ
(A2) := Advind(

Ẽ,Ẽ−1
)
,
(

P̃,̃P
−1)(A2).

Here, A2 can arbitrarily choose a tweak as it is a part of a query.

3 Decryption-Fast SIV
We present MRAE schemes that achieve our goal: a faster decryption than SIV. Specifically,
we propose three generic compositions of an NAE and PRFs, assuming their keys are
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Algorithm
DFV1[FK ,NAEK′ ].Enc(A,M)

1. V ← FK(A,M)
2. (C, T )← NAE.EncK′(V,A,M)
3. return (V,C, T )

Algorithm
DFV1[FK ,NAEK′ ].Dec(V,A,C, T )

1. Y ← NAE.DecK′(V,A,C, T )
2. return Y

Figure 2: A generic construction DFV1. The function F : K×A×M→ V is a vector-input
PRF, NAE = (NAE.Enc,NAE.Dec) is a non-plain NAE scheme with a key space K′, a
nonce space V = {0, 1}ν , an AD space A, a message spaceM and a tag space T .

independent. The decryption algorithm is essentially that of the NAE we use. Later,
using known rate-1 NAE schemes, we show several concrete instantiations achieving rate-1
decryption, and thus are faster than SIV using the same primitives. To be precise, these
instantiations are not directly derived from our generic compositions. This is to achieve
several efficiency properties, such as the use of single key.

DFV1. The first scheme, which we call DFV1, is the most basic one to realize our idea. It
is depicted in the top of Figure 5 on page 96, and its pseudocode is shown in Figure 2.
DFV1 uses a vector-input PRF F : K ×A×M → V and a non-plain NAE NAE with a
nonce space V , where V = {0, 1}ν for some ν > 0. For encryption, it takes (A,M), derives
V ← FK(A,M) and (C, T )← NAE.EncK′(V,A,M). After receiving the tuple (V,A,C, T ),
the decryption of DFV1 is simply a decryption of NAEK′ taking this tuple. The derived V
corresponds to the (synthetic) IV of SIV, however, its role is different in the decryption.
DFV1 is simple and intuitive. A similar structure was informally described in [BNT19],
however for a different purpose. PRF-to-IV proposed by [ABL+14a] is also closely related
to DFV1. However, its authenticated decryption involves the decryption of the underlying
NAE and the PRF to process the whole input. The purpose of PRF-to-IV is different
from ours and it does not capture what we want to achieve. The security proof of DFV1 is
rather obvious. It contains a hidden inefficiency for encryption because it processes AD
twice while SIV processes AD only once.

DFV2 and DFV3. Our second and third schemes, DFV2 and DFV3, aim at removing the
aforementioned inefficiency of DFV1. For generic composition, this inevitably needs a
pNAE scheme as a component. The middle and the bottom of Figure 5 on page 96 depict
DFV2 and DFV3. Their pseudocodes are shown in Figures 3 and 4 on page 95. They use
two PRFs, F : K ×M→ S and G : K′ × S ×M→ V, S = {0, 1}n′ and V = {0, 1}ν , and
a pNAE scheme pNAEK′′ = (pNAE.EncK′′ , pNAE.DecK′′). The nonce space of pNAE is V
for DFV2 and W = V ×S = {0, 1}ν+n′ for DFV3. The tag length of pNAE is τ bits. DFV2
requires n′ ≥ τ .

For DFV2, we use the unfinished decryption pNAE.UDecK′′ (see Section 2.2) instead of
pNAE.DecK′′ . DFV3 does not need the unfinished decryption, but requires a larger nonce
space for pNAE. For both schemes, an encryption expands the output by ν + τ bits. As
mentioned in Section 1, the idea of these schemes are closely related to the problem of
adding an AD to a pNAE scheme, which was studied by Rogaway [Rog02]. In fact, our
schemes are based on his two proposals, more specifically ciphertext translation (CT) for
DFV2 and nonce stealing (NS) for DFV3. See Section 4 for more details.
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Algorithm
DFV2[FK , GK′ , pNAEK′′ ].Enc(A,M)

1. S ← FK(A)
2. V ← GK′(S,M)
3. (C,U)← pNAE.EncK′′(V,M)
4. T ← U ⊕ msbτ (S)
5. return (V,C, T )

Algorithm
DFV2[FK , GK′ , pNAEK′′ ].Dec(V,A,C, T )

1. S′ ← FK(A)
2. (M ′, U ′)← pNAE.UDecK′′(V,C)
3. T ′ ← U ′ ⊕ msbτ (S′)
4. if T 6= T ′ then return ⊥
5. else return M ′

Figure 3: A Ciphertext-translation-based DFV (DFV2). The functions F : K × A → S
and G : K′ × S ×M → V are PRFs with S = {0, 1}n′ and V = {0, 1}ν , and pNAE is a
pNAE having a ν-bit nonce space. Tag T is τ bits satisfying n′ ≥ τ .

Algorithm
DFV3[FK , GK′ , pNAEK′′ ].Enc(A,M)

1. S ← FK(A)
2. V ← GK′(S,M)
3. W ← V ‖S
4. (C, T )← pNAE.EncK′′(W,M)
5. return (V,C, T )

Algorithm
DFV3[FK , GK′ , pNAEK′′ ].Dec(V,A,C, T )

1. S′ ← FK(A)
2. W ′ ← V ‖S′

3. Y ← pNAE.DecK′′(W ′, C)
4. return Y

Figure 4: A nonce-stealing-based DFV (DFV3). The functions F : K × A → S and
G : K′×S×M→ V are PRFs, and pNAEK′′ is a pNAE with a nonce spaceW = {0, 1}ν+n′ ,
where |V | = ν and |S| = n′. Tag T is τ bits.

4 Security of DFV
4.1 Security of DFV1
Theorem 1. For (qe, qd, σ, t)-MRAE adversary A,

Advmrae
DFV1[F,NAE](A) ≤ Advnae

NAE(A′) + Advprf
F (B) + q2

e

2ν+1 ,

where A′ is a (qe, qd, σ, t̃(σ))-NAE adversary and B is a (qe + qd, σ, t̃(σ))-PRF adversary.

Proof. We observe

Advmrae
DFV1[F,NAE](A) ≤ Advmrae

DFV1[R,NAE](A) + Advprf
F (B) (5)

from the hybrid argument involving a URF R : A×M→ V . Since A never repeats queries,
V given to DFV1[R,NAEK′ ].Enc is always independent and random. Combining this fact
with Proposition 1, we have

Advmrae
DFV1[R,NAE](A) = Advnae$

NAE (A′) ≤ Advnae
NAE(A′′) + q2

e

2ν+1 , (6)

for some (qe, qd, σ, t̃(σ))-NAE($) adversaries A′ and A′′. Combining (5) and (6) concludes
the proof.

4.2 Security of DFV2
Theorem 2. For (qe, qd, σ, t)-MRAE adversary A,

Advmrae
DFV2[F,G,pNAE](A)

≤ Advprf
F (B) + Advprf

G (B′)

+ 2qdAdvpriv
pNAE(A′) + qdAdvauth-1

pNAE (A′′) + (qe + qd)2

2n′+1 + q2
e

2ν+1 + qd
2τ .
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Figure 5: Schemes of DFV. (Top) a general scheme DFV1, (Middle) a ciphertext translation-
based DFV2, and (Bottom) a nonce-stealing-based DFV3. For each scheme, the encryption
(decryption) routine is shown in the left (right).

for some (qe + qd, σ, t̃(σ))-PRF adversary B, and (qe, σ, t̃(σ))-PRF adversary B′, and
(qe, σ, t̃(σ))-PRIV adversary A′ and (qe, σ, t̃(σ))-AUTH-1 adversary A′′.

