
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. 2, pp. 120–145. DOI:10.13154/tosc.v2020.i2.120-145

Optimizing Implementations of Linear Layers
Zejun Xiang1, Xiangyong Zeng1, Da Lin1, Zhenzhen Bao2 and

Shasha Zhang1

1 Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics,
Hubei University, Wuhan, China.

{xiangzejun,xzeng}@hubu.edu.cn,linda@stu.hubu.edu.cn,amushasha@163.com
2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore, Singapore.
zzbao@ntu.edu.sg

Abstract. In this paper, we propose a new heuristic algorithm to search efficient
implementations (in terms of Xor count) of linear layers used in symmetric-key cryp-
tography. It is observed that the implementation cost of an invertible matrix is related
to its matrix decomposition if sequential-Xor (s-Xor) metric is considered, thus
reducing the implementation cost is equivalent to constructing an optimized matrix
decomposition. The basic idea of this work is to find various matrix decompositions
for a given matrix and optimize those decompositions to pick the best implementation.
In order to optimize matrix decompositions, we present several matrix multiplication
rules over F2, which are proved to be very powerful in reducing the implementation
cost. We illustrate this heuristic by searching implementations of several matrices
proposed recently and matrices already used in block ciphers and Hash functions,
and the results show that our heuristic performs equally good or outperforms Paar’s
and Boyar-Peralta’s heuristics in most cases.
Keywords: Linear Layer · Implementation · Xor Count · AES

1 Introduction
Lightweight cryptography has become one of the main focuses in cryptographic community
as the rapid development of lightweight applications, such as Radio-Frequency IDentification
(RFID) tags and Internet of Things (IoTs). Generally, lightweight cryptography means low-
cost implementable cryptography, where low-cost covers circuit size, energy consumption,
latency and so on. Among which the circuit size of a cryptographic algorithm depends
on the number of required gates to implement it. In this sense, lightweight cryptography
means a cryptographic algorithm with small block and key size and with very efficiently
implementable building blocks (e.g., small nonlinear components, and compact linear layer
requiring very few or even no Xor gates).

There is already a lot of work focusing on the design of lightweight symmetric-key
primitives [BKL+07, GPPR11, BBI+15]. To this end, the designer would favor lightweight
components to reduce the cost. For instance, a recursive Maximum Distance Separable
(MDS) matrix [DR02] is first adopted in LED [GPPR11] block cipher, which recursively
multiply a simpler matrix for generating an MDS matrix; A near MDS matrix with all
nonzero elements being 1 is adopted in MIDORI [BBI+15].

The design of lightweight cryptography has inspired the study of lightweight building
blocks in the past several years. The Sbox is one of the most important nonlinear
components of symmetric-key cryptography, and 4-bit Sbox is a popular choice in the
design of lightweight cryptography since its compact implementation in both hardware

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-03-02, Accepted: 2020-05-01, Published: 2020-07-24

https://doi.org/10.13154/tosc.v2020.i2.120-145
mailto:{xiangzejun,xzeng}@hubu.edu.cn, linda@stu.hubu.edu.cn, amushasha@163.com
mailto:zzbao@ntu.edu.sg
http://creativecommons.org/licenses/by/4.0/

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao and Shasha Zhang 121

and software [LP07, Saa11, ZBRL15, JPST17]. Besides, the design of lightweight linear
components has also got intensive studies [SKOP15, BKL16, LS16, LW16, LW17, SS16,
GLG+17, ZWS18, LSL+19], with special attention paid on MDS matrices since an MDS
matrix has an optimal branch number [Dae95] and provides a decent lower bound on the
minimal number of active S-boxes within a few rounds. Another line of work focuses on
optimizing implementations of linear matrices over F2 [JPST17, BMP13, Paa97, TP20,
BFI19, ME19]. As the goal of this line of work is to find a smaller number of Xor gates
needed to implement a linear layer, this is of more practical significance. For example, the
Advanced Encryption Standard (AES) [DR02] has been widely used in practice, and its
round function has been frequently used in the design of other cryptographic primitives
(such as AEGIS [WP13] and ForkAES [ARVV18]), thus an implementation of its linear
layer with a smaller Xor count will directly reduce the cost of deploying AES and the
primitives that uses its round function. This paper follows this line of work and offers an
alternative heuristic to search optimized implementations of linear matrices.

Since the linear layer of a symmetric-key primitive can be represented as a binary
matrix, the implementation of a linear layer is a sequence of Xor operations. Thus, the
implementation cost of a linear layer can be estimated by the number of Xor operations
required to implement the corresponding binary matrix. There are generally three metrics
discussed in the literature, i.e., d-Xor, s-Xor, and what we called g-Xor in this paper.
Generally, the direct-Xor (d-Xor) metric counts the number of 1’s in a matrix, and a
lightweight matrix is thus a sparse matrix under this metric. The sequential-Xor (s-Xor)
metric counts the number of Xor instructions xi = xi⊕ xj needed to transform the inputs
to the outputs. In this paper, we refer to general-Xor (g-Xor) as a metric counting the
number of operations ti = tj ⊕ tk that required to compute the outputs from the given
inputs. Note that the difference between s-Xor and g-Xor is that s-Xor counts self-update
Xor operations, i.e., the first input bit will be rewritten as the Xor of the two input bits,
while the g-Xor uses another variable to store the result. Though d-Xor is intuitive and
easy to compute, it is not sufficient to use d-Xor to measure the implementation cost
of a matrix [JPST17, KLSW17, DL18], since implementing a linear matrix under d-Xor
metric may compute the same intermediate value several times. However, determining the
optimal implementation under s-Xor or g-Xor metric is a hard problem.

In fact, finding the minimal g-Xor count corresponds to the Shortest Linear Program
(SLP) problem which has been proved by Boyar et al. to be an NP-hard problem. As
pointed out in [Köl19], determining the optimal s-Xor count is related to the problem of
optimal pivoting in Gauss-Jordan elimination, as the number of additions in an optimal
elimination process is an upper bound of the s-Xor count. Currently, there are no efficient
algorithms to compute the optimal g-Xor or s-Xor count for a given matrix with a large
size, say 32× 32 matrices. However, a lot of work has been focusing on this topic and tried
to reduce this gap. Paar’s [Paa97] and Boyar-Peralta’s [BP10] heuristics are the two most
discussed methods to search optimized implementations of linear matrices under g-Xor
metric. In [JPST17], the authors presented an exhaustive search algorithm to determine
the optimal s-Xor count of small-scale matrices. Following this line of work, we will
present in this paper a new heuristic to search optimized implementations under s-Xor
metric for reasonable large matrices.

Our Contribution. In this paper, we propose a new heuristic which can be used to
find efficient implementations of binary matrices of size up to 32 under s-Xor metric.
The s-Xor count measures the number of in-place [JPST17] operations xi = xi ⊕ xj

required to transform the inputs to the outputs, and each operation is equivalent to
performing a row addition of the corresponding matrix [Köl19] which will result in an
identity (or a permutation) matrix eventually. As each row addition can be simulated by
a left-multiplication of an elementary matrix, the problem of determining a smaller s-Xor

122 Optimizing Implementations of Linear Layers

count of an invertible matrix M is reduced to deriving a matrix decomposition of M with
as fewer type-3 elementary matrices as possible.

To this end, we present seven rules of elementary matrix multiplications which can
help reduce the number of type-3 elementary matrices for a given matrix decomposition,
with the restriction that all matrices are over F2. These rules are built on the fact that
Xoring the same two bits will cancel each other, and we could save one Xor operation.
Among all the seven rules, six of which specify the cases when three consecutive Xor
operations can be reduced to two Xor operations, and one of which specifies the case
when two consecutive Xor operations can be reduced to one Xor operation.

With the help of these rules, a new heuristic is designed to search optimized implemen-
tations of matrices. This heuristic can be roughly divided into two steps. The first step is
to decompose the given matrix into a product of elementary matrices, and the second step
is to build a lot of equivalent decompositions to be optimized by iteratively applying the
seven rules.

To compare our heuristic with the previous ones, we implemented our heuristic and
experimented on several matrices. The results show that our heuristic can find equally
good or better implementations in most cases compared with those obtained using Paar’s
and Boyar-Peralta’s heuristics. For instance, we find an implementation of MAES (the
MixColumns matrix of AES) using 92 s-Xor operations, which performs equally good as the
previous best result of MAES under g-Xor metric [Max19]. Moreover, an implementation
under s-Xor metric is a sequence of in-place instructions. Therefore, on platforms equipped
with invariably 2-operand instructions, our implementation is quite straightforward for
compiling since they need no extra auxiliary registers and additional copy instructions.
Thus, our heuristic enjoys an extra advantage that it can be very friendly for bit-sliced
implementations of linear layers on software. Similar reasoning deduces the advantage
of our in-place instructions for the quantum implementations of linear layers in terms of
the number of qubits and gates needed. Also, since an invertible matrix and its inverse
share the same matrix decomposition length (in terms of the number of type-3 elementary
matrices) [BKL16, Köl19], they have the same implementation cost under s-Xor metric.
As a direct application, the inverse MixColumns matrix used in AES can be implemented
with 92 Xor’s.

All the source code of this paper is available at https://github.com/xiangzejun/
Optimizing_Implementations_of_Linear_Layers.

