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Abstract. Coron et al. showed a construction of a 3-round 2n-bit cryptographic
permutation from three independent n-bit ideal ciphers with n-bit keys (TCC 2010).
Guo and Lin showed a construction of a (2d− 1)-round dn-bit cryptographic permu-
tation from 2d− 1 independent n-bit ideal ciphers with κn-bit keys, where d = κ+ 1
(Cryptography and Communications, 2015). These constructions have an indifferen-
tiability security bound of O(q2/2n) against adversaries that make at most q queries.
The bound is commonly referred to as birthday-bound security.
In this paper, we show that a 5-round version of Coron et al.’s construction and
(2d+1)-round version of Guo and Lin’s construction yield a cryptographic permutation
with an indifferentiability security bound of O(q2/22n), i.e., by adding two more
rounds, these constructions have beyond-birthday-bound security. Furthermore, under
the assumption that q ≤ 2n, we show that Guo and Lin’s construction with 2d+2`−1
rounds yields a cryptographic permutation with a security bound of O(q2/2(`+1)n),
where 1 ≤ ` ≤ d− 1, i.e., the security bound exponentially improves by adding every
two more rounds, up to 4d− 3 rounds. To the best of our knowledge, our result gives
the first cryptographic permutation that is built from n-bit ideal ciphers and has a
full n-bit indifferentiability security bound.
Keywords: Cryptographic permutation · Ideal cipher · Provable security · Indif-
ferentiability · Coefficient-H technique

1 Introduction
Background. A cryptographic permutation is a non-keyed public permutation that is
designed to behave like a public random permutation, and it is the core primitive of
permutation-based cryptography, e.g., it can be used as a primitive to construct hash
functions, encryption schemes, message authentication codes, and authenticated encryption
schemes [BDPA08, BDPA10, BDPA11, ADMA15, BDH+17]. Designing a secure and
efficient cryptographic permutation is an important problem in symmetric cryptography,
and a large number of dedicated designs have been proposed, e.g., we have the permutation
in SHA-3 [NIS14] and 384-bit permutation Gimli [BKL+17].

For this problem, Coron et al. [CDMS10] initiated constructing a cryptographic permuta-
tion by using block ciphers. In [CDMS10], a 3-round construction of a 2n-bit cryptographic
permutation from three independent n-bit block ciphers with n-bit keys (described in
Fig. 1(a)) is proposed, and its security was shown in the indifferentiability framework
introduced by Maurer et al. [MRH04]. Specifically, it was proved that the 3-round con-
struction using publicly accessible random block ciphers (modeled as independent ideal
ciphers) is indifferentiable from a 2n-bit random permutation, and the 2-round version
cannot achieve indifferentiability. The security bound of adversaries that make at most
qc construction queries and at most qp primitive queries is O(q2/2n) for q = qc + qp, and
this security bound is often referred to as birthday-bound security (with respect to n, the
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block length of the ideal cipher). This implies that a 2n-bit random permutation can be
securely replaced by the 3-round construction provided that q � 2n/2 holds. In [CDMS10],
it was also proved that if we apply three n-bit ideal ciphers with longer (n+ k)-bit keys
to the similar iterative construction, then it gives a 2n-bit keyed permutation with k-bit
keys (described in Fig. 1(b)), and it is indifferentiable from a 2n-bit ideal cipher with k-bit
keys with a security bound of O(q2/2n). This construction is a domain extender for the
ideal cipher that doubles the domain, and the variant with k = 0 is the construction of the
cryptographic permutation in Fig. 1(a).

Guo and Lin [GL15] improved the domain extender for the ideal cipher of [CDMS10],
and proposed an iterative construction that extends the domain by a factor of d ≥ 2.
A variant of the construction in [GL15] by setting the key length as k = 0 provides
a cryptographic permutation. Specifically, for a positive integer κ, [GL15] provides an
iterative construction of a dn-bit cryptographic permutation by using n-bit block ciphers
with κn-bit keys (modeled as independent ideal ciphers), where d = κ+ 1 and the number
of rounds r is equal to the number of block ciphers used, which is r = 2d− 1 (described
in Fig. 1(c) for r rounds). From the result in [GL15], the (2d− 1)-round construction is
indifferentiable from a dn-bit random permutation with a security bound of O(q2/2n),
and [GL15] also shows that (2d− 2)-round version cannot achieve indifferentiability.

