
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. 2, pp. 93–119. DOI:10.13154/tosc.v2020.i2.93-119

On the Security of Sponge-type Authenticated
Encryption Modes

Bishwajit Chakraborty, Ashwin Jha and Mridul Nandi

Indian Statistical Institute, Kolkata, India
{bishu.math.ynwa,ashwin.jha1991,mridul.nandi}@gmail.com

Abstract. The sponge duplex is a popular mode of operation for constructing au-
thenticated encryption schemes. In fact, one can assess the popularity of this mode
from the fact that around 25 out of the 56 round 1 submissions to the ongoing
NIST lightweight cryptography (LwC) standardization process are based on this
mode. Among these, 14 sponge-type constructions are selected for the second round
consisting of 32 submissions. In this paper, we generalize the duplexing interface
of the duplex mode, which we call Transform-then-Permute. It encompasses Beetle
as well as a new sponge-type mode SpoC (both are round 2 submissions to NIST
LwC). We show a tight security bound for Transform-then-Permute based on b-bit
permutation, which reduces to finding an exact estimation of the expected number of
multi-chains (defined in this paper). As a corollary of our general result, authenticated
encryption advantage of Beetle and SpoC is about T (D+r2r)

2b where T , D and r denotes
the number of offline queries (related to time complexity of the attack), number
of construction queries (related to data complexity) and rate of the construction
(related to efficiency). Previously the same bound has been proved for Beetle under
the limitation that T � min{2r, 2b/2} (that compels to choose larger permutation
with higher rate). In the context of NIST LwC requirement, SpoC based on 192-bit
permutation achieves the desired security with 64-bit rate, which is not achieved by
either duplex or Beetle (as per the previous analysis).
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1 Introduction
The Sponge function was first proposed by Bertoni et al. at the ECRYPT Hash Work-
shop [BDPA07], as a mode of operation for variable output length hash functions. It
received instant attention due to NIST’s SHA-3 competition, which had several candidates
based on the Sponge paradigm. Most notably, JH [Wu11] and Keccak [BDPA13] were
among the five finalists, and Keccak became the eventual winner. In time, the Sponge
mode found applications in message authentication [BDPA07, BDPA11b], pseudorandom
sequence generation [BDPA10], and the duplex mode [BDPA11a] for authenticated encryp-
tion. In particular, the recently concluded CAESAR competition for the development
of authenticated encryption with associated data (AEAD) schemes had received a dozen
Sponge-based submissions. Ascon [DEMS16], a winner in lightweight applications (resource
constrained environments) use-case of the CAESAR competition, also uses the duplex
mode of authenticated encryption.

The Sponge construction is also one of the go-to mode of operation for designing
lightweight cryptographic schemes. This is quite evident from the design of hash functions
such as Quark [AHMN10], PHOTON [GPP11], and SPONGENT [BKL+13], and authenti-
cated encryption schemes such as Ascon [DEMS16] and Beetle [CDNY18]. In fact, majority
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of the submissions to the ongoing NIST lightweight cryptography (LwC) standardization
process are inspired by the Sponge paradigm.

At a very high level, Sponge-type constructions consist of a b-bit state, which is split
into a c-bit inner state, called the capacity, and an r-bit outer state, called the rate, where
b = c + r. Traditionally, in Sponge like modes, data absorption and squeezing is done
via the rate part, i.e. r bits at a time. SpoC [AGH+19], a round 2 submission to NIST
LwC standardization process, is a notable exception, where the absorption is done via
the capacity part and the squeezing is done via the rate part. In [BDPA08], Bertoni et
al. proved that the Sponge construction is indifferentiable from a random oracle with a
birthday-type bound in the capacity. While it is well-known that this bound is tight for
hashing, for keyed applications of the Sponge, especially authenticated encryption schemes,
such as duplex mode, it seems that the security could be significantly higher.

1.1 Existing Security Bounds for Sponge-type AEAD Schemes
Sponge-type authenticated encryption is mostly done via the duplex construction [BDPA11a].
The duplex mode is a stateful construction that consists of an initialization interface and a
duplexing interface. Initialization creates an initial state using the underlying permutation
π, and each duplexing call to π absorbs and squeezes r bits of data. The security of
Sponge-type AEAD modes can be represented and understood in terms of two parameters,
namely the data complexity D (total number of initialization and duplexing calls to π),
and the time complexity T (total number of direct calls to π). Initially, Bertoni et al.
[BDPA11a] proved that duplex is as strong as Sponge, i.e. secure up to DT � 2c. Mennink
et al. [MRV15] introduced the full-state duplex and proved that this variant is secure up
to DT � 2κ, D � 2c/2, where κ is the key size. Jovanovic et al. [JLM14] proved privacy
up to D � min{2b/2, 2κ}, T � min{2b/2, 2c−log2 r, 2κ}, and integrity up to DT � 2c,
D � min{2c/2, 2κ, 2τ}, T � min{2b/2, 2c−log2 r, 2κ}, where τ denotes the tag size. Note
that integrity has an additional restriction that D � 2c/2, where D is dominated by
the decryption data complexity. Daemen et al. [DMA17] gave a generalization of duplex
that has built-in multi-user security. Very recently, a tight privacy analysis [JLM+19] is
provided. However, one of the dominating restrictions present in all of the existing integrity
analysis of duplex authenticated encryption is DT � 2c. Moreover, no forgery attack with
a matching bound is known. A recent variant of duplex mode, called the Beetle mode of op-
eration [CDNY18], modifies the duplexing phase by introducing a combined feedback based
absorption/squeezing, similar to the feedback paradigm of CoFB [CIMN17]. In [CDNY18],
Chakraborti et al. showed that feedback based duplexing actually helps in improving
the security bound, mainly to get rid of the condition DT � 2c. They showed privacy
up to DT � 2b, D � 2b/2, T � 2c, and integrity up to D � min{2b/2, 2c−log2 r, 2r},
T � min{2c−log2 r, 2r, 2b/2}, with the assumptions that κ = c and τ = r.

1.1.1 Security of Sponge-type AEAD in Light of NIST LwC Requirement

In the call for submissions of NIST LwC standardization process, it is mentioned that the
primary version of any AEAD submission should have at least 128-bit key, at least 96-bit
nonce, at least 64-bit tag, data complexity 250 − 1 bytes, and time complexity 2112. In
order to satisfy these requirements, a traditional duplex-based scheme must have a capacity
size of at least 160-bit. All duplex-based submissions to NIST LwC standardization process
use at least 192-bit capacity, except CLX [WH19] for which no security proof is available.

On the other hand, the known bound for Beetle imposes certain limitations on the state
size and rate. Specifically, Beetle-based schemes require approximately 120-bit capacity and
approximately 120-bit rate to achieve NIST LwC requirements. This means that we need
a permutation of size at least 240 bits. In light of the ongoing NIST LwC standardization
process, it would be interesting to see whether these limitations can be relaxed for Beetle.
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1.2 Our Contributions
In this paper, inspired by the NIST LwC requirements, we extend a long line of research
on the security of Sponge-type AEAD schemes. We study Sponge-type AEAD construction
with a generalization of the feedback function used in the duplexing interface, that
encompasses the feedback used in duplex, Beetle, SpoC etc. We show that for a class
of feedback function, containing the Beetle and SpoC modes, optimal AEAD security is
achieved. To be specific, we show that the AEAD security of this generalized construction
is bounded by adversary’s ability of constructing a special data structure, called the
multi-chains. We also show a matching attack exploiting the multi-chains. As a corollary
of this we give

1. improved and tight bound for Beetle, and

2. a security proof validating the security claims of SpoC.

Notably, we show that both Beetle and SpoC achieve NIST LwC requirements with just
128-bit capacity and ≥ 32-bit rate. In other words, they achieve NIST LwC requirements
with just 165-bit state, which to the best of our knowledge is the smallest possible state
size among all known Sponge-type constructions which are proven to be secure.

1.3 Organization of the Paper
In section 2, we define different notations used in the paper. We give a brief description of
the design and security models of AEAD. We also give a brief description of coefficient H
technique [Pat91, Pat08]. In section 3, we study a Sponge-type AEAD construction called
Transform-then-Permute (or TtP) with a generalization of the feedback function used in the
duplexing interface. We give a tight security bound for the special case when the feedback
function is invertible. In section 4, we state some multicollision results with proofs which
are used in the paper. In section 5, we define what we call the multi-chain structure and
give an upper bound on the expected number of multi-chains that can be formed by an
adversary in a special case. In section 6, using the multi-chain security game from section
5 we give a complete security proof of the AEAD security bound given in Theorem 2. In
section 7, we show that the TtP generalization encompasses the feedback functions used in
Sponge AE, Beetle, SpoC etc. Particularly, Beetle and SpoC modes fall under the class
where the feedback functions are invertible and hence for those modes optimal AEAD
security is achieved. Finally in section 8, we give some attack strategies to justify the
tightness of our bound.

2 Preliminaries
Notational Setup: For n ∈ N, (n] denotes the set {1, 2, . . . , n} and [n] denotes the set
{0} ∪ (n], {0, 1}n denotes the set of bit strings of length n, {0, 1}+ :=

⋃
n≥0{0, 1}n and

Perm(n) denotes the set of all permutations over {0, 1}n.
For any bit string x with |x| ≥ n, dxen (res. bxcn) denotes the most (res. least)

significant n bits of x. For n, k ∈ N, such that n ≥ k, we define the falling factorial
(n)k := n!/(n− k)! = n(n− 1) · · · (n− k + 1).

