
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. 3, pp. 46–86. DOI:10.13154/tosc.v2020.i3.46-86

Dasta – Alternative Linear Layer for Rasta
Phil Hebborn and Gregor Leander

Ruhr University Bochum, Bochum, Germany
phil.hebborn@rub.de,gregor.leander@rub.de

Abstract.
Progress in the areas of multi-party computation (MPC) and fully homomorphic
encryption (FHE) caused the demand of new design strategies, that minimize the
number of multiplications in symmetric primitives. Rasta is an approach for a family
of stream ciphers with an exceptional low AND depth, which equals the number of
ANDs per encrypted bit. This is achieved in particular by randomizing parts of the
computation with the help of a PRNG, implying that the security arguments rely on
the provided randomness and the encryption/ decryption is potentially slowed down
by this generation.
In this paper we propose a variant of Rasta that achieves the same performance
with respect to the AND depth and the number of ANDs per encrypted bit, but does
not rely on a PRNG, i.e. is based on fixed linear layers.

Keywords: Symmetric encryption, FHE, multiplicative complexity, multiplicative
depth, Rasta

1 Introduction
While classical block ciphers are designed, besides being secure, to perform efficiently in
hardware and software, recent schemes for FHE require new tradeoffs.

Important FHE schemes like the BGV scheme [BGV11] come with a large ciphertext
expansion. To prevent the transfer of large ciphertexts, it makes sense to encrypt them
symmetrically, send them to the other party, let the other party double encrypt the
ciphertexts under FHE and then reverse the symmetric encryption through homomorphic
evaluation. Typically an AND operation, and in particular a high AND depth, is much
more expensive than a XOR operation in the FHE context. Therefore classical symmetric
primitives are not suitable for this scenario and ciphers which lower the amount of ANDs
at the price of increasing the number of XORs are needed to increase the performance of
decryption under FHE.

Motivated by this observation, several approaches have been considered to either lower
the AND depth or the number of ANDs per encrypted bit. In a nutshell, LowMC [Alb+15]
and Kreyvium [Can+15] optimize the number of ANDs per bit (which can be as low as 3
to 4 ANDs per bit) while the AND depth is at least 11, depending on the targeted security
level. FLIP [Méa+16] on the other hand achieves a very low AND depth of 4, while the
number of ANDs per bit is significantly higher (1072 ANDs per bit). Rasta [Dob+18]
finally is an approach for a family of stream ciphers based on the ASASA design [BBK14],
having an AND depth of only 4 to 6 and the same number of ANDs per encrypted bit.
That is, it aims at being optimal with respect to both main metrics simultaneously.

The core idea of Rasta, initiated already in the design of FLIP, is to make large parts of
the computation nonce-dependent but key-independent. The advantage of key-independent
variations is that, on the one hand, the (key-dependent) AND-depth can be kept very low,

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-06-01 Revised: 2020-06-01 Accepted: 2020-08-01 Published: 2020-09-28

https://doi.org/10.13154/tosc.v2020.i3.46-86
mailto:phil.hebborn@rub.de, gregor.leander@rub.de
http://creativecommons.org/licenses/by/4.0/

Phil Hebborn and Gregor Leander 47

while at the same time many standard attacks are not applicable to Rasta due to the
nonce-dependent variations.

More specifically, Rasta interleaves a very simple non-linear function with (pseudo)
randomly generated affine bijections. The non-linear layer is a generalized variant of the χ
function used in Keccak [Ber+13] and already studied in [Dae95]. The affine layers are
generated using a PRNG together with a nonce and a counter.

While this design strategy is very suitable to achieve the above mentioned goals, it
has several important drawbacks. First, fundamentally, Rasta relies on a pseudo random
function (to generate the matrices) to construct a pseudo random function (the Rasta key
stream). While this does not reduce the applicability in practice, it does make us curious
if one can create a framework for Rasta variants that avoids the use of a PRNG, without
sacrificing efficiency with respect to the AND depth and the number of AND gates per
encrypted bit.

Moreover, this process slows down the implementation. This slowdown happens in the
pre-computation phase, where the generation of random layers is handled (with the costly
restriction of checking invertibility) as well as in the actual generation of the key stream,
where one has to perform multiplication with random matrices. This practically disallows
any possible optimizations. The only optimizations that are possible are generic speed-ups
by improving the vector-matrix multiplication, with the natural limitations.

For LowMC, on the other hand, further optimizations have been applied in [Din+19].
The main idea is to join several matrices from consecutive rounds to speed-up the compu-
tation. This is possible mainly due to the partial non-linear layer of LowMC. As Rasta
does not use a partial non-linear layer, but a block-wide version of the Keccack S-box,
those are not applicable to Rasta. The main other approach, given in [Per+17], is to use
matrices that are not random but random looking (see the Fibonacci Feistel Network
approach from [Per+17]) has the inherent drawback that any security argument based on
the randomness of the linear layer breaks down completely. It is exactly this drawback
that we resolve for Rasta.

Our Contribution
Replacing the random generation of the linear layers with a pure nonce-based approach
has to be treated with care. There are many choices for the linear mappings that, when
being used, would immediately render the scheme insecure. In Rasta an attacker can
modify the nonce, but as this is input to a PRNG, being used to generate the linear layer,
the attacker has virtually no control about the resulting linear mappings. This renders the
probability of choosing such a weak instance negligible. By removing the PRNG in this
process, the attacker has direct influence on the specific linear layers being used. This in
turn means that we have to restrict the choice of possible linear layers to a subset that
excludes all weak instances.

Our procedure to accomplish this task is a modular approach. Instead of randomly
generated linear layers, that is random invertible binary matrices, we consider linear
layers that are split in two parts, (i) a variable bit permutation and (ii) a fixed linear
transformation. This modular approach has several advantages. First, as the linear layers
are, up to a permutation of their inputs, fixed, their implementation can now be optimized.
Second, and more importantly, the modular approach can be lifted to a sound modular
approach for the security analysis, as follows.

In a first step, we derive conditions on how to construct a fixed linear layer that allows
to lift the randomness-based security arguments for Rasta to arguments for a fixed linear
layer. This is in particular of interest for linear cryptanalysis and truncated differentials.
For linear cryptanalysis this technically involves an in-depth study of the non-linear layer
of Rasta, i.e. the generalized Keccak Sbox that was already introduced in [Dae95] and
might be of independent interest. We aim at criteria for the linear layers that are invariant

48 Dasta – Alternative Linear Layer for Rasta

under composition with permutation matrices. Thus the criteria are automatically fulfilled
by all members of the family as soon as they are fulfilled by a single member.

In a second step we discuss criteria for a suitable family of bit permutations. As we
cannot make use of any PRNG here, the attacker, by choosing the nonce, is able to directly
choose any member of the specified family to be used in the generation of the key-stream
block. Here, in a nutshell, one has in particular to avoid that the specified family contains
bit permutations that are very similar and would reveal information about the key. We
developed the necessary tools to formalize precise criteria that ensure that these attacks
are not a threat to our new design.

Based on those considerations we are able to present a new variant of Rasta, called
Dasta1, that uses the same parameters, i. e. block length and number of rounds as the
original but avoids the random generation of linear layers. In an offline key stream
generation comparison, Dasta is about 200 to 400 times faster than Rasta (See Table 3).
This is due to the fact that we can generate the linear layer of Dasta much more efficiently.
In the FHE setting with an implementation in the HElib [HS13], Dasta achieves runtime
improvements compared to Rasta of about 15% to 20% (see Table 4). This improvement
basically relies on the reuse of matrices in Dasta within the generation of one key stream
block.

Related Work
For LowMC, the paper by Albrecht et al. [Alb+15] presents alternative reduced linear
layers called Fibonacci Feistel Networks. It can lower the size of the representation of the
linear layer and improve the performance of computing the linear layer depending on the
implementation. While this approach might also be possible for Dasta, we do not see
how security arguments could be developed for such a variant.

Organisation
We start by recalling basic definitions and the design of Rasta in Section 2. Next, in
Section 3, we describe our nonce-based variant. Section 4 contains our findings on suitable
families of bit permutations while Sections 5 and 6 deal with establishing the criteria for
the fixed linear layer. We conclude the paper with a focus on possible future topics in
Section 8.

2 Preliminaries
We denote by F2 the field with two elements and by Fn2 the n-dimensional vector space
over F2. By 0 we denote the zero vector, 1 is the vector containing all 1s. We refer to the
i-th unit vector in Fn2 for 0 ≤ i < n by ei, i. e. the i-th coordinate of ei is 1, while all other
coordinates are 0. All indices are considered modulo n.

With hw(x) we denote the Hamming weight of x ∈ Fn2 , i.e.

hw(x) := |{i ∈ {0, 1, · · · , n− 1} | xi = 1}|.

The elements of a vector x of length n can be addressed by xi or x[i], where 0 ≤ i < n.
Another meaning for the square brackets is given by [i] = {0, 1, · · · , i− 1} for i > 0.

The modulo operator is defined in two ways: Let a, b, c ∈ Z, then a ≡ b mod c iff
c | (a− b). Secondly we have a mod b = a− b ·

⌊
a
b

⌋
.

We denote the addition in Fn2 by +, which is equivalent to bit-wise XOR, while the
element-wise multiplication in Fn2 is denoted by �. This is equivalent to the bit-wise AND:

(x� y)i = xiyi.

1For Deterministic Rasta

Phil Hebborn and Gregor Leander 49

The function Sa : Fn2 → Fn2 denotes the rotation by a positions to the right, if we write x
as a column vector:

Sa(x)i = xi−a.

We denote the Walsh-Hadamard transformation of f : Fn2 → Fn2 with α, β ∈ Fn2 by

f̂(α, β) :=
∑
x∈Fn2

(−1)〈β,f(x)〉+〈α,x〉 (1)

where 〈a, b〉 is the dot product.
The linear correlation of a function f : Fn2 → Fn2 with the input mask α ∈ Fn2 and the

output mask β ∈ Fn2 is defined by

Cf (α→ β) := f̂(α, β)
2n .

Let F : Fn2 → Fn2 . The derivative of F in direction α is defined as

∆ : Fn2 × (Fn2 → Fn2)→ (Fn2 → Fn2)
∆α(F)(x) := F (x) + F (x+ α). (2)

The probability of a differential over F with input mask α ∈ Fn2 and output mask β ∈ Fn2
is defined by

Pr
[
α

F−→ β
]

:= |{x | ∆α(F)(x) = β}|
2n .

The linear branch number of a matrix L ∈ Fn×n2 is defined as

B` := min
x∈Fn2 \{0}

(
hw(x) + hw(L>x)

)
.

Its importance for linear cryptanalysis originates from [Dae95], see also [DR01].
We denote by Sn the symmetric group of degree n, i. e. Sn contains all permutations

on n elements.

Constructing Binary Linear Codes A linear binary [n, k, d] code C is a subspace of
dimension k in Fn2 with code words of length n, and a minimum distance between two
code words of d. The generator matrix G of a code C has the format k × n and the rows
of G build a basis of C, so that

C = {x ·G | x ∈ Fk2}.

For a given length n and a minimum distance d, we can compute an [n, k,≥ d] narrow-
sense BCH code [MS78] efficiently. We write the narrow-sense BCH code C with given
n, d and a maximal dimension k as

BCH(n, d) := C.

We can shorten an [n, k, d] code C in a coordinate i ∈ [k], where we assume that
∃c ∈ C : ci = 1, which means that exactly half of the code words are 1 in the i-th co-
ordinate. This lowers the dimension of the code by 1 by removing all code words c ∈ C
where ci = 1. Now we remove the i-th coordinate of the remaining code words, which is 0
for all of them. This leads to a [n− 1, k − 1, ≥ d] code C ′, since

min
c∈C′\{0}

hw(c) ≥ min
c∈C\{0}

hw(c).

50 Dasta – Alternative Linear Layer for Rasta

In the same way the code C can be shortened in multiple coordinates I ⊆ [n] to construct
the [n− |I|, k − |I|,≥ d] code Cs. We write the shortening as

Shorten(C, I) := Cs.

To extend an [n, k, d] code C with the generator matrix G ∈ Fk×n2 we append an extension
matrix E ∈ Fk×e2 . The generator matrix G′ = (G|E) defines an [n+ e, k,≥ d] code C ′. We
write the extension as

Extension(C,E) := C ′.

2.1 Rasta
Rasta [Dob+18] is a family of stream ciphers with a low amount of ANDs per encrypted
bit and a low AND depth. It works on n-bit blocks, where the key size matches the block
size. A block of the key stream is generated by

TN,i(k) + k

with the key k, the nonce N and the block counter i as depicted in Figure 1. For every
encryption a unique pair of (N, i) has to be used.

public

key dependent

XOFN, i

· · ·

K A0,N,i A1,N,i Ar,N,iχ χ χ· · · ⊕ KN,i

Figure 1: The r-round Rasta construction to generate the key stream KN,i for block i
under nonce N with affine layers Aj,N,i.