Proof. Let RF : A → S and RG : M × S → V be URFs, and let DFV2R denote
DFV2[RF ,RG, pNAEK′′ ]. Let DFV2∗R be a variant of DFV2R that uses URF R∗G : A×M→ V
instead of RG and derives as S ← RF (A) and V ← R∗G(A,M). Thus, S is not involved
in the computation of V for DFV2∗R. Let f [RF ,RG](A,M) = (S, V ), where S = RF (A)
and V = RG(S,M). Similarly, let f∗[RF ,R∗G](A,M) = (S, V ), where S = RF (A) and
V = R∗G(A,M). Note that f [RF ,R∗G] (f∗[RF ,R∗G]) is a part of the algorithm of DFV2R
(DFV2∗R), and this is the sole difference between them. If q is the number of queries to
f [RF ,RG] or f∗[RF ,R∗G],

Advind
f [RF ,RG],f∗[RF ,R∗G](q) ≤

q2

2n′+1 (7)

holds from the standard collision analysis on S.
We observe that DFV2∗R can be interpreted as an instance of DFV1 with NAE derived

by the ciphertext translation (CT) [Rog02] applied to pNAEK′′ . See Figure 6 on page 99
for the definition of CT. Here, CT turns a pNAE (pNAE) into a non-plain NAE (NAE) by
using a keyed function F . The tag of NAE is a sum of the tag of pNAE and msbτ (F (A)).
We note that the original definition [Rog02] is more general than Figure 6, in that the
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ciphertext and the tag are not explicitly separated, which we call the unified ciphertext
(for both NAE and pNAE). To help understanding, we elaborate a bit on the original. For
X,Y ∈ {0, 1}∗, let X⊕̂Y be the XOR of them by prepending zeros to the shorter one (e.g.,
0101001⊕̂111 = 0101110). When CT is applied, the NAE encryption for (N,A,M) for
a non-empty A is done by first computing the unified ciphertext Cp of pNAE encryption
taking (N,M), and the unified ciphertext of CT is derived as Cp⊕̂FK′(A) for some keyed
function FK′ : {0, 1}∗ → {0, 1}τ . The NAE decryption for (N,A, C) is simply the pNAE
decryption of (N,A, C⊕̂FK′(A)). When A is an empty string, the NAE encryption and
decryption are identical to the pNAE encryption and decryption ignoring A.

Figure 6 is essentially an instance of this general CT by specifying the unified ciphertext
as a concatenation of a ciphertext and a tag, and assuming AD is never empty, say with
some encoding. The keyed hashing function to A corresponds to the composition of
msbτ (∗) and RF (∗). Decryption is also compliant with the original CT since checking
U ′ ⊕ msbτ (S′) = T (in Figure 6) is equivalent to checking T ⊕ msbτ (S′) = U ′. In the
form of the original CT, the latter is the verification procedure for the decryption of
pNAE consisting of pNAE.UDec and Cmp (see Section 2.2) if T = lsbτ (C) for the unified
ciphertext C.

From Figure 6, we observe the equivalence

DFV2∗R ≡ DFV1[R∗G,CT[pNAE,RF ]].

From the security proof of CT [Rog02, Theorem 2], for a (qe, σ, t)-PRIV adversary A1
and a (qe, σ, t)-AUTH-1 adversary A2, we have

Advpriv
CT[pNAE,RF ](A1) ≤ Advpriv

pNAE(A′1), (8)

Advauth-1
CT[pNAE,RF ](A2) ≤ Advpriv

pNAE(A′2) + Advauth-1
pNAE (A′′2) + 1

2τ , (9)

for some (qe, σ, t̃(σ))-PRIV adversaries A′1 and A′2, and a (qe, σ, t̃(σ))-AUTH-1 adversary
A′′2 .

Therefore, we have

Advnae
CT[pNAE,RF ](A) ≤ Advpriv

CT[pNAE,RF ](Ap) + qdAdvauth-1
CT[pNAE,RF ](Aa)

≤ (qd + 1)Advpriv
pNAE(A′p) + qdAdvauth-1

pNAE (A′a) + qd
2τ , (10)

for some (qe, σ, t̃(σ))-PRIV adversary Ap, (qe, σ, t̃(σ))-PRIV adversary A′p, and (qe, σ, t̃(σ))-
AUTH-1 adversaries Aa and A′a. Here, the first inequality follows from Rogaway and
Shrimpton [RS06, Proposition 8] and the second follows from (8) and (9).

Thus, we have

Advmrae
DFV2R

(A) ≤ Advind
DFV2R,DFV2∗R

(A) + Advmrae
DFV2∗R

(A)

≤ Advind
f [RF ,RG],f∗[RF ,R∗G](qe + qd) + Advnae

CT[pNAE,RF ](A′) + q2
e

2ν+1

≤ (qd + 1)Advpriv
pNAE(A′p) + qdAdvauth-1

pNAE (A′a) + (qe + qd)2

2n′+1 + q2
e

2ν+1 + qd
2τ

for some (qe, qd, σ, t)-NAE adversary A′ and (qe, σ, t̃(σ))-PRIV adversary A′p and (qe, σ, t̃(σ))-
AUTH-1 adversary A′a. The second inequality follows from Theorem 1, and the third
follows from (7) and (10). This completes the proof.
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4.3 Security of DFV3
Theorem 3. For a (qe, qd, σ, t)-MRAE adversary A,

Advmrae
DFV3[F,G,pNAE](A)

≤ Advprf
F (B) + Advprf

G (B′) + Advpriv
pNAE(A′) + qd

(
Advauth-1

pNAE (A′′) + 1
2n′
)

+ (qe + qd)2

2n′+1 + q2
e

2ν+1

holds for some (qe + qd, σ, t̃(σ))-PRF adversary B, and (qe, σ, t̃(σ))-PRF adversary B′, and
(qe, σ, t̃(σ))-PRIV adversary A′ and (qe, σ, t̃(σ))-AUTH-1 adversary A′′.

We note that the term qd/2τ , which should be included for any AE of τ -bit tag, is
implicitly brought by qdAdvauth-1

pNAE (A′′).

Proof. As mentioned, DFV3 is based on the (generalized) nonce stealing [Rog02], NS, that
converts a pNAE to an NAE. See Figure 7 on page 99 for the definition of NS. The original
form of nonce stealing adopts the unified ciphertext as well as the case of ciphertext
translation. NS composes pNAEK′′ with ν + n′-bit nonce and a PRF FK : A → S with
S = {0, 1}n′ . The resulting NAE is NS[pNAEK′′ , FK ] which has a ν-bit nonce.

Let DFV3R denote DFV3[RF ,RG, pNAEK′′ ]. As before, the security of DFV3[FK , GK′ , pNAEK′′ ]
is a sum of MRAE advantage of DFV3R and the PRF advantages of FK and GK′ . Let
us focus on the former. Let DFV3∗R denote a variant that uses V ← R∗G(A,M) instead of
V ← RG(S,M) in DFV3R. We observe that DFV3∗R is an NS-based instance of DFV1 as

DFV3∗R ≡ DFV1[R∗G,NS[pNAEK′′ ,RF ]].

In our proof, N in Figure 7 corresponds to V . We need the privacy and authenticity
bounds of NS[pNAEK′′ ,RF ]. They are as follows.

Lemma 1. For a (qe, σ, t)-PRIV adversary A1 and a (qe, σ, t)-AUTH-1 adversary A2,

Advpriv
NS[pNAE,RF ](A1) ≤ Advpriv

pNAE(A′1) (11)

Advauth-1
NS[pNAE,RF ](A2) ≤ Advauth-1

pNAE (A′2) + 1
2n′ , (12)

for some (qe, σ, t̃(σ))-PRIV adversary A′1 and (qe, σ, t̃(σ))-AUTH-1 adversary A′2.