For q ∈ N, xq denotes the q-tuple (x1, x2, . . . , xq). For q ∈ N, for any set X , (X )q denotes
the set of all q-tuples with distinct elements from X . Two distinct strings a = a1 . . . am
and b = b1 . . . bm′ , are said to have a common prefix of length n ≤ min{m,m′}, if ai = bi
for all i ∈ (n], and an+1 6= bn+1. For a finite set X , X←$X denotes the uniform sampling
of X from X which is independent to all other previously sampled random variables.
(X1, . . . ,Xt)

wor← X denotes uniform sampling of t random variables X1, . . . ,Xt from X
without replacement.
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2.1 Authenticated Encryption: Definition and Security Model
Authentication Encryption with Associated Data: An authenticated encryption
scheme with associated data functionality, or AEAD in short, is a tuple of deterministic
algorithms AE = (E,D), defined over the key space K, nonce space N , associated data
space A, message space M, ciphertext space C, and tag space T , where:

E : K ×N ×A×M→ C × T and D : K ×N ×A× C × T →M∪ {⊥}.

Here, E and D are called the encryption and decryption algorithms, respectively, of
AE. Further, it is required that D(K,N,A,E(K,N,A,M)) = M for any (K,N,A,M) ∈
K × N × A ×M. For all key K ∈ K, we write EK(·) and DK(·) to denote E(K, ·) and
D(K, ·), respectively. In this paper, we have K,N ,A,M, T ⊆ {0, 1}+ and C =M, so we
useM instead of C wherever necessary.

AEAD Security in the Random Permutation Model: Let Π←$ Perm(b) , Func
denote the set of all functions from N ×A×M toM×T such that for any input (∗, ∗,M)
the output is of length |M |+ t for some predefined constant t and Γ←$ Func. Let ⊥ denote
the degenerate function from (N ,A,M, T ) to {⊥}. For brevity, we denote the oracle
corresponding to a function (like E, Π etc.) by that function itself. A bidirectional access
to Π is denoted by the superscript ±.

Definition 1. Let AEΠ be an AEAD scheme, based on the random permutation Π, defined
over (K,N ,A,M, T ). The AEAD advantage of any nonce respecting adversary A against
AEΠ is defined as,

Advaead
AEΠ

(A ) :=

∣∣∣∣∣∣ Pr
K←$K

Π±

[
A EK,DK,Π± = 1

]
− Pr

Γ,Π±

[
A Γ,⊥,Π± = 1

]∣∣∣∣∣∣ . (1)

Here A EK,DK,Π± denotes A ’s response after its interaction with EK, DK, and Π±,
respectively. Similarly, A Γ,⊥,Π± denotes A ’s response after its interaction with Γ, ⊥, and
Π±.

In this paper, we assume that the adversary is nonce-respecting, i.e. it never makes
more than one encryption queries with same nonce. We further assume that the adversary
is non-trivial, i.e. it never makes a duplicate query, and it never makes a query for which
the response is already known due to some previous query. We use the following notations
to parameterize the adversary’s resources:

• qe and qd denote the number of queries to EK and DK, respectively. σe and σd
denote the total number of blocks of input (associated data and message) across
all encryption and decryption (respectively) queries where (informally), number of
blocks per query is determined by the total number of primitive calls required to
process the input (see 3.1 for formal definition). We sometime also write q = qe + qd
and σ = σe + σd to denote the combined construction query resources which can be
interpreted as the online or data complexity D from section 1.

• qf and qb denote the number of queries to Π+ and Π−, respectively. We sometime
also use qp = qf + qb, to denote the combined primitive query resources which can
be interpreted as the offline or time complexity T from section 1.

Any adversary that adheres to the above mentioned resource constraints is called a
(qp, qe, qd, σe, σd)-adversary or simply (qp, σ)-adversary.
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2.2 Coefficient H Technique
Consider a computationally unbounded and deterministic adversary A that tries to
distinguish between two oracles O0 and O1 via black box interaction with one of them.
We denote the query-response tuple of A ’s interaction with its oracle by a transcript ω.
Sometimes, this may also include any additional information that the oracle chooses to
reveal to the distinguisher at the end of the query-response phase of the game. We will
consider this extended definition of transcript. We denote by Θ1 (res. Θ0) the random
transcript variable when A interacts with O1 (res. O0). The probability of realizing a
given transcript ω in the security game with an oracle O is known as the interpolation
probability of ω with respect to O. Since A is deterministic, this probability depends
only on the oracle O and the transcript ω. A transcript ω is said to be attainable if
Pr [Θ0 = ω] > 0. In this paper, O1 = (EK,DK,Π±), O0 = (Γ,⊥,Π±), and the adversary is
trying to distinguish O1 from O0 in AEAD sense. Now we state a simple yet powerful tool
due to Patarin [Pat91], known as the coefficient H technique (or simply the H-technique).
A proof of this theorem is available in multiple papers including [Pat08, CS14, MN17].
Theorem 1 (H-technique [Pat91, Pat08]). Let Ω be the set of all transcripts. For some
εbad, εratio > 0, suppose there is a set Ωbad ⊆ Ω satisfying the following:

• Pr [Θ0 ∈ Ωbad] ≤ εbad;

• For any ω /∈ Ωbad, ω is attainable and

Pr [Θ1 = ω]
Pr [Θ0 = ω] ≥ 1− εratio.

Then for any adversary A , we have the following bound on its AEAD distinguishing
advantage:

Advaead
O1

(A ) ≤ εbad + εratio.

3 Transform-then-Permute Construction
In this section we describe Transform-then-Permute (or TtP in short), which generalizes
duplexing method used in sponge AEAD encompassing many other constructions such as
Beetle, SpoC etc.

3.1 Parameters and Components
We first describe some parameters of our wide family of AEAD algorithms.

1. State-size: The underlying primitive of the construction is a b-bit public permutation.
We call b state size of the permutation.

2. Key-size: Let κ denote the key-size. Here we assume κ < b.

3. Nonce-size: In this paper we consider fixed size nonce. Let ν denote the size of nonce.

4. Rate: Let r, r′ ≤ b denote the rate of processing message and associate data respec-
tively. The capacity is defined as c := b− r.

Let N0 be the set of all non-negative integers and θ := b− κ− ν. For x ∈ N0, we define

a(x) :=
{

0 if x ≤ θ
dx−θr′ e otherwise

Parsing Function: Let D = N‖A where N ∈ {0, 1}ν and A ∈ {0, 1}∗ with a := a(|A|).
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– Case |A| ≤ θ: parse(N,A) = D ‖ 0θ−|A| ∈ {0, 1}b−κ.

– Case |A| > θ: parse(N,A) := (IV,A1, . . . , Aa) where D = IV ‖D′, IV ∈ {0, 1}b−κ

and (A1, . . . , Aa) r′← D′. Note that |D′| = |A| − θ and so when we parse D′ to blocks
of size r′, we get a(|A|) = d |A|−θr′ e many blocks.

In addition to parsing N‖A, we also parse a message or ciphertext Z as (Z1, . . . , Zm) r← Z
into m blocks of size r where m = d|Z|/re.

We define t := a+m to be the total number of blocks corresponding to a input query
of the form (N,A,Z).
Domain Separation: To every pair of non-negative integers (|A|, |Z|) with a = a(|A|),
m = d|Z|/re, and for every 0 ≤ i ≤ a+m, we associate a small integer δi where

δi =


0 if i 6∈ {a} ∪ {t}
1 if (i = a ∧ r′ | |A| − θ) ∨ (i = t ∧ r | |M |)
2 otherwise.

We collect all these δ values through the following function DS(|A|, |Z|) = (δ0, δ1, . . . , δa+m).

Encoding Function: Let DDS := {0, 1}2 × {0, 1, 2} and rmax = max{r, r′}. Let

encode : {0, 1}≤rmax ×DDS → {0, 1}b

be an injective function such that for any D,D′ ∈ {0, 1}x, 1 ≤ x ≤ rmax and for all
∆ ∈ DDS , we have encode(D,∆)⊕ encode(D′,∆) = 0b−x‖(D ⊕D′). Actual description of
this encode function is determined by the construction.

Format Function: We define a formatting function Fmt which maps a triple (N,A,M)
to (D0, . . . , Da+m) ∈ ({0, 1}b)a+m+1 where a := a(|A|) and m = d|Z|/re. The exact
description of format function is described in Algorithm 1.

Algorithm 1 Description of the format function (Fmt)
function Fmt(N,A,Z)

a← a(|A|), m← d|Z|/re
(A0, A1, . . . , Aa)← Parse(N,A)
(Z1, . . . , Zm) r← Z

(δ0, . . . , δt)← DS(|A|, |Z|)
for i = 0 to a do

if i = a and m = 0 then
Di ← encode(Ai, (0, 1, δi))

else
Di ← encode(Ai, (0, 0, δi))

for i = 1 to m do
Da+i ← encode(Zi, (1, 0, δi+m))

return (D0, . . . , Dt)

Feedback functions: We also need some linear functions Lad, Le : {0, 1}b → {0, 1}b
which are used to process associate data and message respectively in an encryption
algorithm.

Now, given a linear function L : {0, 1}b → {0, 1}b, 1 ≤ x ≤ r, the following function
L′ : {0, 1}b×{0, 1}x×DDS → {0, 1}b×{0, 1}x, is used to process the j-th block Z (either
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ΠXold

⊕ M

C

Le ⊕

encode(M,∆)

Π

−r

−c

|
b Xnew

Ynew

Figure 1: Illustration of the feedback process for a message block M of |M | bits. Here
encode(M,∆) represents some encoding of |M | bits string to a b-bit string as described above and
Le is a linear transformation applied on b-bit strings.

a plaintext or a ciphertext) using the output Y of the previous invocation of the random
permutation:

L′(Y,Z,∆) = (X := L(Y ) ⊕ encode(Z,∆), Z ′ := dY e|Z| ⊕ Z)

For 1 ≤ i ≤ r, let Ld,i(x) to denote the linear function Le(x)⊕ 0b−i‖dxei. Then, it is easy
to see from the property of encoding function that L′d,|C|(Y,C,∆) = (X,C) if and only if
L′e(Y,M,∆) = (X,C). Figure 1 provides an illustration how a message block is processed.