The permutation has r rounds, which contain an affine layer Aj,N,i and a non-linear
layer χ, and another affine layer after the last round:

TN,i = Ar,N,i ◦ χ ◦Ar−1,N,i ◦ · · · ◦ χ ◦A1,N,i ◦ χ ◦A0,N,i.

The non-linear layer is the χ-transformation of Keccak[Ber+13], which is bijective for an
odd block length n:

χ(x) = x+ S−2(x) + S−1(x)� S−2(x).
Each affine layer Aj,N,i consists of the multiplication with an invertible matrix Mj,N,r ∈
Fn×n2 and the addition of a round constant cj,N,i ∈ Fn2 :

Aj,N,i(x) = Mj,N,r · x+ cj,N,i.

The affine layer is generated randomly using a PRNG, or rather an extendable-output
function (XOF) (see for more details [Nat15]), which takes as inputs N and i. Since a pair
of nonce and block counter should not be reused with the same key, every permutation is
only evaluated once. Table 1 shows a subset of the proposed versions of Rasta, which we
examine in the following.

In a chosen-nonce setting the attacker cannot control the affine layers directly due to
the XOF used to generate them. Therefore the attacker has to make about p−1 calls to
the XOF on average, to get an affine layer which has a characteristic that occurs with
probability p. For the claimed security level s the data complexity of an attack is limited
to D = 2s/2

n .

Phil Hebborn and Gregor Leander 51

Table 1: Rasta versions.

Rasta version security level block/ key size rounds
80-6 80 219 6
80-4 80 327 4
128-6 128 351 6
128-5 128 525 5
128-4 128 1877 4
256-6 256 703 6
256-5 256 3545 5

3 Specification of Dasta
In this section we define Dasta exactly. However, the motivation for those choices will
only become clear in the following sections that discuss the security arguments.

We define the blockwise key stream generation of Dasta (see Algorithm 1 and Fig. 2)
by

Bi(k) = L ◦ Pr,i ◦ χ ◦ L ◦ Pr−1,i ◦ · · · ◦ χ ◦ L ◦ P1,i ◦ χ ◦ L ◦ P0,i(k) + k, (3)

where k is the secret key, 0 ≤ i < D is the block counter, and D =
⌈

2s/2

n

⌉
is the data limit.

L is a fixed linear transformation, which depends on the Dasta version. The block counter
determines a (r + 1)-tuple of bit permutations (P0,i, . . . , Pr,i), which we call instance in
the following. In Section 4 we discuss the requirements for the set of instances. We define
the block lengths, number of rounds, and security parameters for the different versions of
Dasta analogous to the Rasta versions in Table 1. This leads in particular to the same
AND depth and AND count as Rasta.

We do not use round constants due to the results of Appendix B. Without round
constants the key 0 produces as key stream 0 for all blocks. Therefore we define this key
as invalid for Dasta.

Algorithm 1 Bi(k) (Generation of key stream block)
Input: Key k, Block counter i
Output: Key stream block y

1: x← k
2: for m← 0 to r − 1 do
3: x← Pm,i(x)
4: x← L(x)
5: x← χ(x)
6: x← Pr,i(x)
7: x← L(x)
8: return x+ k

The Linear Transformation L. The linear transformation is chosen as L = A>, where
G = (In|A) is the generator matrix from a linear [2n, n, d] code C and In is the n× n
identity matrix. This means that we have a linear branch number B = d. In Section 3.1
we list the constructions of the codes for the different Dasta versions, the actual linear
layers are provided online due to their size.2. The linear branch number of all versions is
large enough to prevent attacks based on linear approximations (as shown in Section 5).

2https://github.com/phil-hebborn/Dasta

https://github.com/phil-hebborn/Dasta

52 Dasta – Alternative Linear Layer for Rasta

k P0,i L χ P1,i Pr,i L +· · ·

Figure 2: Generation of i-th block of Dasta.

We create these linear codes by choosing BCH codes that have a dimension and length
close to n and 2n while the distance is large. To get a code which has exactly dimension n
and length 2n, we use the shortening and extension for codes described in Section 2. Any
used extension matrix E is chosen randomly and then fixed with the restriction that for
the systematic generator matrix G = (In|A|E) of an extended code (A|E) has full rank.

The Bit Permutations Pj,i. Under abuse of notation, we apply a permutation π ∈ Sn
to an element x ∈ Fn2 to denote the application of the corresponding permutation matrix.
That is π(x) corresponds to the vector whose positions are permuted according to π. More
precisely,

π

x0
x1
...

xn−1

 =

xπ(0)
xπ(1)
...

xπ(n−1)

 .

The block counter 0 ≤ i < D determines the used bit permutation. In other words
every block counter corresponds to an (r + 1)-tuple of bit permutations.

Before we can define how the block counter is mapped to a specific (r + 1)-tuple of bit
permutations, we need some auxiliary notation.

As we will see in Section 4, for our analysis it is the cycle structure of the permutations
used that matters most. Among all permutations of a given cycle structure, we choose the
simplest one. For example if we have to choose a permutation of 5 elements with one cycle
of length 2 and one cycle of length 3 we choose

π = (0 1)(2 3 4)

in the cycle notation, which is

x 0 1 2 3 4
π(x) 1 0 3 4 2

More generally, given cycle length c0, . . . , cm−1 we define the permutation

g(c0, . . . , cm−1) = (0 1 · · · c0 − 1)(c0 · · · c0 + c1 − 1) · · · (n− cm−1 · · ·n− 1).

as the specific permutation to use. When viewed as a permutation of bits, the structure of
these permutations is shown in Figure 3.

The basic idea is we fix a permutation π having a suitable cycle structure first. For a
block counter i, we ideally choose

(Pi,0, . . . , Pi,r+1) = (πi, . . . , πi),

that is we chose the same bit permutation in all rounds. However, for most parameters
and the given data limit, constructing suitable permutations π that allow strong security
arguments was not possible. Therefore, we have to use a slightly more involved construction

Phil Hebborn and Gregor Leander 53

...

c0

cm−1

Figure 3: Permutation generated by function g.

where we fix up to two permutations and use different powers of those, determined again by
the block counter. This construction gives more freedom in the choice of the permutations
and finally improves the security bounds (see Section 4). The explicit choice we use is
given in Section 3.1.

3.1 Defining the Instance
In the following we give the exact definition of the linear layers and the set of bit permuta-
tions for all versions of Dasta. Recall that n is the block size, r the number of rounds,
and s the security parameter.

Dasta 80-6: n = 219, r = 6, s = 80

For the definition of the linear layer we start with a BCH code of length 455 and dimension
239. This BCH code is shortened in the first 20 coordinates and then extended by E80-6,
so that the resulting code has length 455− 20 + 3 = 2n and dimension 239− 20 = 219 = n
as required. The minimal distance is at least 45 by construction. In short, we use

C80-6 = Extension(Shorten(BCH(455, 45), [20]), E80-6), E80-6 ∈ F219×3
2 .

We define one base permutation

π = g(5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 27)

as discussed above. Note that the order of elements within g does not matter for our purpose
and we decided to list first the primes in ascending order, followed by the non-primes.

Given the block counter i expressed as

i =
⌈√

D
⌉
i1 + i0 with 0 ≤ i0, i1 <

√
D

we define the round permutations as

(P0,i, . . . , P6,i) =
(
πi, πi0 , πi1 , πi0 , πi1 , πi0 , πi1

)
.

Dasta 80-4: n = 327, r = 4, s = 80

With the same notation as above we construct the linear layer using the following code

C80-4 = Extension(Shorten(BCH(657, 42), [6]), E80-4), E80-4 ∈ F327×3
2 .

We use two base permutations

π0 = g(13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 27)
π1 = g(17, 19, 23, 29, 31, 37, 41, 43, 47, 40)

54 Dasta – Alternative Linear Layer for Rasta

and, given the block counter i =
⌈√

D
⌉
i1 + i0 we define

(P0,i, P1,i, P2,i, P3,i, P4,i) =
(
πi0, π

i0
1 , π

i1
1 , π

i0
1 , π

i1
1
)
.

Dasta 128-6: n = 351, r = 6, s = 128

With the same notation as above we construct the linear layer using the following code
C128-6 = Extension(Shorten(BCH(771, 45), [84]), E128-6), E128-6 ∈ F351×15

2 .

We use the base permutation
π = g(3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 25)

and, given the block counter i =
⌈√

D
⌉
i1 + i0 we define

(P0,i, . . . , P6,i) =
(
πi, πi0 , πi1 , πi0 , πi1 , πi0 , πi1

)
.

Dasta 128-5: n = 525, r = 5, s = 128

With the same notation as above we construct the linear layer using the following code
C128-5 = Shorten(BCH(1057, 85), [7]).

We use two base permutations
π0 = g(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 24)
π1 = g(29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 57)

and, given the block counter i =
⌈√

D
⌉
i1 + i0 we define

(P0,i, P1,i, P2,i, P3,i, P4,i, P5,i) =
(
πi0, π

i
0, π

i0
1 , π

i1
1 , π

i0
1 , π

i1
1
)
.

Dasta 128-4: n = 1877, r = 4, s = 128

With the same notation as above we construct the linear layer using the following code
C128-4 = Extension(Shorten(BCH(3741, 173), [2]), E128-4), E128-4 ∈ F1877×15

2 .

We use the base permutation
π = g(19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 84)
and, given the block counter i we define

(P0,i, P1,i, P2,i, P3,i, P4,i) =
(
πi, πi, πi, πi, πi

)
.

Dasta 256-6: n = 703, r = 6, s = 256

With the same notation as above we construct the linear layer using the following code
C256-6 = Extension(Shorten(BCH(1365, 125), [4]), E256-6), E256-6 ∈ F703×45

2 .

We use two base permutations
π0 = g(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 64)
π1 = g(19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 49)

and, given the block counter i =
⌈√

D
⌉
i1 + i0 =

⌈
3
√
D
⌉2
j2 +

⌈
3
√
D
⌉
j1 + j0 we define

(P0,i, . . . , P6,i) =
(
πi00 , π

i1
0 , π

j0
1 , π

j1
1 , π

j2
1 , π

i0
0 , π

i1
0

)
.

Phil Hebborn and Gregor Leander 55

Dasta 256-5: n = 3545, r = 5, s = 256

With the same notation as above we construct the linear layer using the following code

C256-5 = Extension(Shorten(BCH(8191, 621), [1110]), E256-5), E256-5 ∈ F3545×9
2 .

We use the base permutation

π = g(71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 85)

and, given the block counter i we define

(P0,i, P1,i, P2,i, P3,i, P4,i, P5,i) =
(
πi, πi, πi, πi, πi, πi

)
.

Security claims We claim that the advantage of any attacker A spending T operations
and querying at most D key stream blocks

cj = Bij (k)

with counters 0 ≤ ij < D of her choice, in distinguishing the output of Dasta from a
truly random sequence is bounded by

Adv(A) ≤ T

2s .

where s is the security parameter and

D = 2s/2
n

is the data limit.

Alternative Choices for the Linear Layer Our choice of codes is probably among the
most straight forward ways to achieve the required results and thus in particular a good
choice for a proof of concept. BCH codes are well understood and their main advantage for
our purpose is the explicitly computable minimal distance. That said, we like to mention
that other choices for the linear layers, based on codes with sufficient distance are certainly
possible. Binary Goppa codes, as used also in the McEliece crypto system [McE78], could
be a promising alternative. They also have an explicitly computable minimal distance
and are hard to distinguish from random codes. The later suggests that using Goppa
codes does not introduce structural weaknesses. Actually random codes of the required
dimensions have, for most dimensions, with very high probability a minimal distance that
is sufficient. While it is in general hard to compute the minimal distance, and indeed
already hard for some of our Dasta versions, it might be of interest, depending on the
application and platform, to check for variants that allow for an improved performance.

3.2 Overview of the Security Analysis
The change from the random linear layers in original Rasta to our instance, where the
linear layers only differ by a sequence of bit permutations, has of course significant impact
on the security analysis.

56 Dasta – Alternative Linear Layer for Rasta

Linear Cryptanalysis For linear cryptanalysis, the analysis in the original Rasta paper
was based on estimating the probability that a randomly chosen matrix would allow a two
round trail with high correlation, an analysis similar to LowMC. Clearly, this analysis is not
applicable to Dasta, as the choice of the linear layer is not random and actually partially
attacker controlled. Instead we base our analysis in Section 5 on the branch number of
the linear layer and a more detailed analysis of the non-linear layer, that might be of
independent interest. For each of the original parameter sets, we were able to generate
linear layers with a sufficiently large branch number, based on known binary codes or
minor modification of those. As the branch number is invariant under bit permutations of
the input and output values, the choice of bit permutations as the source of variation for
the different rounds does not complicate the analysis.