Structure of the Paper. The paper is structured as follows. Section 2 presents some
backgrounds and introduces related work. Strategies to obtain matrix decompositions
adopted in our heuristic are presented in Sect. 3. Section 4 proposes several rules to help
optimize a matrix decomposition. Section 5 describes our heuristic search algorithm in
detail, and the applications of this heuristic to a large set of matrices. At last, Section 6
discusses and concludes the paper.

2 Preliminaries
We first present some notations used throughout the paper.

2.1 Backgrounds
Elementary Operations. There are three types of operations that are called elementary
operations in matrix theory, which are

1. Interchange two rows (columns), which will be referred to as type-1 elementary
operations.

https://github.com/xiangzejun/Optimizing_Implementations_of_Linear_Layers
https://github.com/xiangzejun/Optimizing_Implementations_of_Linear_Layers

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao and Shasha Zhang 123

F2 the finite field with two elements 1 and 0.
F2s the finite field with 2s elements.
Fl

2 the vector space of all l-dimensional vectors over F2.
Fl

2s the vector space of all l-dimensional vectors over F2s .
GL(n,F2) all n-by-n invertible matrices over F2.
GL(n,F2)l×l all l-by-l matrices with their elements being matrices in GL(n,F2).
In the n-by-n identity matrix over F2.
I the identity matrix over F2 if the order is clear from the context.

E(i↔ j) the resulting matrix by exchanging the ith and jth row of an identity
matrix (a type-1 elementary matrix).

E(i + j) the resulting matrix by adding the jth row to the ith row of an identity
matrix (a type-3 elementary matrix).

2. Multiply a row (column) with a nonzero number, which will be referred to as type-2
elementary operations.

3. Add a row (column) to another one multiplied by a nonzero number, which will be
referred to as type-3 elementary operations.

Thus, concerning both row and column operations, there are in total six types of elementary
operations.

Elementary Matrix and Matrix Decomposition. If an elementary operation is performed
on an identity matrix, the resulting matrix is called an elementary matrix. Thus, there
are three types of elementary matrices, referred to as type-1, type-2 and type-3, which
correspond to the three types of elementary operations. Since elementary operations are
invertible transformations, all elementary matrices are invertible matrices. Moreover, the
inverse of an elementary matrix is also an elementary matrix. Note that performing an
elementary operation on matrix M can be simulated by left-multiplying or right-multiplying
the corresponding elementary matrix. For example, adding the jth row to the ith row of
M can be simulated as left-multiplying M by E(i + j) and adding the ith column of M to
the jth column can be simulated as right-multiplying M by E(i + j).

Theorem 1 (Theorem 1.2.16 in [Art11]). Any invertible matrix can be transformed into
an identity matrix using elementary row and/or column operations. Thus, any invertible
matrix can be decomposed as a product of elementary matrices.

Linear Algebra in F2. Since the only nonzero element in F2 is 1, if we consider a matrix in
GL(n,F2), type-2 elementary operations make the matrix unchanged and type-3 elementary
operations are equivalent to adding a row (or a column) to another. Therefore, the type-2
elementary operations are not concerned in the rest of the paper.

Corollary 1. Any matrix in GL(n,F2) can be transformed into an identity matrix by
applying a series of type-1 and type-3 elementary row and/or column operations. Thus,
any matrix in GL(n,F2) can be decomposed as a product of type-1 and type-3 elementary
matrices.

It is clear that the matrix multiplication does not satisfy the commutative law, i.e.,
M1M2 6= M2M1 for two general matrices M1 and M2. However, we could still study
commutative properties of some special elementary matrices over F2 to help find a matrix
decomposition in the following sections. Given two elementary matrices E(i + j) (type-3)
and E(k ↔ l) (type-1), we have the following property.

124 Optimizing Implementations of Linear Layers

Property 1. E(i + j)E(k ↔ l) = E(k ↔ l)E(fk,l(i) + fk,l(j)), E(k ↔ l)E(i + j) =
E(fk,l(i) + fk,l(j))E(k ↔ l) where

fk,l(x) =

 k, if x = l,
l , if x = k,
x, else.

Note that Property 1 was presented in [Köl19] in a slightly different form (Equation
(1) of [Köl19]). Property 1 reveals that the multiplication between a type-1 elementary
matrix and a type-3 elementary matrix in GL(n,F2) is commutative up to a modification
on the type-3 elementary matrix. According to Corollary 1, any matrix M in GL(n,F2)
can be decomposed as a product of type-1 and type-3 elementary matrices. Moreover,
according to Property 1, we can always rearrange the order of elementary matrices (up
to modifications on the type-3 elementary matrices). Accordingly, we have the following
theorem.

Theorem 2. Any matrix M in GL(n,F2) can be decomposed as:

M = E(it + jt) · · ·E(i1 + j1)E(i′s ↔ j′s) · · ·E(i′1 ↔ j′1). (1)

Xor metrics. We present three metrics used in the literature to evaluate the implemen-
tation cost of a linear matrix. The d-Xor metric was first introduced in [KPPY14]. It
counts the number of 1’s in a matrix as a measurement of lightweight diffusion layer.

Definition 1 (d-Xor [KPPY14]). Given an m × n matrix Mm×n over F2, the d-Xor
count is defined as wt(Mm×n)−m, where wt(Mm×n) is the Hamming weight of Mm×n,
i.e., the number of 1’s in M .

A lightweight matrix is a matrix with very sparse nonzero elements under d-Xor metric.
Since this metric is intuitive and easy to compute, it has been adopted in the design of new
lightweight diffusion layers [SKOP15, LS16, LW16, SS16]. However, the d-Xor metric
corresponds to the very naive implementation of a linear matrix, i.e., implementing the
linear matrix according to its algebraic expressions. This may compute an intermediate
value several times, thus resulting in an overestimation of the Xor operations needed.

Definition 2 (g-Xor). Given a linear matrix Mm×n over F2, each row of M corresponds
with a linear expression defined on the n inputs. The implementation of M can be viewed as
a sequence of Xor operations xi = xj1 ⊕xj2 , where 0 ≤ j1, j2 < i and i = n, n + 1, ..., t− 1.
x0, x2, ..., xn−1 are the n inputs and the m outputs are a subset of all xi’s. The g-Xor
count is defined as the minimal number of such operations xi = xj1 ⊕ xj2 that completely
compute the m outputs.

Note that the g-Xor metric has been used in several heuristics [Paa97, BMP13, LSL+19].
Finding the optimal implementation of a linear matrix under g-Xor metric has been
proved to be an NP-hard problem, i.e., the Shortest Linear Program (SLP) problem by
Boyar et al. in [BMP13]. As a result, there are no efficient algorithms to find the optimal
implementation under this metric for large linear matrices (e.g., 16 × 16 and 32 × 32
matrices) used in symmetric-key cryptography. Another metric used in the literature is
the s-Xor count which was introduced in [JPST17].

Definition 3 (s-Xor [JPST17]). Let M ∈ GL(n,F2) be an invertible matrix. Assume
x0, x1, ..., xn−1 are the n input bits of M . It is always possible to perform a sequence of
Xor instructions xi = xi⊕xj with 0 ≤ i, j ≤ n− 1, such that the n input bits are updated
to the n output bits. The s-Xor count of M is defined as the minimal number of Xor
instructions to update the inputs to the outputs.

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao and Shasha Zhang 125

Clearly, the d-Xor count of a matrix is always larger than or equal to its g-Xor
count. Similarly, the s-Xor count is larger than or equal to the g-Xor count, as we can
easily transform the in-place Xor instruction xi = xi ⊕ xj to an out-of-place instruction
tk = xi ⊕ xj by introducing a new variable tk. It was conjectured that the s-Xor count
is smaller than or equal to the d-Xor count in [JPST17]. However, Lukas disproved
this conjecture by presenting a counterexample in [Köl19]. Although, the g-Xor count is
the smallest one among the three metrics theoretically, it is not always easy to find the
best implementations under the g-Xor metric. Our heuristic reveals that it is possible
to find better implementations under the s-Xor metric, and this may attribute to the
properties of s-Xor detected in this paper. Moreover, the in-place feature of the Xor
instructions makes the s-Xor metric enjoy an extra advantage that it never uses temporary
registers to store intermediate values, and this feature may be friendly when considering a
bit-sliced software implementation. Concretely, for the instruction set architecture (ISA)
of many platforms, typically the micro-controllers of RISC architectures that have 16-bit
instructions, such as Atmel AVR, TI MSP430, and some versions of ARM Thumb, the CPU
has invariably 2-operand instructions. For 2-operand instructions, the destination register is
one of the source registers, and in a format of ‘operator destination/source1, source2’.
Thus, a logic computation, e.g., t = x1 ⊕ x2, needs at least two instructions and three
registers. That is, first ‘move t, x1’; then ‘xor t, x2’. Therefore, on these platforms, in-place
implementation, e.g., x1 = x1 ⊕ x2, is quite straightforward for compiling and requires
no additional move instructions and extra registers. Besides, in-place implementations
can be more friendly in terms of the G-cost metric for implementing the algorithm using
quantum circuits, where G-cost measures the total number of gates required. Apart from
G-cost, the considered metrics for quantum implementation includes the circuit depth and
width (DW-cost). For example, for the quantum implementation of the MixColumns of AES
in [JNRV19], Jaques et al. translated an in-place implementation into a quantum circuit
with 1108 controlled-NOT (CNOT) gates, full circuit depth of 111, and a circuit width
of 128. Whereas, the authors translated the 92-Xor-gate out-of-place implementation
presented in [Max19] into a quantum circuit with 1248 CNOT gates, full circuit depth of
22, and a circuit width of 318. From these experiments, the authors concluded that for a
depth restricted setting, Maximov’s low-depth version seems better. However, without the
depth restriction, it is advantageous to use the in-place version to minimize both G-cost
and DW-cost metrics.