3.2 Description of the Transform-then-Permute AEAD
We describe the Transform-then-Permute construction in Algorithm 2 which generalizes
duplexing method used in sponge-type AEADs. Figure 2 illustrates a simple case when
|N | = b− κ.

Algorithm 2 Description of Encryption/Decryption algorithms of the Transform-then-
Permute mode with Associated data. X = (x =? y : p, q) means X = p if x = y and X = q
otherwise.

1: function Enc(K,N,A,M)
2: a← a(|A|), m← d|M |/re
3: (D0, D1, . . . , Da+m)← Fmt(N,A,M)
4: (M1, . . . ,Mm) r←M

5: X0 ← K‖0b−κ ⊕D0

6: Y0 ← Π(X0)
7: for i = 1 to a do
8: Xi ← Lad(Yi−1)⊕Di
9: Yi ← Π(Xi)

10: for j = 1 to m do
11: i = a+ j

12: Xi ← Le(Yi−1)⊕Di
13: Cj ←Mj ⊕ dYi−1e|Mj |
14: Yi ← Π(Xi)

15: T ← dYa+meτ
16: return (C1‖ . . . ‖Cm, T )

1: function Dec(K,N,A,C, T )
2: a← a(|A|), m← d|C|/re
3: (D0, D1, . . . , Da+m)← Fmt(N,A,C)
4: (C1, . . . , Cm) r← C

5: X0 ← K‖0b−κ ⊕D0

6: Y0 ← Π(X0)
7: for i = 1 to a do
8: Xi ← Lad(Yi−1)⊕Di
9: Yi ← Π(Xi)

10: for j = 1 to m do
11: i = a+ j

12: Xi ← Ld,|Ci|(Yi−1)⊕Di
13: Mj ← Cj ⊕ dYi−1e|Cj |
14: Yi ← Π(Xi)

15: T ← dYa+meτ
16: return T ′ =? T : M1‖ . . . ‖Mm,⊥

Lemma 1. Given any two tuples (N,A,Z) 6= (N ′, A′, Z ′) and Fmt(N,A,Z) = (D0, . . . , Dt)
and Fmt(N ′, A′, Z ′) = (D′0, . . . , D′a′+m′), we have
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ΠK‖N L′ad

encode(A1,∆1)

L′ad

encode(Aa,∆a)

Π L′e

encode(M1,∆a+1)

C1

L′e

encode(Mm,∆a+l)

Cm

Π T|
d·eτ

Figure 2: Schematic of the Transform-then-Permute AEAD mode. Here we assume |N | = b− κ,
L′ad(Y,A) = Lad(Y )⊕A. Lad, L′e, encode functions and ∆ values are as described before.

1. (D′0, . . . , D′a) 6= (D0, . . . , Da) whenever (N,A) 6= (N ′, A′) and a ≤ a′.

2. (D′a, . . . , D′t) 6= (Da, . . . , Dt) whenever (N,A) = (N ′, A′) and m ≤ m′.

Proof. We write parse(N,A) = (A0, A1, . . . , Aa) and parse(N ′, A′) = (A′0, A′1, . . . , A′a′).

1. Let (N,A) 6= (N ′, A′). Then we have (A0, A1, . . . , Aa) 6= (A′0, A′1, . . . , A′a′). Now
if, a < a′ then we have Da = encode(Aa, 0, δ) where δ ∈ {1, 2} and D′a =
encode(A′a, 0, 0). Hence by injectivity of encode we have Da 6= D′a. If a = a′

then there exists non-negative i ≤ a such that Ai 6= A′i and hence Di 6= D′i.

2. Let (N,A) = (N,A′). Then we have (A0, Ai, . . . , Aa) = (A′0, A′i, . . . , A′a). Note that
m,m′ both cannot be 0. So if m = 0, then m′ > 0 =⇒ Da = encode(Aa, 0, δ)
for some δ ∈ {1, 2} and D′a = encode(Aa, 0, 0). Hence Da 6= D′a. Let m,m′ > 0
then if, m < m′ then we have Dt = encode(Mm, 1, δ) where δ ∈ {1, 2} and D′a =
encode(M ′m, 1, 0). Else if m = m′, then there exists positive i ≤ m such that
Mi 6= M ′i . Hence Da+i 6= D′a+i.

3.3 Security Analysis of TtP
We prove the following result on the AE security of Transform-then-Permute when the
linear functions Ld,i and Le are invertible for all 1 ≤ i ≤ r. Let qp, qe and qd define the
number of primitive, encryption and decryption queries respectively by an adversary and
let σe and σd define all the data blocks processed, including nonce, associated data and
message, in those encryption and decryption queries, respectively.

Theorem 2 (Main Theorem). Let TtP be a construction where Ld,i for all i ∈ [r] and Le
are invertible. For any (qp, qe, qd, σe, σd)-adversary A , we have

Advaead
inv-TtP(A ) ≤ σdmcoll(qp, 2τ )

2c + σdmcoll(qp, 2r)
2c +

σdmcoll′(q2
p, 2b)

2c

+ qp
2κ + 2qd

2τ + 2σd(σ + qp)
2b + 6σeqp

2b + 2qpmcoll(σe, 2r)
2c

+ qpmcoll(σe, 2τ )
2b−τ + σe + qp

2b + qpσdmcoll(σe, 2r)
22c .

4 Some Results on Multicollision
In this section, we briefly revisit some useful results on the expected value of maximum
multicollision in a random sample. This problem has seen a lot of interest (see for instance
[Gon81, BYG91, SF96, RS98]) in context of the complexity of hash table1 probing. However,

1A popular data structure used for efficient searching applications.
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most of the results available in the literature are given in asymptotic forms. We state some
relevant results in a more concrete form, following similar proof strategies and probability
calculations as before. Moreover, we also extend these results for samples which, although
are not uniform, have high entropy, almost close to uniform.

4.1 Expected Maximum Multicollision in a Uniform Random Sample
Let X1, . . . ,Xq ←$D where |D| = N and N ≥ 2. We denote the maximum multicollision
random variable for the sample as mcq,N . More precisely, mcq,N = maxa |{i : Xi = a}|.
For any integer ρ ≥ 2,

Pr[mcq,N ≥ ρ] ≤
∑
a∈D

Pr[|{i : Xi = a}| ≥ ρ]

≤ N ·
(
q
ρ

)
Nρ

≤ N · qρ

Nρρ!

≤ N ·
(
qe

ρN

)ρ
.

We justify the inequalities in the following way: The first inequality is due to the union
bound. If there are at least ρ indices for which Xi takes value a, we can choose the first ρ
indices in

(
q
ρ

)
ways. This justifies the second inequality. The last inequality follows from

the simple observation that eρ =
∑
i≥0

ρi/i! ≥ ρρ/ρ!. Thus, we have

Pr[mcq,N ≥ ρ] ≤ N ·
(
qe

ρN

)ρ
. (2)

For any positive integer valued random variable Y bounded above by q, we define another
random variable Y′ as

Y′ =
{
ρ− 1 if Y < ρ

q otherwise.

Clearly, Y ≤ Y′ and
Ex [Y] ≤ (ρ− 1) + q · Pr[Y ≥ ρ].

Using Eq. (2), and the above relation we can prove the following results for the expected
value of maximum multicollision. We write mcoll(q,N) to denote Ex [mcq,N ]. So from the
above relation,

mcoll(q,N) ≤ (ρ− 1) + qN ·
(
qe

ρN

)ρ
(3)

for all positive ρ. We use this relation to prove an upper bound of mcoll(q,N) by plugging
in some suitable value for ρ.

Proposition 1. For N ≥ 4, n = log2N ,

mcoll(q,N) ≤
{

4 log2 q
log2 log2 q

if 4 ≤ q ≤ N
5n
⌈
q
nN

⌉
if N < q

Proof. We first prove the result when q = N . A simple algebra shows that for n ≥ 2,(
e log2 n

4n

)
≤ n− 1

2 . In other words,
(
e
ρ

)ρ
≤ N−2 where ρ = 4n/ log2 n. So

mcoll(q,N) ≤ ρ− 1 +N2 ·
(
e

ρ

)ρ
≤ ρ.
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When q < N , we can simply bound Ex [mcq,N ] ≤ Ex [mcq,q] ≤ 4 log2 q
log2 log2 q

.

For N < q ≤ Nn, we choose ρ = 4n. Now,

mcoll(q,N) ≤ 4n− 1 + nN2 ×
(e

4

)4n

≤ 4n− 1 + nN2/4n ≤ 5n.

When q ≥ nN , we can group them into dq/nNe samples each of size exactly nN (we
can add more samples if required). This would prove the result when q ≥ nN .

Remark 1. Note that, similar bound as in Proposition 1 can be achieved in the case of
non-uniform sampling. For example, when we sample X1, . . . ,Xq

wor← {0, 1}b and then define
Yi = dXier for some r < b. In this case, we have

Pr(Yi1 = a, · · · ,Yiρ = a) ≤ (2b−r)ρ
(2b)ρ

≤ 1
2rρ .

This can be easily justified as we have to choose the remaining b − r bits distinct (as
X1, . . . ,Xq must be distinct). So, same bound as given in Proposition 1 can be applied for
this distribution.