We see that the indifferentiability security bounds of these constructions are limited to
birthday-bound security, and a very natural question is whether we can have a stronger
security bound by increasing the number of rounds. In this paper, we call the security
bound that guarantees beyond q = qc + qp ≈ 2n/2 queries beyond-birthday-bound security
(BBB security). A construction of a cryptographic permutation from n-bit ideal ciphers
with BBB security remains as an open question.

Our Results. We study the problem of constructing a secure cryptographic permutation
from block ciphers modeled as ideal ciphers in the provable security paradigm. We
present the first BBB security proof (with respect to n, the block length of the ideal
cipher) as a construction of cryptographic permutations. We prove under the assumption
q = qc + qp ≤ 2n that the iterative construction in Fig. 1(c) is indifferentiable from a
dn-bit random permutation with an indifferentiability security bound of O(q2/2(`+1)n) for
r = 2d+ 2`− 1, where 1 ≤ ` ≤ d− 1 is an integer.

This implies that the 5-round version of Coron et al.’s construction and (2d + 1)-
round version of Guo and Lin’s construction have an indifferentiability security bound
of O(q2/22n), i.e., by adding two more rounds, these constructions have BBB security.
Furthermore, under the assumption that q ≤ 2n, our result shows that the security bound
of Guo and Lin’s construction exponentially improves by adding every two more rounds,
up to 4d− 3 rounds.

From the technical side, our BBB security proof is made possible by designing a
simulator that is tailored to handle various collisions between n-bit random variables.
That is, when we define a bad event in our security proof for the (2d + 2` − 1)-round
construction, all the events are defined so that they involve collisions between (`+ 1)n-bit
random variables, which is the main difference from the birthday-bound security proofs
in [CDMS10, GL15].

We emphasize that in this paper, we use BBB security to mean that the construction
remains secure beyond q = qc + qp ≈ 2n/2 queries with respect to n, the block length of
the underlying primitive, which is the output length and is not the input length. Table 1
summaries the results in [CDMS10], [GL15], and this paper.

Implication. We present implication of our results with practical parameters.

• If we model AES-128 [DR02] as the 128-bit ideal cipher with 128-bit keys, then the
result in [CDMS10] shows that the 3-round version gives a 256-bit cryptographic
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Table 1: Summary of our result and results in [CDMS10] and [GL15]. Here, κ, d, and
` are positive integers with d = κ + 1 and 1 ≤ ` ≤ d − 1, and q = qc + qp. (k, n) in the
column of block ciphers denotes n-bit block ciphers with k-bit keys and the bounds neglect
constants.

Length Block ciphers Rounds Bound Secure q Paper
2n (n, n) r ≤ 2 1 insecure [CDMS10]
2n (n, n) 3 q2/2n q � 2n/2 [CDMS10]
2n (n, n) 5 q2/22n q � 2n This paper
dn (κn, n) r ≤ 2d− 2 1 insecure [GL15]
dn (κn, n) 2d− 1 q2/2n q � 2n/2 [GL15]
dn (κn, n) 2d+ 1 q2/22n q � 2n This paper
dn (κn, n) 2d+ 2`− 1 q2/2(`+1)n q ≤ 2n This paper
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Figure 1: The constructions of previous works and the construction we study in this paper.
(a) and (b) are Coron et al.’s constructions [CDMS10], and (c) for r = 2d− 1 is Guo and
Lin’s construction (and k = 0) [GL15]. We prove the security of (c) for r = 2d+ 2`− 1
and 1 ≤ ` ≤ d− 1.

permutation with a security bound of O(q2/2128), whereas our result shows that the
5-round version has a security bound of O(q2/2256).1

• If we model AES-256 [DR02] as the 128-bit ideal cipher with 256-bit keys, then [GL15]

1We note that AES-128 has to be regarded as three or five independent ideal ciphers, and thus it has
to be somehow “tweaked.” A similar comment applies to AES-256 and SKINNY-128-384.
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shows that the 5-round version gives a 384-bit cryptographic permutation with a
security bound of O(q2/2128), whereas our result shows that the 7-round version has
a security bound of O(q2/2256). Our result also shows that if q ≤ 2128, then the
security bound of the 9-round construction is O(q2/2384).