Note that, compared to e.g. block ciphers, the situation for Dasta (and Rasta) is
quite different with respect to the applicability of linear cryptanalysis. For a block cipher,
by varying the message, an attacker can continuously generate samples for a fixed linear
approximation. For Dasta, as the key is fixed and the linear layers vary, the attacker will
get changing linear approximations evaluated at the same point. Thus, we do not see a
concrete way to mount attacks based on linear approximations.

Truncated Differential Analysis One attack vector, that was not detailed for the original
Rasta cipher, was the existence of probability one truncated differentials. Those naturally
translate to key stream bits (or linear combinations of those) that would not depend on
all key bits. Thus, the existence of such truncated differentials with probability one might
lead to guess-and-determine key recovery attacks. For Rasta truncated differentials are
highly unlikely due to the random selection of the linear layers. Using the notation of
subspace trails [GRR16] and the results of Section 6, we are able to prove that for our
choice of linear layers there does not exist any non-trivial subspace trail for Dasta.

We experimentally verified, using a few block counters for all versions, that any output
bit depends on every input bit already after two rounds of Dasta. In particular, we
experimentally could not find sufficiently large subspace trails to mount attacks even on
Dasta reduced to two rounds.

Linearization Attacks Our analysis of the complexity of linearization attacks depends
on heuristics. This was already the case for original Rasta. Here, in contrast to linear
attacks, additional assumptions on the distribution of monomials in the ANF of the key
stream were used to estimate the security level. We follow the same approach here and
additionally back up the heuristics with significant experimental results.

As a result, the estimation of the resistance of Dasta against linearization attacks is
the same as of Rasta. Moreover, the original security estimates in [Dob+18] are very
conservative as it assumes linear running time of the linear algebra steps involved. Using
more realistic assumptions, i.e. sub-cubic running time, on the complexity of the linear
algebra involved, we estimate the maximal number of rounds that can actually be attacked
in Table 2 given the estimate in Equation 13 given in Section 7.

Similarity Attacks As the computations for two different counters only differ by the bit
permutations used, an attacker could try to gain information on the key by comparing
the output for different counter values. Thus, not only has any instance to be secure,
but the instances should also not be related in a way that an attacker could exploit. To
make this more concrete, consider the simplest case where two instances only differ in a
transposition of the initial input, i.e. the key. In this case, the attacker could easily learn if
the corresponding key bits are the same (in which case the key stream blocks are identical)
or different (in which case the key stream blocks differ with high probability). In order
to avoid those attacks, that we call similarity attacks, we have to ensure that different

Phil Hebborn and Gregor Leander 57

Table 2: Linearization attack

Dasta version rounds complexity
80-6 2 262.8

80-4 2 268.3

128-6 3 2123.9

128-5 2 274.8

128-4 2 292.2

256-6 4 2253.2

256-5 3 2187

counters lead to significantly different outputs. The details of our considerations can be
found in Section 4.2.

As we defined the set of the bit permutations to be very strong against this type of
attack, we do not see how to attack any of the proposed variants even for two rounds.

Dasta 256-6 Finally, we like to point out that the instance Dasta 256-6 requires some
additional attention. Here, in contrast to the other instances, by choosing counters at
distance

⌈√
D
⌉
the first bit permutation and thus the entire first round are identical for

all those counters. In particular with respect to linear attacks and linearization, one could
then consider the output of the first round as the actual input and get a version that is de
facto reduced by one round. However, this is compensated by the reduced data that will be
available (

√
D instead of D blocks) when only counters at distance

⌈√
D
⌉
are considered.

3.3 Implementation
We implemented Rasta and Dasta as normal stream ciphers(offline key stream generation)
as well as in the FHE setting with the HElib [HS13]. It turns out that Dasta is about
200 to 400 times faster than Rasta in the offline settings(see Table 4) since the very
costly overhead of executing SHAKE256 as XOF to generate the random matrices with
the algorithm of Randall [Ran93] is not needed. In comparison, for Dasta just the powers
of bit permutations have to be computed which is much more efficient.

In the FHE setting Dasta achieves runtime improvements compared to Rasta of
about 15% to 20% (see Table 4). Here the (offline) generation of the random matrices
is negligible since the block evaluation under FHE dominated the execution time. We
evaluate the bit permutation and matrix multiplication in Dasta as one linear layer. Since
we use for each version less than r + 1 different bit permutation, we use the same linear
layer in one block evaluation twice. This leads to the runtime improvements.

For Dasta with an 80 bit security level, the version 80-4 is more efficient than 80-6 in
terms of latency and throughput in our HElib implementation. In contrast, for Dasta with
a 128 bit security level, the version with more rounds (128-6) and a smaller state is more
efficient. Remember, that the different number of rounds for the same security level are
the trade-offs between the number of AND and XOR operations. For an implementation
in another FHE library or in a MPC setting, the performance of the different versions of
Dasta can behave different, so that the definition of multiple versions for one security
level is useful.

4 Bit Permutation Analysis
In this section we justify our choice for the bit permutation layer. Recall that the bit-
permutations used in Dasta are powers of a small set of base permutations, that is for a

58 Dasta – Alternative Linear Layer for Rasta

Table 3: Performance comparison of Rasta and Dasta in the offline key stream generation
on Intel(R) Xeon(R) CPU E3-1230 v6 @ 3.50GHz with 32GB of RAM.

Throughput in kB/s
Version Rasta Dasta

80-6 6.6 1291.3
80-4 6.3 1615.6
128-6 4.2 1325.5
128-5 3.3 1458.3

Table 4: Performance comparison of Rasta and Dasta in the homomorphic key stream
generation with the HElib [HS13] on Intel(R) Xeon(R) CPU E3-1230 v6 @ 3.50GHz with
32GB of RAM.

Encryption of one Key
Stream Block in Seconds

Milliseconds per En-
crypted Bit (amortized)

Version Rasta Dasta Rasta Dasta
80-6 10.83 8.47 49.45 38.68
80-4 7.44 6.49 22.75 19.85

128-6 15.41 12.07 43.90 34.39
128-5 32.05 27.06 61.05 51.54

given round, the set of allowed bit permutations can be described as

{πi}i≤l := {πi | 0 ≤ i < l}

where l ∈ N is bounded by the data complexity. Recall furthermore, that the permutation
π we are using has a specified structure, which is parameterized by the cycle lengths.

That choice is motivated by the results in this section were we analyze the success
probability of the similarity attack sketched above.

Similarity for Two Bit Permutations

If we look at the generation of two different key stream blocks, the only differences in
the generation algorithm are the used bit permutations since the key, linear layer, and
non-linear layer are fixed.

In order to avoid that two block counters result in the same key stream block, we have
to ensure that any two possible bit permutations are sufficiently different.

We start by looking at the probability that two different bit permutations π, π′ ∈ Sn
map an x ∈ Fn2 to the same value, i. e.

p = Pr
x∈Fn2

[π(x) = π′(x)]

where π corresponds to a bit permutation in block one and π′ to a bit permutation in
block two.

If we denote by S the set of possible bit permutations, computing the difference between
two permutations is not sufficient, but we rather have to upper bound this probability
when π, π′ range within a set S of allowed permutations. That is we want to bound

min
π,π′∈S

Pr
x∈Fn2

[π(x) = π′(x)].

Phil Hebborn and Gregor Leander 59

At this point, our choice of S as {πi}i≤l turns out very handy.
To compute the probability for π0, π1 ∈ {πi}i≤l, we have a look at the identity

π0(x) = π1(x), or equivalently at π−1
1 ◦ π0(x) = x.

Taking into account that π0 = πi and π1 = πj for some 0 ≤ i, j < l where i 6= j, we
can conclude

π0(x) = π1(x)⇔ π|i−j|(x) = x.

Thus, instead of comparing arbitrary pairs of permutations, we are left with studying
the number of fixed points for powers of a given bit permutation. This reduces the
complexity of the problem significantly. Moreover, this property is obviously related to
the cycle structure of π. Again, this is reflected in our definition of the bit permutations
based on special choices for the cycle length.

4.1 Lower Bounding the Difference
The probability for an x ∈ Fn2 to be a fixed point for a bit permutation depends only on
the cycle structure and is shown in the following lemma.

Lemma 1. Let π ∈ Sn be a permutation with m cycles, then we have

Pr
x∈Fn2

[π(x) = x] = 2−(n−m).

Proof. It holds that π(x) = x if and only all elements in one cycle are equal, i. e. they are
all zeros or all ones. We have in total 2m possible inputs which fulfill this property and 2n
elements in F2

2. This leads to an overall probability of 2m/2n = 2−(n−m).

To simplify the notation, we introduce the following values.

Definition 1 (Measure of Similarity of Bit Permutations). Let π ∈ Sn be a permutation
with m cycles. Then we define

ψ(π) = n−m.

Furthermore, for a set S ⊆ Sn of permutations, we define

Ψ(S) := min{ψ(s) | s ∈ S, s 6= id}.

With the result of Lemma 1 and the notation just introduced, we conclude that for all
π0, π1 ∈ {πi}i≤l, π0 6= π1 it holds that

p = Pr
x∈Fn2

[π0(x) = π1(x)] = 2−ψ(π−1
1 ◦π0) ≤ 2−Ψ({πi}i≤l).

In the next step we need an efficient way to compute the Ψ({πi}i≤l) above, which we
present in Algorithm 2.

But first, we derive in Lemma 2 the observation, that computing ψ(πi) just depends
on i and the cycle lengths of π.

Lemma 2. Let π ∈ Sn be a permutation with t cycles of the lengths c0, . . . , ct−1 where
n =

∑t−1
j=0 cj, then for all i ∈ N it holds that

ψ(πi) =
t−1∑
m=0

(cm − gcd(i, cm)).

60 Dasta – Alternative Linear Layer for Rasta

Proof. For a power of a permutation π, the cycles are independent of each other and
can be considered as an own permutation. Let πm ∈ Scm be an arbitrary but fixed
cycle of π with πm = (x0 x1 · · · xcm−1). For (πm)i, x0 is mapped to xi, x1 is mapped
to x1+i and so on with all indices modulo cm. Keep in mind that a cycle of length b
has b different representations in the cycle notation. Each xk is now part of a cycle
(xk xk+i · · · xk+(b−1)·i), so that b is the smallest positive integer that fulfills

k + b · i ≡ k mod cm
⇔ b · i ≡ 0 mod cm
⇔ cm | b · i

This implies that b = lcm(i,cm)
i = cm

gcd(i,cm) . Thus (πm)i has cm
b cycles of length b. This

leads to

ψ(πim) = cm
b
· (b− 1)

= gcd(i, cm) ·
(

cm
gcd(i, cm) − 1

)
= cm − gcd(i, cm).

Lemma 2 shows, that a cycle of prime length p in permutation π keeps the length p in
πi for p - i and decomposes in fixed points for p | i. Therefore, it seems that prime cycle
lengths are a good choice.

As the naive computation of

Ψ({πi}i≤l) = min{ψ(πi) | 1 ≤ i ≤ l}

by iterating over all permutations in the set, is too slow for our purpose, we developed
Algorithm 2, that is much more efficient especially when many cycle lengths are prime.
On a standard PC, the algorithm terminates for all versions of Dasta in less than one
minute. The correctness of the algorithm is shown in Theorem 1.

Theorem 1. Algorithm 2 computes Ψ({πi}i≤l).

Proof. Let π ∈ Sn be a permutation with the cycle lengths c0, . . . , ct−1. Then we have

Ψ({πi}i≤l) = min
{
ψ(πi) | 1 ≤ i < l

}
= min

t−1∑
j=0

(cj − gcd(cj , i))
∣∣∣ 1 ≤ i < l

=
m−1∑
j=0

cj −max

t−1∑
j=0

gcd(cj , i)
∣∣∣ 1 ≤ i < l

 .

In the following we determine the value of M := max
{ ∑t−1

j=0 gcd(cj , i) | 1 ≤ i < l
}
. It is

easy to see that

{(gcd(c0, i), . . . , gcd(ct−1, i)) | ∀i ∈ N} = D0 × · · · ×Dt−1

for the sets Dj , j ∈ [t] as defined in line 3. In the next step we will show that

T := {(d0, . . . , dt−1) ∈ D0 × · · · ×Dt−1 | e < l ∧ ∀i ∈ [t] : gcd(e, di) = di}

Phil Hebborn and Gregor Leander 61

Algorithm 2 Computation of Ψ
Input: cycle lengths C = {c0, · · · , ct−1}, cardinality l
Output: Ψ({πi}i≤l)

1: n←
∑t−1
i=0 ci

2: for j ← 0 to t− 1 do
3: Dj ←

{
k ∈ N

∣∣ k | cj}
4: return n−Rec(∅, 0)

5: function Rec(List, i)
6: if lcm(List) < l and gcd(x, lcm(List)) = x, ∀x ∈ List then
7: if i ≥ t then
8: return

∑
d∈List d

9: else
10: m← 0
11: for all d ∈ Di do
12: v ← Rec(List ∪ {d}, i+ 1)
13: if v > m then
14: m← v
15: return m
16: else
17: return 0

where e = lcm(d0, . . . , dt−1), is equal to

T ′ := {(gcd(c0, i), . . . , gcd(ct−1, i)) | 1 ≤ i < l} .