2.2 Related Work
We give an overview of several heuristics for searching optimized implementations in this
subsection.

Since it is impractical to always find the optimal implementations under g-Xor and/or
s-Xor metrics for large linear layers, a lot of efforts have been paid on optimizing building
blocks of linear layers. In the case of an MDS matrix Ml×l whose entries are over F2s or
GF(2,F2), computing each element of the output vector y = Mx requires the computations
of l multiplications and (l − 1) additions of s-tuples (as each entry in an MDS matrix is
nonzero). As (l − 1) additions of s-tuple require (l − 1)s Xor operations, this part of the
cost is treated as fixed [KPPY14], and spare efforts are paid to optimize the multiplication
when designing lightweight linear diffusion layer [SKOP15, LS16, LW16, BKL16, SS16,
LW17, JPST17, LSL+19]. To optimize the implementation of the multiplication, one can
try to use a different basis if the matrix entries are finite filed elements, or reuse the
intermediate values. All these efforts are the so-called local optimization and they treat
the costs of additions of s-tuples as fixed. For instance, if we consider the matrix MAES ,
the fixed cost is 4 × 3 × 8 = 96 Xor operations. However, the best-known result only
needs 92 Xor operations [Max19] after being globally optimized. This implies if only local
optimization is performed on MAES , the fixed cost (96 Xor operations) is larger than the

126 Optimizing Implementations of Linear Layers

globally optimized cost (92 Xor operations). This is indeed the motivation of [KLSW17]
where Kranz et al. applied several existing global optimization heuristics to optimize the
implementations of a large set of already known and newly designed matrices.

One of the global optimization heuristics discussed in [KLSW17] was proposed by
Paar in [Paa97], where the author presented two algorithms to optimize any matrix over
F2. Given a matrix Mm×n over F2 and an input vector x = (x0, x1, ..., xn−1), the output
y = Mx contains m linear functions. Paar’s algorithm first computes the number of
occurrence of all xi + xj(i 6= j = 0, 1, ..., n− 1) in all the m linear functions and replace
the maximum occurrence by a new variable xn. After this step, those m linear functions
are defined on n + 1 variables, and the problem is reduced to implementing an m× (n + 1)
matrix. This new m× (n + 1) matrix is processed similarly in the next steps until the m
linear forms are completely computed. The core parts of Paar’s two algorithms are the
same, with the only difference being that they apply different strategies when there are
multiple (xi + xj)′s that occur the same maximum time. Paar’s first algorithm which is
denoted as Paar1 chooses the maximum occurrence that appears first, while the second
algorithm which is denoted as Paar2 checks all possibilities. Thus, the algorithm Paar2 is
more time-consuming with the advantage that it may find better implementations. Notably,
Paar’s algorithms are cancellation-free, i.e., the cancellation of two same input bits is out
of the range of Paar’s heuristic and this somehow limits the use case of the two algorithms.

Another discussed heuristic was proposed by Boyar and Peralta in [BP10], where the
authors keeps a record of a so-called distance vector whose ith coordinate is defined as the
minimal number of Xor operations required to compute the ith linear function based on
a base of known functions. Initially, the n input variables are set as the initial base and
the ith coordinate of the distance vector equals to the Hamming weight of the ith row
of M minus one. Then Boyar-Peralta’s heuristic proceeds by Xoring two existing linear
functions that minimize the sum of the new distance vector. Boyar-Peralta’s heuristic has
lots of variants [BFI19, TP20, ME19] that differ in tie-breaking phase, i.e., when there
are multiple choices that minimize the sum of the new distance vectors at the same time.
Boyar-Peralta’s heuristic is not quite efficient on dense matrix since the step choosing two
existing linear functions must try all possibilities to compute the new distance vectors.
Later in [VSP18], Visconti et al. extended Boyar-Peralta’s heuristic to the applications of
dense matrices based on an observation that M̄ (the complement of M) is sparse if M is
dense. Thus, if we can efficiently implement M̄ , M can be implemented by Xoring each
row of M̄ with a common bit which is the sum of all input bits.

Note that both Paar’s and Boyar-Peralta’s (and its variants) heuristics are based
on g-Xor metric. In [JPST17], the authors proposed to use s-Xor count to measure
the cost of implementing linear transformations over Fs

2. The in-place update used in
s-Xor is an invertible operation, and this has facilitated the meet-in-the-middle (MITM)
search algorithm presented in [JPST17] to find optimal implementations of small invertible
matrices. The MITM search algorithm starts by enumerating all possible operations
xi = xi ⊕ xj and storing the resulting linear functions as nodes of a graph with original
inputs being its root node. At the same time, the search algorithm enumerates all possible
operations yk = yk ⊕ yl and store the resulting linear functions as nodes of another
graph with original outputs being its root node. These two graphs are expanded in a
breadth-first way until the shortest path connecting the two roots through a matching is
found. This algorithm is essentially an exhaustive search, and it indeed finds the optimal
implementation of a matrix under s-Xor metric. However, this search algorithm can only
be applied to small linear matrices due to its large memory consumption. Thus, this
algorithm is only used to optimize finite field multiplications with constants (since the
corresponding matrices are always small-scale in practical applications), and based on
these optimized finite field multiplications, the authors can find some new lighter MDS
matrices and improve the implementations of several previous MDS matrices.

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao and Shasha Zhang 127

Bernstein proposed in [JB09] an algorithm to optimize linear maps modulo 2. His
heuristic is to recursively eliminate the largest row in reverse lexicographic order of a matrix
by the second largest row until each column of the matrix contains at most one nonzero
element, then this whole elimination process is converted to a sequence of instructions.
Bernstein’s elimination is essentially performing elementary operations on the target matrix.
Motivated by Bernstein’s and Jean et al.’s work, we propose a new heuristic under s-Xor
metric that can be used to optimize linear matrices with size up to 32.

3 Matrix Decomposition in GL(n, F2)
As showed in Sect. 2.1, any matrix in GL(n,F2) can be decomposed as a product of type-1
and type-3 elementary matrices. In this section, we present three methods to decompose
any given matrix in GL(n,F2).

3.1 Elementary Row (Column) Operation Based Matrix Decomposi-
tion

Note that any invertible matrix in GL(n,F2) can be transformed into an identity matrix
by a row reduction (see Sect. 1.2 of [Art11]), which can be simulated as left-multiplying
the corresponding elementary matrices. Thus, we can find a series of type-1 and type-
3 elementary matrices E1E2 · · ·Es+t for any given matrix M in GL(n,F2), such that
E1E2 · · ·Es+tM = I. Where Ek is a type-1 or type-3 elementary matrix, and there
are s type-1 elementary matrices and t type-3 elementary matrices among E1E2 · · ·Es+t.
Moreover, we can rearrange the order of E1E2 · · ·Es+t according to Property 1 and get

E(i′1 ↔ j′1) · · ·E(i′s ↔ j′s)E(i1 + j1) · · ·E(it + jt)M = I.

Thus,
M = E(it + jt)−1 · · ·E(i1 + j1)−1E(i′s ↔ j′s)−1 · · ·E(i′1 ↔ j′1)−1. (2)

Note that elementary matrices in GL(n,F2) are involutions, i.e., E(j + i)−1 = E(j + i)
and E(i↔ j)−1 = E(i↔ j). Therefore, Equation (2) can be simplified as

M = E(it + jt) · · ·E(i1 + j1)E(i′s ↔ j′s) · · ·E(i′1 ↔ j′1),

which is consistent with the matrix decomposition form presented in Sect. 2.1. In the rest
of this paper, we will refer to this matrix decomposition method as Strategy 1.

Similar to the elementary row operation based matrix decomposition, any matrix
in GL(n,F2) can be transformed into an identity matrix by a column reduction (i.e.,
elementary column operations), and we will refer to the method using elementary column
operations as Strategy 2.

3.2 Hybrid Elementary Operation Based Matrix Decomposition
We present in this subsection a matrix decomposition method that uses both elementary
row and column operations. The motivation of this strategy lies in that the implementation
cost of a matrix depends only on the number of type-3 elementary matrices in its matrix
decomposition (this will be explained in Sect. 4). Note that the main role of type-3
elementary matrices is to eliminate 1’s in a given matrix such that it can be transformed
into an identity matrix in the end. Thus, we try to reduce as many 1’s as possible each
time when performing an elementary operation. Specifically, we consider all possible type-3
elementary row and column operations in each step, and choose the one that reduces the
most number of 1’s in the resulting matrix. However, this may cause two problems.

128 Optimizing Implementations of Linear Layers

1. In each step, there may exist multiple choices of elementary operations that all
minimize the number of 1’s in the resulting matrices. When this happens, we
randomly pick one of the best choices rather than choosing the one that appears
first. This strategy may help us find better implementations since we can run the
procedure multiple times and choose the best one. Note that traversing all candidate
elementary operations in each step will cause the procedure prohibitively slow, and
deterministically choosing one candidate will prohibit any chance to find better
solutions. By allowing randomness, we obtain more flexibility to make the trade-off
between the expandable time and the quality of the solutions.