• If we model SKINNY-128-384 [BJK+16] as the 128-bit ideal cipher with 384-bit
keys, then [GL15] shows that the 7-round version gives a 512-bit cryptographic
permutation with a security bound of O(q2/2128). Our result shows that the security
bound of the 9-round construction is O(q2/2256), the 11-round version is O(q2/2384),
and the 13-round version is O(q2/2512), where the last two bounds assume q ≤ 2128.

We emphasize that we chose the above examples to illustrate practical parameters of block
and key lengths, and we are not proposing the instantiation. As a matter of fact, from
the efficiency view point, our result does not give competitive constructions. Furthermore,
our result (and those in [CDMS10, GL15]) relies on the fact that the ideal ciphers are
independent. That is, even if we model AES-128, AES-256, and SKINNY-128-384 as ideal
ciphers, this does not directly give us cryptographic permutations. These block ciphers
have to be somehow “tweaked” so that they can be modeled as independent ideal ciphers.
This implies that cryptanalyses are needed on the tweaked block ciphers, and does not
allow the direct use of well-scrutinized primitives. We also remark that AES-256 was
shown not to behave like an ideal cipher [BKN09, BK09], and we again remark that we
use the above examples only to illustrate practical parameters.

Related Work. There has been a long line of research to investigating the indifferentia-
bility of Feistel structures that use independent random oracles as round functions, see
e.g., [CPS08, HKT11, MPS12, CHK+16, DS16, DKT16]. The indifferentiability framework
has been used to analyze the security of various other constructions, see e.g., a line of
research analyzing indifferentiability security of key-alternating ciphers [CS15, DSST17].

Minematsu [Min15] and Nakamichi and Iwata [NI19] analyzed the security of closely
related constructions in the indistinguishability framework, i.e., the underlying primitive
has a secret key and the adversary does not have oracle access to it. Our result can be seen
as the indifferentiability counterpart of their results. Compared to [NI19], the analysis
in [NI19] is more involved in that they study smaller number of rounds, while the primitive
queries are absent.

The constructions in [Min15, NI19] can be seen as a construction of a block cipher
that has a secret key, and there are constructions to handle various input lengths in the
indistinguishability framework, see e.g., [ST13, CLMP17, BLN18, CMN18, DN18].

As mentioned above, our result does not give practically competitive cryptographic
permutations in efficiency. However, see [BLLN19] for an attempt to apply the result of
Coron et al. [CDMS10] to obtain efficient authenticated encryption schemes.

2 Preliminaries
Notation. For a positive integer n, {0, 1}n denotes the set of all bit strings of length n
bits. For two bit strings x and y, x ‖ y is the concatenation of x and y. For two positive
integers a and b with a ≤ b, we let [a..b] = {a, a + 1, . . . , b}, and for b − a + 1 strings
Xa, Xa+1, . . . , Xb ∈ {0, 1}n of length n bits, we let X [a..b] = Xa ‖Xa+1 ‖ · · · ‖Xb. For a
finite set S, s $← S is the process of uniformly random selection of an element from S and
assigning it to a variable s.

Cryptographic Permutations and Block Ciphers. Let Perm(n) denote the set of all
permutations on {0, 1}n. A cryptographic permutation is a non-keyed public permutation
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Φ : {0, 1}n → {0, 1}n, where n is the (fixed) length and Φ(·) ∈ Perm(n). The inverse
permutation is denoted by Φ−1(·), where for anyX ∈ {0, 1}n, it holds thatX = Φ−1(Φ(X)).
We say that Φ is an n-bit cryptographic permutation if Φ(·) ∈ Perm(n).