Proof of Lemma 1. To prove (11), we simply observe that A′1 can simulate RF (A)→ S.
To prove (12), we use a similar argument4 as the authenticity proof of CT [Rog02]. Let

A be an AUTH-1 adversary against NS[pNAEK′′ ,RF ] and let B be an AUTH-1 adversary
against pNAEK′′ . For convenience, we allow both adversaries to make trivial decryption
queries (i.e., for A, a decryption query (V,A,C, T ) is trivial when an encryption query
(V,A,M) has already been made and (C, T ) has returned) and the adversary is said to win
iff it receives a non-⊥ response from the decryption oracle from a non-trivial decryption
query. Here, B uses A and RF as internal routines, and records all the transcript generated
by them. When an encryption query (V,A,M) is made by A, B invokes RF (A)→ S and
makes an encryption query (W,M) where W = V ‖S. For this query, B receives (C, T )
from pNAE.EncK′′ and it will be given to A. When a decryption query (V ′, A′, C ′, T ′)
is made by A, B invokes RF (A′) → S′ and makes a decryption query (W ′, C ′) where
W ′ = V ′ ‖S′, and passes the return value from pNAE.DecK′′ to A.

4The original proof of nonce-stealing does not need it and is much simpler because it does not compress
AD.
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Algorithm
CT[pNAEK , FK′ ].Enc(N,A,M)

1. S ← FK′(A)
2. (C,U)← pNAE.EncK(N,M)
3. T ← U ⊕ msbτ (S)
4. return (C, T )

Algorithm
CT[pNAEK , FK′ ].Dec(N,A,C, T )

1. S′ ← FK′(A)
2. (M ′, U ′)← pNAE.UDecK(N,C)
3. T ′ ← U ′ ⊕ msbτ (S′)
4. if T 6= T ′ then return ⊥
5. else return M ′

Figure 6: Ciphertext Translation.

Algorithm
NS[pNAEK , FK′ ].Enc(N,A,M)

1. S ← FK′(A)
2. W ← N ‖S
3. (C, T )← pNAE.EncK(W,M)
4. return (C, T )

Algorithm
NS[pNAEK , FK′ ].Dec(N,A,C, T )

1. S′ ← FK′(A)
2. W ′ ← N ‖S′

3. Y ← pNAE.DecK(W ′, C)
4. return Y

Figure 7: Generalized Nonce Stealing.

The event that A forges (against NS[pNAEK′′ ,RF ]) happens iff (1) B forges or (2)
B’s decryption query is trivial but A’s is not. Let (Vi, Si, Ai,Mi, Ci, Ti) be the tuple
generated by the i-th encryption query from A and the response for pNAEK′′ and RF .
We observe that, (2) implies that there exists an i-th encryption query from A, and
(V ′, S′, C ′, T ′) = (Vi, Si, Ci, Ti) (which is needed for B to make (W ′ = V ′ ‖S′, C ′, T ′) a
trivial query), and A′ 6= Ai (which is needed for A to make it non-trivial). If we write this
event as Coll, we have

Pr[ANS[pNAEK′′ ,RF ] forges ] ≤ Pr[BpNAEK′′ forges ] + Pr[BpNAEK′′ invokes Coll],

where each probability term assumes uniform K ′′, and observe that the last term is at
most 1/2n′ since this is a non-trivial collision of S′ = RF (A′) and Si = RF (Ai) for this
target i-th query. Note that V ′ = Vi implies such target exists at most once among qe
encryption queries. This proves (12). We conclude the proof of Lemma 1.

Thus we have

Advmrae
DFV3R

(A) ≤ Advind
DFV3R,DFV3∗R

(A) + Advmrae
DFV3∗R

(A)

≤ Advind
f [RF ,RG],f∗[RF ,R∗G](B) + Advmrae

DFV3∗R
(A)

≤ (qe + qd)2

2n′+1 + Advmrae
DFV3∗R

(A)

≤ (qe + qd)2

2n′+1 + q2
e

2ν+1 + Advnae
NS[pNAE,RF ](A′)

≤ (qe + qd)2

2n′+1 + q2
e

2ν+1 + Advpriv
NS[pNAE,RF ](A

′
p) + qdAdvauth-1

NS[pNAE,RF ](A′a)

≤ (qe + qd)2

2n′+1 + q2
e

2ν+1 + Advpriv
pNAE(A′′p) + qdAdvauth-1

pNAE (A′′a) + qd
2n′ ,

for some (qe + qd, t̃(σ))-PRF adversary B, and (qe, qd, σ, t̃(σ))-NAE adversary A′, and
(qe, σ, t̃(σ))-PRIV adversaries A′p and A′′p , and (qe, σ, t̃(σ))-AUTH-1 adversaries A′a and A′′a.
Here, the third inequality follows from (7), the fourth follows from Theorem 1, the fifth
follows from [RS06, Proposition 8] and the last follows from Lemma 1. This concludes the
proof.
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5 Discussions
5.1 Tightness of the Bounds, and Comparison with SIV
The bounds of DFV2 and DFV3 do not seem to be tight, in particular with respect to the
computational terms regarding pNAE. The term qd is multiplied by the PRIV term and
AUTH-1 term for DFV2. If we simply instantiate pNAE by (any version of) OCB in DFV2,
its PRIV bound is O(σ2/2n) and its AUTH-1 bound is O(σ2/2n + 1/2τ ) for σ queried
blocks. Thus, assuming n = ν = n′ the bound for DFV2 becomes O(qdσ2/2n + qd/2τ ).
This cubic degradation is worse than the quadratic bound of a birthday-secure, block
cipher-based instantiation of SIV, whose MRAE bound is O(σ2/2n + q/2n) for q queries
and σ blocks (from [RS06, Theorem 2], assuming birthday-secure components). In case of
DFV3, qd is only multiplied by AUTH-1 term of pNAE, however we basically obtain the
same bound as DFV2 if pNAE is OCB. If we use OCB3, a more rigorous comparison could
be possible with an improved bound of OCB3 [BN17], however DFV3 is still inferior to SIV
as long as we use Theorem 3 in a black-box way.

This cubic degradation is undesirable, and because it is already present in the bounds
of the original CT and NS transformations, it seems not easy to avoid. In general, concrete
instantiations of DFV with dedicated analysis can give better bounds than using the
black-box application of the above bounds. In fact, this happens for our instantiations at
Section 6.

5.2 Wrong Variation of DFV1
While our core idea is rather simple, the realization of it needed some cares. In fact, some
variations/optimizations of DFV1 or DFV2 or DFV3 can easily go wrong. For example,
consider a variation of DFV1 that uses V = FK(M) ‖A as a (variable-length) nonce. It
might save the total computation depending on the difference in efficiencies of F and NAE,
and looks secure as it involves all the input information to derive V . However, this is
insecure since it leaks the coincidence of plaintexts via V , even if ADs are different. This
weakness is related (but not identical) to a problematic NAE scheme discussed by Bellare
et al. [BNT19] that derives a nonce from a plaintext, say by taking a (key-less) hash of it.
This easily leaks the plaintext by an off-line attack if it has a low entropy.

5.3 Intractability of Refined Variants of DFV2 and DFV3
One might want to optimize DFV2 and DFV3 in terms of computation. For example, by
XORing S to (the first n′ bits of)M will reduce the input length of G hence its computation
cost. However, such seemingly minor improvement makes the security proof intractable.
To see this, consider a variant of DFV2 that uses M ⊕ (S ‖ 0|M |−n′) for the input of GK′ ,
which we call DFV2a. For simplicity, we assume |M | = n′. Then, DFV2a generates V
as V ← GK′(M ⊕ S) and S ← FK(A). If we are to prove the security of DFV2a, it
requires to bound the MRAE advantage of DFV2aR := DFV2a[RF ,RG, pNAEK′′ ]. In a
similar manner to the proof of DFV2, we introduce DFV2a∗R that generates V ← R∗G(A,M)
(while S ← RF (A)). The difference between DFV2aR and DFV2a∗R is their processes to
derive (S, V ), namely

fa[RF ,RG] = (S, V ), where S = RF (A), V = RG(M ⊕ S) for DFV2aR,
f∗a [RF ,R∗G] = (S, V ), where S = RF (A), V = R∗G(A,M) for DFV2a∗R.