2. In an intermediate step, it is possible that performing every elementary operation will
result in a matrix of which the number of 1’s is not reduced. In that case, without
additional strategy, the procedure may fall into an infinite loop (see Example 1). We
adopt two strategies to solve this problem. The first strategy is to turn to apply
Strategy 1 and the second one is to turn to apply Strategy 2 for the following
procedure. In the rest of this paper, we will refer to these two strategies as Strategy
3-1 and Strategy 3-2 respectively.

Example 1. The following 6× 6 matrix M will trigger the second problem. The number
of 1’s contained in this matrix is 14, and no matter which elementary row or column
opration is performed on M , the number of 1’s in the resulting matrix will be greater than
or equal to 14, i.e., the best choice in this step can reduce zero 1’s.

M =


0 0 1 1 0 0
1 0 0 0 0 1
0 1 0 0 1 1
0 0 1 0 1 0
1 1 0 0 0 0
1 0 0 1 1 0

 .

Assuming that the fourth (the rows being numbered from 1 to 6) row is added to the third
row in this step, we will get M1 containing 14 1’s as listed in the following.

M1 =


0 0 1 1 0 0
1 0 0 0 0 1
0 1 1 0 0 1
0 0 1 0 1 0
1 1 0 0 0 0
1 0 0 1 1 0

 .

Again, no matter which elementary operation is performed on M1, the resulting matrix
contains greater than or equal to 14 1’s. If we happen to choose adding the fourth row to
the third row in this step, M1 will be transformed back to M , thus leading to an infinite
loop.

Since both elementary row and column operations are used to process the matrix
in Strategy 3-1 and Strategy 3-2, we can find the corresponding elementary matrices
E1E2 · · ·Ek and E′1E′2 · · ·E′l such that

E1E2 · · ·EkME′1E′2 · · ·E′l = I.

Thus,
M = E−1

k · · ·E
−1
2 E−1

1 E
′−1
l · · ·E

′−1
2 E

′−1
1

= Ek · · ·E2E1E′l · · ·E′2E′1

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao and Shasha Zhang 129

After rearranging the order of Ek · · ·E2E1E′l · · ·E′2E′1, we can get that

M = E(it + jt) · · ·E(i1 + j1)E(i′s ↔ j′s) · · ·E(i′1 ↔ j′1),

where k + l = s + t. Appendix A presents a small example to illustrate the process of this
strategy.

4 Reducing the Implementation Cost of Linear Matrices
In this section, we first introduce how to convert a decomposition to an implementation
for a given matrix, then we present several properties of elementary matrix multiplication
in GL(n,F2) which are exploited to reduce the implementation cost.

4.1 Converting Matrix Decomposition to Matrix Implementation
Let M ∈ GL(n,F2) be a given invertible matrix. According to Sect. 3, M can be
decomposed as

M = E(it + jt) · · ·E(i1 + j1)E(i′s ↔ j′s) · · ·E(i′1 ↔ j′1).

In order to implement the linear transformation defined by M , we have to design a
circuit to compute the output y = Mx for any given input x ∈ Fn

2 . Thus, it is equivalent
to implement y = E(it + jt) · · ·E(i1 + j1)E(i′s ↔ j′s) · · ·E(i′1 ↔ j′1)x. Note that the result
of the matrix-vector multiplication E(i′1 ↔ j′1)x is just an exchange of the two bits xi′

1
, xj′

1
of x. Exchanging two bits is a hard-wired circuit in hardware implementation which has a
negligible cost. However, this is not entirely free in software implementation. But we can
hard code type-1 elementary operations, then a shuffle among variables is appended. For
large matrices, this final shuffle should take only a small fraction of the total cost (also much
lower than the hidden cost in out-of-place implementation). Thus, the implementation
cost of E(i′s ↔ j′s) · · ·E(i′1 ↔ j′1)x is omitted. Let x′ = E(i′s ↔ j′s) · · ·E(i′1 ↔ j′1)x, and
the overall cost of M comes from the implementation of E(it + jt) · · ·E(i1 + j1)x′.

Recall that E(i + j) is a type-3 elementary matrix. Let’s consider the case of matrix-
vector multiplication E(i1 + j1)x′. This will result in a vector of which the i1th bit is
the Xoring of the i1th and j2th bits of x′ and other bits are the same as x′’s. Therefore,
implementing E(i1 +j1)x′ requires one Xor operation, and E(it +jt) · · ·E(i1 +j1)x′ needs
an overall cost of t Xor operations. From this point of view, the overall implementing cost
of M depends on the number of type-3 elementary matrices in the matrix decomposition
of M , and optimizing the implementation of a matrix is equivalent to search a matrix
decomposition with as fewer type-3 elementary matrices as possible.

Since E(i′s ↔ j′s) · · ·E(i′1 ↔ j′1) has a negligible implementation cost, we will assume
in the rest of this paper that M can be decomposed as M = E(it + jt) · · ·E(i1 + j1), i.e.,
the type-1 elementary matrices are omitted for the sake of simplicity.

4.2 Reducing Implementing cost
In this subsection, we propose several rules of matrix multiplication in GL(n,F2) which
can be used to efficiently reduce the number of type-3 elementary matrices in the matrix
decomposition.

Property 2. Let E(i↔ j) and E(i + j) denote a type-1 and type-3 elementary matrices
in GL(n,F2) respectively, then the following equations hold.

R1 E(k + i)E(k + j)E(i + j) = E(i + j)E(k + i),
R2 E(i + k)E(k + j)E(i + j) = E(k + j)E(i + k),

130 Optimizing Implementations of Linear Layers

R3 E(i + k)E(j + k)E(i + j) = E(i + j)E(j + k),
R4 E(j + k)E(i + k)E(i + j) = E(i + j)E(j + k),
R5 E(k + j)E(k + i)E(i + j) = E(i + j)E(k + i),
R6 E(k + j)E(i + k)E(i + j) = E(i + k)E(k + j),
R7 E(j + i)E(i + j) = E(i↔ j)E(j + i).

The proof of Property 2 is presented in Appendix B. All the above seven rules are built
on the fact that Xoring the same two bits will cancel each other, thus we can remove one
type-3 elementary matrix when two bits canceling each other. Each of the seven rules
can reduce one type-3 elementary matrix, thus reduce the implementation cost of linear
layers. This inspires us to identify as many patterns matching Property 2 as possible
for a given matrix decomposition. However, it requires to identify three (R1-R6) or two
(R7) consecutive elementary matrices in the matrix decomposition to match the patterns
presented in Property 2, which limits the optimization of the whole matrix in the fact that
consecutive elementary matrices satisfying those patterns are far from enough to derive a
good implementation.

However, there exist a lot of matrices satisfying those patterns in Property 2 which are
separated by some other elementary matrices and thus not adjacent. As is known that
matrix multiplication does not satisfy the commutative law generally, we can not simply
interchange the positions of elementary matrices to make them adjacent. However, we can
still find some special cases when the commutative law holds for the elementary matrix
multiplication in (n,F2).

Property 3. Let i, j, k, l be integers and i 6= j 6= k 6= l, then we have

1. E(k + l)E(i + j) = E(i + j)E(k + l),
2. E(i + j)E(k + j) = E(k + j)E(i + j),
3. E(i + j)E(i + k) = E(i + k)E(i + j).

Property 3 presents three cases when the multiplications of elementary matrices are
commutative. Thus, if the identified match patterns are not adjacent, Property 3 can
be used to interchange the positions of elementary matrices and try to make the match
pattern adjacent, and thus are exploited to reduce the implementation cost. The whole
procedure to reduce the number of type-3 elementary matrices using the rules listed in
Property 2 is presented in Algorithm 1. An example is also listed here to illustrate the
usage of Property 2.

Example 2. Let M = E(3+2)E(3+4)E(3+1)E(2+1), i.e., M is decomposed as a product
of four elementary matrices. Each of the three consecutive matrices E(3+2)E(3+4)E(3+1)
and E(3+4)E(3+1)E(2+1) does not match the patterns presented in Property 2. However,
it can be observed that the multiplication between E(3 + 2) and E(3 + 4) is commutable
according to Property 3. Thus, M can be rewritten as M = E(3+4)E(3+2)E(3+1)E(2+1)
and the last three consecutive matrices satisfy the pattern R1 presented in Property 2. As
a result, M can be decomposed as M = E(3 + 4)E(2 + 1)E(3 + 2), based on which the
implementation cost of M can be reduced by one Xor operation.

5 Search Algorithm and Applications
5.1 Heuristic Search Algorithm
For any given matrix M in GL(n,F2), an initial matrix decomposition can be obtained
using one of the four strategies (Strategy 1, 2, 3-1 and 3-2) introduced in Sect. 3. Then this

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao and Shasha Zhang 131

Algorithm 1 Reduce Matrix Decomposition
Input: The matrix decomposition seq = E(it + jt) · · ·E(i1 + j1) , Et · · ·E1 for a given

matrix M ;
Output: Reduced Decomposition Reduce(seq) of M ;

1: flag ← True;
2: l = t;
3: while flag do
4: flag ← False;
5: for all possible combinations Ea, Eb, Ec with l ≥ a > b > c ≥ 1 in seq do
6: if EaEbEc matches one of the patterns R1-R6 in Property 2 then
7: if Ea, Eb, Ec can be adjacent by swapping according to Property 3 then
8: seq ← rewrite the decomposition to let Ea, Eb, Ec be adjacent;
9: reduce seq according to R1-R6, and update seq;

10: l← l − 1;
11: flag ← True;
12: Break;
13: end if
14: end if
15: end for
16: for all possible combinations Ea, Eb with l ≥ a > b ≥ 1 in seq do
17: if EaEb matches the pattern R7 in Property 2 then
18: if Ea, Eb can be adjacent by swapping according to Property 3 then
19: seq ← rewrite the decomposition to let Ea, Eb be adjacent;
20: reduce seq according to R1-R6, and update seq;
21: l← l − 1;
22: flag ← True;
23: Break;
24: end if
25: end if
26: end for
27: end while

return seq;

132 Optimizing Implementations of Linear Layers

initial decomposition can be optimized by Algorithm 1. Clearly, different strategies result in
different initial decompositions, which further lead to different optimized implementations.
Our experiment results show that the hybrid strategies, i.e., Strategy 3-1 and Strategy 3-2,
are better (in terms of the Xor count of the optimized implementation) than Strategy 1
and Strategy 2 in most cases, and this might attribute to the shorter initial decompositions
of Strategy 3-1 and Strategy 3-2. Thus, Strategy 3-1 and Strategy 3-2 will be adopted in
our search algorithm. Moreover, the differences between these four strategies reveal that
the specific form of a matrix decomposition has a great impact on the resulting optimized
implementation. This has motivated the design of a heuristic search algorithm presented
in Algorithm 2.