It is easy to see that T ⊆ T ′. Now let i ∈ N where 1 ≤ i < l be arbitrary chosen but
fixed. Then we have (d0, . . . , dt−1) = (gcd(c0, i), . . . , gcd(ct−1, i)) ∈ D0 × · · · ×Dt−1 and
lcm(d0, . . . , dt−1) · x = i where x ∈ N. Further holds gcd(di, lcm(d0, . . . , dt−1)) = di so
that T ′ ⊆ T and therefore T = T ′.

This leads to

M = max
{∑
d∈t

d | t ∈ T

}
which is calculated in the function REC of the algorithm. To speed up the algorithm
we make use of the identity lcm(x, y) ≤ lcm(x, y, z), x, y, z ∈ N. Overall the algorithm
computes n−M .

4.2 Similarity Attacks
In the last section, we investigated the probabilities for two bit permutations to map an
x ∈ Fn2 to the same value. When an adversary can find two counters where this happens for
all bit permutations in all rounds, the resulting two blocks will be equal and the adversary
can learn something about the key. Our –very conservative– aim is to bound the resulting
probability (using a strong independence assumption) over all rounds by at most 2−n
where n is the block length.

The previous analysis presumes that the input of the bit permutation is uniformly
drawn. For the bit permutation in the first round, this is clearly the case, since the input
is the (uniformly drawn) key. In the later rounds, we assume that the states behave like
uniformly drawn to simplify our analysis. We name the type of attacks which are based
on similar bit permutations similarity attacks.

62 Dasta – Alternative Linear Layer for Rasta

Let us consider the general case of two arbitrary Dasta executions using bit-permutations
Is = (P0,s, P1,s, · · · , Pr,s) and It = (P0,t, P1,t, · · · , Pr,t) for block counters s and t. Further
let ∆i = P−1

i,s ◦ Pi,t, i ∈ [r + 1] be the difference of these permutations.

k P0,s L χ P1,s Pr,s L +x0 x1 · · · xr

k P0,t L χ P1,t Pr,t L +x0 x1 · · ·

· · ·

xr

= = =

Figure 4: Similarity Attack on Dasta.

If the state of the two blocks is equal after each application of the bit permutations,
that is if

∆i(xi) = xi ∀i ∈ [r + 1] (4)

then it holds that the two blocks are identical, i.e. Bs(k) = Bt(k) (see Figure 4).
Obviously, Bs(k) = Bt(k) does not imply equality after each bit permutation for all

rounds. However, this situation makes the attack based on the ideas here significantly
more complicated and we focus on the former case only.

Let us denote the probability of Equation (4) happening for independent states and all
rounds by p. Following Lemma 1, the probability p is given by

p = 2−(ψ(∆0)+ψ(∆1)+···+ψ(∆r)).

To give an upper bound for the probability of a set of instances we will simply bound each
component in the equation above by the corresponding minimum Ψ over the instance. By
slight abuse of notation, we will denote the resulting bound for an entire instance S by
Ψ(S).

4.3 Design Choice for Dasta
For simplicity, we explain the approach to compute the desired bounds for the explicit
example of Dasta 80-6. Here, the bit permutation along the rounds are chosen as

(P0,t, . . . , P6,t) =
(
πt, πt0 , πt1 , πt0 , πt1 , πt0 , πt1

)
.

with
t =

⌈√
D
⌉
t1 + t0 with 0 ≤ t0, t1 <

√
D

as the block counter. The permutation is given by

π = g(5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 27).

Phil Hebborn and Gregor Leander 63

Now with the use of Algorithm 2 we are able to easily compute

Ψ({πt}t≤D) = 38 and Ψ({πt}t≤√D) = 114.

For the entire set this implies a difference of

Ψ(Dasta80-6) ≤ Ψ({πt}t≤D) + 3 ·Ψ({πt}t≤√D) = 38 + 3 · 114 = 380

Here we have taken into account that the attacker is able to choose counters

t =
⌈√

D
⌉
t1 + t0 and s =

⌈√
D
⌉
s1 + s0

such that t0 = s0 or t1 = s1 but not both by counting Ψ({πt}t≤√D) only 3 times even so
it appears in six bitpermutations.

Table 5: Ψ for Dasta versions.

Dasta version Ψ(S)
80-6 380
80-4 500
128-6 438
128-5 724
128-4 5125
256-6 596
256-5 6156

The values for Ψ of all Dasta versions can be found in Table 5. As can be seen all
values of Ψ are well above the block size implying that the probability considered in the
similarity attack is below 2−n. We clearly simplified by assuming independence. However,
as the security claim is significantly below the block size, we feel that our construction
provides a large security margin against those attacks.

We like to add that more general versions of the attack are imaginable. Instead of
asking for equal output blocks, permuted, rotated, or otherwise related blocks could be
treated. Due to the choice of the linear layers, we do not think those attacks pose a threat.
However, giving good arguments why they are impossible seems very challenging.

4.4 Alternative Construction for the Bit-Permutations
Finally, we like to mention another possibility for choosing the bit permutation as shown
in Figure 5. In this approach the state of Dasta is split into t parts of the same length,
inspired by the S-box layer design of a block cipher.

π π π π

n
t

n
t

n
t

n
t

n

Figure 5: Subpermutations

The advantage of this approach is, that it is even more simple to analyze (as two
different instances differ in each of the parts) and, with a suitable choice of the base
permutations, potentially easier to implement. However, the bounds on the similarity are
less strong and we therefore decided to not deploy this approach for Dasta.

64 Dasta – Alternative Linear Layer for Rasta

5 Linear Properties
Recall that s denotes the security level and D = 2s/2/n is the data limit. The data
complexity for linear cryptanalysis using a linear approximation with correlation δ is
about δ−2. Thus, given a data limit of D, linear approximations with a correlation of
D−1/2 = 2−s/4

√
n

or lower are hard to exploit and usually only if many of those are available.
Consequently, and slightly more conservative, the designers of Rasta chose the pa-

rameters so that no linear trail with correlation δ > 2−s/4 exists. This bound was derived
by bounding the correlation of any two round trail. This in turn was based on two
ingredients, the probability of matching an input and output mask through a linear layer
and bounding the correlation of an approximation of the non-linear layer χ. More precisely,
when denoting two rounds of Rasta by

χ ◦ L ◦ χ.

and considering a fixed two round trail given by

α′
χ→ α

L→ β
χ→ β′,

where α is the output mask of the first non-linear layer and β is the input mask of the
second non-linear layer. Its correlation is given by

Cχ(α′ → α) · CL(α→ β) · Cχ(β → β′).

In order to have non-zero correlations, it holds that

α = L>(β),

as L is linear and thus

CL(α→ β) =
{

1 if α = L>(β)
0 else

.

Arguments for Rasta

As shown in [Dob+18] the probability for a random invertible binary matrix L to allow a
certain fixed linear characteristic is∏n−1

i=1 (2n − 2i)∏n−1
i=0 (2n − 2i)

= (2n − 1)−1.

It remains to bound the correlation of χ. For the given output mask, the (in general tight)
bound given in [Dae95; KLT15], can be used to bound the correlation Cχ(α′ → α) by

max
α′
|Cχ(α′ → α)| ≤ 2−dhw(α)/2e.

However, the case of bounding the correlation Cχ(β → β′) for a given weight of an input
mask β was not studied in depth before. Thus, no tight bound is known in this case.
Instead, Dobraunig et al. [Dob+18] used the bound

max
β′
|Cχ(β → β′)| ≤ 2−dhw(β)/6e

to bound the correlation of the two round trail by

|Cχ(α′ → α) · CL(α→ β) · Cχ(β → β′)| ≤ 2−dhw(α)/2e−dhw(β)/6e

in the case that the trail has non-zero correlation, i.e. is valid through the linear layer.
The block sizes of Rasta are then chosen such that the probability that a suitable

trail for all rounds exists is at most 2−s.

Phil Hebborn and Gregor Leander 65

Arguments for Dasta

For Dasta the security against linear cryptanalysis cannot rely on the probability of
matching input and output mask, as the liner layer is fixed. Instead we rely on the linear
branch number of the fixed linear layer for our argumentation. Given two rounds of Dasta
as

χ ◦ Pj,i ◦ L ◦ χ,

first note that the linear branch number of Pj,i ◦ L and L are identical and thus the bit
permutation Pi,j can be ignored in the following.

Using the linear branch number b of L, the minimum joint weight of α and β =(
L>
)−1 (α) can be lower bounded as

hw(α) + hw(β) ≥ b,

and using the bounds from above, the maximal correlation could be bounded by

|Cχ(α′ → α) · CL(α→ β) · Cχ(β → β′)| ≤ 2−(d b−2
6 e+1).

In order to ensure that for Dasta no exploitable linear trail with correlation c ≥ 2−s/4
exist over r = 2t rounds, the branch number b has to be sufficiently large. More precisely,

2−(d b−2
6 e+1)·t ≤ 2−(s/4).

This is equivalent to the following condition

b ≥ 6 ·
⌈ s

4t

⌉
− 9. (5)

The corresponding results for all parameters of Dasta are shown in Table 6 as b′min.
Unfortunately, in several cases, b′min, the minimal required branch number following
the known results, is higher than the branch numbers B of our constructions for the
corresponding parameters (see Section 3.1).

In order to overcome this problem, we next derive a better bound in Theorem 2 for the
correlation of χ with a given weight of the input mask, which might be of independent
interest. With this result, we compute the smaller bmin, which justifies our used linear
layers.

Table 6: Linear branch numbers of Dasta. bmin corresponds to Eq. 6, while b′min
corresponds to the previous known bound in Eq. 5

Dasta version block size bmin b′min B
80-6 219 23 33 45
80-4 327 35 51 42
128-6 351 39 57 45
128-5 525 59 87 85
128-4 1877 59 87 173
256-6 703 83 123 125
256-5 3545 123 183 621

5.1 Improved Analysis of χ
In this section we take a closer look at the bounds on the absolute linear correlation of the
non-linear layer of Dasta, i. e. χ. Especially, we derive new bounds for the case of the

66 Dasta – Alternative Linear Layer for Rasta

correlation Cχ(α→ β) as

max
β
|Cχ(α→ β)| ≤ 2−dhw(α)/4e

involving the weight of an input mask α. Those bounds are tight in the sense that there
exist input masks α for which we have equality.

Based on this improvement, the main result of this section is the following theorem.

Theorem 2. Let b be the linear branch number of the linear layer L of Dasta. Then

C2,max ≤ 2−(d b−2
4 e+1)

where
C2,max := max

α,β,γ∈Fn2 \{0}
|CL◦χ(α→ β)Cχ(β → γ)|

is the maximal absolute correlation of a linear characteristic for two rounds.

The maximal correlation of a linear characteristic for r rounds of Dasta can thus be
upper-bounded by c = (C2,max)t with t =

⌊
r
2
⌋
. To be resistant against linear approxima-

tions we claim c ≤ 2−(s/4) for the correlation c of any linear characteristic. This leads to
an improved lower bound on the branch number

b ≥ 4 ·
⌈ s

4t

⌉
− 5. (6)

Most importantly, for all parameters this bound is lower than the branch number of our
constructions and thus justifies the instantiations of Dasta with the linear layers as given
in Section 2.1.

Known Results

Before proving Theorem 2, we start by recalling and generalizing known results. The main
ideas were already presented in the thesis of J. Daemen [Dae95]. As the non-linear layer is
similar to the round function of the block cipher Simon [Bea+13], we also generalize some
cryptanalytic results from [KLT15]. We have

χ(x) = x+ S−2(x) + S−1(x)� S−2(x)
= S−2(x+ S2(x) + x� S1(x)).

If we substitute χ′(x) = x+ S2(x) + x� S1(x), we can write the correlation as

Cχ(α→ β) = Cχ′(S−2(α)→ β)

since for every linear mapping G : Fn2 → Fn2 and any function F : Fn2 → Fn2 it holds that
CF (α → β) = CF◦G(G>(α) → β). Further we can write the correlation of F ′(x) =
F (x) + Sa(x) as CF ′(α→ β) = CF (α+ S−a(β)→ β). This leads to

Cχ(α→ β) = Cf

((
S−2(α) + β + S−2(β)

)
→ β

)
. (7)

where
f(x) = x� S1(x).