A block cipher is a keyed permutation E : {0, 1}k × {0, 1}n → {0, 1}n, where k is the
key length and n is the block length. For any K ∈ {0, 1}k, we have E(K, ·) ∈ Perm(n).
The ciphertext C ∈ {0, 1}n for a key K ∈ {0, 1}k and a plaintext M ∈ {0, 1}n is
C = E(K,M). The decryption function is denoted by E−1(·, ·), where for any K ∈ {0, 1}k

and M ∈ {0, 1}n, M = E−1(K,E(K,M)). We say that E is an n-bit block cipher with
k-bit keys if E : {0, 1}k × {0, 1}n → {0, 1}n.

A random permutation π : {0, 1}n → {0, 1}n models a random cryptographic permuta-
tion, and it is defined as π $← Perm(n). An ideal cipher P : {0, 1}k × {0, 1}n → {0, 1}n

models a random block cipher, and it is defined as P (K, ·) $← Perm(n) for any K ∈ {0, 1}k.
That is, for each key K ∈ {0, 1}k, P (K, ·) is an independent random permutation. We say
that P is an n-bit ideal cipher with k-bit keys if P : {0, 1}k × {0, 1}n → {0, 1}n.

Security Definitions and Coefficient-H Technique. In this paper, we prove the indiffer-
entiability [MRH04] of a cryptographic permutation that uses ideal ciphers from a random
permutation. It is defined as follows:

Definition 1 ([MRH04]). A cryptographic permutation that uses ideal ciphers is said to
be (qc, qp, ε)-indifferentiable from a random permutation, if there exists a simulator S such
that for any adversary A that makes at most qc queries to a construction oracle Oc and qp

queries to a primitive oracle Op, it holds that

|Pr[AΦP ,P = 1]− Pr[AΠ,SΠ
= 1]| ≤ ε ,

where Φ, P , Π , and S are the oracles of the cryptographic permutation construction
and its inverse permutation, the ideal ciphers and their decryption functions, the random
permutation and its inverse permutation, and the simulator, respectively. Here, (Oc,Op) ∈
{(Φ, P ), (Π , S)}, Φ can make queries to P , and S can make queries to Π .

A query by A to a construction oracle Oc is called a construction query, and a query
to a primitive oracle Op is called a primitive query.

Our security proof relies on the Coefficient-H technique by Patarin [Pat08] and its
refinement by Chen and Steinberger [CS14]. We follow [CS14] and P leaks some of the
internal variables of the cryptographic permutation to A, and we define S to eliminate the
obvious discrepancy.

Since A makes at most qc queries to Oc and at most qp queries to Op, we can define a
transcript τ that summarizes all query-response tuples seen by A during its interaction
with (Oc,Op) ∈ {(Φ, P ), (Π , S)}. We denote by T re (resp. T id) the probability distribution
of transcripts when A interacts with (Φ, P ) (resp. (Π , S)). We call a transcript τ attainable
if Pr[T id = τ ] > 0 holds, i.e., if τ can be obtained with interacting (Π , S). Then, the
Coefficient-H technique is the following lemma.

Lemma 1. Consider a deterministic adversary A and the set of all attainable transcripts
T all. Let T bad be the subset of T all with all “bad” transcripts, and T good = T all \ T bad.
Suppose that there exists 0 ≤ ε1 ≤ 1 such that

Pr[T re = τ ]
Pr[T id = τ ] ≥ 1− ε1

holds for all τ ∈ T good, and there exists 0 ≤ ε2 ≤ 1 such that Pr[T id ∈ T bad] ≤ ε2. Then
we have

|Pr[AΦP ,P = 1]− Pr[AΠ,SΠ
= 1]| ≤ ε1 + ε2 .