Intuitively, there are only four matrix decomposition strategies presented in Sect. 3 which
result in four equivalent matrix decompositions. Thus, the best implementation is the one
with fewest type-3 elementary matrices after being reduced by Algorithm 1. However, we
present a method here to generate far more than four equivalent matrix decompositions, such
that the best implementation is chosen from a large set of reduced matrix decompositions
rather than four. This has the advantage that a better implementation may be obtained.
The core idea of this method is to pick a segment of matrices from the decomposition
of a given matrix, then replace this segment by another equivalent segment, thus a new
decomposition is obtained.

Specifically, we denote the decomposition of M as M = E(it + jt) · · ·E(i1 + j1) ,
EtEt−1 · · ·E1, where Ei is the abbreviation of a type-3 elementary matrix. Our heuristic
search algorithm starts by choosing g (g is set to t initially) consecutive elementary
matrices from EtEt−1 · · ·E1 which is denoted as Eg+u, Eg−1+u, · · · , E1+u (0 ≤ u ≤ t− g),
thus M = Et · · ·Eg+u+1Eg+u · · ·E1+uEu · · ·E1. Then a new matrix M ′ is computed as
M ′ = Eg+uEg−1+u · · ·E1+u and we decompose M ′ using Strategy 3-1 or 3-2 as M ′ =
E′vE′v−1 · · ·E′1. Therefore, we can get an equivalent matrix decomposition of M as

M = Et · · ·Eg+u+1E′v · · ·E′1Eu · · ·E1. (3)

Then, this new decomposition is reduced by Algorithm 1. If the reduced matrix decomposi-
tion has t′ type-3 elementary matrices with t′ ≥ t, we turn to choose another g consecutive
elementary matrices from M = EtEt−1 · · ·E1. If all choices of possible g consecutive
elementary matrices are tried and all get worse results, we set g = g − 1 and repeat the
above procedure. If instead t′ < t, we update the matrix decomposition of M by this new
reduced result and repeat the above procedure by setting g = t′.

The most time-consuming part of this heuristic is to pick out a segment of matrices
from the decomposition of M and replace this part by another segment. Since Algorithm 2
adopts Strategy 3-1 or Strategy 3-2 for matrix decompositions and these two strategies
randomly pick an elementary operation if there are multiple choices that are equally good,
the search algorithm will output different results each time when it is called. Thus, we can
run the procedure several times and return the best result.

5.2 Applications
In this subsection, we apply our heuristic to a large set of matrices. To present a thorough
comparison with Paar’s and Boyar-Peralta’s heuristics, we have searched implementations
of those matrices that were optimized in [KLSW17] using Paar’s and Boyar-Peralta’s
heuristics. The results are listed in Table 1 and Table 2. Experiment results reveal that
our heuristic performs equally good or gains improvement compared with Paar’s and
Boyar-Peralta’s heuristics on 16 × 16 matrices. This implies that even in the simplest
use case of 16× 16 matrices, there is still room for improvements. In the case of 32× 32
matrices, our heuristic can find better implementations in most cases. Particularly, we can
also find an implementation of the matrix used in AES MixColumns using only 92 Xor

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao and Shasha Zhang 133

Algorithm 2 Search Optimized Matrix Decomposition
Input: M ∈ GL(n,F2);
Output: Optimized Decomposition of M ;

1: Decompose M as EtEt−1 · · ·E1; . Strategy 3-1 or 3-2
2: seq ← Et, Et−1, · · · , E1;
3: g ← t + 1;
4: while g ≥ 2 do
5: g = g − 1;
6: for i = 0, t− g do
7: seq1 = Et, · · · , Ei+g−1;
8: seq2 = Ei+g, · · · , Ei+1;
9: seq3 = Ei, · · · , E1;

10: M ′ = Ei+g · · ·Ei+1;
11: Decompose M ′ as E′v · · ·E′1; . Strategy 3-1 or 3-2
12: seq′2 = E′v, · · · , E′1; . Decompose M ′

13: seq′ = seq1 + seq′2 + seq3;
14: seq∗ ← Reduce(seq′) . Algorithm 1
15: if |seq| > |seq ∗ | then
16: seq = seq∗;
17: g = |seq ∗ |+ 1;
18: break;
19: end if
20: end for
21: end while

return seq;

operations (see in Table 3), which is equally good concerning the number of required Xor
operations compared with previous best results.

With regard to 64× 64 matrices, it seems that the matrix size is too large such that our
procedure can not always stop in a reasonable time. However, if Algorithm 2 can return
implementations for 64× 64 matrices, they are always much better than previous results.

5.3 On Inverse Matrices
As pointed in [BKL16], the s-Xor count is invariant under taking the inverse. Moreover,
the implementation of a matrix can be easily converted to the implementation of its
inverse and they share the same cost. In the design of efficiently implementable linear
layers, a sparse matrix is more desirable to reach this goal, such as the linear layer used
in AES which is designed with this idea in mind. However, the inverse matrix of AES
MixColumns is much more complex, and it is often expected to be less efficient. Note that
Paar’s and Boyar-Peralta’s heuristics deal with a matrix and its inverse independently,
and this will result in different implementations. However, our heuristic is based on
matrix decomposition, and the inverse of a matrix M can be decomposed according to the
decomposition of M . That is, when M can be decomposed as M = E0E1 · · ·En−1, M−1

can be decomposed as M−1 = E−1
n−1 · · ·E

−1
1 E−1

0 . This implies the implementation cost
of M−1 equals the cost of M obtained using our heuristic and s-Xor metric. A direct
application of this property is that the AES inverse MixColumns can be implemented using
only 92 Xor operations (see Table 4). This also sheds some light on the design of linear
layers since the community used to design lightweight linear layers using extremely sparse
matrices. This property may inspire us to design linear layers from the space of all possible
matrices rather than focusing on sparse matrices.

134 Optimizing Implementations of Linear Layers

Table 1: Implementation cost of cipher matrices under different optimization heuristics.

Cipher Size [KLSW17]1 [KLSW17]2 [KLSW17]3 [BFI19] This paper

Fox mu8 [JV04] 64 611 - 594 592 -
Grostl [GKM+09] 64 493 - 475 460 -
Khazad [BR00b] 64 488 - 507 492 366
Whirlpool [BR00c] 64 481 - 465 464 -
Aes4 [DR02] 32 108 108 97 95 92
Anubis [BR00a] 32 122 121 113 102 99
Clefia M0 [SSA+07] 32 121 121 106 102 98
Clefia M1 [SSA+07] 32 121 121 111 110 103
Fox mu4 [JV04] 32 144 143 137 131 136
Twofish [SKW+98] 32 151 149 129 125 111
Joltik [JNP14] 16 52 48 48 47 44
SmallScale Aes
[CMR05]

16 54 54 47 45 43

Whirlwind M0
[BNN+10]

32 218 218 212 210 183

Whirlwind M1
[BNN+10]

32 246 244 235 234 190

Qarma128 [Ava17] 32 48 48 48 48 48
Midori [BBI+15] 16 24 24 24 24 24
Prince M0, M1
[BCG+12]

16 24 24 24 24 24

PrideL0 − L3
[ADK+14]

16 24 24 24 24 24

Qarma64 [Ava17] 16 24 24 24 24 24
Skinny64 [BJK+16] 16 12 12 12 12 12
1 This column presents the results in [KLSW17] obtained by Paar1’s heuristic.
2 This column presents the results in [KLSW17] obtained by Paar2’s heuristic.
3 This column presents the results in [KLSW17] obtained by Boyar-Peralta’s heuristic.
4 [Max19] presents a 92-Xor implementation of AES.