However, unlike the case of DFV2, we cannot reduce the indistinguishability between
DFV2aR and DFV2a∗R (Game2a) to that between fa[RF ,RG] and f∗a [RF ,R∗G], as the latter
is easy to distinguish by finding a collision on inputs to G. The point is that, in the
case of DFV2, the reduction works as the indistinguishability between DFV2R and DFV2∗R
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does not collapse even if S is given to the adversary. On the other hand, if we give S to
the adversary in Game2a, she wins with a high probability, as she can easily invoke an
input collision of G when querying DFV2aR, hence, by checking the collision of V , she
can distinguish the two oracles. Note that how S is hidden from the adversary is not
quantifiable as the underlying pNAE has only a computational security guarantee.

One might think of another proof path that first applies the hybrid argument involving
pNAEK′′ and the ideal pNAE scheme ($(∗, ∗)), keeping RF and RG. This also faces a
similar problem; the confidentiality of S cannot be ensured in DFV2, and the adversary
who learns S can easily distinguish the two worlds, as she can invoke a collision on V for a
pair of different ADs.

In other words, the problem is that V must be unique to ensure the confidentiality of S
(equivalent to the randomness of NAE outputs on distinct nonces), while the confidentiality
of S is needed to ensure the distinctness of V . This poses a kind of chicken-or-the-egg
dilemma. We remark that this problem is not present in [Rog02] because the uniqueness
of nonce for encryption queries is guaranteed everywhere in the game.

Another potential optimization option for DFV2 is the use of an almost XOR-universal
hash function [WC81] for GK′ instead of a PRF. This works for pNAE-to-non-plain NAE
conversion [Rog02]. For DFV3, an option is to take an XOR of V and S instead of V ‖S
to derive W to reduce the required nonce length for pNAE we use. However, as far as we
tried, proving/disproving their security is hard for the same reason as above.

Perhaps this problem is related to the nature of generic composition and an interesting
future topic. We think that these optimizations are generally possible for the specific
constructions, by considering the ad-hoc security proofs.

5.4 RUP Security
One security feature that has not discussed so far is a security under a release of unverified
plaintext (RUP) introduced by Andreeva et al. [ABL+14a]. They consider the situation
where the decryption oracle leaks the unverified plaintext irrespective of the result of
verification, thus allows the adversary to access the unverified decryption oracle. As
mentioned at Section 2.2, an unverified decryption oracle is trivially obtained by the
unfinished decryption routine (if exists). For an MRAE scheme MRAE, its unverified
decryption is written as MRAE.UvDec. It takes (A,C) and returns an unverified plaintext
M ′. We also consider a verification oracle MRAE.Verf, which takes (A,C, T ) and returns
> if MRAE.Dec(A,C, T ) 6= ⊥ (i.e., authentication is successful), and ⊥ otherwise.

We here briefly discuss RUP security of DFV, particularly focusing on authenticity.
The relevant notion is INT-RUP (for INTegrity under RUP). The INT-RUP notion for an
MRAE scheme MRAE is defined as follows.

Advint-rup
MRAE (A) := Pr[K $← K : AMRAE.EncK ,MRAE.UvDecK ,MRAE.VerfK forges ],

which means the probability of receiving > from MRAE.VerfK without making a query
leading to a trivial win [ABL+14a].

We show that DFV1 is INT-RUP secure if the underlying NAE is. More formally, let A
be a (qe, qd, qv, σ, t)-INT-RUP adversary, which uses qe encryption queries, qd unverified
decryption queries, and qv verification queries, with total queried blocks σ, and time
complexity t. Then we have

Advint-rup
DFV1[F,NAE](A) ≤ Advint-rup

NAE (A′) + Advprf
F (B) + q2

e

2ν+1 , (13)

for some (qe, qd, qv, σ, t̃(σ))-int-rup adversary A′ and (qe+qd+qv, σ, t̃(σ))-PRF adversary B.
The inequality follows from the fact that INT-RUP adversary against DFV1[RF ,NAEK′ ] is
simulatable by another INT-RUP adversary against NAEK′ that uses random V instead of
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chosen V . We note that this result is not implied by the INT-RUP analysis of PRF-to-
IV [ABL+14b, Proposition 10] due to the difference in the decryption.

This implies that we can use an INT-RUP-secure NAE scheme for DFV1 to en-
sure the whole INT-RUP security. For block cipher-based schemes, some examples
are CCM [ABL+14a], SILC [IMG+17] [IMG+14], ΘCBt [HSY17], OCB-IC [ZWH+17],
GCM-RUP [ADL17], and mCPFB [CDN16], while the only the last one5 is known to have
a rate large than 1/2.

The bound is tight when the INT-RUP security of NAEK′ does not depend on the
choice of V at encryption. For example, when NAEK′ is OCB, the INT-RUP attack just
needs one encryption query of any nonce and an unverified decryption query, both having
about n blocks [ABL+14a]. In this case the both sides of (13) is close to one with two
queries. Conversely, if NAEK′ is broken by INT-RUP attack but only with a small subset
of possible nonce values at encryption, it might be the case that DFV1 has a non-negligible
INT-RUP security. Similar analysis is applicable to DFV2 and DFV3, though it seems
more involved and will need more study. Analysis of security under a refined/combined
RUP security notion [CDD+19] is also an interesting direction.

Fall-back to SIV. A useful feature of DFV is that it simply enables a fall-back to SIV
by treating pNAE/NAE as an IV-based encryption scheme. Taking DFV2 as an example,
this can be done by changing the algorithms as follows. For encryption, we do not send
T 6. For decryption receiving (V,A,C), we follow SIV : perform an integrity check at
V by computing V ′ = GK′(S′,M ′) for S′ = FK(A) and M ′ = pNAE.UvDecK′′(V,C),
thus assuming the existence of unverified decryption. It is not hard to see that this is a
secure instantiation of SIV, because (pNAE.Enc, pNAE.UvDec) works as a secure IV-based
encryption7 from the privacy condition of pNAE, and the derivation of V from (A,M) is a
PRF up to a collision on S.

This feature is beneficial when the necessity of RUP security is not determined at
the deployment. Note that SIV is INT-RUP secure [ABL+14a, ABL+14b], that is, it
has authenticity under RUP. For privacy/confidentiality under RUP, it meets a weak
notion called PA1, and to meet a stronger notion, PA2, a further enhancement on SIV is
needed [ABL+14a]. Roughly, these notions denote the indistinguishability of (EncK ,DecK)
from (EncK ,Ext) for some extractor Ext which does not possess K, either with access to
query history (PA1) or without it (PA2).

6 Instantiations
6.1 OCB-DFV : Birthday-Secure Parallel MRAE
We present an instantiation of DFV2 using OCB, which we call OCB-DFV. While DFV2 is
a generic composition needing three keys, the TBC XEX inside OCB allows to effectively
reduce the number of keys to single block cipher key. We try to keep the original algorithms,
and at the same time avoid a key derivation function (KDF) applied on the top. This is
because the use of KDF imposes a non-trivial computational overhead, and it may require
another primitive such as a hash function.

Figure 8 on page 107 shows OCB-DFV. Following [Rog04], by writing 2a for a ∈ {0, 1}n,
we mean a constant GF(2n) multiplication by x, also called a doubling. Similarly, 3a
means 2a⊕ a. See Appendix B for more details. For the sake of simplicity of pseudocode,

5We assume the polynomial hash in GCM-RUP is equally costly to block cipher-based MACs. For
ΘCBt, it only fulfills a relaxed security notion from INT-RUP.

6Alternatively, we send T and require the decryption to ignore it, though it needs to modify the security
goal as a forgery on T would not be caught.

7We need the length-preserving property for security, as mentioned by [RS06].
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OCB-DFV is based on OCB2 and PMAC [Rog04]. OCB3 could be used as well. Since
OCB2 has been shown to be broken [IIMP19], the algorithm is a fixed version (OCB2f)
shown in [IIMP19]. Figure 10 in Appendix E shows the pseudocodes of the necessary
components of OCB2f for OCB-DFV, namely the encryption algorithm and the unfinished
decryption algorithm for the empty AD. The algorithm of PMAC in the left of Figure 8
is a generalization from those defined at [Rog04, IIMP19], where the input c ∈ {0, 1}n
was originally fixed to 0n. We also removed the constant multiplication by 32 at line 2
of PMAC as this is needed only if nonce can be 0n for OCB2f in the game, which is not
our case; V is n− 2 bits and padded with 10 when given to OCB2f (line 3 of the right of
Figure 8).