Ryota Nakamichi and Tetsu Iwata 73

X1 X2 X3 Xd

V

/ / / /n n n n

· · ·

· · ·

Ex

X2 X3 Xd· · ·

(a)

W

X1 X2 Xd

/ / / /n n n n

· · ·

· · ·

Ex

· · · Xd−1

Xd−1X1 X2

(b)

Figure 2: (a) ϕ[Ex](X [1..d]) = X [2..d] ‖V and (b) ϕ−1[Ex](X [1..d]) = W ‖X [1..d−1]

3 dn-bit Cryptographic Permutation Φr

Fix r ≥ 1 and κ ≥ 1. We define the r-round algorithm Φr of a dn-bit cryptographic
permutation for d = κ + 1 that uses r independent n-bit block ciphers E1, . . . , Er with
κn-bit keys as

Φr[E1, . . . , Er](X̄) = ϕ[Er] ◦ ϕ[Er−1] ◦ · · · ◦ ϕ[E1](X̄) ,

where X̄ ∈ {0, 1}dn is an input, and each round ϕ[Ex] : {0, 1}dn → {0, 1}dn for x ∈ [1..r]
is defined as

ϕ[Ex](X [1..d]) = X [2..d] ‖V ,

where X [1..d] ∈ {0, 1}dn is an input and V = Ex(X [2..d], X1). See Fig. 2(a). That is,
for an input X̄, Φr[E1, . . . , Er] successively applies ϕ[E1], . . . , ϕ[Er] on X̄. We will omit
E1, . . . , Er and write Φr instead of Φr[E1, . . . , Er] if E1, . . . , Er are clear from the context.
Φr is described in Fig. 3.

The inverse algorithm of Φr[E1, . . . , Er], denoted by Φ−1
r [E1, . . . , Er], is defined as

Φ−1
r [E1, . . . , Er](X̄) = ϕ−1[E1] ◦ ϕ−1[E2] ◦ · · · ◦ ϕ−1[Er](X̄) ,

where X̄ ∈ {0, 1}dn is an input and ϕ−1[Ex] for x ∈ [1..r] is the inverse permutation of
ϕ[Ex] that is naturally defined by using the decryption of Ex, denoted by E−1

x , as

ϕ−1[Ex](X [1..d]) = W ‖X [1..d−1] ,

where X [1..d] ∈ {0, 1}dn is an input and W = E−1
x (X [1..d−1], Xd). See Fig. 2(b). Note that

for X [1..d] ∈ {0, 1}dn, X [2..d] is used as a key in Ex while X [1..d−1] is used as a key in E−1
x .

This notation is convenient in our security proof.

4 The Indifferentiability of Φ2d+2`−1 for q ≤ 2n

We present the following main theorem of this paper.
Theorem 1. Fix d ≥ 2 and ` ∈ [1..d− 1]. For x ∈ [1..2d+ 2`− 1], let Px : {0, 1}(d−1)n ×
{0, 1}n → {0, 1}n be an n-bit ideal cipher with (d− 1)n-bit keys, and consider Φ2d+2`−1 =
Φ2d+2`−1[P1, . . . , P2d+2`−1]. Then for any A that makes at most qc construction queries
and at most qp primitive queries, where qc + qp ≤ 2n, Φ2d+2`−1 is (qc, qp, ε)-indifferentiable
from a dn-bit random permutation, where

ε = (qc + qp)2

2(`+1)n
+ `(qc + qp)2

2dn
= O

(
(qc + qp)2

2(`+1)n

)
. (1)
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Figure 3: Φr[E1, . . . , Er]

Proof Overview. The full proof of Theorem 1 is presented in Sect. 5, and we present a
proof overview here. The overall proof strategy is that we give all the internal variables of
Φ2d+2`−1 to the adversary through primitive queries. To do so, whenever the adversary
makes a construction query, we force the adversary to make a primitive query immediately
after the construction query. When the oracle receives the primitive query, we modify it
so that the oracle invokes all the internal ideal ciphers P1, . . . , P2d+2`−1 to compute the
internal variables, and returns all the internal variables to the adversary.

If our adversary makes qc construction queries and qp primitive queries, the new
adversary makes qc construction queries and qc + qp primitive queries, and we prove
Theorem 1 against adversaries that make these extra primitive queries.