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao and Shasha Zhang 135

Table 2: Implementation cost of newly designed matrices under different optimization
heuristics

Matrix [KLSW17]1 [KLSW17]2 [KLSW17]3 [BFI19] This paper

4 x 4 matrices over GL(4,F2)

[SKOP15] 50 48 48 46 44
[LS16] 49 46 44 44 44
[LW16] 48 47 44 44 44
[BKL16] 48 47 42 42 41
[SS16] 46 45 43 42 41
[JPST17] 48 47 43 42 41

[SKOP15](Involutory) 52 48 48 47 44
[LW16](Involutory) 51 48 48 46 44
[SS16] (Involutory) 50 48 42 40 38
[JPST17](Involutory) 51 47 47 46 41

4 × 4 matrices over GL(8,F2)

[SKOP15] 100 98 100 94 90
[LS16] 116 116 112 110 121
[LW16] 102 102 102 102 110
[BKL16] 116 112 110 108 114
[SS16] 110 108 107 104 114
[JPST17] 96 95 86 86 82

[SKOP15] (Involutory) 104 101 100 94 91
[LW16] (Involutory) 101 97 91 90 87
[SS16] (Involutory) 110 109 100 98 93
[JPST17] (Involutory) 102 100 91 92 83

8 × 8 matrices over GL(4,F2)

[SKOP15] 210 209 194 192 170
[SS17] 212 212 204 203 182

[SKOP15] (Involutory) 222 222 217 212 185

8 × 8 matrices over GL(8,F2)
[SKOP15] 474 - 467 460 -
[LS16] 464 - 447 443 -
[BKL16] 506 - 498 497 -
[SS17] 447 - 438 436 -
[SKOP15] (Involutory) 430 - 428 419 348
[JPST17] (Involutory) 620 - 599 591 -

136 Optimizing Implementations of Linear Layers

Table 3: An implementation of AES MixColumns with 92 Xor operations.

No. Operation No. Operation No. Operation
0 x23=x23+x31 31 x20=x20+x27 62 x14=x14+x21
1 x31=x31+x15 32 x20=x20+x19 63 x6=x6+x5
2 x12=x12+x4 33 x27=x27+x31 64 x22=x22+x21
3 x13=x13+x21 34 x12=x12+x15 65 x5=x5+x29[y29]
4 x17=x17+x9 35 x27=x27+x3 66 x21=x21+x28
5 x11=x11+x27 36 x3=x3+x11 67 x29=x29+x21[y13]
6 x4=x4+x28 37 x11=x11+x2 68 x21=x21+x13[y21]
7 x21=x21+x5 38 x19=x19+x18 69 x12=x12+x27[y28]
8 x0=x0+x24 39 x11=x11+x10 70 x27=x27+x26
9 x15=x15+x7 40 x10=x10+x18 71 x28=x28+x20[y20]
10 x9=x9+x1 41 x18=x18+x2 72 x20=x20+x4[y12]
11 x14=x14+x6 42 x10=x10+x9[y2] 73 x26=x26+x1
12 x24=x24+x16 43 x2=x2+x9 74 x14=x14+x30[y6]
13 x6=x6+x22 44 x18=x18+x17[y10] 75 x4=x4+x12[y4]
14 x16=x16+x31 45 x17=x17+x25 76 x3=x3+x19[y19]
15 x24=x24+x8 46 x1=x1+x17 77 x19=x19+x27[y11]
16 x18=x18+x26 47 x25=x25+x24 78 x1=x1+x25
17 x22=x22+x30 48 x9=x9+x8 79 x0=x0+x24[y24]
18 x26=x26+x10 49 x24=x24+x15[y0] 80 x1=x1+x0[y25]
19 x8=x8+x23 50 x11=x11+x15[y3] 81 x2=x2+x26[y18]
20 x30=x30+x13 51 x8=x8+x0[y16] 82 x25=x25+x9[y17]
21 x13=x13+x29 52 x15=x15+x23 83 x15=x15+x7[y7]
22 x5=x5+x13 53 x17=x17+x16 84 x7=x7+x23[y15]
23 x29=x29+x4 54 x16=x16+x0 85 x6=x6+x14[y22]
24 x4=x4+x11 55 x0=x0+x31 86 x9=x9+x17[y9]
25 x11=x11+x19 56 x16=x16+x23[y8] 87 x23=x23+x31[y31]
26 x13=x13+x12[y5] 57 x23=x23+x6 88 x26=x26+x18[y26]
27 x19=x19+x23 58 x31=x31+x7 89 x22=x22+x6[y30]
28 x4=x4+x31 59 x31=x31+x22[y23] 90 x17=x17+x0[y1]
29 x12=x12+x20 60 x30=x30+x6[y14] 91 x27=x27+x11[y27]
30 x28=x28+x12 61 x7=x7+x14

x0, x1, ..., x31 are the 32 input bits, and y0, y1, ..., y31 are the 32 output
bits. x0|| · · · ||x7 is the fist byte with x7 being the most significant
bit, i.e., the coefficient of the degree-7 term of the finite field element
in polynomial representation.

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao and Shasha Zhang 137

Table 4: An implementation of AES inverse MixColumns with 92 Xor operations.

No. Operation No. Operation No. Operation
0 u27=u27+u3 31 u14=u14+u22 62 u28=u28+u12
1 u1=u1+u24 32 u23=u23+u30 63 u4=u4+u23
2 u30=u30+u22 33 u23=u23+u15 64 u11=u11+u31[v19]
3 u26=u26+u10 34 u31=u31+u22 65 u5=u5+u28
4 u31=u31+u23 35 u8=u8+u31 66 u3=u3+u11
5 u9=u9+u1 36 u24=u24+u23 67 u4=u4+u3
6 u22=u22+u6 37 u8=u8+u24 68 u13=u13+u4[v29]
7 u15=u15+u31 38 u1=u1+u8 69 u29=u29+u5[v5]
8 u7=u7+u15 39 u7=u7+u31 70 u5=u5+u13
9 u17=u17+u9 40 u16=u16+u24 71 u14=u14+u5[v30]
10 u18=u18+u26 41 u3=u3+u7 72 u16=u16+u31[v8]
11 u25=u25+u24 42 u0=u0+u7 73 u26=u26+u2[v26]
12 u24=u24+u0 43 u9=u9+u16 74 u30=u30+u14[v22]
13 u25=u25+u17 44 u17=u17+u0[v25] 75 u10=u10+u26[v18]
14 u11=u11+u27 45 u25=u25+u1[v1] 76 u0=u0+u16
15 u19=u19+u11 46 u1=u1+u17 77 u8=u8+u23[v16]
16 u4=u4+u28 47 u10=u10+u1 78 u22=u22+u30[v6]
17 u6=u6+u14 48 u18=u18+u9[v2] 79 u0=u0+u8[v24]
18 u26=u26+u25 49 u2=u2+u9 80 u6=u6+u22[v14]
19 u12=u12+u4 50 u10=u10+u18 81 u9=u9+u25[v9]
20 u20=u20+u12 51 u2=u2+u10[v10] 82 u7=u7+u15[v15]
21 u27=u27+u26 52 u3=u3+u2 83 u24=u24+u0[v0]
22 u28=u28+u27 53 u11=u11+u10 84 u21=u21+u29[v21]
23 u21=u21+u5 54 u3=u3+u18 85 u4=u4+u20[v4]
24 u13=u13+u21 55 u19=u19+u3[v3] 86 u3=u3+u27[v11]
25 u21=u21+u20 56 u27=u27+u19 87 u1=u1+u9[v17]
26 u29=u29+u13 57 u28=u28+u7 88 u5=u5+u21[v13]
27 u30=u30+u21 58 u27=u27+u23[v27] 89 u28=u28+u4[v12]
28 u22=u22+u29 59 u12=u12+u11 90 u23=u23+u7[v31]
29 u6=u6+u21 60 u12=u12+u27[v20] 91 u31=u31+u23[v23]
30 u15=u15+u6[v7] 61 u20=u20+u28[v28]

u0, u1, ..., u31 are the 32 input bits, and v0, v1, ..., v31 are the 32
output bits.

138 Optimizing Implementations of Linear Layers

6 Summary
In this paper, we introduced a new heuristic search algorithm to globally optimize the
implementation of linear matrices, which is built on the decomposition theory of invertible
matrices. We observed that a type-3 elementary matrix corresponds to an Xor oper-
ation in the implementation of matrices. Thus we reduced the problem of optimizing
implementations of matrices to the problem of optimizing matrix decompositions. First
of all, we presented four matrix decomposition strategies which are based on different
elementary operations performed on a matrix. To optimize the matrix implementation,
we constructed a large number of equivalent matrix decompositions and proposed seven
matrix multiplication rules that can be fed to the heuristic to reduce the cost. As applica-
tions, we applied our heuristic to a large set of newly designed and known matrices for
symmetric-key ciphers. The results show that our heuristic is quite powerful in reducing
the implementation cost of 16× 16 and 32× 32 matrices. Moreover, our heuristic enjoys
an extra advantage that a matrix and its inverse share the same cost.

Though our heuristic can find better implementations in most cases, the circuit depth
of the resulting implementation is out of the consideration of this paper, and we leave it
as future work.

Acknowledgments
The authors would like to thank the anonymous reviewers for their helpful comments
and suggestions. This work was supported by the National Natural Science Foundation
of China (Grant No.61802119). Xiangyong Zeng was supported by Major Technological
Innovation Special Project of Hubei Province (Grant No. 2019ACA144). Zhenzhen Bao
was partially supported by Nanyang Technological University in Singapore under Grant
04INS000397C230, and Singapore’s Ministry of Education under Grants RG18/19 and
MOE2019-T2-1-060.

References
[ADK+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander,

Christof Paar, and Tolga Yalçin. Block ciphers - focus on the linear layer (feat.
PRIDE). In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part
I, pages 57–76, 2014.

[Art11] Michael Artin. Algebra (Second Edition). Pearson Prentice Hall, 2011.

[ARVV18] Elena Andreeva, Reza Reyhanitabar, Kerem Varici, and Damian Vizár. Forking
a blockcipher for authenticated encryption of very short messages. IACR
Cryptology ePrint Archive, 2018:916, 2018.