OCB-DFV is the first block cipher MRAE mode that achieves rate-1 decryption and
rate-1/2 encryption. It is fully parallelizable. The security is n/2-bit as with many block
cipher modes. See also Table 1.

Security Bound of OCB-DFV.

Theorem 4. Let n = 128. For (qe, qd, σ, t)-MRAE adversary A,

Advmrae
OCB-DFV[E](A) ≤ Advsprp

E (B) + 13σ2

2n + 5qd
2τ

holds for some (σ, t̃(σ))-PRF adversary B.

The proof specifies n = 128, however it works for any n as long as the instance of XEX
shown in (14) is secure (see [Rog04]).

Proof. Following [Rog04, IIMP19], we can represent OCB-DFV as a mode of TBC called
XEX8. Let P̃ : T W ×M→M be a TURP, where T W = {0, 1}n × I ×D,M = {0, 1}n,
I = [2n], and D = {0, 1, 2}. We introduce iOCB-DFV[P̃] in Figure 11 in Appendix E as
an ideal variant9 of OCB-DFV[P] using P̃. It consists of iPMAC[P̃] shown in the left of
Figure 11 and ΘCB2f[P̃] shown in the bottom of Figure 10. Using a URP P :M→M,
our instantiation of XEX is

XEX[P](TW , X) =
{

2i3jL⊕ P(2i3jL⊕X) if j = 0
P(2i3jL⊕X) if j ∈ {1, 2}

(14)

where TW = (N, i, j) ∈ T W and L = P(N). We observe that

iOCB-DFV[XEX[P]] ≡ OCB-DFV[P]. (15)

Let iPMACF and iPMACG denote iPMAC[P̃](0n, ∗) and iPMAC[P̃](0n−11, ∗). We write
RF and RG to denote the independent URFs : {0, 1}∗ → {0, 1}n. Let DFV2Θ denote
DFV2[iPMACF , iPMACG,ΘCB2f[P̃]] and DFV2∗Θ denote DFV2[RF ,RG,ΘCB2f[P̃]]. Note
that the first element of the tweak used by ΘCB2f[P̃] is V ‖ 10, hence never collides with
those used by iPMACF and iPMACG. Thus ΘCB2f[P̃] is independent from them, and thus

DFV2Θ ≡ iOCB-DFV[P̃]. (16)

From (15), Advmrae
OCB-DFV[P](A) = Advmrae

iOCB-DFV[XEX[P]](A) holds, which is bounded as

Advind
iOCB-DFV[XEX[P]],DFV2Θ

(A) + Advind
DFV2Θ,DFV2∗Θ

(A) + Advmrae
DFV2∗Θ

(A). (17)

8More precisely, a combination of XE and XEX called XEX∗.
9We remark that iOCB-DFV is different from ΘCB-DFV in the next section.
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From (16), the first term of (17) is bounded by Advtsprp
XEX[P](σ), which is at most 9.5σ2/2n

from the security proof of XEX [Rog04, Theorem 3]. The second term is at most (qe+qd)2/2n
which is derived by a simple analysis similar to the proof of PMAC [Rog04].

The last term of the above is bounded by applying Theorem 2 ;

Advmrae
DFV2∗Θ

(A) ≤ 2qdAdvpriv

ΘCB2f [̃P]
(A′) + qdAdvauth-1

ΘCB2f [̃P]
(A′′) + (qe + qd)2

2n′+1 + q2
e

2ν+1 + qd
2τ

≤ 0 + qd

(
2
2n + 2

2τ

)
+ (qe + qd)2

2n+1 + q2
e

2n−1 + qd
2τ . (18)

where the second inequality follows from the bounds of ΘCB2f [IIMP19] showing the
privacy bound being 0 and the authenticity bound being 2/2n + 2/2τ for single verification
query, and the fact that ν = n − 2 and n′ = n from the specification. Combining (17)
and (18) and the fact σ ≥ qe + qd and τ ≤ n, the total bound is at most

9.5σ2

2n + (qe + qd)2

2n + qd

(
2
2n + 2

2τ

)
+ (qe + qd)2

2n+1 + q2
e

2n−1 + qd
2τ ≤

13σ2

2n + 5qd
2τ ,

which completes the proof.

Other block cipher-Based Instantiations. We suggest some other options for block
cipher-based instantiations of DFV. In principle, any combination of a fast (ideally rate-
1) NAE mode and a fast MAC mode should provide a good instantiation. If we use
OTR [Min14] instead of OCB, the resulting scheme has the same rate as OCB-DFV and is
inverse-free, that is, there is no need to implement the block cipher decryption function. If
we consider to use DFV on constrained devices, the memory size is often a concern. In this
case, a small-state MAC mode, say GCBC [Nan09], and a small-state rate-1 NAE mode,
such as COFB [CIMN17]. SAEB [NS19] could be used as well. It has a smaller state than
COFB, though its rate is below 1.

In choosing an NAE mode, the supported nonce length needs to be checked as it limits
the achievable security. For example, the original CHES version of COFB has a n/2-bit
nonce (thus a straightforward use of it implies n/4-bit security), while a version of COFB
submitted to NIST Lightweight Cryptography [BCI+19] supports an n-bit nonce.

Getting Birthday Bounds. To help understanding when we can obtain a birthday-secure
instantiation of DFV, let us describe the general proof idea of OCB-DFV. First we form a
sequence of games that reaches to DFV2∗Θ, where every intermediate game is reduced to
indistinguishability of the underlying TBC built on a block cipher. Assuming the TBC is
birthday-secure such as XEX, the intermediate games preserve birthday security. At the
end of game sequence we evaluate MRAE advantage of DFV2∗Θ by using the generic result
(Theorem 2). Since DFV2∗Θ contains a pNAE scheme that has perfect PRIV and almost
perfect AUTH-1 bounds (where perfect PRIV bound is zero and perfect AUTH-1 bound is
1/2τ ), applying the generic result does not degrade the total security.

6.2 ΘCB-DFV : Beyond-Birthday-Bound Secure Parallel MRAE
We present another instantiation of DFV using a dedicated TBC. Our main goal is to
achieve a stronger security than the n/2-bit security achieved by OCB-DFV, namely so-
called beyond-birthday-bound (BBB) security. It is possible to use an n-bit block cipher to
build a BBB-secure instance of DFV, by combing a BBB-secure PRF [Yas11] and a BBB-
secure NAE [Iwa08], however, the resulting scheme is generally costly10. Instead, we employ

10When we rely on the ideal-cipher model, there are efficient block cipher modes to implement a
BBB-secure TBC [Men15,WGZ+16,JLM+17]. It could be used as a primitive for ΘCB-DFV.
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a dedicated TBC, such as SKINNY [BJK+16], QARMA [Ava17], and CRAFT [BLMR19],
since it enables efficient BBB-secure constructions in general.

Our scheme, ΘCB-DFV, is roughly an instantiation of DFV2 using ZMAC [IMPS17a]
as a PRF and ΘCB3 [KR11] as a pNAE. ZMAC+ [LN17] could be used as well. More
precisely, FK and GK′ are instantiated by ZMAC with a simple domain separation, and
pNAE is instantiated by a variant of ΘCB3, which we call ΘCBL (for Long nonce). While
the original ΘCB3 has an n-bit nonce, ΘCBL has a 2n-bit nonce to make the whole scheme
n-bit secure.

Figure 9 in Appendix E shows the pseudocodes of ΘCB-DFV and ΘCBL. Also in
Appendix E, Figure 12 shows ZMAC, for which we apply a minor modification on its
domain separation, and set the tweak length as n (originally, t ∈ [n]).

Efficiency. The encryption rate (for message) of ΘCB-DFV is 2/3 as two blocks need one
TBC call for ZMAC and 2 calls for ΘCBL. The decryption rate is 1, and ΘCB-DFV is the
first TBC-based MRAE that achieves it (Table 1). It is fully parallelizable. Besides, AD is
processed even faster, as two AD blocks are processed by one TBC call.