4.2 A Special Example of Non-Uniform Random Sample

In this paper we consider the following non-uniform random samples. Let x1, . . . xq be
distinct and y1, . . . , yq be distinct b bits. Let Π denote the random permutation over b bits,
Π2 := Π ◦ Π denotes the composition of Π with itself. We define Zi,j = Π(xi)⊕ Π−1(yj).
Now, for all distinct i1, . . . , iρ, distinct j1, . . . , jρ and a ∈ {0, 1}b, we want to bound
Pr
[
Zi1,j1 = a, · · · ,Ziρ,jρ = a

]
. By abuse of notations we write both ik and jk as k.

Let N := 2b. We can assume a = 0b. Since otherwise, we consider Π′(x) = Π(x)⊕ a
which is also a random permutation and consider y′i = yi ⊕ a instead of yi, ∀1 ≤ i ≤ ρ.
Note that y′i’s are clearly distinct. So the problem reduces to bounding

θ := Pr
[
Π2(x1) = y1, · · · ,Π2(xρ) = yρ

]
=
∑
cρ

Pr [Π(x1) = c1,Π(c1) = y1, · · · ,Π(xρ) = cρ,Π(cρ) = yρ]

We say that cρ valid if ci = xj if and only if cj = yi. The set of all such valid
tuples is denoted as V . For any valid cρ, define S := {x1, . . . , xρ} ∪ {c1, . . . , cρ}. Then,
Pr [Π(x1) = c1,Π(c1) = y1, · · · ,Π(xρ) = cρ,Π(cρ) = yρ] = 1

(N)|S| . On the other hand, if cρ
is not valid then the above probability is zero. Let Vs be the set of all valid tuples for
which |S| = s.

If |S| = 2ρ − k, then we must have exactly k many pairs (i1, j1), . . . (ik, jk) such
that ci = xj . Now the number of ways this k-many pairs can be chosen is bounded
by ρ2k. The remaining ρ − k many ci’s can be chosen in (N − k)ρ−k ways. Hence,
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|V2ρ−k| ≤ ρ2k(N − k)ρ−k.

Pr
[
Π2(xi) = yi ∀1 ≤ i ≤ ρ

]
=

2ρ∑
s=ρ

∑
cρ∈Vs

Pr [Π(xi) = ci,Π(ci) = yi ∀1 ≤ i ≤ ρ]

≤
2ρ∑
s=ρ

|Vs|
(N)s

≤
ρ∑
k=0

|V2ρ−k|
(N)2ρ−k

≤
ρ∑
k=0

ρ2k(N − k)ρ−k
(N)2ρ−k

≤
ρ∑
k=0

ρ2(ρ−k)

(N − 2ρ)ρ

≤

(
ρ∑
k=0

1
ρ2k

)
·
(

ρ2

N − 2ρ

)ρ
≤ 2 ·

(
ρ2

N − 2ρ

)ρ
Since the sample space {(xi, yj)}i,j∈[q] is of size q2, we denote the maximum multicollision
random variable for the sample as mc′q2,N . Then we have by a similar analysis as in the
previous section,

Pr
[
mc′q2,N ≥ ρ

]
≤ 2N ·

(
q2

ρ

)
·
(

ρ2

N − 2ρ

)ρ
≤ 2N

(
q2eρ

N − 2ρ

)ρ
.

We write mcoll′(q2, N) to denote Ex
[
mc′q2,N

]
. So from the above relation,

mcoll′(q2, N) ≤ (ρ− 1) + 2q2N ·
(

q2eρ

N − 2ρ

)ρ
Proposition 2. For N > 216, n = log2N

mcoll′(q2, N) ≤


4n

log2 n
if n2q2 ≤ N

4n
log2 n

⌈
n2q2

N

⌉
if n2q2 ≥ N.

Proof. Let n2q2 ≤ N . Since N > 216, ρ = 4n
log2 n

=⇒ q2 ≤ N−2ρ
ρ2 . Hence, 2q2N ·(

q2eρ
N−2ρ

)ρ
≤ N2 ·

(
e
ρ

)ρ
. Now,

(
e
ρ

)ρ
≤
(
e
4
)4n ≤ 1

N2 =⇒ N2 ·
(
e
ρ

)ρ
≤ 1.

Now for q2 ≥ N
n2 we can group them into

⌈
n2q2

N

⌉
samples each of size exactly N

n2 (we
can add more samples if required). This would prove the bounds.

4.3 Multicollisions in Context of the Analysis of Sponge-type AEAD
In later sections, we will use the bound on the expected number of multicollisions to give
a tight security bound for Transform-then-Permute and some of its instantiations.

Here, we note that multicollisions have been previously studied in context with the
duplex mode, most notably in [DMA17] and [JLM+19]. However, there is a fundamental
difference between our approach and the previously used strategies in [DMA17, JLM+19].
In the following, r, c and b have their usual meaning in context of Sponge, i.e., b = r + c.

In [DMA17], the authors try to upper bound a parameter called the multicollision
limiting function νqr,c. Assume we distribute q balls into 2r bins, one at a time, where the
bin for each ball is selected uniformly at random and independent of other choices. Then,
νqr,c is defined as the smallest natural number x such that Pr [mcq,2r > x] < x/2c. On a
closer inspection of the proof, one can see that the νqr,c is dependent upon b and λ = q2−r.
The authors derive bounds for νqr,c, for three cases, viz. λ < 1, λ = 1, and λ > 1.
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In [JLM+19], the authors upper bound Pr [mcq,2r > ρ] to q/S, where S = min{2b/2, 2c}
and ρ is viewed as a function of r and c. Basically, based on the value of r and c, they
derive choices for ρ, such that the desired probability is bounded by q/S. To derive sharp
bounds on ρ for various choices of r and c, they employ a detailed analysis involving
Sterling’s approximation and Lambert W function.

In contrast to the above strategies, we are interested in good estimates for the expecta-
tion of mcq,2r depending upon the relationship between q and 2r. Further, our analysis is
much more straightforward.

5 Multi-chain Security Game
In this section we consider a new security game which we call multi-chain security game.
In this game, adversary A interacts with a random permutation and its inverse. It’s goal
is to construct multiple walks having same labels. We first need to describe some notations
which would be required to define the security game.

5.1 Multi-Chain Structure
Labeled Walk: Let L = ((u1, v1), . . . , (ut, vt)) be a list of pairs of b-bit elements such
that u1, . . . ut are distinct and v1, . . . , vt are distinct. For any such list of pairs, we write
domain(L) = {u1, . . . , ut} and range(L) = {v1, . . . , vt}.

Let L be a linear function over b bits. Given such a list we define a labeled directed
graph GLL over the set of vertices range(L) ⊆ {0, 1}b as follows: A directed edge vi → vj
with label x (also denoted as vi

x→ vj) is in the graph if L(vi)⊕ x = uj . We can similarly
extend this to a label walk W from a node w0 to wk as

W : w0
x1→ w1

x2→ w2 · · ·
xk→ wk.

We simply denote it as w0
x−→ wk where x = (x1, . . . , xk). Here k is the length of the

walk. We simply denote the directed graph GLL by GL wherever the linear function L is
understood from the context.

Definition 2. Let L be a fixed linear function over b bits. Let r, τ ≤ b be some parameters.
We say that a set of labeled walks {W1, . . . ,Wp} forms a multi-chain with a label x :=
(x1, . . . , xk) in the graph GL if for all 1 ≤ i ≤ p, Wi : vi0

x−→ vik and du1
0er = · · · = dup0er

and dv1
keτ = · · · = dvpkeτ . We also say that the multi-chain is of length k.

Note that if {W1, . . . ,Wp} is a multi-chain then so is any subset of it. Also there can
be different set of multi-chains depending on the starting and ending vertices and different
x = (x1, . . . , xk). Let Wk denote the maximum order of all such multi-chains of length
k. For a fixed linear function L, Wk is completely determined by L. Now we describe
how the list L is being generated through an interaction of an adversary A and a random
permutation.

5.2 Multi-Chain Advantage
Consider an adversary A interacting with a b-bit random permutation Π±. Suppose,
the adversary A makes at most t interactions with Π±. Let (xi, diri) denote ith query
where xi ∈ {0, 1}b and diri is either + or − (representing forward or inverse query). If
diri = +, it gets response yi as Π(xi), else the response yi is set as Π−1(xi). After t
interactions, we define a list L of pairs (ui, vi)i where (ui, vi) = (xi, yi) if diri = +, and
(ui, vi) = (yi, xi) otherwise. So we have Π(ui) = vi for all i. We call the tuple of triples
θ := ((u1, v1, dir1), . . . , (ut, vt, dirt)) the transcript of the adversary A interacting with
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Π±. We also write θ′ = ((u1, v1), . . . , (ut, vt)) which only stores the information about
the random permutation. For the sake of simplicity we assume that adversary makes no
redundant queries and so all u1, . . . ut are distinct and v1, . . . , vt are distinct. For a linear
function L consider the directed graph Gθ′ . For any k, we have already defined Wk. Now
we define the maximum multi-chain advantage as

µt = max
A

max
k

Ex
[

Wk

k

]
.

5.2.1 Bounding µt for Invertible L Functions

In this section, we derive concrete bounds for µt under a special assumption that the
underlying linear function is invertible.

Theorem 3. If the linear function L is invertible, then we have

µt ≤ mcoll(t, 2τ ) + mcoll(t, 2r) + mcoll′(t2, 2b).

Proof of Theorem 3: We first make the following observation which is straightforward
as L is invertible.
Observation 1: If vi

x→ vk and vj
x→ vk then vi = vj .

We now describe some more notations related to multi-chains:

1. Let Wfwd,a denote the size of the set {i : diri = +, dvieτ = a} and maxa Wfwd,a is
denoted as Wfwd. This denotes the maximum multi-collision among τ most significant
bits of forward query responses.