[Ava17] Roberto Avanzi. The QARMA block cipher family. almost MDS matrices over
rings with zero divisors, nearly symmetric even-mansour constructions with
non-involutory central rounds, and search heuristics for low-latency s-boxes.
IACR Trans. Symmetric Cryptol., 2017(1):4–44, 2017.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Advances in Cryptology - ASIACRYPT 2015 -
21st International Conference on the Theory and Application of Cryptology
and Information Security, Auckland, New Zealand, November 29 - December
3, 2015, Proceedings, Part II, pages 411–436, 2015.

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao and Shasha Zhang 139

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications
- extended abstract. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer
Science, pages 208–225. Springer, 2012.

[BFI19] Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. More results on shortest
linear programs. In Nuttapong Attrapadung and Takeshi Yagi, editors, Ad-
vances in Information and Computer Security - 14th International Workshop
on Security, IWSEC 2019, Tokyo, Japan, August 28-30, 2019, Proceedings,
volume 11689 of Lecture Notes in Computer Science, pages 109–128. Springer,
2019.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages
123–153, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Cryptographic Hardware and
Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria,
September 10-13, 2007, Proceedings, pages 450–466, 2007.

[BKL16] Christof Beierle, Thorsten Kranz, and Gregor Leander. Lightweight multiplica-
tion in gf(2ˆn) with applications to MDS matrices. In Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, pages 625–653,
2016.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques
with applications to cryptology. J. Cryptology, 26(2):280–312, 2013.

[BNN+10] Paulo S. L. M. Barreto, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen, and
Elmar Tischhauser. Whirlwind: a new cryptographic hash function. Des.
Codes Cryptogr., 56(2-3):141–162, 2010.

[BP10] Joan Boyar and René Peralta. A new combinational logic minimization
technique with applications to cryptology. In Paola Festa, editor, Experimental
Algorithms, 9th International Symposium, SEA 2010, Ischia Island, Naples,
Italy, May 20-22, 2010. Proceedings, volume 6049 of Lecture Notes in Computer
Science, pages 178–189. Springer, 2010.

[BR00a] Paulo S.L.M. Barreto and Vincent Rijmen. The ANUBIS Block Cipher. First
Open NESSIE Workshop, 2000.

[BR00b] Paulo S.L.M. Barreto and Vincent Rijmen. The Khazad legacy-level Block
Cipher. First Open NESSIE Workshop, 2000.

[BR00c] Paulo S.L.M. Barreto and Vincent Rijmen. The WHIRLPOOL Hashing
Function. First Open NESSIE Workshop, 2000.

140 Optimizing Implementations of Linear Layers

[CMR05] Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. Small scale variants
of the AES. In Fast Software Encryption: 12th International Workshop, FSE
2005, Paris, France, February 21-23, 2005, Revised Selected Papers, pages
145–162, 2005.

[Dae95] Joan Daemen. Cipher and Hash Function Design Strategies based on linear
and differential cryptanalysis. PhD thesis, Doctoral Dissertation, March 1995,
KU Leuven, 1995.

[DL18] Sébastien Duval and Gaëtan Leurent. MDS matrices with lightweight circuits.
IACR Trans. Symmetric Cryptol., 2018(2):48–78, 2018.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

[GKM+09] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl - a
SHA-3 candidate. In Symmetric Cryptography, 11.01. - 16.01.2009, 2009.

[GLG+17] Zhiyuan Guo, Renzhang Liu, Si Gao, Wenling Wu, and Dongdai Lin. Di-
rect construction of optimal rotational-xor diffusion primitives. IACR Trans.
Symmetric Cryptol., 2017(4):169–187, 2017.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED block cipher. In Cryptographic Hardware and Embedded Systems
- CHES 2011 - 13th International Workshop, Nara, Japan, September 28 -
October 1, 2011. Proceedings, pages 326–341, 2011.

[JB09] Daniel J Bernstein. Optimizing linear maps modulo 2. Workshop Record of
SPEED-CC: Software Performance Enhancement for Encryption and Decryp-
tion and Cryptographic Compilers, 2009.

[JNP14] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik. Submission to the
CAESAR competition, 2014.

[JNRV19] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia.
Implementing grover oracles for quantum key search on AES and lowmc. IACR
Cryptology ePrint Archive, 2019:1146, 2019.

[JPST17] Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade Tourteaux. Optimiz-
ing implementations of lightweight building blocks. IACR Trans. Symmetric
Cryptol., 2017(4):130–168, 2017.

[JV04] Pascal Junod and Serge Vaudenay. FOX : A new family of block ciphers.
In Selected Areas in Cryptography, 11th International Workshop, SAC 2004,
Waterloo, Canada, August 9-10, 2004, Revised Selected Papers, pages 114–129,
2004.

[KLSW17] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer. Shorter
linear straight-line programs for MDS matrices. IACR Trans. Symmetric
Cryptol., 2017(4):188–211, 2017.

[Köl19] Lukas Kölsch. Xor-counts and lightweight multiplication with fixed elements
in binary finite fields. In Advances in Cryptology - EUROCRYPT 2019
- 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part I, pages 285–312, 2019.

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao and Shasha Zhang 141

[KPPY14] Khoongming Khoo, Thomas Peyrin, Axel York Poschmann, and Huihui Yap.
FOAM: searching for hardware-optimal SPN structures and components with
a fair comparison. In Cryptographic Hardware and Embedded Systems - CHES
2014 - 16th International Workshop, Busan, South Korea, September 23-26,
2014. Proceedings, pages 433–450, 2014.

[LP07] Gregor Leander and Axel Poschmann. On the classification of 4 bit s-boxes.
In Arithmetic of Finite Fields, First International Workshop, WAIFI 2007,
Madrid, Spain, June 21-22, 2007, Proceedings, pages 159–176, 2007.

[LS16] Meicheng Liu and Siang Meng Sim. Lightweight MDS generalized circulant
matrices. In Fast Software Encryption - 23rd International Conference, FSE
2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers, pages
101–120, 2016.

[LSL+19] Shun Li, Siwei Sun, Chaoyun Li, Zihao Wei, and Lei Hu. Constructing
low-latency involutory MDS matrices with lightweight circuits. IACR Trans.
Symmetric Cryptol., 2019(1):84–117, 2019.

[LW16] Yongqiang Li and Mingsheng Wang. On the construction of lightweight
circulant involutory MDS matrices. In Fast Software Encryption - 23rd In-
ternational Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, pages 121–139, 2016.

[LW17] Chaoyun Li and Qingju Wang. Design of lightweight linear diffusion layers
from near-mds matrices. IACR Trans. Symmetric Cryptol., 2017(1):129–155,
2017.

[Max19] Alexander Maximov. AES mixcolumn with 92 XOR gates. IACR Cryptology
ePrint Archive, 2019:833, 2019.

[ME19] Alexander Maximov and Patrik Ekdahl. New circuit minimization techniques
for smaller and faster AES sboxes. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(4):91–125, 2019.

[Paa97] C. Paar. Optimized arithmetic for reed-solomon encoders. In Proceedings of
IEEE International Symposium on Information Theory, pages 250–250, June
1997.

[Saa11] Markku-Juhani O. Saarinen. Cryptographic analysis of all 4×4-bit s-boxes.
In Selected Areas in Cryptography - 18th International Workshop, SAC 2011,
Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers, pages
118–133, 2011.

[SKOP15] Siang Meng Sim, Khoongming Khoo, Frédérique E. Oggier, and Thomas
Peyrin. Lightweight MDS involution matrices. In Fast Software Encryption -
22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015,
Revised Selected Papers, pages 471–493, 2015.

[SKW+98] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and
Niels Ferguson. Twofish: A 128-bit block cipher, 1998.

[SS16] Sumanta Sarkar and Habeeb Syed. Lightweight diffusion layer: Importance of
toeplitz matrices. IACR Trans. Symmetric Cryptol., 2016(1):95–113, 2016.

142 Optimizing Implementations of Linear Layers

[SS17] Sumanta Sarkar and Habeeb Syed. Analysis of toeplitz MDS matrices. In
Information Security and Privacy - 22nd Australasian Conference, ACISP
2017, Auckland, New Zealand, July 3-5, 2017, Proceedings, Part II, pages 3–18,
2017.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
The 128-bit blockcipher CLEFIA (extended abstract). In Fast Software En-
cryption, 14th International Workshop, FSE 2007, Luxembourg, Luxembourg,
March 26-28, 2007, Revised Selected Papers, pages 181–195, 2007.

[TP20] Quan Quan Tan and Thomas Peyrin. Improved heuristics for short linear
programs. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):203–230,
2020.

[VSP18] Andrea Visconti, Chiara Valentina Schiavo, and René Peralta. Improved upper
bounds for the expected circuit complexity of dense systems of linear equations
over GF(2). Inf. Process. Lett., 137:1–5, 2018.

[WP13] Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption
algorithm. In Tanja Lange, Kristin E. Lauter, and Petr Lisonek, editors,
Selected Areas in Cryptography - SAC 2013 - 20th International Conference,
Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume
8282 of Lecture Notes in Computer Science, pages 185–201. Springer, 2013.

[ZBRL15] Wentao Zhang, Zhenzhen Bao, Vincent Rijmen, and Meicheng Liu. A new
classification of 4-bit optimal s-boxes and its application to present, RECT-
ANGLE and SPONGENT. In Fast Software Encryption - 22nd International
Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected
Papers, pages 494–515, 2015.