We then define the real world oracles, the oracles for Φ2d+2`−1 (and its inverse per-
mutation) and P1, . . . , P2d+2`−1 (and their decryption functions) to execute the behavior
outlined above in a natural way.

The ideal world oracles, the oracle for a random permutation π (and its inverse π−1) is
defined in a natural way. The simulator S simulates P1, . . . , P2d+2`−1 (and their decryption
functions) with the lazy-sampling approach (see, e.g., [BR04]). To define the simulator,
we introduce a concept of upper queries and lower queries for primitive queries. It is
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often the case that the description of the oracle makes a distinction between encryption
queries and decryption queries. We do follow this and we describe the procedure of the
simulator by making a distinction between encryption/decryption queries, however, the
essential distinction is made depending on upper/lower queries in that for upper queries,
we can uniformly describe the procedure of the simulator, and the same holds for lower
queries. In more detail, observe that P1, . . . , P2d+2`−1 lists all the internal ideal ciphers,
and X1, . . . , X3d+2`−1 lists all the internal variables. Our simulation works as follow:

• For upper queries, we simulate P1, . . . , Pd+2`−1 through lazy-sampling to define
X1, . . . , X2d+2`−1, and we use the dn-bit random permutation π to define the
remaining internal variables, i.e., X2d+2`, . . . , X3d+2`−1.

• For lower queries, we simulate Pd+1, . . . , P2d+2`−1 through lazy-sampling to define
Xd+1, . . . , X3d+2`−1, and we use the inverse of the dn-bit random permutation π−1

to define X1, . . . , Xd.

Recall that the simulation is for primitive queries in the ideal world, and upper queries
may include both queries to request encryption Px(·, ·) and decryption P−1

x (·, ·) for x in
a certain range. Nevertheless, for all these queries, we complete the computation of the
internal variables by using π. Similarly, lower queries may include both queries to request
encryption and decryption of the primitive. For lower queries, we use π−1 to complete
the computation of the internal variables, i.e., the use of π/π−1 can be viewed as the
distinction between upper/lower queries.

With all these definitions of the oracles, we can define transcripts that summarize
the interaction between the adversary and the oracles. In order to use the Coefficient-H
technique in Lemma 1, we define good and bad transcripts, where the good transcripts are
those that can occur with a non-zero probability in the real world, and the bad transcripts
are the complement of the good transcripts.

The proof now reduces to bound ε1 and ε2 in Lemma 1, i.e., the probability that we
have a bad transcript in the ideal world (Lemma 2) and the ratio of the interpolation
probabilities (Lemma 3).

The probability that we have a bad transcript is reduced to analyze the probability
of certain bad events in the ideal world, and this can be proved to be sufficiently small
as all the events are defined so that they involve collisions between (`+ 1)n-bit random
variables. In the course of deriving the probability, we rely on the assumption of q ≤ 2n.
Our proof strategy of giving all the internal variables to the adversary makes it possible to
define bad events with (`+ 1)n-bit random variables, while at the same time it introduces
the assumption of q ≤ 2n to obtain the final bound.

The analysis of the ratio between the interpolation probabilities is relatively simple,
and we complete the proof of Theorem 1 from Lemma 1.

5 Proof of Theorem 1
In this section, we present our proof of Theorem 1.

We start with defining the oracles Φ, P , Π , and S of Definition 1. Φ represents Φ2d+2`−1,
P represents P1, . . . , P2d+2`−1, Π represents a dn-bit random permutation π $← Perm(dn),
and S represents a simulator.