2. Similarly, we define the multi-collision for backward query responses as follows: Let
Wbck,a denote the size of the set {i : diri = −, duier = a} and maxa Wbck,a is denoted
as Wbck.

3. In addition to the multicollisions in forward only and backward only queries, we
consider multicollisions due to both forward and backward queries. Let Wmitm,a

denote size of the set {(i, j) : diri = +, dirj = −, L(vi)⊕ uj = a} and maxa Wmitm,a

is denoted as Wmitm.

Now, we state an intermediate result which is the main step of the proof.

Lemma 2. For all possible interactions, we have

Wk ≤Wfwd + Wbck + k ·Wmitm.

Proof. We can divide the set of multi-chains into three sets:

Forward-only chains: Each chain is constructed by Π queries only. By definition, the
size of such multi-chain is at most Wfwd.

Backward-only chains: Each chain is constructed by Π− queries only. By definition,
the size of such multi-chain is at most Wbck.

Forward-backward chains: The multi-chain consists of at least one chain that uses
both Π and Π− queries. Let us denote the size of such multi-chain by Wfwd-bck

k .

Then, we must have
Wk ≤Wfwd + Wbck + Wfwd-bck

k .

Now, we claim that Wfwd-bck
k ≤ k ·Wmitm. Suppose Wfwd-bck

k = w. Then, it is sufficient to
show that there exist an index j ∈ [k], such that the size of the set {i : (dirij−1, dirij) ∈
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{(+,−), (−,+)}, L(vij−1)⊕ uij = xj} ≥ dw/ke. This can be easily argued by pigeonhole
principle, given Observation 1. The argument works as follows:

For each of the individual chain Wi, we have at least one index j ∈ [k] such that
(dirij−1, dirij) ∈ {(+,−), (−,+)}. We put the i-th chain in a bucket labeled j, if (dirij−1, dirij) ∈
{(+,−), (−,+)}. Note that, it is possible that the i-th chain can co-exist in multiple
buckets. But more importantly, it will exist in at least one bucket. As there are k buckets
and w chains, by pigeonhole principle, we must have one bucket j ∈ [k], such that it holds
at least dw/ke chains.

Now we complete the proof of Theorem 3. Observe that Wfwd and Wbck are the random
variables corresponding to the maximum multicollision in a truncated random permutation
sample of size t, and corresponds to Remark 1 of subsection 4.1. Further, if we denote
xi := ui and yi := L(vi) ∀i ∈ [t] then using Observation 1, Wmitm is the random variable
corresponding to the maximum multicollision in a sum of random permutation sample of
size t2, i.e., the distribution of subsection 4.2. Now, using linearity of expectation, we have

µt ≤ Ex
[
Wfwd]+ Ex

[
Wbck]+ Ex

[
Wmitm]

≤ mcoll(t, 2τ ) + mcoll(t, 2r) + mcoll′(t2, 2b).

5.3 Related Work
In [Men18] Mennink analyzed the Key-prediction security of Keyed Sponge using a special
type of data structure which is close to but different from our multi-chain structure. Here
we give a brief overview of Mennink’s work in our notations and describe how our structure
is different from the structure considered by him.

Let L = ((u1, v1), . . . , (ut, vt)) be a list of pairs of b-bit elements such that u1, . . . ut
are distinct and v1, . . . , vt are distinct. Let c < b be any positive integer. For any such
list of pairs, we write domain(L) = {u1, . . . , ut} and range(L) = {v1, . . . , vt}. Given such a
list we define a labeled directed graph GL over the set of vertices range(L) ⊆ {0, 1}b as
follows: A directed edge vi → vj with label x (also denoted as vi

x→ vj) is in the graph if
vi ⊕ x‖0c = uj . We can similarly extend this to a label walk W from a node w0 to wk as

W : w0
x1→ w1

x2→ w2 · · ·
xk→ wk.

We simply denote it as w0
x−→ wk where x = (x1, . . . , xk). Here k is the length of the walk.

The set yieldc,k(L) consists of all possible labels x such that there exists a k-length walk
of the form 0b x→ wk in the graph GL.

Consider the graph, GL. The configuration of a walk from w0 to wk is defined as a tuple
C = (C1, . . . , Ck) ∈ {0, 1}k where Ci = 0 if wi−1

xi−→ wi comes from a forward primitive
query and Ci = 1 if it corresponds to an inverse primitive query.

Mennink provided an upper bound of yieldc,k(L) by bounding the maximum number
of possible labeled walks from 0b to any given wk ∈ {0, 1}b with a given configuration C.

The use of tools like multi-collision and the similarity in the data structure of [Men18]
with our multi-chain structure can be misleading. Here we try to discuss the difference
between them and show that the underlying motivation behind both the problems are
philosophically as different as possible.

Note that using multi-chain structure, we try to bound the number of different walks
with the same label and distinct starting points whereas yieldc,k(L) is the number of
different walks with same starting point namely 0b and distinct labels. Hence the multi-
chain structure deals with a different problem than yieldc,k(L). A notable change in our
work is to deal with multicollision of sum of two permutation calls (we call it meet in the
middle multicollision, see definition of Wmitm). This computation is not straightforward
like usual computation of expectation of multi-collision (see subsection 4.2).
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6 Proof of Theorem 2
The proof employs coefficient H-technique of Theorem 1. To apply this method we need
to first describe the ideal world which basically tries to simulate the construction. The
real world behaves same as the construction and would be described later. For the sake of
notational simplicity we assume size of the nonce is at most b− κ. Later we mention how
one can extend the proof when nonce size is more than b− κ. We also assume that the
adversary makes exactly qp, qe and qd many primitive, encryption and decryption queries
respectively.

6.1 Ideal World and Real World
Online Phase of Ideal World. The ideal world responds three oracles, namely
encryption queries, decryption queries and primitive queries in the online phase.

(1) On Primitive Query (Wi, diri):

The ideal world simulates Π± query honestly.2 In particular, if diri = 1, it sets
Ui ← Wi and returns Vi = Π(Ui). Similarly, when diri = −1, it sets Vi ← Wi and
returns Ui = Π−1(Vi).

(2) On Encryption Query Qi := (Ni,Ai,Mi):

It samples Yi,0, . . . ,Yi,ti ←$ {0, 1}b where ti = ai + mi, ai = a(|Ai|) and mi =
d |Mi|

r e. Then, it returns (Ci,1‖ · · · ‖Ci,mi ,Ti) where (Mi,1, . . . ,Mi,mi)
r← Mi , Ci,j =

dYi,ai+j−1e|Mi,j | ⊕Mi,j for all j ∈ [mi] and Ti ← dYi,tieτ .

(3) On Decryption Query Qi := (N∗i ,A∗i ,C∗i ,T∗i ):
According to our convention we assume that the decryption query is always non-trivial.
So the ideal world returns abort symbol M∗i := ⊥.

Offline Phase of Ideal World. After completion of oracle interaction (the above
three types of queries possibly in an interleaved manner), the ideal oracle sets E , ,D,P to
denote the set of all query indices corresponding to encryption, decryption and primitive
queries respectively. So E t D t P = [qe + qd + qp] and |E| = qe, |D| = qd, |P| = qp. Let
the primitive transcript ωp = (Ui,Vi, diri)i∈P and let ω′p := (Ui,Vi)i∈P . The decryption
transcript ωd := (M∗i )i∈D where M∗i is always ⊥.

Now we describe some extended transcript (releasing additional information) for
encryption queries. It samplesK ←$ {0, 1}κ. For all i, let Fmt(Ni,Ai,Mi) = (Di,0, . . . , Di,ti)
and for every 0 ≤ j ≤ ti, the intermediate input (X-value) is defined as

Xi,j =
{
Di,0 ⊕K‖0b−κ if j = 0
Le(Yi,j−1)⊕Di,j if 1 ≤ j ≤ ti

The encryption transcript ωe = (Xi,jYi,j)i∈E,j∈[0..ti]. So, the transcript of the adversary
consists of ω := (Q,ωp, ωe, ωd) where Q := (Qi)i∈E∪D.

Real World. In the online phase, the AE encryption and decryption queries and
direct primitive queries are faithfully responded based on Π±. Like the ideal world, after
completion of interaction, the real world returns all X-values and Y -values corresponding
to the encryption queries only. Note that a decryption query may return Mi which is not
⊥.

2For example, one can use lazy sampling to simulate random permutation.
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6.2 Bad Transcripts
We define the bad transcripts into two main parts. We first define bad events due to
encryption and primitive transcript. The following bad events says that (i) there is a
collision among inputs/outputs of ωp and ωe (ii) there is a collision among input/outputs
of ωe. So, given that there are no such collision, all inputs and outputs are distinct and
hence ωe ∪ ωp is permutation compatible (can be realized by random permutation). More
formally, we define the following bad events:

B1: For some (U,V) ∈ ωp, K = bUcκ.

B2: For some i ∈ E , j ∈ [ti], Yi,j ∈ range(ωp), (in other words, range(ωe)∩ range(ωp) 6= ∅)

B3: For some i ∈ E , j ∈ [ti], Xi,j ∈ domain(ωp), (in other words, domain(ωe) ∩
domain(ωp) 6= ∅)

B4: For some (i ∈ E , j ∈ [ti]) 6= (i′ ∈ E , j′ ∈ [ti′ ]), Yi,j = Yi′,j′ ,

B5: For some (i ∈ E , j ∈ [ti]) 6= (i′ ∈ E , j′ ∈ [ti′ ]), Xi,j = Xi′,j′ ,

Now we describe the bad event due to decryption queries. Suppose the bad events
(B1∨ · · · ∨ B5) as defined above due to encryption queries and primitive don’t occur i.e. we
have ωp ∪ ωe is permutation compatible. Suppose Π′ is the partially defined permutation
defined over domain of ωp ∪ ωe and mapping the corresponding range elements. For each
decryption query Qi = (N∗i ,A∗i ,C∗i ,T∗i ), we compute ai = a(|A∗i |), mi = d|C∗i |/re and
Fmt(N∗i ,A∗i ,C∗i ) = (D∗i,0, . . . , D∗i,ti). We define p′i is the largest index j for which the input
Xj is in the domain of ωe ∪ ωp while we run the decryption algorithm using Π′ for Qi.
Consider the case, p′i = ti i.e. the complete decryption algorithm computation for the
query is determined by the ωe ∪ ωp transcript. In such a case we define bad (called mBAD)
if the corresponding tag also matches. Note that for this bad transcript the real world
should not abort the decryption query. Now we define all bad events in a more formal way.