[ZWS18] Lijing Zhou, Licheng Wang, and Yiru Sun. On efficient constructions of
lightweight MDS matrices. IACR Trans. Symmetric Cryptol., 2018(1):180–200,
2018.

A Rational of Strategy 3-1 (and 3-2)
We will use a small example to illustrate the process of Strategy 3-1. Assuming that

M =


0 1 1 0 1 1
1 0 0 0 0 1
0 1 0 1 1 1
1 0 1 0 1 1
1 1 0 1 0 0
1 0 0 1 1 0

 ,

the rows and columns will be numbered from 1 to 6 in the following. We first compute all
possible ri = ri⊕rj , where ri denotes the ith row of M and 1 ≤ i, j ≤ 6, i 6= j. We save the
candidates that reduce the most 1’s in the resulting matrix. For example, r1 = r1 ⊕ r3 will
transform the first row from (0,1,1,0,1,1) to (0,0,1,1,0,0), and other rows remain unchanged.
The first row contains four and two 1’s before and after the transformation. Thus, this
transformation will reduce two 1’s in the resulting matrix. After checking all possibilities,
we can find that r1 = r1⊕ r3, r1 = r1⊕ r4, r3 = r3⊕ r1, r4 = r4⊕ r1 and r4 = r4⊕ r3 will
make the matrix reduce two 1’s and no candidates can make the matrix reduce more than
two 1’s. Similarly, we check all possibilities of ci = ci⊕ cj , where ci denotes the ith column
of M , and we can find that c5 = c5 ⊕ c3, c5 = c5 ⊕ c6, c6 = c6 ⊕ c3 and c6 = c6 ⊕ c5 makes

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao and Shasha Zhang 143

the matrix reduce two 1’s and no more candidates can make it reduce more than two 1’s.
Combining all possible row and column transformations, we have 9 choices for this step.
We randomly pick one of the choices when using Strategy 3-1 and 3-2. Assuming that we
choose the first candidate, i.e., r1 = r1 ⊕ r3, the matrix after transformation is

M1 =


0 0 1 1 0 0
1 0 0 0 0 1
0 1 0 1 1 1
1 0 1 0 1 1
1 1 0 1 0 0
1 0 0 1 1 0

 =


1 0 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




0 1 1 0 1 1
1 0 0 0 0 1
0 1 0 1 1 1
1 0 1 0 1 1
1 1 0 1 0 0
1 0 0 1 1 0

 = E(1+3)M.

Next, we perform similar procedure on M1 iteratively. We list in the following the two
sequential steps.

M2 =


0 0 1 1 0 0
1 0 0 0 0 1
0 1 0 0 1 1
1 0 1 0 1 1
1 1 0 0 0 0
1 0 0 1 1 0

 =


0 0 1 1 0 0
1 0 0 0 0 1
0 1 0 1 1 1
1 0 1 0 1 1
1 1 0 1 0 0
1 0 0 1 1 0




1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 = M1E(2+4),

M3 =


0 0 1 1 0 0
1 0 0 0 0 1
0 1 0 0 1 1
0 0 1 0 1 0
1 1 0 0 0 0
1 0 0 1 1 0

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




0 0 1 1 0 0
1 0 0 0 0 1
0 1 0 0 1 1
1 0 1 0 1 1
1 1 0 0 0 0
1 0 0 1 1 0

 = E(4+2)M2.

It can be verified that the number of 1’s in the matrix is reduced by two for each of the
above three steps. However, we can see that no matter which row or column elementary
transformation is performed on M3, the number of 1’s contained in M3 cannot be reduced.
This explains the second problem presented in Section 3.2. In this case we turn to Strategy
1 or Strategy 2 for the following process of M3. For illustration purpose, we adopt Strategy
1 to process M3, i.e., using Gaussian Elimination to transform M3 to an identity matrix.
Specifically,

E(4↔ 5)E(3↔ 4)E(2↔ 5)E(1↔ 2)E(5 + 6)E(2 + 6)E(4 + 3)E(1 + 3)E(6 + 1)
E(1 + 4)E(3 + 5)E(6 + 2)E(5 + 2)M3 = E.

That is to say, we have to perform nine type-3 and four type-1 elementary row
transformations to get an identity matrix. Combining with the first three elementary
transformation, we can get

E(4↔ 5)E(3↔ 4)E(2↔ 5)E(1↔ 2)E(5 + 6)E(2 + 6)E(4 + 3)E(1 + 3)E(6 + 1)
E(1 + 4)E(3 + 5)E(6 + 2)E(5 + 2)E(4 + 2)E(1 + 3)ME(2 + 4) = E.

Thus,

M =E(1 + 3)−1E(4 + 2)−1E(5 + 2)−1E(6 + 2)−1E(3 + 5)−1E(1 + 4)−1

E(6 + 1)−1E(1 + 3)−1E(4 + 3)−1E(2 + 6)−1E(5 + 6)−1E(1↔ 2)−1

E(2↔ 5)−1E(3↔ 4)−1E(4↔ 5)−1E(2 + 4)−1.

144 Optimizing Implementations of Linear Layers

Moreover, type-1 and type-3 elementary matrices are involutory matrices, thus

M =E(1 + 3)E(4 + 2)E(5 + 2)E(6 + 2)E(3 + 5)E(1 + 4)E(6 + 1)
E(1 + 3)E(4 + 3)E(2 + 6)E(5 + 6)E(1↔ 2)E(2↔ 5)E(3↔ 4)
E(4↔ 5)E(2 + 4).

Using Property 1 presented in the paper, type-1 elementary matrices are moved to the
right of the decomposition, thus

M =E(1 + 3)E(4 + 2)E(5 + 2)E(6 + 2)E(3 + 5)E(1 + 4)E(6 + 1)
E(1 + 3)E(4 + 3)E(2 + 6)E(5 + 6)E(5 + 1)E(1↔ 2)E(2↔ 5)
E(3↔ 4)E(4↔ 5).

Therefore, we successfully get a matrix decomposition as required.

B Proof of Rule 1-7
Let I denote the identity matrix, and Ii,j denote the matrix with a single entry at
the ith row and jth column taking a value of 1 and all other entries being 0. Clearly,
E(i + j) = I + Ii,j .

Lemma 1.

Ii,jIu,v =
{

0, if j 6= u

Ii,v, if j = u
, where 0 denotes the zero matrix.

Proof. Since all rows except the ith row of Ii,j are zero row vectors, and all columns except
the vth column of Iu,v are zero column vectors. It can be easily deduced that all rows
except the ith row of Ii,jIu,v are zero row vectors, and all columns except the vth column
of Ii,jIu,v are zero column vectors, which means the only possible nonzero element in
Ii,jIu,v is Ii,jIu,v[i][v], which denotes the element at the ith row and vth column of Ii,jIu,v.
Since Ii,jIu,v[i][v] = ⊕kIi,j [i][k] × Iu,v[k][v], it follows that Ii,jIu,v[i][v] equals 1 if j = u
and 0 otherwise.

Proof of Rule 1. E(k + i)E(k + j)E(i + j) = E(i + j)E(k + i), where i 6= j 6= k.

Proof.

E(k + i)E(k + j)E(i + j) = (I + Ik,i)(I + Ik,j)(I + Ii,j)
= (I + Ik,i + Ik,j + Ik,iIk,j)(I + Ii,j)
= (I + Ik,i + Ik,j)(I + Ii,j)
= I + Ik,i + Ik,j + Ii,j + Ik,iIi,j + Ik,jIi,j

= I + Ik,i + Ik,j + Ii,j + Ik,j

= I + Ik,i + Ii,j . (4)

E(i + j)E(k + i) = (I + Ii,j)(I + Ik,i)
= I + Ii,j + Ik,i + Ii,jIk,i

= I + Ii,j + Ik,i. (5)

(4) equals (5) which completes the proof.

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao and Shasha Zhang 145

Rule 2-6 can be proved similarly.

Proof of Rule 7. E(j + i)E(i + j) = E(i↔ j)E(j + i), where i 6= j.

Proof. Clearly, E(i↔ j) = I + Ii,j + Ij,i + Ii,i + Ij,j .

E(j + i)E(i + j) = (I + Ij,i)(I + Ii,j)
= I + Ii,j + Ij,i + Ij,iIi,j

= I + Ii,j + Ij,i + Ij,j . (6)

E(i↔ j)E(j + i) = (I + Ii,j + Ij,i + Ii,i + Ij,j)(I + Ij,i)
= I + Ii,j + Ij,i + Ii,i + Ij,j + Ij,i + Ii,jIj,i + Ij,iIj,i + Ii,iIj,i + Ij,jIj,i

= I + Ii,j + Ij,i + Ii,i + Ij,j + Ij,i + Ii,i + Ij,i

= I + Ii,j + Ij,i + Ij,j . (7)

(6) equals (7) which completes the proof.

	Introduction
	Preliminaries
	Backgrounds
	Related Work

	Matrix Decomposition in GL(n,F2)
	Elementary Row (Column) Operation Based Matrix Decomposition
	Hybrid Elementary Operation Based Matrix Decomposition

	Reducing the Implementation Cost of Linear Matrices
	Converting Matrix Decomposition to Matrix Implementation
	Reducing Implementing cost

	Search Algorithm and Applications
	Heuristic Search Algorithm
	Applications
	On Inverse Matrices

	Summary
	Rational of Strategy 3-1 (and 3-2)
	Proof of Rule 1-7