The transformation in Equation (7) shows that it is sufficient to determine the correlation
of f . This was done in [KLT15] for an even block length n. Here, we adapt the work to an
odd n.

Phil Hebborn and Gregor Leander 67

First, we define a function θ : Fn2 → N as follows: Let c0, . . . , cm be the lengths of all
blocks of consecutive ones of an input x, i. e.

x = 0 . . . 0 1 . . . 1︸ ︷︷ ︸
c0

0 . . . 0 1 . . . 1︸ ︷︷ ︸
c1

0 0 1 . . . 1︸ ︷︷ ︸
cm

0 . . . 0.

For x = 1 the ones are not covered with zeros, but in this case we have m = 0 and c0 = n.
If x0 = xn−1 = 1, the ones belong to the same block. Now we define

θ(x) :=
m∑
i=0

⌈ci
2

⌉
.

For example: θ(1110111) = 3 and θ(1001100) = 2.
With this definition we can state the next theorem. The proof closely follows the

approach used in [KLT15] and can be found in Appendix A.1 mainly for completeness.
We also point out some flaws in the argumentation given in [KLT15].

Theorem 3. Let f(x) = x� S1(x), where x ∈ Fn2 and n is odd. Then

|Cf (α→ β)| =

2−(n+1)/2 if β = 1 and hw(α) ≡ 1 mod 2
2−θ(β) if β 6= 1 and α ∈ U⊥β
0 else

where Uβ = {y | β � S1(y) + S−1(β � y) = 0}

Proof. See Appendix A.1.

This theorem already hints at why it is easier to bound the correlation for a given
output mask: there are only two possible correlation values for any given output mask.
This is not the case for a given input mask.

Improvements

Theorem 3 shows that for a fixed output mask β the correlation can only be 0 or 2−θ(β),
depending on the input mask α. Therefore the absolute correlation can easily be upper-
bounded for a fixed β by 2−θ(β). To upper-bound the correlation for a fixed α, we have to
find the β so that 2−θ(β) is maximal and α ∈ Uβ (resp. hw(α) ≡ 1 mod 2 for β = 1). In
the following lemma we derive conditions at the bit level for an α to be in Uβ .

Lemma 3. Let α, β ∈ Fn2 and Uβ = {y | β � S1(y) + S−1(β � y) = 0}, then α ∈ U⊥β if
and only if

(i) αi = 1⇒ (βi = 1 ∨ βi+1 = 1) ∀i ∈ [n] and

(ii) αi−1 + αi+1 + · · ·+ αi+l−1 = 0 for any block of l ones in β with βi = βi+1 = · · · =
βi+l−1 = 1 and βi−1 = βi+l = 0 and l even.

Proof. First note that an element y is in Uβ if and only if

y ∈ Uβ ⇔ βiyi−1 + βi+1yi+1 = 0 ∀i ∈ [n]
⇔ yiβi+1 = yi+2βi+2 ∀i ∈ [n]
⇔ yiβi = yi−2βi−1 ∀i ∈ [n]

Furthermore, recall that U⊥β is defined as

U⊥β = {x ∈ Fn2 | 〈x, y〉 = 0 ∀y ∈ Uβ}.

68 Dasta – Alternative Linear Layer for Rasta

⇒ We first show that any element α ∈ U⊥β has to fulfill the conditions (i) and (ii).
The conditions for y ∈ Uβ show that, if two consecutive bits of β are zero (βi = 0
and βi+1 = 0) then the unit vector ei is contained in Uβ . This in turn implies that
for α ∈ U⊥β it follows that

〈α, ei〉 = αi = 0
and thus condition (i) is fulfilled.
For (ii), let β have a block of l ones with βi = βi+1 = · · · = βi+l−1 = 1 and
βi−1 = βi+l = 0. Then yi−1, yi, . . . , yi+l−1 are only determined by the mentioned
block in β. For yi−1 holds that yi−1 = yi+1 when l > 1. For yi and yi+l−2 holds that
yi = yi+l−2 = 0. The entire constraints for the block in y are:

yi = 0
yi+l−2 = 0
yi+k = yi+k+2, k ∈ [l − 2]

If l is odd, then the constraints are equivalent to yi−1 = yi = · · · = yi+l−1 = 0,
because of yi = yi+2 = · · · = yl−1 = 0 and yi+l−2 = yi+l−4 = · · · = yi−1 = 0.
If l is even, then the constraints are equivalent to yi = yi+2 = · · · = yi+l−2 = 0 and
yi−1 = yi+1 = · · · = yi+l−1. Let

s = αi−1 + αi+2 + · · ·+ αi+l−1.

Assume that s = 1 for any block of l ones with l even in β. Look at y′ with
y′i−1 = y′i+1 = · · · = y′i+l−1 = 1 and the rest all zero. It clearly holds that y′ ∈ Uβ
and 〈y′, α〉 = 1. That is a contradiction to α ∈ U⊥β and leads to: s = 0 for all blocks
in β with l ones, where l is even.

⇐ Now we show that any α fulfilling conditions (i) and (ii) actually belongs to U⊥β .
Because of αi = 1⇒ (βi = 1 ∨ βi+1 = 1) we only have to look at αi−1, · · · , αi+l−1
for every block in β. Since yi−1 = yi = · · · = yi+l−1 = 0 for an odd l, no αj with
j ∈ {i − 1, i, · · · , i + l − 1} affects the scalar product of α and y. For an even l,
only the sum αi−1 + αi+2 + · · · + αi+l−1 is important for this block. Because of
yi−1 = yi+1 = · · · = yi+l−1 either all or none of them are used in the scalar product.
Since s = 0 for any even l, 〈α, y〉 = 0.
It follows that α ∈ U⊥β .

Now we can give an upper bound for the correlation of the non-linear layer of Dasta
based on the Hamming weight of the input mask.

Theorem 4. Let α be an input mask for the non-linear Layer χ of Dasta. Then for
every β it holds that |Cχ(α→ β)| ≤ 2−

⌈
hw(α)

4

⌉
.

Proof. Equation (7) shows that |Cχ(α→ β)| = |Cf (α′ → β)|, where

α′ = S−2(α) + S−2(β) + β

is the input mask for f(x) = x� S1(x) as shown in Figure 6. Now the goal is to construct
a β for a given α, such that |Cf (α′ → β)| is maximal. This is equivalent to minimizing
θ(β) with respect to α′ ∈ U⊥β .

The constraints for α′ ∈ U⊥β are defined in Lemma 3. The first constraint is given by

α′i = 1⇒ βi = 1 ∨ βi+1 = 1 ∀i ∈ [n].

Phil Hebborn and Gregor Leander 69

S−2

S−2 S1

++ ·

α
α′

β

Figure 6: Non-linear Layer of Dasta.

This can be transformed to a constrained for α as follows.

α′i = 1⇒ βi = 1 ∨ βi+1 = 1 ∀i ∈ [n]
⇔ α′i = 0 ∨ βi = 1 ∨ βi+1 = 1 ∀i ∈ [n]
⇔ αi+2 + βi+2 + βi = 0 ∨ βi = 1 ∨ βi+1 = 1 ∀i ∈ [n]
⇔ αi+2 = βi+2 ∨ βi = 1 ∨ βi+1 = 1 ∀i ∈ [n]
⇔ αi = βi ∨ βi−1 = 1 ∨ βi−2 = 1 ∀i ∈ [n]

Now, the above constraint implies that a single 1 in β can cover at most three 1s in α.
Furthermore with a block of two consecutive 1s in β at most four 1s in α can be covered.
This implies that θ(β) ≥ hw(α)/4. It follows that

|Cχ(α→ β)| ≤ 2−θ(β) ≤ 2−
⌈

hw(α)
4

⌉
,

as claimed.

We now can finally prove the main result of this section, i. e. Theorem 2.

Proof. Let β be an output mask for χ with hw(β) = w. Then for every α it holds that

|Cχ(α→ β)| ≤ 2−dw2 e

since θ(β) ≥
⌈
w
2
⌉
.

Let β now be the output mask after the first application of χ and α be the input mask
of the second χ. Then β is also the input mask and α the output mask of the linear layer
L. If β = 0 or α = 0, the correlation is 0. Thus we assume that both masks are not the
zero vector. Then follows hw(β) ≥ 1 and hw(α) ≥ 1. Since the binary branch number of
L is b it holds that hw(β) + hw(α) ≥ b.

For hw(β) = 1 ∨ hw(β) = 2 the correlation of χ is upper-bounded by 2−1. So the
correlation for two rounds is maximal for hw(β) = 2 and hw(α) = b− 2, because for a
given Hamming weight w of the input mask, the correlation is upper-bounded by 2−dw4 e,

70 Dasta – Alternative Linear Layer for Rasta

while for a given Hamming weight w of the output mask it is 2−dw2 e. This leads to a
maximal absolute two round correlation of

2−(d b−2
4 e+1).

6 Subspace Trails
Subspace trails have been introduced in [GRR16] as an alternative view on truncated
differentials with probability one. The definition of a (one round) subspace trail is given
below, we refer to [GRR16] for more details.

Definition 2. Let F : Fn2 → Fn2 . Linear subspaces U, V ⊆ Fn2 are called a subspace trail,
if

∀a : ∃b : F (U + a) ⊆ V + b.

We denote this by U F−→ V . We call the subspace trail trivial, when U = {0} or V = Fn2 .

In this section we show that no non-trivial subspace trail, that is no non-trivial truncated
differential with probability one, exists for Dasta.

While differential cryptanalysis in general does not seem applicable neither to Rasta
nor to Dasta, truncated differentials with probability one would translate into linear
combinations of key-stream bits that would be independent of linear combinations of key
bits. Such properties, depending on the exact dimensions, could potentially imply guess-
and-determine attacks. An attacker could use the independence of linear combinations of
key-stream bits to verify partial key-guesses instead of having to guess the entire key. It
should be noted that as the key-size in Rasta and Dasta are significantly larger than the
security parameter, not every truncated differential would translate into a valid attack on
the cipher.

Subspace trail cryptanalysis was not treated explicitly for Rasta. Indeed, it seems
(i) rather unlikely to apply due to the randomness of the liner layers and (ii) – for the
same reason– hard to explicitly exclude. As we will show in this section, the situation
is different for Dasta. Before going into the technical details of the argument why no
subspace trail exists for Dasta, we sketch the high level ideas.

It might also be of interest to consider subspace trails (or truncated differentials) of
probability less than one. However, we think (i) it is very hard to analyze and (ii) unlikely
to be a problem.

6.1 Idea
In the following we introduce properties for L, which can be computed efficiently and
ensure the absence of non-trivial subspace trails over the full cipher. We show for every
version of Dasta that any subspace trail over 3 or 4 rounds has full dimension. This
means that for any trail U 4R−−→ V where U 6= {0} we have V = Fn2 . Two instances only
differ in the bit permutation. When we consider the linear layer L as a matrix in Fn×n2 ,
the multiplication with L together with the bit permutation before is the same as the
multiplication with a matrix L′, where the columns of L are permuted. The following
proof holds for all instances since it is invariant over the permutation of the columns in L.

We show in Lemma 5 that any one round subspace trail U χ−→ V contains at least one
unit vector. For the versions 128-5, 128-4, 256-6, and 256-5 we compute the minimum

Phil Hebborn and Gregor Leander 71

number k of unit vectors in V for all U which contain just one unit vector for a one round
subspace trail U χ◦L−−→ V . That is

k = min
0≤i<n

{
|{v ∈ V | v is unit vector}|

∣∣ {ei} χ◦L−−→ V
}
.

Then we know that for any non-trivial subspace trail U χ◦L◦χ−−−−→ V , V contains at least
k unit vectors. Since L satisfies the conditions of Theorem 6 with the computed k, it is
shown that any subspace trail over 3 rounds has full dimension.

The argumentation for the versions 80-6, 80-4, and 128-6 is slightly more complicated.
We computed the k as defined above, which is greater or equal to 2 for the three versions.
Then we compute

k′ = min
0≤i,j<n
i6=j

{|{v ∈ V | v is unit vector}| | {ei, ej}
χ◦L−−→ V }.

which is the minimum number of unit vectors in V , starting with two unit vectors. We
know that for any non-trivial subspace trail U χ◦L◦χ◦L◦χ−−−−−−−→ V , V contains at least k′ unit
vectors. Since L satisfies the conditions of Theorem 6 with the computed k′, it is shown
that any subspace trail over 4 rounds has full dimension. The values of k and k′ are
invariant over all column permutations of L.

6.2 Technical Details
First we look at a method to compute a minimal subspace trail U f−→ V for a given U ⊆ Fn2 ,
where f : Fn2 → Fn2 . The subspace trail is minimal when

∀V ′ : U f−→ V ′ ⇒ V ⊆ V ′.