We explain the structure of ΘCB-DFV. It is based on a TBC of n-bit block and n-bit
effective tweak. More specifically, the tweak space is T W = {0, 1}n ×D where D = J15K.
This setting is for simplicity, however, it is possible to modify so that |T W| ≤ 2n by
making the effective tweak length slightly shorter. Such a modification is required when
we use an existing n-bit block TBC supporting an n-bit tweak. We also apply XTX tweak
extension scheme [MI15] to the TBC. This requires two additional TBC calls to generate
two n-bit values, which are used as masks to the block and tweak input to the TBC. It is
described as follows.

Definition 3. Let Ẽ : K×T W ×M→M be a TBC with a message spaceM = {0, 1}n
and a tweak space T W = {0, 1}n × D, D = J15K. Our XTX turns Ẽ into another TBC
XTX[Ẽ] : K × T WXTX ×M→M, where T WXTX = {0, 1}2n × I ×D for I = [2n]. For a
tweak TW = (N, i, d) ∈ T WXTX and a plaintext M ∈M, the encryption of XTX[Ẽ] is

XTX[Ẽ](K,M) = L⊕ ẼW⊕i,dK (L⊕M),

where L = ẼN1,0
K (N2) and W = ẼN1,1

K (N2) with N1 = msbn(N) and N2 = lsbn(N). The
decryption is analogously defined.

Lemma 2. Let XTX[P̃] be as defined at Definition 3, based on a TURP P̃ : T W×M→M.
Then we have

Advtsprp

XTX[̃P]
(q) ≤ 4q2

22n .

The proof of Lemma 2 is in Appendix C.

Security Bound of ΘCB-DFV.

Theorem 5. For (qe, qd, σ, t)-MRAE adversary A,

Advmrae
ΘCB-DFV[Ẽ](A) ≤ Advtsprp

Ẽ
(B) + 27σ2

22n + 4
(

2qe + qd
2n

)3/2
+ 3qd

2τ

for some (6σ, t̃(σ))-TSPRP adversary B.

Theorem 5 shows the n-bit security of ΘCB-DFV. The proof is a simple combination
of Lemma 2 and the bounds of ZMAC and ΘCB3 and is shown in Appendix D.

105



Comparison of ΘCBL and ΘCB3. It would be worthwhile to compare ΘCBL and ΘCB3.
To support n-bit nonce and the maximum input of ≈ 2n blocks, ΘCB3 needs a TBC of
2n-bit effective tweak. ΘCBL also supports these parameters with a TBC of a shorter,
n-bit effective tweak. Since a TBC with a longer tweak is expected to be costlier than that
of a shorter tweak, ΘCBL can be seen as an efficiency improvement of ΘCB3 in addition
with a support of a longer nonce. This was possible with our XTX of Definition 3. Other
tweak extension schemes employed by ZMAC and ZOCB [BGIM19] could be used as well,
though they need constant multiplications over a field for every tweak update. It seems
that ours is minimal to achieve our goal. To measure the concrete performance difference in
practice, however, we need to consider other factors those specific to platforms or ciphers.

Other Instantiations. As well as Section 6.1, when memory size is our concern rather
than the parallelizability, we could use small-state, serial alternatives to ZMAC and ΘCBL,
such as Grochow et al. [GLN19] for PRF, and PFB [NS19] or Romulus-N [IKMP20] for
pNAE. The latter would also need a proper mechanism to support 2n-bit nonce. Thanks
to the n-bit BBB-security of the components, the resulting instantiation will maintain the
n-bit MRAE security as well. The actual contribution in memory reduction depends on
the specification and needs a further investigation.

6.3 Permutation-Based Instantiations

We briefly discuss about possible permutation-based instantiations. For PRF, we can use
a full-absorption sponge, e.g., FKS [MRV15]. For (p)NAE, we can use OPP [GJMN16]
or Duplex [BDPV12] or Beetle [CDNY18] or their variants. In case we compose FKS and
OPP using a b-bit permutation following DFV2, the security is roughly b/2 bits from
their bounds. If we use (serial) Duplex instead of (parallel) OPP, the resulting scheme is
structurally close to a permutation-based MRAE scheme called MRS [GJMN16]. However,
MRS is an instantiation of SIV, hence it does not output a tag at the end of the encryption
part, and our permutation-based DFV does not need a PRF for ciphertext when decryption.
Consequently, a permutation-based DFV roughly halves the decryption cost from MRS as
it is the principle of DFV (the exact gain will depend on the specification).

While the composition of FKS and OPP is more or less similar to OCB-DFV, the
composition of FKS and Duplex needs a dedicated, more involved analysis, in particular
if we use a single key for both components. We leave the concrete specification and its
analysis as a future topic.

7 Conclusions

In this article, we have described a new generic construction of MRAE. While SIV is the
most popular choice for MRAE, it incurs an increased computation from the efficient rate-1
NAE schemes such as OCB. Our proposal, DFV, reduces the decryption cost to that of
the rate-1 NAEs, and at the same time keeps the encryption cost. This implies a certain
optimality of DFV as its total efficiency cannot be further improved. We think our work
to fill the efficiency gap between MRAE and integrated NAE schemes.

Several future directions can be considered, such as studying the problem shown in
Section 5, or designing variations of DFV that enjoy graceful security degradation [PS16]
(which is ongoing). Software and hardware implementations of our instantiations are also
interesting to evaluate their real advantage.
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Algorithm PMAC[EK ](c, A)

1. S ← 0n

2. V ← EK(c)

3. (A[1], . . . , A[a]) n←− A

4. for i = 1 to a− 1

5. S ← S ⊕ EK(2iV ⊕A[i])

6. S ← S ⊕ pad(A[a])

7. if |A[a]| = n

8. Q← EK(2a3V ⊕ S)

9. else Q← EK(2a32V ⊕ S)

10. return Q

Algorithm OCB-DFV[EK ].Enc(A,M)

1. S ← PMAC[EK ](0n, A)
2. V ← PMAC[EK ](0n−11,M ‖S)
3. V ← msbn−2(V )
4. (C, T )← OCB2f[EK ].Enc(V ‖ 10,M)
5. T ← T ⊕ msbτ (S)
6. return (V,C, T )

Algorithm OCB-DFV[EK ].Dec(V,A,C, T )

1. S′ ← PMAC[EK ](0n, A)
2. (M ′, U ′)← OCB2f[EK ].UDec(V,C)
3. T ′ ← U ′ ⊕ msbτ (S′)
4. if T 6= T ′ then return ⊥
5. else return M ′

Figure 8: OCB-DFV, a birthday-secure, block cipher-based DFV. OCB2f is from [IIMP19]
and shown in Figure 10 (Appendix E).
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A A Detailed Comparison with SIV
Let n denote the block size, and let us assume a “standard” instantiation of SIV with an
n-bit block cipher. It uses a rate-1 block cipher-based PRF (e.g., CMAC) and a rate-1
block cipher-based IV-based encryption (e.g., CTR mode) as originally specified in [RS06].
For a-block AD and m-block message, it needs a+2m block cipher calls for both encryption
and decryption, where we ignore constants. For the three variants of DFV, we assume
the use of identical PRF as SIV, using the identical block cipher. For the underlying
NAE scheme, we assume that it needs a′e +m′e calls for encryption of a AD blocks and m
plaintext blocks, and a′d +m′d calls for decryption of a AD blocks and m ciphertext blocks.
When AD is not present (thus pNAE), it needs m′e calls for encryption and m′d calls for
decryption. With these settings, Table 2 shows the numbers of block cipher calls needed
by SIV, DFV1, DFV2, and DFV3. This shows that, when a′e = a′d = a and m′e = m′d = m
(as achieved by OCB), all DFV schemes have a faster decryption than SIV, and DFV2 and
DFV3 keep the same encryption cost. In contrast, DFV1 has a slower encryption than SIV
unless AD is empty.