Definition of pi. Before we define p′i, we first define pi which is the input index we can
compute for the decryption query only using encryption queries transcript. Formally, pi is
defined as −1 if for all i′ ∈ E , Ni′ 6= N∗i . Otherwise, there exists a unique i′ ∈ E such that
Ni′ = N∗i (as we consider nonce-respecting adversary only). Let pi + 1 denote the length of
the longest common prefix of (Di′,0, · · · , Di′,ti′ ) and (D∗i,0, · · · , D∗i,ti). Note that pi = −1
in case there is no common prefix.

We now define Y∗i,0..pi = Yi′,0..pi , X∗i,0..pi = Xi′,0..pi when pi ≥ 0 and

X∗i,pi+1 =
{
Le(Yi′,pi) ⊕ D∗i,pi+1 if pi ≥ 0.
K‖N∗i if pi = −1.

By Lemma 1, pi < ti, pi < ti′ . By definition of longest common-prefix, we have
X∗i,pi+1 6= Xi′,pi+1.

Definition of p′i. If pi < ai or if X∗i,pi+1 /∈ domain(ωp) define p′i = pi. Else, we further
extend X∗-values and Y∗-values based on the primitive transcript ωp. Let xi,j := D∗i,j for
all i ∈ D, 1 ≤ j ≤ ti. If there is a labeled walk (in the labeled directed graph induced by
ωp as described in section 5 from Y∗i,pi+1 with label (xi,pi+2, . . . , xi,j) then we denote the
end node as Y∗i,j . In notation we have

Y∗i,pi+1
(xi,pi+2,...,xi,j)−→ Y∗i,j .
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Let p′i denotes the maximum of all such possible j’s. For all those i and j in which Y∗i,j
has been defined as described above, we define X∗i,j+1 := Ld(Y∗i,j)⊕ xi,j+1.
Bad events due to the decryption queries in the transcript:

mBAD: For some i ∈ D with p′i = ti and dY∗i,tieτ = T∗i .

B6: For some i ∈ D, p′i < ti and, X∗i,p′
i
+1 ∈ domain(ωe) ∪ domain(ωp).

We write BAD to denote the event that the ideal world transcript Θ0 is bad. Then, with a
slight abuse of notations and union bound, we have

BAD = mBAD ∪
( 6⋃
i=1

Bi
)
. (4)

Lemma 3 upper bounds the probability of mBAD and Lemma 4 upper bounds the probability
of
⋃6
i=1 Bi. The proofs of Lemma 3 and 4 are postponed to subsections 6.4 and 6.5,

respectively.

Lemma 3. Let µqp be the maximum multi-chain advantage (see subsection 5.2) over qp
primitive queries. Then, we have

Pr [mBAD] ≤
σd · µqp

2c .

Lemma 4. For qp < 2b−1, we have

Pr
[ 6⋃
i=1

Bi

]
≤ qp

2κ + 6σeqp
2b + 2σ2

e

2b + σe + qp
2b + 2qpmcoll(σe, 2r)

2c

+ qpmcoll(σe, 2r)
2b−τ + qpσdmcoll(σe, 2r)

22c .

6.3 Good Transcript Analysis
The motivation for all the bad events would be clear from the understanding of a good
transcript (i.e., not a bad transcript). Let ω = (Q,ωp, ωe, ωd) be a good transcript. For the
sake of notation simply we ignore the query transcript Q as it is not required to compute
the probability of a transcript.

1. The tuples ωe is permutation compatible and disjoint from ωp. So union of tuples
ωe ∪ ωp is also permutation compatible.

2. Let D1 (type-1 decryption query) be the set of all i ∈ D, if p′i = ti with dY∗i,tieτ 6= T∗i .
In this case, decryption algorithm should abort with probability one. Set of all
other indices is denoted as D2 (type-2 decryption query). In this case, p′i < ti but
X∗i,p′

i
+1 6∈ domain(ωe ∪ ωp). So, Y∗i,p′

i
+1 value and subsequent Y -values will have

almost b-bit entropy. Thus, with a negligible probability we may not abort the query.

Ideal World Interpolation Probability. Let Θ0 and Θ1 denote the transcript
random variable obtained in the ideal world and real world respectively. As noted before,
all the input-output pairs for the underlying permutation are compatible. In the ideal
world, all the Y values are sampled uniform at random; the list ωp is just the partial
representation of Π; and all the decryption queries are degenerately aborted; whence we
get

Pr[Θ0 = ω] = 1
2bσe(2b)qp

.
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Here σe denotes the total number of blocks present in all encryption queries including
nonce. In notation σe = qe +

∑
imi.

Real World Interpolation Probability. In the real world, for ω we denote the en-
cryption query, decryption query, and primitive query tuples by ωe, ωd and ωp, respectively.
Then, we have

Pr[Θ1 = ω] = Pr[Θ1 = (ωe, ωp, ωd)]
= Pr[ωe, ωp] · Pr[ωd | ωe, ωp]
= Pr[ωe, ωp] · (1− Pr[¬ωd | ωe, ωp])

≤ Pr[ωe, ωp] ·
(

1−
∑
i∈D2

Pr[¬ωd,i | ωe, ωp]
)

(5)

Here we have slightly abused the notation to use ¬ωd,i to denote the event that the i-th
decryption query successfully decrypts and and ¬ωd is the union ∪i∈D2¬ωd,i (i.e. at least
one decryption query successfully decrypts). The encryption and primitive queries are
mutually permutation compatible, so we have

Pr
Θ1

(ωe, ωp) = 1/(2b)σe+qp ≥ Pr
Θ0

(ωe, ωp).

Now we show an upper bound PrΘ1(¬ωd,i | ωe, ωp) ≤
2(σ+qp)

2b + 2
2τ for every type-2

decryption query. We quickly recall that Fmt(N∗i ,A∗i ,C∗i ) = (D∗i,0, . . . , D∗i,ti). So, ¬ωd,i is
same as dΠ(X∗i,ti)eτ = T∗i where X∗i,j values have been defined recursively as follows

X∗i,j = Ld
(
Π(X∗i,j−1)

)
⊕D∗i,j , p′i + 1 < j ≤ ti.

Let I and O denote the set of inputs and outputs for Π which are present in the transcript
(ωe, ωp). Recall that X∗i,p′

i
+1 is fresh, i.e., X∗i,p′

i
+1 6∈ I.

Claim 1. Pr(X∗i,j is fresh ) ≥ (1− 2(σe+qp+ti)
2b ) ∀ p′i + 1 < j ≤ ti.

Proof. Since X∗i,p′
i
+1 is not the last block, then the next input block may collide with some

encryption or primitive input block with probability at most σe+qp
2b−σe−qp . Applying this

same argument for all the successive blocks till the last one, we get that if none of the
previous block input collides then the probability that the last block input collides is at
most (σe+qp+ti−p′i+2)

2b−σe−qp−ti+p′i+2 ≤
2(σe+qp+ti)

2b .

Claim 2. Pr(¬ωd,i | X∗i,j are fresh ) ≤ 2
2τ .

Proof. Since the last input block X∗i,ti is fresh, hence Π(X∗i,ti) = T∗i with probability at
most 2/2τ (provided σe + qp ≤ 2b−1 which can be assumed, since otherwise our bound is
trivially true).

Let Ej denote the event that X∗i,j is fresh and E := ∧tij=p′
i
+1Ej

Using the claims, we have

Pr
Θ1

(¬ωd,i | ωe, ωp) ≤ Pr
Θ1

(¬ωd,i ∧ E | ωe, ωp) + Pr(Ec).

≤ 2
2τ +

ti∑
j=p′

i
+1

σd + σe + qp
2b−1 .
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The last inequality follows from the above claims. Now, we can proceed by using the union
bound as follows.

Pr[¬ωd | ωe, ωp] ≤
∑
i∈D

2ti(σe + qe + σd)
2b + 2

2τ

≤ 2σd(σe + σd + qp)
2b + 2qd

2τ

= 2σd(σ + qp)
2b + 2qd

2τ

Finally, Theorem 2 follows from the H-technique (Theorem 1) combined with Theorem 3,
Lemma 3, Lemma 4 and Eq. (5).

Remark 2. As described in the algorithm, in the case where nonce size is greater than
b− κ, we treat the excess length of the nonce as part of the associated data. For such a
TtP construction the internal values of the encryption transcripts are chosen in a prefix
respecting manner. Suppose the i, i′-th queries (Di,0, . . . , Di,ti) and (Di′,0, . . . , Di′,tj ) have
a maximum common prefix of length pi and let without loss of generality i < i′. Then we
set Yi,j = Yi′,j and Xi,j = Xi′,j∀0 ≤ j ≤ pi. The rest of the proof remains the same.