Given U and f it is shown in [LTW18, Lemma 1, 2] that V for the corresponding minimal
subspace trail U f−→ V can be computed by

V = span

 ⋃
1≤i≤k

Im(∆bi(f))

where b1, b2, . . . , bk is a basis of U and ∆bi is the derivative in direction bi as defined
in Equation (2). This means for the linear layer L that any minimal subspace trail
has the form U

L−→ L(U). The linear layer alone does not increase the dimension since
dimU = dimL(U).

For the non-linear layer χ we need to compute the image of a derivative in point b
Im(∆b(χ)). The degree of χ is 2 so that the degree of the derivative is at most 1. This
leads to

Im(∆b(χ)) = span

{∆b(χ)(0)} ∪
⋃

1≤i≤n
∆b(χ)(ei)

since the image of an affine function can be computed by the span of the unit vectors and
the zero vector.

Further an element x ∈ Fn2 is in Im(∆b(χ)) iff the probability of the differential
Pr
[
b
χ−→ x

]
is greater than 0. We can use Theorem 5 to compute these probabilities of

differentials, which is based on [KLT15, Theorem 2] and adapted for an odd block length n.

72 Dasta – Alternative Linear Layer for Rasta

The proof can be found in Appendix A.2. In the following the ∨ operator is also defined
as element-wise or, i. e.

(x ∨ y)i := xi + yi + xiyi

where x, y ∈ Fn2 .

Theorem 5. Let f : Fn2 → Fn2 , f(x) = x� S1(x), α ∈ Fn2 an input difference, and β ∈ Fn2
an output difference where n is odd. Then

Pr
[
α

f−→ β
]

=

2−n+1 if α = 1 and hw(β) ≡ 1 mod 2
2−hw(varibits+doublebits) if α 6= 1 and β � varibits = 0

and (β + S1(β))� doublebits = 0
0 else

where
varibits = S1(α) ∨ α

and
doublebits = α� S1(α)� S2(α).

Proof. See Appendix A.2.

Now we have

Pr
[
α

χ−→ β
]

= |{x ∈ Fn2 | χ(x) + χ(x+ α) = β}|
2n

= |{x ∈ Fn2 | S−1(x)� S−2(x) + S−1(x+ α)� S−2(x+ α) = β + α+ S−2(α)}|
2n

= Pr
[
S−2(α) f−→ β + α+ S−2(α)

]
where f(x) = x � S1(x) so that we can compute the probability of differentials over χ
with Theorem 5. The next lemma gives conditions on bit level whether a vector is part of
Im(∆b(χ)).

Lemma 4. Let b ∈ Fn2 , then y ∈ Im(∆b(χ)) for b 6= 1 iff

1.

∀i ∈ [n] : yi ∈

{0, 1} if bi+1 = 1 or bi+2 = 1
{1} if bi = 1 and bi+1 = bi+2 = 0
{0} else

2. and ∀i ∈ [n] : (bi = bi+2 = 1 ∧ bi+1 = 0)⇒ yi + yi−1 + bi−1 = 0.

For b = 1 holds that Im(∆b(χ)) = {y | hw(y) ≡ 1 mod 2}.

Proof. We have

y ∈ Im(∆b(χ))⇔ Pr
[
b
χ−→ y

]
> 0

⇔ Pr
[
S−2(b) f−→ y + b+ S−2(b)

]
> 0.

The case for b = 1 can be directly concluded from Theorem 5. When b 6= 1, y ∈ Im(∆b(χ))
iff

(y + b+ S−2(b))� (S−1(b) ∨ S−2(b)) = 0 (8)
and (y + b+ S−2(b) + S1(y) + S1(b) + S−1(b))� S−2(b)� S−1(b)� b = 0 (9)

Phil Hebborn and Gregor Leander 73

according to Theorem 5. Now Equation (8) is equivalent to

(yi + bi + bi+2) · ((bi+1 + 1) · (bi+2 + 1)) = 0, ∀i ∈ [n]

which is the same as the first condition. Further Equation (9) can be simplified to

(y + S1(y) + S1(b))� S−2(b)� S−1(b)� b = 0 (10)
⇔ (yi + yi−1 + bi−1) · bi+2 · (bi+1 + 1) · bi = 0, ∀i ∈ [n] (11)

which is the same as the second condition.

Lemma 5 is needed to compute the lower bound of unit vectors after a non-trivial
subspace trail over 2 rounds.

Lemma 5. Let U χ−→ V be an one round subspace trail, where U 6= {0}. Then V contains
at least one unit vector.

Proof. Let b ∈ U, b 6= 0 be arbitrarily chosen but fixed. The case b = 1 is trivial, since

V = span(Im(∆b(χ))) = span({y | hw(y) ≡ 1 mod 2}).

Now let further b 6= 1. Since n is odd, there are at least two equal adjacent positions
in b. This means that

∃i ∈ [n] : (bi = bi+1 = 0 ∧ bi+2 = 1) ∨ (bi+1 = bi+2 = 1 ∧ bi = 0),

which implies that there are no restrictions for a y ∈ Im(∆b(χ)) at position i according to
Lemma 4. This means for an arbitrary but fixed y ∈ Im(∆b(χ)) the vector y′ which equals
y in all positions except i, i. e. y′ = y + ei, is also in the image of ∆b(χ). Since V is the
span of the image, it holds that ei ∈ V .

In the following the linear layer L is represented as a matrix in Fn×n2 . Further L[∗, i]
denotes the i-th column of L and L[i, ∗] the i-th row of L for i ∈ [n].

Definition 3. We call a position i ∈ [n] of a column vector v = L[∗, j] semi-critical, when

vi+1 = vi+2 = 0
or vi = vi+2 = 1 ∧ vi+1 = 0
or vi+1 = vi+3 = 1 ∧ vi+2 = 0.

We call a position i ∈ [n] of a column vector v = L[∗, j] critical, when

vi+1 = vi+2 = 0
or vi+1 = vi+3 = 1 ∧ vi+2 = 0.

Considering a vector v ∈ Fn2 which is not semi-critical at position i means that the
unit vector ei is in the image of ∆v(χ). When position i is not critical this means that ei
or ei + ei−1 is in Im(∆v(χ)). We show this later. In order to prove that any non-trivial
subspace trail results after a few rounds in the full vector space, we show that every unit
vector is contained. For this we care about the critical and semi-critical positions. We
introduce two functions Θ and Ω, which can efficiently be evaluated on L.

74 Dasta – Alternative Linear Layer for Rasta

Definition 4. The function Θ : Fn×n2 × [n]→ N computes for every column in L if there
is at least one position, which is not semi-critical:

Θ(L, i) =
{

1, if ∃j ∈ [n] so that position j of L[∗, i] is not semi-critical
0, else

The number of column vectors of L, which are critical at position i are computed by
Ω : Fn×n2 × [n]→ N:

Ω(L, i) = |{vi is critical | v = L[∗, j], j ∈ [n]}|.
Now finally Theorem 6 gives an efficiently computable condition to calculate the full

dimension of a subspace trail. If the premise of the following theorem holds for L, then
so it does for L′ = L ◦ P for all permutation matrices P . Thus we only need to state the
theorem for L.
Theorem 6. Let U χ◦L−−→ V be a subspace trail, where U contains k > 0 unit vectors and

∀i ∈ [n] : Θ(L, i) = 1
and ∀i ∈ [n] : Ω(L, i) < k.

Then we have V = Fn2 .

Proof. We can write the subspace trail as U L−→ V ′ and V ′ χ−→ V . Then we know that V ′
contains at least k column vectors of L. First we show that

∀i ∈ [n] : Ω(L, i) < k ⇒ ei ∈ V ∨ ei + ei−1 ∈ V.

Since Ω(L, i) < k, there exists at least one b ∈ V ′ so that position i is not critical. Now we
have two cases:

• Case 1: Position i of b is not semi-critical
Let y be an arbitrary element in Im(∆b(χ)). Then y′, where y′j = yj for j ∈ [n], j 6= i
and y′i = yi + 1, is also in Im(∆b(χ)) according to Lemma 4. This leads to

y + y′ = ei ∈ span(Im(∆b(χ)))
so that ei is in V .

• Case 2: Position i of b is semi-critical
This leads to bi = bi+2 = 1 and bi+1 = 0 so that

∀y ∈ Im(∆b(χ)) : yi + yi−1 + bi−1 = 0.
Let y be an arbitrary element in Im(∆b(χ)). Then y′, where y′j = yj for j ∈ [n], j 6=
i ∧ j 6= i− 1 and y′i = yi + 1 ∧ y′i−1 = yi−1 + 1, is also in Im(∆b(χ)) according to
Lemma 4. The second constraint is fulfilled since yi + yi−1 = y′i + y′i−1. This leads
to y + y′ = ei + ei−1 ∈ V .

It holds that ∀i ∈ [n] : Θ(L, i) = 1 so that V ′ contains at least one column vector of L
which has a position j that is not semi-critical. As you can see above, this leads to ej ∈ V .

Now we need to show that every unit vector ei is contained in V . We already showed
that V contains ei or ei + ei−1 for all i ∈ [n]. So we just have to look at the case where we
can deduce that ei + ei−1 ∈ V . It exists an m ∈ [n] so that

em ∈ V
and ej−1 + ej ∈ V, ∀j ∈ {m+ 1, . . . , i}.

By adding em and
∑i
j=m+1 ej−1 + ej , which are all in V , it follows that ei ∈ V . This

leads to V = Fn2 .

Phil Hebborn and Gregor Leander 75

7 Linearization Attacks
The trivial linearization is one possible variant of algebraic attacks. Here each key stream
bit of Rasta is seen as an equation dependent on the key bits, i.e. the algebraic normal
form (ANF) is considered. Every non-linear term, i. e. every monomial of degree 2 or
higher, is substituted with a new variable, resulting in a linear system in a (significantly)
increased number of variables. After collecting enough linear independent equations, the
key can be recovered by solving the linear equation system. In the (conservative) analysis
of Rasta the cost of setting up the equations as well as solving the linear system has
been ignored. Instead, the idea was to bound the data limit so that collecting a sufficient
amount of equations is not possible.

For Rasta and Dasta, as χ is a quadratic function, the algebraic degree of the cipher
is upper-bounded by 2r for r rounds. Therefore, the number of different monomials which
can occur in the different equations is

U =
2r∑
i=0

(
n

i

)
, (12)

Furthermore, by guessing g key bits the time complexity of an attack is multiplied by 2g
and the number of monomials is reduced to

Ug =
2r∑
i=0

(
n− g
i

)
.

For Rasta it was argued in [Dob+18] that, due to the random choice of the linear
layers, it is valid to assume that all possible monomials actually occur (with probability
close to 1/2) in the system of equations. The parameters were then chosen such that,
under this assumption, linearization will not be possible due to constrains in the data
limit.

For Dasta we make the same assumption, i.e. the resulting system is well approximated
by the worst case and contains all possible monomials up to the attainable maximal
degree. As theoretical arguments seem very difficult for Dasta – actually for almost any
symmetric cipher – we performed extensive simulations to substantiate our assumption.
Those experiments, that can be found in Appendix B, did not show any significant
difference between Rasta, Dasta and a random function with respect to the distribution
of monomials. Thus, with respect to linearization attacks and more generally algebraic
attacks, we state that the same parameters for Dasta as for Rasta will make those
attacks infeasible.

For an actual attack, assuming the we can solve a system of linear equation with n
unknowns and equations in time n2.37 using ideas of Coppersmith and Winograd [CW87]
and recent improvements [Gal14], we can conclude that such an attack is only possible as
long as (2r∑

i=0

(
n

i

))2.37

≤ 2s. (13)

We derive concrete bounds for the instances of Dasta in Table 2 in Section 3.

8 Conclusion
In this paper, for the first time, we present a symmetric cipher, that has at the same time
a very low AND-depth and a very low number of ANDs per bit and does not rely on the

76 Dasta – Alternative Linear Layer for Rasta

use of a PRNG. This is achieved by our variant of Rasta, called Dasta, by restricting
the possible linear layers to a subset that excludes any weak instances. Technically, this
required an analysis of the similarity of bit permutations. For linear approximations, a
detailed study of the χ function, in particular a characterization of the possible input
masks for a given output mask (see Lemma 3) and an upper bound of the correlation in
this case (see Theorem 4) have been given.

We see a couple of further research directions. First, as the block sizes in Rasta are
chosen rather conservatively, it might be interesting to see if they could be reduced, in
particular taking into account (i) our improved understanding of the non-linear layer and
(ii) the costs of actually solving the system of equations in the case of linearization. Second,
for Dasta it might be of interest to have even more structured linear layers, e.g. following
the ideas in [Per+17] after examining linear approximations for this approach.