Table 2: Detailed Comparison with SIV.

Scheme Encryption Decryption
SIV a+ 2m a+ 2m
DFV1 a+m+ a′e +m′e a′d +m′d
DFV2 a+m+m′e a+m′d
DFV3 a+m+m′e a+m′d

B Field Multiplication
An element a in the Galois field GF(2n) will be interchangeably represented as an n-bit
string an−1 . . . a1a0, a formal polynomial an−1xn−1+· · ·+a1x+a0, or an integer

∑n−1
i=0 ai2i.

Hence, by writing 2 · a or 2a when no confusion is possible, we mean the multiplication of
a by 2 = x. This operation is called doubling. The doubling is quite simple. For example,
when n = 128, we define the field GF(2n) (as is standard) by the primitive polynomial
x128 + x7 + x2 + x + 1. The doubling 2a over this field is (a � 1) if msb1(a) = 0 and
(a� 1)⊕ (012010000111) if msb1(a) = 1, where (a� 1) denotes the left-shift of a by one
bit. In the same manner, we define 3 · a or 3a as 2 · a + a. An expression 2ia means i
doublings.

C Proof of Lemma 2
The proof is obtained by combining the original security proof of XTX [MI15, Theorem 1]
and the following analysis on the mask generation function. Let FP̃ be the mask generation
function inside XTX[P̃], that is,

FP̃(X) = (L, J),

whereX = (N, i, d) ∈ T W , J = (W⊕i, d), L = P̃
N1,0(N2),W = P̃

N1,1(N2), N1 = msbn(N)
and N2 = lsbn(N). Here, L is given to the block input of P̃, and J is given to the tweak
input of P̃.
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Let X = (N, i, d) and X ′ = (N ′, i′, d′) be inputs to FP̃, and (L, J = (W,d)) = FP̃(X)
and (L′, J ′ = (W ′, d′)) = FP̃(X ′). For any X 6= X ′, we have

p(X,X ′) := max
δ∈{0,1}n

Pr
P̃

[L⊕ L′ = δ, J = J ′] ≤ 4
22n (19)

from the following case analysis.

• Case 1: N 6= N ′. We have

p(X,X ′) ≤ Pr
P̃

[L⊕ L′ = δ] · Pr
P̃

[W = W ′] ≤
(

1
2n − 1

)2
≤ 4

22n ,

since (L,L′) and (W,W ′) are independent (due to the domain separation) and L⊕L′
and W ⊕W ′ has the maximum point probability 1/(2n − 1).

• Case 2: N = N ′, i 6= i′. Then W = W ′ and thus W ⊕ i 6= W ′ ⊕ i′ holds, therefore
p(X,X ′) = 0.

• Case 3: N = N ′, i = i′, d 6= d′. Then p(X,X ′) = 0 as J directly contains d.

Equation (19) implies that FP̃ is 4/22n-partial AXU [MI15]. Combining this fact and [MI15,
Theorem 1], we conclude the proof.

D Proof of Theorem 5
We derive a bound for ΘCB-DFV[P̃]. The computational analogue is trivial. Let iΘCB-DFV
be an idealized ΘCB-DFV[P̃] using a URF R : {0, 1}∗ → {0, 1}2n and an idealized version
of ΘCBL called iΘCBL (Figure 13 in Appendix E). Here, iΘCBL uses a TURP P̃XTX :
T WXTX ×M→M. Then we have

Advmrae
ΘCB-DFV[̃P]

(A) ≤ Advprf

ZMAC[̃P]
(B) + Advtsprp

XTX[̃P]
(σ2) + Advmrae

iΘCB-DFV(A) (20)

for some (2qe + qd, σ + qe)-PRF adversary B because an encryption of ΘCB-DFV requires
two calls of ZMAC, and an encryption query (N,A,M) generates two inputs to ZMAC
with total n-bit length |A|n + |M |n + |S|n = |A|n + |M |n + 2. From the PRF bound of
ZMAC [IMPS17b, Theorem 1], the first term of the right hand side of (20) is bounded by

2.5(σe + qe + σd)
22n + 4

(
2qe + qd

2n

)3/2
≤ 10σ2

22n + 4
(

2qe + qd
2n

)3/2
.

The second term of Advtsprp

XTX[̃P]
(σ2) is bounded by 16σ2/22n from Lemma 2 with the fact

that ΘCB-DFV[P̃] invokes XTX[P̃] (for ΘCBL) for at most σe + qe + σd + qd ≤ 2σ blocks.
To derive the bound of the last term, we observe that iΘCBL is essentially an instance
of ΘCB3 with 2n-bit nonce, and thus its Advpriv bound is 0 and Advauth-1 bound is
2n−τ/(2n − 1) < 2/2τ [KR11]. We combine this observation with Theorem 2 and that
n′ = ν = 2n, and obtain the bound 2qd · 0 + 2qd/2τ + (qe + qd)2/22n+1 + q2

e/22n+1 + qd/2τ ,
which is at most σ2/22n + 3qd/2τ . Therefore, (20) is bounded by

10σ2

22n + 4
(

2qe + qd
2n

)3/2
+ 16σ2

22n + σ2

22n + 3qd
2τ ≤

27σ2

22n + 4
(

2qe + qd
2n

)3/2
+ 3qd

2τ .

This concludes the proof.
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E Left-out Figures

Algorithm ΘCB-DFV[ẼK ].Enc(A,M)

1. S ← ZMAC[ẼK ](0 ‖A)
2. V ← ZMAC[ẼK ](1 ‖M ‖S)
3. (C, T )← ΘCBL[ẼK ].Enc(V,M)
4. return (V,C, T )

Algorithm ΘCB-DFV[ẼK ].Dec(V,A,C, T )

1. S′ ← ZMAC[ẼK ](0 ‖A)
2. (M ′, U ′)← ΘCBL[ẼK ].UDec(V,C)
3. T ′ ← U ′ ⊕ msbτ (S′)
4. if T 6= T ′ then return ⊥
5. else return M ′

Algorithm ΘCBL[ẼK ].Enc(N,M)

1. S ← 0n

2. (N1, N2) n←− N

3. L← ẼN1,0
K (N2)

4. W ← ẼN1,1
K (N2)

5. (M [1], . . . ,M [m]) n←−M
6. for i = 1 to m− 1
7. C[i]← L⊕ ẼW⊕i,2K (L⊕M [i])
8. S ← S ⊕M [i]
9. S ← S ⊕ pad(M [m])
10. Z ← L⊕ ẼW⊕m,3K (L)
11. C[m]← msb|M [m]|(Z)⊕M [m]
12. w ← 4 if |M [m]| 6= n else 5
13. T ← L⊕ ẼW⊕m,wK (L⊕ S)
14. T ← msbτ (T )
15. return (C, T )

Algorithm ΘCBL[ẼK ].UDec(N,C)

1. S ← 0n

2. (N1, N2) n←− N

3. L← ẼN1,0
K (N2)

4. W ← ẼN1,1
K (N2)

5. (C[1], . . . , C[m]) n←− C
6. for i = 1 to m− 1
7. M ′[i]← L⊕ (Ẽ−1

K )W⊕i,2(L⊕ C[i])
8. S ← S ⊕M ′[i]
9. S ← S ⊕ pad(M ′[m])
10. Z ← L⊕ ẼW⊕m,3K (L)
11. M ′[m]← msb|M ′[m]|(Z)⊕ C[m]
12. w ← 4 if |C[m]| 6= n else 5
13. U ′ ← L⊕ ẼW⊕m,wK (L⊕ S)
14. return (M ′, U ′)

Algorithm ΘCBL[ẼK ].Dec(N,C, T )

1. (M ′, U ′)← ΘCBL[ẼK ].UDec(N,C)
2. if msbτ (U ′) = T then return M ′

3. else return ⊥

Figure 9: (Top) ΘCB-DFV, a TBC-based, full-n-bit-secure DFV. (Bottom) ΘCBL, an
pNAE component of ΘCB-DFV with 2n-bit nonce. ZMAC is in Figure 12.
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Algorithm OCB2f[EK ].Enc(N,M)