6.4 Proof of Lemma 3 (Multi-chain Bad Transcript Analysis)
Suppose the event holds for the i-th decryption query and N∗i = Ni′ . So,

(
X∗i,pi+1,Y∗i,pi+1

)
must be the one of the starting node of the multi-chain. Hence as in definition 2, if (U, V )
be any other starting node of the multi-chain, then we must have dUer = dX∗i,pi+1er.
Now as before , let Wti−pi denote the maximum size of the set of multi-chain of length
ti − pi, induced by Ld and ωp. As bYi′,picc is chosen at random (and independent of
ωp), and C∗i,pi+1 is fixed, the probability to hold mBAD for i-th decryption query is at
most Wmi/2c given the transcript ωp. So by union bound, the conditional probability
Pr[mBAD | ωp] ≤

∑
i∈D

Wmi

2c .

Since the decryption query data complexity of the adversary is bounded by σd blocks
we have

∑
i∈Dmi ≤ σd. Now,∑

i∈D
Wmi ≤

∑
i∈D

(
max
k≤mi

Wk

k
×mi

)
≤ max

k

Wk

k
× σd.

Hence,

Pr [mBAD] ≤
∑
i∈D

Ex [Wmi ]
2c ≤ max

k
Ex
[

Wk

k

]
× σd

2c ≤
σd · µqp

2c .

6.5 Proof of Lemma 4 (Bad Transcript Analysis)
From the union bound we have

Pr
[ 6⋃
i=1

Bi

]
≤ Pr [B1] + Pr [B2] + Pr [B3|¬B1] + Pr [B4]

+ Pr [B5] + Pr [B6|¬B1].

It is sufficient to upper bound each of these individual probabilities. We bound the
probabilities of these events in the following:
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Bounding Pr[B1]: This is basically the key recovery event, i.e., the event that the
adversary recovers the master key K by direct queries to the internal random permutation
(can be both forward or backward). For a fixed entry (U,V) ∈ ωp, the probability that
K = bUcκ is bounded by at most 2−κ, as K is chosen uniform at random from {0, 1}κ.
Thus, we have

Pr[B1] ≤ qp
2κ .

Bounding Pr[B2] : This event can be analyzed in several cases as below:
Case 1: ∃i, j, a, Yi,j = Va, encryption after primitive: Since Yi,j are chosen uniformly at
random, this case can be bounded for fixed i, j, a with probability at most 1/2b. We have
at most σe many (i, j) pairs and qp many a indices. Hence this case can be bounded by at
most σeqp/2b.
Case 2: ∃i, j, a, Yi,j = Va, dira = +, encryption before primitive: This case can be bounded
by probability at most 1/(2b − qp + 1). We have at most σe many (i, j) pairs and qp
many a indices. Thus this can be bounded by at most σeqp/(2b − qp + 1) ≤ 2σeqp/2b (as
qp ≤ 2b−1).
Case 3: ∃i, j 6= ti, a, Yi,j = Va, dira = −, encryption before primitive: Here the adversary
has access to dYi,jer, as this value has already been released. Let Φout denote the number
of multicollisions among all dYi′,j′er values. Now, we have

Pr[Case 3] =
∑
Φout

Pr[Case 3 | Φout] · Pr[Φout]

≤
∑
Φout

Φout × qp
2c · Pr[Φout]

≤ qp
2c × Ex [Φout]

≤ qpmcoll(σe, 2r)
2c .

Case 4: ∃i, a, Yi,ti = Va, dira = −, encryption before primitive: This case is same as case-
3 plugging in r as τ and c as b− τ . So, Pr[Case 4] ≤ qpmcoll(σe,2τ )

2b−τ .
By using the union bound, we have

Pr[B2] ≤ 3σeqp
2b + qpmcoll(σe, 2r)

2c + qpmcoll(σe, 2τ )
2b−τ .

Bounding Pr[B3|¬B1] : This means ∃i, j, a, Xi,j = Ua where j > 0 (as B1 does not hold).
So, we can have the following cases with j > 0:
Case 1: ∃i, j, a, Xi,j = Ua, encryption after primitive: This case can be bounded by prob-
ability at most 1/2b, as Yi,j−1 is chosen uniform at random and Le in invertible. We have
at most σe many (i, j) pairs and qp many a indices. Thus this can be bounded by at most
σeqp/2b.
Case 2: ∃i, j, a, Xi,j = Ua, dira = −, encryption before primitive: This case can be bounded
by probability at most 1/(2b − qp + 1). We have at most σe many (i, j) pairs and qp many
a indices. Thus this can be bounded by at most 2σeqp/2b.
Case 3: ∃i, j, a, Xi,j = Ua, dira = +, encryption before primitive: Since Le is invertible,
we can define V′ = L−1

e (Ua ⊕Dj). Then using the invertibility of Le we have this event is
same as the event ∃i, 0 < j, Yi,j−1 = V′ for some V′ ∈ ωp. Since j ≤ ti we have this event
is the same as Case 3 of B2. Hence,

Pr[Case 3] ≤ qpmcoll(σe, 2r)
2c .
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Pr[B3|¬B1] ≤ 3σeqp
2b + qpmcoll(σe, 2r)

2c .

Bounding Pr[B4] and Pr[B5]: The probability of this event can be simply bounded by
birthday paradox and so it is at most σe(σe − 1)/2b.
Bounding Pr[B6|¬B1]: This event can be analyzed in several cases.
Case 1 p′i < ai: Since during associated data processing no information is leaked to the
adversary and Y ∗i,j-s are sampled uniformly at random hence for p′i < ai , the distribution
function of X∗i,p′

i
+1 = Y ∗i,p′

i
⊕D∗i, p′i + 1 is uniform. Hence

Pr [Case 1] ≤ σe + qp
2b .

Case 2 ai ≤ pi ≤ p′i: This corresponds to the case when either the first non-trivial decryp-
tion query block doesn’t match any primitive query or it matches a primitive query and
follows a partial chain and then matches with some encryption query block. Doing similar
analysis as in Case 3 of B3|¬B1, The probability that this happens for i-th decryption is at
most qp/2c ×miΦout/2c. Summing over all i ∈ D, the conditional probability is at most
qpσdΦout

22c . By taking expectation we obtain the following:

Pr[Case 3] ≤ qpσdmcoll(σe, 2r)
22c .

Pr [B6|¬B1] ≤ σe + qp
2b + qpσdmcoll(σe, 2r)

22c .

By adding all these probabilities we prove our result.

7 Instantiating TtP and Application of Theorem 2
Now, we describe how Transform-then-Permute can capture a wide class of permutation
based sequential constructions such as duplex (or Sponge AE), Beetle and SpoC, in which
the only non-linear operation is the underlying permutation. We further show that Beetle
and SpoC fall under a special class of TtP constructions where the feedback functions are
invertible and hence we can apply Theorem 2 in those cases. Finally, we discuss the case
of Sponge AE which doesn’t belong to this special class.

7.1 How to Convert a Generalized Sponge-type Construction to TtP
Let L : {0, 1}b × {0, 1}r → {0, 1}b × {0, 1}r be any linear function defined by the transfor-

mation matrix L =
[
L1,1 L1,2
L2,1 L2,2

]
consisting of b× b matrix L1,1, b× r matrix L1,2, r × b

matrix L2,1, r × r matrix L2,2. Consider the Sponge-type construction which takes state
input Xi and data input Mi and generate the data output Ci and next state input Xi+1
as follows:

Yi = Π(Xi);
[
Xi+1
Ci

]
= L ·

[
Yi
Mi

]
As L2,1 · Y + L2,2 ·M = C, the rank of L2,2 must be r, otherwise encryption is not a
bijective function from message space to ciphertext space. For the sake of simplicity we
can assume that L2,2 = Ir (the identity matrix of size r). Otherwise, we can redefine
message block as M ′ = L2,2 ·M .

Now, we observe that rank of L2,1 is r. If not, then there exists a non-zero vector
γ such that γ · L2,1 = 0. Hence, γ ·M = γ · C holds with probability 1. In case of
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ideal permutation as γ is non-zero and C is chosen uniformly independent of M , this
event occurs with probability 1

2 . Hence the privacy advantage of any adversary for such a
construction will be ≥ 1

2 . As rank of L2,1 is r, there exists an invertible matrix Zb×b such
that L2,1 · Z = Ir‖0r×(b−r). Let Le = L1,1 · Z. Then by simple matrix algebra we have[

Xi+1
Ci

]
=
[

Le L1,2
Ir‖0r×(b−r) Ir

]
·
[
Y ′i
Mi

]
where Y ′i = Z−1 · Yi. Note that, multiplication by an invertible matrix is a permutation
and composition of a random permutation with a public permutation is again a random
permutation. Hence, we can redefine the random permutation output as Z−1 · Π(Xi).
Let us denote encode(M) = L1,2 ·M and hence the the general linear function based
Sponge-type construction boils down to the construction TtP.