Finally, even so we could not find any weaknesses in our design, as the design is rather
unconventional, we encourage further analysis to (hopefully) strengthen the trust in Dasta.

Acknowledgments
The authors thank Andre Esser for his careful proofreading. We would also like to thank the
anonymous reviewers for their helpful comments that significantly improved our work. This
work was partially funded by the DFG (German Research Foundation) under Germany´s
Excellence Strategy - EXC 2092 CASA – 390781972 and within the DFG project LE
3372/4-1.

References
[Alb+15] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner.

“Ciphers for MPC and FHE”. In: EUROCRYPT 2015, Part I. Ed. by E.
Oswald and M. Fischlin. Vol. 9056. LNCS. Springer, Heidelberg, Apr. 2015,
pp. 430–454. doi: 10.1007/978-3-662-46800-5_17 (cit. on pp. 46, 48).

[BBK14] A. Biryukov, C. Bouillaguet, and D. Khovratovich. “Cryptographic Schemes
Based on the ASASA Structure: Black-Box, White-Box, and Public-Key (Ex-
tended Abstract)”. In: ASIACRYPT 2014, Part I. Ed. by P. Sarkar and T.
Iwata. Vol. 8873. LNCS. Springer, Heidelberg, Dec. 2014, pp. 63–84. doi:
10.1007/978-3-662-45611-8_4 (cit. on p. 46).

[BGV11] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully Homomorphic En-
cryption without Bootstrapping. Cryptology ePrint Archive, Report 2011/277.
http://eprint.iacr.org/2011/277. 2011 (cit. on p. 46).

[Bea+13] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers.
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology
ePrint Archive, Report 2013/404. http://eprint.iacr.org/2013/404. 2013
(cit. on p. 66).

[Ber+13] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. “Keccak”. In: EU-
ROCRYPT 2013. Ed. by T. Johansson and P. Q. Nguyen. Vol. 7881. LNCS.
Springer, Heidelberg, May 2013, pp. 313–314. doi: 10.1007/978- 3- 642-
38348-9_19 (cit. on pp. 47, 50).

[CW87] D. Coppersmith and S. Winograd. “Matrix multiplication via arithmetic
progressions”. In: Proceedings of the nineteenth annual ACM symposium on
Theory of computing. 1987, pp. 1–6 (cit. on p. 75).

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-45611-8_4
http://eprint.iacr.org/2011/277
http://eprint.iacr.org/2013/404
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19

Phil Hebborn and Gregor Leander 77

[Can+15] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P.
Paillier, and R. Sirdey. Stream ciphers: A Practical Solution for Efficient
Homomorphic-Ciphertext Compression. Cryptology ePrint Archive, Report
2015/113. http://eprint.iacr.org/2015/113. 2015 (cit. on p. 46).

[DR01] J. Daemen and V. Rijmen. “The Wide Trail Design Strategy”. In: Cryptography
and Coding, 8th IMA International Conference, Cirencester, UK, December 17-
19, 2001, Proceedings. Ed. by B. Honary. Vol. 2260. Lecture Notes in Computer
Science. Springer, 2001, pp. 222–238. isbn: 3-540-43026-1. doi: 10.1007/3-
540-45325-3_20. url: https://doi.org/10.1007/3-540-45325-3_20
(cit. on p. 49).

[Dae95] J. Daemen. “Cipher and hash function design strategies based on linear and
differential cryptanalysis”. PhD thesis. Katholieke Universiteit Leuven, 1995
(cit. on pp. 47, 49, 64, 66).

[Din+19] I. Dinur, D. Kales, A. Promitzer, S. Ramacher, and C. Rechberger. “Linear
Equivalence of Block Ciphers with Partial Non-Linear Layers: Application to
LowMC”. In: EUROCRYPT 2019, Part I. Ed. by Y. Ishai and V. Rijmen.
Vol. 11476. LNCS. Springer, Heidelberg, May 2019, pp. 343–372. doi: 10.
1007/978-3-030-17653-2_12 (cit. on p. 47).

[Dob+18] C. Dobraunig, M. Eichlseder, L. Grassi, V. Lallemand, G. Leander, E. List,
F. Mendel, and C. Rechberger. “Rasta: A Cipher with Low ANDdepth and
Few ANDs per Bit”. In: CRYPTO 2018, Part I. Ed. by H. Shacham and A.
Boldyreva. Vol. 10991. LNCS. Springer, Heidelberg, Aug. 2018, pp. 662–692.
doi: 10.1007/978-3-319-96884-1_22 (cit. on pp. 46, 50, 56, 64, 75).

[GRR16] L. Grassi, C. Rechberger, and S. Rønjom. “Subspace Trail Cryptanalysis and
its Applications to AES”. In: IACR Trans. Symm. Cryptol. 2016.2 (2016).
http://tosc.iacr.org/index.php/ToSC/article/view/571, pp. 192–225.
issn: 2519-173X. doi: 10.13154/tosc.v2016.i2.192-225 (cit. on pp. 56,
70).

[Gal14] F. L. Gall. “Powers of Tensors and Fast Matrix Multiplication”. In: CoRR
abs/1401.7714 (2014). arXiv: 1401.7714. url: http://arxiv.org/abs/1401.
7714 (cit. on p. 75).

[HS13] S. Halevi and V. Shoup. “Design and implementation of a homomorphic-
encryption library”. In: (2013) (cit. on pp. 48, 57, 58).

[KLT15] S. Kölbl, G. Leander, and T. Tiessen. “Observations on the SIMON Block
Cipher Family”. In: CRYPTO 2015, Part I. Ed. by R. Gennaro and M. J. B.
Robshaw. Vol. 9215. LNCS. Springer, Heidelberg, Aug. 2015, pp. 161–185. doi:
10.1007/978-3-662-47989-6_8 (cit. on pp. 64, 66, 67, 71, 78, 80).

[LTW18] G. Leander, C. Tezcan, and F. Wiemer. “Searching for Subspace Trails and
Truncated Differentials”. In: IACR Trans. Symm. Cryptol. 2018.1 (2018),
pp. 74–100. issn: 2519-173X. doi: 10.13154/tosc.v2018.i1.74-100 (cit. on
p. 71).

[MS78] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes.
Elsevier, 1978 (cit. on p. 49).

[McE78] R. J. McEliece. “A public-key cryptosystem based on algebraic”. In: Coding
Thv 4244 (1978), pp. 114–116 (cit. on p. 55).

http://eprint.iacr.org/2015/113
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/978-3-030-17653-2_12
https://doi.org/10.1007/978-3-030-17653-2_12
https://doi.org/10.1007/978-3-319-96884-1_22
http://tosc.iacr.org/index.php/ToSC/article/view/571
https://doi.org/10.13154/tosc.v2016.i2.192-225
https://arxiv.org/abs/1401.7714
http://arxiv.org/abs/1401.7714
http://arxiv.org/abs/1401.7714
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.13154/tosc.v2018.i1.74-100

78 Dasta – Alternative Linear Layer for Rasta

[Méa+16] P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet. “Towards Stream Ci-
phers for Efficient FHE with Low-Noise Ciphertexts”. In: EUROCRYPT 2016,
Part I. Ed. by M. Fischlin and J.-S. Coron. Vol. 9665. LNCS. Springer, Heidel-
berg, May 2016, pp. 311–343. doi: 10.1007/978-3-662-49890-3_13 (cit. on
p. 46).

[Nat15] National Institute of Standards and Technology. FIPS PUB 202: SHA-3
Standard: Permutation-Based Hash and Extendable-Output Functions. U.S.
Department of Commerce. 2015 (cit. on p. 50).

[Per+17] L. Perrin, A. Promitzer, S. Ramacher, and C. Rechberger. Improvements to the
Linear Layer of LowMC: A Faster Picnic. Cryptology ePrint Archive, Report
2017/1148. https://eprint.iacr.org/2017/1148. 2017 (cit. on pp. 47, 76).

[Ran93] D. Randall. “Efficient Generation of Random Nonsingular Matrices”. In:
Random Struct. Algorithms 4.1 (1993), pp. 111–118. doi: 10 . 1002 / rsa .
3240040108. url: https://doi.org/10.1002/rsa.3240040108 (cit. on
p. 57).

A Proofs
A.1 Proof of Theorem 3
Before we state the proof of Theorem 3 we have to generalize another statement of [KLT15].

Theorem 7. Let f(x) = x� S1(x), where x ∈ Fn2 and n is odd. Then

f̂(α, β)2 =

2n+1 if β = 1 and hw(α) ≡ 1 mod 2
2n+d if β 6= 1 and α ∈ U⊥β
0 else

where Uβ = {y | β � S1(y) + S−1(β � y) = 0} and d = dimUβ.

Proof.

f̂(α, β)2 = 2n
∑
y∈Uβ

µ(〈β, f(y)〉+ 〈α, y〉) (shown in [KLT15, p. 12])

For all y ∈ Uβ holds βiyi−1 = βi+1yi+1:

y ∈ Uβ ⇒

β0yn−1
β1y0
...

βn−1yn−2

 =

β1y1
β2y2
...

β0y0

We can write fβ(y) = 〈β, f(y)〉 =

n−1∑
i=0

βiyiyi−1 as

fβ(y) = β0y0yn−1 + β1y1y0 + · · ·+ βn−1yn−1y0

• Case 1: β 6= 1
Then there exists a βi = 0, so that we can write fβ with n− 1 monomials. Begin-
ning at k = i+ 2 we can write every second monomial βkykyk−1 as βk−1yk−2yk−1,
because of y ∈ Uβ . Now fβ is constant zero on Uβ and 〈α, y〉 is unbalanced iff α ∈ U⊥β .

https://doi.org/10.1007/978-3-662-49890-3_13
https://eprint.iacr.org/2017/1148
https://doi.org/10.1002/rsa.3240040108
https://doi.org/10.1002/rsa.3240040108
https://doi.org/10.1002/rsa.3240040108

Phil Hebborn and Gregor Leander 79

• Case 2: β = 1

For β = 1, Uβ contains only 0 and 1 since the dimension of Uβ is 1 as showed in
theorem 3. Because of fβ(1) = 1 and fβ(0) = 0, f̂ is unbalanced iff 〈α,1〉 is 1. It
follows that f̂(α, β)2 = 2n+1 if hw(α) ≡ 1 mod 2 and otherwise f̂(α, β)2 = 0.

After this preparation, we can continue with the proof of Theorem 3.

Proof. Let Lβ(x) = β � S1(x) + S−1(β � x). Clearly Lβ is linear, so that we can write
the function in matrix form. Also Uβ = kerLβ(x) holds. Define the matrices Mβ , MS1

and MS−1 as

Mβ =

β0 0 · · · 0

0 β1
...

... . . . 0
0 · · · 0 βn−1

MS1 =

(
01,n−1 I1
In−1 0n−1,1

)

MS−1 =
(

0n−1,1 In−1
I1 01,n−1

)
where Im is the identity matrix of dimension m × m and 0n,m ∈ Fn×m2 is the matrix
containing all zeros. We can then write Lβ in matrix form as

0 β1 0 · · · 0 β0
β1 0 β2 0 · · · 0

0 β2 0 β3
.

... 0

0 0 0 . . . 0 βn−1
β0 0 · · · 0 βn−1 0

.

When we look at a block of 1s with length l in β, i. e. βi−1 = 0, βi = βi+1 = · · · =
βi+l−1 = 1 and βi+l = 0, then the l + 1 rows i, i + 1, · · · i + l are non-zero. If l + 1 is
even, then all rows are linearly independent. If l + 1 is odd, then the sum of the rows
i, i+ 2, · · · , i+ l − 2 is equal to row i+ l, while the first l rows are linearly independent.
The rows are enumerated from 1 to n. Thus this block increases the rank of Lβ by 2 · d l2e.
When β = 1, the sum of the rows 1, 3, · · · , n− 2 is equal to the n-th row, while the first
n− 1 rows are linearly independent.

Therefore the rank of Lβ is 2 · θ(β) and the dimension of Uβ is n− 2 · θ(β). Together
with Theorem 7 this is

f̂(α, β)2 = 2n+(n−2·θ(β)) = 22n−2·θ(β)

for β = 1 and hw(α) ≡ 1 or β 6= 1 and α ∈ U⊥β . This leads to

C2
f (α→ β) = f̂(α, β)2

22n = 2−2·θ(β)

where θ(1) = (n+1)
2 .

80 Dasta – Alternative Linear Layer for Rasta

A.2 Proof of Theorem 5
Proof. In [KLT15, Theorem 1] it is shown that

Pr
[
α

f−→ β
]

=
{

2−(n−d) if β + α� S1(α) ∈ Im(Lα)
0 else

where
Lα(x) = x� S1(α) + α� S1(x)

and
d = dim(ker(Lα)).