1. L← EK(N)
2. (M [1], . . . ,M [m]) n←−M
3. for i = 1 to m− 1
4. C[i]← 2iL⊕ EK(2iL⊕M [i])
5. Z ← 2mL⊕ EK(2mL⊕ len(M [m]))
6. C[m]←M [m]⊕ msb|M [m]|(Z)
7. Σ← pad0(C[m])⊕ Z
8. Σ←M [1]⊕ · · · ⊕M [m− 1]⊕ Σ
9. T ← EK(2m3L⊕ Σ)
10. T ← msbτ (T )
11. return (C, T )

Algorithm OCB2f[EK ].UDec(N,C)

1. L← EK(N)
2. (C[1], . . . , C[m]) n←− C
3. for i = 1 to m− 1
4. M ′[i]← 2iL⊕ E−1

K (2iL⊕ C[i])
5. Z ← 2mL⊕ EK(2mL⊕ len(C[m]))
6. M ′[m]← C[m]⊕ msb|C[m]|(Z)
7. Σ← pad0(C[m])⊕ Z
8. Σ←M ′[1]⊕ · · · ⊕M ′[m− 1]⊕ Σ
9. U ′ ← EK(2m3L⊕ Σ)

10. return (M ′, U ′)

Algorithm ΘCB2f[P̃].Enc(N,M)

1. (M [1], . . . ,M [m]) n←−M
2. for i = 1 to m− 1

3. C[i]← P̃
N,i,0

(M [i])

4. Z ← P̃
N,m,0

(len(M [m]))
5. C[m]←M [m]⊕ msb|M [m]|(Z)
6. Σ← pad0(C[m])⊕ Z
7. Σ←M [1]⊕ · · · ⊕M [m− 1]⊕ Σ

8. T ← P̃
N,m,1

(Σ)
9. T ← msbτ (T )
10. return (C, T )

Algorithm ΘCB2f[P̃].UDec(N,C)

1. (C[1], . . . , C[m]) n←− C
2. for i = 1 to m− 1

3. M ′[i]← (P̃
−1

)N,i,0(C[i])

4. Z ← P̃
N,m,0

(len(C[m]))
5. M ′[m]← C[m]⊕ msb|C[m]|(Z)
6. Σ← pad0(C[m])⊕ Z
7. Σ←M ′[1]⊕ · · · ⊕M ′[m− 1]⊕ Σ

8. U ′ ← P̃
N,m,1

(Σ)
9. return (M ′, U ′)

Figure 10: (Top) Encryption and Unfinished Decryption of OCB2f for empty AD. len :
{0, 1}≤n → {0, 1}n is an injective length-encoding function. (Bottom) TURP-based
idealization of OCB2f, ΘCB2f.

Algorithm iPMAC[P̃](c, A)

1. S ← 0n

2. (A[1], . . . , A[a]) n←− A

3. for i = 1 to a− 1

4. S ← S ⊕ P̃
c,i,0

(A[i])

5. S ← S ⊕ pad(A[a])

6. if |A[a]| = n

7. Q← P̃
c,a,1

(S)

8. else Q← P̃
c,a,2

(S)

9. return Q

Algorithm iOCB-DFV.Enc[P̃](A,M)

1. S ← iPMAC[P̃](0n, A)
2. V ← iPMAC[P̃](0n−11,M ‖S)
3. V ← msbn−2(V )
4. (C, T )← ΘCB2f[P̃].Enc(V ‖ 10,M)
5. T ← T ⊕ msbτ (S)
6. return (V,C, T )

Algorithm iOCB-DFV[P̃].Dec(V,A,C, T )

1. S′ ← iPMAC[P̃](0n, A)
2. (M ′, U ′)← ΘCB2f[P̃].UDec(V ‖ 10, C)
3. T ′ ← U ′ ⊕ msbτ (S′)
4. if T 6= T ′ then return ⊥
5. else return M ′

Figure 11: TURP-based idealization of OCB-DFV[P], iOCB-DFV[P̃].
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Algorithm ZHASH[ẼK ](X)

1. U ← 0n, V ← 0n

2. L` ← Ẽ0n,6
K (0n)

3. Lr ← Ẽ0n−11,6
K (0n)

4. (X[1], . . . , X[m]) 2n←− X

5. for i = 1 to m do

6. X` ← msbn(X[i])

7. Xr ← lsbn(X[i])

8. S` ← L` ⊕X`

9. Sr ← Lr ⊕Xr

10. C` ← ẼSr,7
K (S`)

11. Cr ← C` ⊕Xr

12. U ← 2(U ⊕ C`)

13. V ← V ⊕ Cr

14. (L`, Lr)← (2L`, 2Lr)

15. return (U, V )

Algorithm ZFIN[ẼK ](i, U, V )

1. Y [1]← ẼV,iK (U)⊕ ẼV,i+1
K (U)

2. Y [2]← ẼV,i+2
K (U)⊕ ẼV,i+3

K (U)

3. Y ← Y [1] ‖Y [2]

4. return Y

Algorithm ZMAC[ẼK ](M)

1. X ← padzmac(M)

2. (U, V )← ZHASH[ẼK ](X)

3. if |M | mod 2n = 0 and |M | > 0

4. Y ← ZFIN[ẼK ](8, U, V )

5. else

6. Y ← ZFIN[ẼK ](12, U, V )

7. return Y

Figure 12: Specification of ZMAC, with a minor modification on domain separation from the
original. The padding function padzmac is a non-injective padding defined over 2n-bit blocks:
padzmac(X) = X when |X| is a positive multiple of 2n and padzmac(X) = X ‖ 102n−|X|−1

otherwise.
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Algorithm iΘCB-DFV.Enc(A,M)

1. S ← R(0 ‖A)
2. V ← R(1 ‖M ‖S)
3. (C, T )← iΘCBL[P̃XTX].Enc(V,M)
4. return (V,C, T )

Algorithm iΘCB-DFV.Dec(V,A,C, T )

1. S′ ← R(0 ‖A)
2. (M ′, U ′)← iΘCBL[P̃XTX].UDec(V,C)
3. T ′ ← U ′ ⊕ msbτ (S′)
4. if T 6= T ′ then return ⊥
5. else return M ′

Algorithm iΘCBL[P̃XTX].Enc(N,M)

1. S ← 0n

2. (M [1], . . . ,M [m]) n←−M
3. for i = 1 to m− 1

4. C[i]← P̃
N,i,2
XTX (M [i])

5. S ← S ⊕M [i]
6. S ← S ⊕ pad(M [m])

7. Z ← P̃
N,m,3
XTX (0n)

8. C[m]← msb|M [m]|(Z)⊕M [m]
9. w ← 4 if |M [m]| 6= n else 5

10. T ← P̃
N,m,w

XTX (S)
11. T ← msbτ (T )
12. return (C, T )

Algorithm iΘCBL[P̃XTX].UDec(N,C)

1. S ← 0n

2. (C[1], . . . , C[m]) n←− C
3. for i = 1 to m− 1

4. M ′[i]← (P̃
−1
XTX)N,i,2(C[i])

5. S ← S ⊕M ′[i]
6. S ← S ⊕ pad(M ′[m])

7. Z ← P̃
N,m,3
XTX (0n)

8. M ′[m]← msb|C[m]|(Z)⊕ C[m]
9. w ← 4 if |C[m]| 6= n else 5

10. U ′ ← P̃
N,m,w

XTX (S)
11. return (M ′, U ′)

Algorithm iΘCBL[P̃XTX].Dec(N,C, T )

1. (M ′, U ′)← iΘCBL[P̃XTX].UDec(N,C)
2. if msbτ (U ′) 6= T then return ⊥
3. else return M ′

Figure 13: (Top) iΘCB-DFV using a URF R : {0, 1}∗ → {0, 1}2n and an idealized variant
of ΘCBL, iΘCBL. (Bottom) iΘCBL. It is based on a TURP P̃XTX of 3n-bit effective tweak.
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