7.2 New Improved Security of Beetle
In Beetle [CDNY18], the linear function Le is defined as Le(y‖x1‖x2) 7→ (y‖x2‖x2 ⊕ x1),
where (y, x1, x2) ∈ {0, 1}c × {0, 1}r/2 × {0, 1}r/2. The linear function Ld,i is defined by

Ld,i(y‖x1‖x2) =
{

(y‖x2‖bx2 ⊕ x1cr/2−i‖dx1ei) for 0 ≤ i ≤ r/2
(y‖bx2cr−i‖dx2 ⊕ x1ei−r/2‖x1) for r/2 ≤ i ≤ r

,

where (y, x1, x2) ∈ {0, 1}c × {0, 1}r/2 × {0, 1}r/2. Clearly the Le and Ld,i functions are
invertible for all 0 ≤ i ≤ r. Further, they have full rank.
Remark 3. The PHOTON-Beetle [BCD+19] design which is currently in the round 2 of NIST
LwC standardization process uses a feedback function which is a linear transformation
of the feedback function of Beetle [CDNY18]. By applying the conversion method as
described in subsection 7.1 the PHOTON-Beetle design can be viewed as a TtP design with
the same linear function Le as described above.
Previous Bound: In [CDNY18], the authors proved that for any (qp, qe, qd, σe, σd)-
adversary A ,

Advaead
Beetle(A ) ≤ 2(σe + qp)σd

2b +
(
σe + qp

2r−1 + qp
2c

)r
+ rσd

2c + qv
2r . (6)

The primary version of PHOTON-Beetle [BCD+19] has r = τ = c = 128 and b = 256.
Comparing with the σ and qp values prescribed by NIST we have 2r = 2τ ≥ qp ≥ σ and
2b ≥ b2q2

p. The secondary version of PHOTON-Beetle [BCD+19] has r = 32, c = 224, τ =
128 and b = 256. Comparing with the σ and qp values prescribed by NIST we have
2τ ≥ qp ≥ σ, σ ≥ 2r and 2b ≥ b2q2

p.
By equation 6 the advantage of Beetle is bounded by

( qp
2r−1

)r. So, for Beetle to be
secure, r has to be large. It can be noticed that the primary version of PHOTON-Beetle
has r = 128 > 112. Hence by equation 6, it is secure within the NIST LwC requirements.
For secondary version of PHOTON-Beetle, we have r = 32 < 112 and hence equation 6
does not guarantee the security for this version under NIST LwC requirements.
New Improved Bound: Since the feedback function of Beetle is invertible, we can apply
Theorem 2. Specifically, we have
Corollary 1. For any (qp, qe, qd, σe, σd)-adversary A , its AEAD advantage against the
primary version of PHOTON-Beetle is as follows

Advaead
PHOTON-Beetle(A ) ≤ 4τσd

2c + 4rσd
2c + 4bσd

2c + qp
2κ + 2qd

2τ + 2σd(σ + qp)
2b + 6σeqp

2b

+ 8rqp
2c + 4τqp

2b−τ + σe + qp
2b + 4rqpσd

22c .
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The AEAD advantage of A against the secondary version of PHOTON-Beetle is as follows

Advaead
PHOTON-Beetle(A ) ≤ 4τσd

2c + 4σd · qp
2b + 4bσd

2c + qp
2κ + 2qd

2τ + 2σd(σ + qp)
2b + 16σeqp

2b

+ 4τqp
2b−τ + σe + qp

2b + 5qpσdσe
2b+c .

Corollary 1 follows from Theorem 2, and Proposition 1 and 2. Further, using the relation
that σ ≤ qp (as per NIST LwC requirements) we can bound the advantage in case of
primary version as,

Advaead
PHOTON-Beetle(A ) ≤ qp

2κ + 13rqp
2c ,

and the secondary version as,

Advaead
PHOTON-Beetle(A ) ≤ qp

2κ + 17qpσ
2b .

Clearly, by this new improved security bound, it is proved that both the primary and the
secondary version of PHOTON-Beetle are secured under the NIST requirements.
The major difference between our analysis and the analysis of [CDNY18] is that, we use
the expected number of multi-chains to bound the security of Beetle, whereas in [CIMN17],
it was only done using multicollision probability at the rate part. This is the reason why
our new bound is much tighter than the existing one.

7.3 Security of SpoC
In SpoC [AGH+19], the linear function Le is identity, and the linear function Ld is defined
by the mapping L(x, y) 7→ (x, x‖0c−r ⊕ y), where (x, y) ∈ {0, 1}r × {0, 1}c. Clearly, Le
and Ld functions are involutions, and hence invertible. Further, it is easy to check that
they have full rank.

Corollary 2. For any (qp, qe, qd, σe, σd)-adversary A , the AEAD advantage of A against
the primary version of SpoC is given by,

Advaead
SpoC(A ) ≤ 5qpσd

2c+τ + 5qpσd·
2b +

4b3q2
pσd

2b+c + qp
2κ + 2qd

2τ + 2σd(σ + qp)
2b

+ 6σeqp
2b + 8rqp

2c + 4τqp
2b−τ + σe + qp

2b + 4rqpσd
22c

Corollary 2 follows from Theorem 2, and Proposition 1 and 2. The primary version of
SpoC mode of AEAD has r = τ = 64, b = 192. Using the NIST prescribed values of σ
and qp we have σ < 2r but 2r = 2τ ≤ qp and 2b ≤ b2q2

p. Further, using the relation that
σ ≤ qp (as per NIST LwC requirements) we can bound the advantage as,

Advaead
SpoC(A ) ≤ qp

2κ + 2σ
2τ + 13qpσ

2b .

7.4 Interpretation of Corollary 1 and 2
Keeping in mind the NIST LwC requirement of time complexity qp = 2112 and data
complexity rσ = 253 we try to find out the smallest possible permutation under which
the Beetle and SpoC modes can achieve security. We take 2r ≤ σ ≤ qp ≤ 2c. We further
assume that σ ≤ 2τ ≤ qp and 2b ≤ b2q2

p. Then, by applying Proposition 1 and 2 to simplify
and improve the bounds in Corollary 1 or 2, we have

Advaead
SpoC/Beetle(A ) ≤ qp

2κ + 2σ
2τ + 17σqp

2b .
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It can be easily verified that Beetle and SpoC instantiated with a permutation of size at least
165-bit with rate r = 32-bit can achieve security close to the NIST LwC requirements. For
instance, Beetle and SpoC instantiated with the 176-bit permutation from the SPONGENT
family [BKL+13] achieves NIST LwC requirements. Further, we note that there could be
a possibility to further reduce the constants appearing in the above expression using a
finer analysis. Specifically, if we ignore the constants, a 160-bit permutation with rate
r = 32-bit suffices for NIST LwC requirements.

7.5 Security of Sponge
In case of the original Sponge construction, the Ld function is defined by Ld(x, y) 7→ (0r, y)
where (x, y) ∈ {0, 1}r×{0, 1}c. Note that the Ld function is not invertible. As described in
Theorem 3, we have a bound for µqp in the cases where Ld is invertible or more specifically
in the cases where Observation 1 holds. Hence the results of Theorem 3 can not be applied
in case of original Sponge. However since Le is invertible, with a similar analysis as in the
case of TtP we get,

Advaead
Sponge(A ) ≤

σd · µqp
2c + qp

2κ + 2qd
2τ + 2σd(σ + qp)

2b + 6σeqp
2b + 2qpmcoll(σe, 2r)

2c

+ qpmcoll(σe, 2τ )
2b−τ + σe + qp

2b + qpσdmcoll(σe, 2r)
22c . (7)

Bounding µqp in case of Sponge is an interesting problem which is open to further research.
However, it seems very hard to have a tight estimate of µqp for Sponge AE. A straightforward
estimate of µqp leads to the known security bound of σdqp/2c. So as of now the tight
security bound of Sponge AE is still an open problem. However, our result helps in reducing
the problem of finding tight bound to solving some functional graph problem (estimation
of µqp). The functional graph of random functions are well-studied in cryptanalysis of
iterated hash functions and MACs [PW14, BWGG17, BGW18]. It is quite possible that
similar approach may lead to a better understanding of the security of Sponge AE.

8 Matching Attack on Transform-then-Permute
Now we see some matching attacks for the bound. We explain the attacks for the simplified
version (by considering empty associated data).

1. Suppose µqp maximizes for some adversary B interacting with Π. Now, the AE
algorithm A will run the algorithm B to get the primitive transcript ωp. We first
make qd many encryption queries with single block messages with distinct nonces
N1, . . . , Nqd and hence for all 1 ≤ i ≤ qd, dYi,0er, dXi,1er and dYi,1eτ values are
known. Suppose for length mi, the multi-chain for the graph induced by ωp start
from the nodes (whose r most significant bits of the domain is ui) to the nodes
(whose τ most significant bits of the range is Ti) and with label xi. Now we choose
the appropriate ciphertext C∗1 such that dX∗i,1er = ui. Moreover, we choose C∗i,j such
that C∗i,j is same as xi,j (here we assume that B makes queries so that the labels are
compatible with encoding function).
Now, we make decryption queries (Ni, C∗i , Ti). With probability Wmi/2c, the ith
forgery attempt would be successful. Then maximizing Wmi

mi
and by taking expecta-

tion, we achieve the desired success probability.

2. Guessing the key K through primitive query would lead a key-recovery and hence all
other attacks. The correct guess of the key can be easily detected by making some
more queries for each guess to compute an encryption query. This attack requires
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qp = O(2κ). Similarly random forging gives success probability of forging about
O(qd/2τ ).

3. Another attack strategy can be adapted to achieve σeqp/2b bound. We look for a
collision among X-values and primitive-query inputs. This can be again detected
by adding one or two queries to each guess. The same attack works with success
probability qpmcoll(σe, 2r)/2c if we make primitive queries after making all encryption
queries.

4. A similar attack strategy can be adapted to achieve qpmcoll(σe, 2r)/2b−τ bound.
We look for a collision among T -values and primitive-query inputs where primitive
queries are done after the encryption queries to predict the unknown b− τ bits of
the final output value.

These attacks show that the bounds in Theorem 2 and equation (7) are tight.

9 Conclusion
In this paper we have proved improved bound for Beetle and provided similar bound
for newly proposed mode SpoC. Our bound resolves all limitations known for Beetle and
Sponge AE. We are able to provide tight estimation of µqp when the feedback function for
decryption is invertible. This is the case for Beetle and SpoC, but not for Sponge duplex.

Although as discussed in section 8, we obtain tight expression for AE advantage for
Sponge AE, the variable µqp (present in our upper bound) needs to be tightly estimated.
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