Now we need to proof two things. The first part is showing that the rank of Lα is n− 1
when α = 1, and hw(varibits+doublebits) otherwise. This is done in [KLT15, Theorem 2].
For the second part of the proof, we need to check whether y = β + α� S1(α) ∈ Im(Lα).
We distinguish two cases:

• Case α = 1:
Then is

Lα(x) =

xn−1 + x0
x0 + x1
x1 + x2

...
xn−2 + xn−1

and

y ∈ Im(Lα)⇔
n−2∑
i=0

yi = yn−1

⇔
n−2∑
i=0

βi = βn−1 + 1.

This leads to y ∈ Im(Lα)⇔ hw(β) ≡ 1 mod 2.

• Case α 6= 1:
It exists at least one i ∈ [n] so that αi = 0. Then is

Lα(x) =

α0xn−1 + αn−1x0
α1x0 + α0x1

...
αi−1xi−2 + αi−2xi−1

αi−1xi
αi+1xi

αi+2xi+1 + αi+1xi+2
...

αn−1xn−2 + αn−2xn−1

and α� S1(α) =

α0αn−1
α1α0
...

αi−1αi−2
αi−1
αi+1

αi+2αi+1
...

αn−1αn−2

.

Let x ∈ Fn2 , where xi = 1, xi+1+2k = αi+1+2k and xi+2+2k = 0 for k ∈ [n−1
2]. Then

is Lα(x) = α� S1(α) and since Lα is linear we just have to check the conditions for

Phil Hebborn and Gregor Leander 81

β to be in the image of Lα. If βj = 1 then αj = 1 ∨ αj−1 = 1. When αj = αj−2 = 1
and αj−1 = 0, then must hold βj = βj−1. This leads to

y ∈ Im(Lα)⇔ β � varibits = 0 ∧ (β + S1(β))� doublebits = 0.

B Experiments
In order to check the assumptions on the independence of the ANFs we do several
experiments to verify resistance against linearization attacks. Furthermore we analyze the
role of the round constants. We look at four different variants of Rasta and Dasta:

• Standard Rasta as defined in Section 2.1 (std)

• Standard Rasta without round constants (std-noc)

• Dasta without round constants as defined in Equation 3 with complete random bit
permutations (perm-noc)

• Dasta with round constants, which are added after the fixed linear layer L (perm)

For the following experiments were computed the ANFs of the key stream dependent
on the key bits for multiple random instances of all four variants. This means that all
parts of the ciphers, which are not fixed, are sampled uniformly for every instance. To get
an acceptable computation time, the block size is set to n = 11 and the number of rounds
to 2 and 3. Some of the data in the following plots is grouped, i. e. for multiple x values is
calculated the intersection of them and their associated y values.

B.1 Linearization attack
For the linearization attack the ANFs of the key stream blocks are generated for different
instances. After the computation of the ANFs for a new key stream block, all monomials
of a degree of two or higher are renamed and the constant monomial is ignored. Then all
ANFs which are computed so far are put in a matrix. After m blocks, the matrix has n ·m
rows and 2n − 1 columns with entries of F2. Now we try to solve the linear equations with
Gaussian elimination. For every row with just a single 1 entry the value of a monomial is
revealed. Of course the cipher is broken if all monomials are known, but e. g., knowing
only the monomials of degree 1 is also sufficient since they are exactly the key.

The attack works in a known plaintext scenario, where the adversary gets equations
with the ANF on the one side and the result i. e. the key stream bit, on the other side.
The constant monomial is added to the key stream bit and all row additions in matrix,
which are done to eliminate all but one monomial, are done simultaneously to the other
sides of the equations.

The desired behavior of the ciphers would be that every ANF occurs with the same
probability. This means that we expect to need 2l

2l−1 rows for rank 1 in our matrix, where
l is the number of possible non-constant monomials (see Eq. 12), since the first row is
linear independent when it is not zero. This occurs with probability 2l−1

2l . For a matrix
Ft×l2 with rank m and m < l, we expect to need 2l

2l−2m more rows for rank m+ 1. This
means that the expected number of uniformly sampled rows of Fl2 to get rank l is

82 Dasta – Alternative Linear Layer for Rasta

l−1∑
i=0

2l
2l − 2m =

l−1∑
i=0

1
1− 2i−l .

Since every key stream block has n ANFs, the number of expected blocks for 2 and 3
rounds are 52 and 181.

The experiments for 2 rounds showed for all four Rasta variants that the hole system
can be solved with 52 blocks, while the first monomials can be solved after 51 blocks. For
3 rounds the result was the same with 180 and 181 blocks. This shows that the linear
dependencies between the ANFs are close to the random case and that there are no small
subsystems with few monomials.

B.2 Linear dependencies
The next experiment looks for linear dependencies between multiple ANF blocks. Let
an ANF represented as a vector in Fm2 for m possible monomials (except the constant
monomial). A linear combination for a block b ∈ (Fm2)n is computed by

〈α, b〉 =
n−1∑
i=0

αi · bi

where α ∈ Fn2 . If the ANFs are sampled uniformly for any linear combination and any
block, each monomial occurs with probability 0.5. This means that we expect for a fixed
monomial with a degree less or equal than min{2r, n} over all linear combinations and all
blocks a binomial distribution. To define that precisely we need more notation. Let

fu : Fn2 → N
fu(α) = | {b ∈ B | 〈α, b〉u = 1} |

be the number of blocks which contain the monomial u ∈ [m] for the linear combination
α and the set of ANF blocks of the key stream B = {b0, b1, · · · }. Let

Fu(x) : {0, 1, · · · , |B|} → {0, 1, · · · , 2n − 1}
Fu(x) = | {α ∈ Fn2 \ {0} | fu(α) = x} |

be the distribution of how often a fixed monomial occurs in a set of blocks over all
non-zero linear combinations. Since we assume that each monomial occurs with probability
0.5 in a non-zero linear combination, we expect the monomial in |B|2 ANFs for one linear
combination. For all non-zero linear combinations we expect Fu to behave like the binomial
distribution, i. e.

E[Fu(x)] =
(
|B|
x

)
· 2−|B|

Figure 7 shows the distribution of Fu(x) for the monomial k1k0 and |B| = 1000 for all
four variants of Rasta and depicts no notable differences between all of them.

In the next step we do not focus just on one monomial, but all possible monomials.
Therefore we look at the expected minimum resp. maximum of fu for an arbitrary monomial
u , i. e. we look for

Phil Hebborn and Gregor Leander 83

440 460 480 500 520 540 560
blocks

0

10

20

30

40

50

60
#

lin
ea

r
co

m
bi

na
ti

on
s

expected Fu
std Fu
std-noc Fu
perm Fu

perm-noc Fu

Figure 7: Distribution Fu(x) for |B| = 1000 and monomial k1k0 for 2 rounds, grouped by
3.

fmax, fmin : Fn2 \ {0} → {0, 1, · · · , |B|}

fmax(α) = max
{
xi

∣∣∣ i ∈ [m] ∧ x =
∑
b∈B

〈α, b〉

}

fmin(α) = min
{
xi

∣∣∣ i ∈ [m] ∧ x =
∑
b∈B

〈α, b〉

}
.

where 〈α, b〉 is considered as a vector of Zm, so that xi ∈ [|B|+ 1] for i ∈ [m].
Now we assume again that all ANFs of the key stream blocks are sampled uniformly.

The probability Pr [fmax(α) ≤ |B|] is clearly 1, for fmax(α) ≤ |B| − 1 holds

Pr [fmax(α) ≤ |B| − 1] =
(

1− 2−|B|
)m

since Pr [xi ≤ |B| − 1] = 1− 2−|B| ∀i ∈ [m].
We expect 〈α, b〉i to be 1 with probability 0.5 for every b ∈ B. Let vi = (〈α, b0〉i, 〈α, b1〉i, · · · , 〈α, b|B|−1〉i)

be the coefficients for a fixed monomial in all linear combinations, i. e. if the coefficient is
one the monomial occurs in the linear combination, if the coefficient is zero the monomial
does not occur. There are 2|B| possible values for vi. Let xi be equal to the number of
ones in vi. There are

|B|∑
i=c+1

(
|B|
i

)
possible values for vi so that xi > c. This leads to

84 Dasta – Alternative Linear Layer for Rasta

Pr [xi > c] = 2−|B| ·
|B|∑

i=c+1

(
|B|
i

)
.

Saying fmax(α) ≤ c is the same as @i ∈ [m] : xi > c. Together with the equation above
this can be combined to

Pr [fmax(α) ≤ c] =

1− 2−|B| ·
|B|∑

i=c+1

(
|B|
i

)m

.

The probability for one function value of fmax is

Pr [fmax(α) = c] = Pr [fmax(α) ≤ c]− Pr [fmax(α) ≤ c− 1] .

With the same argumentation is

Pr [fmin(α) ≥ a] =

1− 2−|B| ·
|B|∑

i=|B|−a+1

(
|B|
i

)m

Pr [fmin(α) = a] = Pr [fmin(α) ≥ a]− Pr [fmin(α) ≥ a+ 1] .

We define Fmax, Fmin : {0, 1, · · · , |B|} → {0, 1, · · · , 2n − 1} as

Fmax(x) = | {α ∈ Fn2 \ {0} | fmax(α) = x} |
Fmin(x) = | {α ∈ Fn2 \ {0} | fmin(α) = x} | .

For uniformly sampled ANFs we expect

E[Fmax(x)] = (2n − 1) · Pr [fmax(α) = a]
E[Fmin(x)] = (2n − 1) · Pr [fmin(α) = a] .

Figure 8 shows the distribution of Fmax and Fmin for all of the four variants of Rasta
for a random experiment with |B| = 1000 compared to the expected distribution. The
result shows that all variants are near the expected values, so that the maximal deviation
of the occurrence of a monomial in a linear combination behaves close to the random case.

We define the maximal deviation of any monomial over all linear combination for a set
of ANF blocks B = {b0, b1, · · · } as

δ = max
∀α∈Fn2 \{0}

{∣∣∣∣ |B|2 − fmax(α)
∣∣∣∣ , ∣∣∣∣ |B|2 − fmin(α)

∣∣∣∣} .
In Table 7 δ is computed for a random instance of the Rasta variants with |B| = 1000.

The results show that there is in the experiment no linear combination for which a mono-
mial occurs very often or very rarely for every Rasta variant. If that happened, an
adversary could use that to get small subsystems of monomials and lower the complexity
of a linearization attack.

Phil Hebborn and Gregor Leander 85

440 460 480 500 520 540 560 580
blocks

0

20

40

60

80

100

120

140

160

180
#

lin
ea

r
co

m
bi

na
ti

on
s

expected Fmax

expected Fmin

std Fmin

std Fmax

std-noc Fmin

std-noc Fmax

perm Fmin

perm Fmax

perm-noc Fmin

perm-noc Fmax

Figure 8: Distribution of fmax and fmin for |B| = 1000 and 2 rounds, grouped by 2.

Table 7: Results of experiment for |B| = 1000.

Rasta variant rounds δ rounds δ
std 2 0.078 3 0.078
std-noc 2 0.078 3 0.082
perm 2 0.082 3 0.083
perm-noc 2 0.075 3 0.080

B.3 Monomial count
Now we look at the number of monomials of the ANFs of the key stream bits. We define
by

Fc(x) : {0, 1, · · · ,m} → {0, 1, · · · , |B|}
Fc(x) = | {b ∈ B | hw(b) = x} |

the number of ANFs with x monomials in a set of ANFs B = {b0, b1, · · · } and bi ∈ Fm2 .
If the ANFs are sampled uniformly we expect Fu to be binomial distributed, i. e.

E[Fc(x)] =
(
|B|
x

)
· 2−|B|.

Figure 9 shows Fu for all four Rasta variants in an experiment with random instances
and |B| = 11000 compared to the expected distribution. All variants behave close to the
random case.

86 Dasta – Alternative Linear Layer for Rasta

200 250 300 350
monomials

0

50

100

150

200

250

300

350

400

#
bl

oc
ks

expected Fc
std Fc
std-noc Fc
perm Fc

perm-noc Fc

Figure 9: Distribution of monomial count for |B| = 11000 and 2 rounds.

	Introduction
	Preliminaries
	Rasta

	Specification of Dasta
	Defining the Instance
	Overview of the Security Analysis
	Implementation

	Bit Permutation Analysis
	Lower Bounding the Difference
	Similarity Attacks
	Design Choice for Dasta
	Alternative Construction for the Bit-Permutations

	Linear Properties
	Improved Analysis of

	Subspace Trails
	Idea
	Technical Details

	Linearization Attacks
	Conclusion
	Proofs
	Proof of theorem:simon5
	Proof of theorem:simondifferentialprob

	Experiments
	Linearization attack
	Linear dependencies
	Monomial count