A query to the construction oracle Oc ∈ {Φ,Π} is denoted as (δ, X̄), where δ ∈ {+,−}
represents the query direction and X̄ ∈ {0, 1}dn is the input, i.e., for a query (+, X̄),
the oracle returns Φ(X̄) or Π (X̄), and for a query (−, X̄), the oracle returns Φ−1(X̄)
or Π−1(X̄). A query to the primitive oracle Op ∈ {P, S} is denoted as (δ, x, X̄), where
x ∈ [1..2d+ 2`− 1] denotes the index of the underlying ideal cipher, i.e., when Op = P ,
the oracle returns Px(X [2..d], X1) for a query (+, x, X̄), where X̄ = X [1..d], and for a query
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(−, x, X̄), the oracle returns P−1
x (X [1..d−1], Xd), where X̄ = X [1..d]. When Op = S, we

define the behavior of the simulator below.
In what follows, we assume that A makes exactly qc queries to Oc and qc + qp queries

to Op, and if A makes a query to Oc, then we force A to make another query to Op

immediately. Specifically, if A makes a construction query (+, X̄) (resp. (−, X̄)) to Oc,
then we force A to immediately make a primitive query (+, 1, X̄) (resp. (−, 2d+ 2`−1, X̄))
to Op after the construction query. We see that from any adversary that makes at most qc

queries to Oc and at most qp queries to Op, we can build A with the same output that
satisfies this property, and we show that (1) holds for this adversary that makes extra
primitive queries. We remark that the new adversary is more powerful in that it receives
more information than the original adversary. Our approach is to show that the adversary
has a low distinguishing advantage, even if it receives extra information from the oracles.

Real World Oracles. Now in the real world, i.e., when (Oc,Op) = (Φ, P ), we define Φ
as in Algorithms 1 and 2 in Fig. 4, and P as in Algorithms 3 and 4 in Fig. 5.

The procedure of P is defined so that it returns all the internal variables, and in
what follows, P represents the oracle that returns the extra information. For the i-th
primitive query (δi, xi, X̄i), where δi = + and X̄i = X

[xi..xi+d−1]
i , P computes Xxi+d

i ←
Pxi(X

[xi+1..xi+d−1]
i , Xxi

i ) and returns it to A or Φ. P also computes X [1..xi−1]
i and

X
[xi+d+1..3d+2`−1]
i by following the definition of Φ2d+2`−1 and returns all the values;

P completes X1
i , . . . , X

3d+2`−1
i that form all the internal variables of Φ2d+2`−1 from

X̄i = X
[xi..xi+d−1]
i by using P−1

1 , . . . , P−1
xi−1 and Pxi

, . . . , P2d+2`−1. The behavior of P for
the i-th query (δi, xi, X̄i), where δi = −, is similarly defined. Φ is defined by using the
output of P that contains the output of Φ2d+2`−1.

Example 1. For example, let d = 3 and ` = 1, and consider Φ7 in Fig. 6. If A’s query to
P is (+, 4, X [4..6]), then, P computes

X3 ← P−1
3 (X4 ‖X5, X6)

X2 ← P−1
2 (X3 ‖X4, X5)

X1 ← P−1
1 (X2 ‖X3, X4)

and

X7 ← P4(X5 ‖X6, X4)
X8 ← P5(X6 ‖X7, X5)
X9 ← P6(X7 ‖X8, X6)
X10 ← P7(X8 ‖X9, X7) ,

and returns X [1..3] ‖X [7..10] to A. For A’s query (−, 3, X [4..6]) to P , P executes the same
computation and returns X [1..3] ‖X [7..10] to A. We also consider A’s query (+, X [1..3]) to
Φ. Then, Φ makes a query (+, 1, X [1..3]) to P and receives X [4..10]. It returns X [8..10] to
A, which is the last 3n-bit string of the response X [4..10] from P .

We note that since the adversary is forced to make a primitive query and receives
all the internal variables, a construction query may seem to be redundant. However, we
still require the adversary to make construction queries so that in the ideal world, the
simulation of the simulator will not be easier.
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Algorithm 1: Procedure of Φ for the i-th query (δi, X̄i) with δi = +

Input: X̄i = X
[1..d]
i ∈ {0, 1}dn

Output: X [2d+2`..3d+2`−1]
i ∈ {0, 1}dn

1. X [d+1..3d+2`−1]
i ← P (+, 1, X [1..d]

i )
2. return X

[2d+2`..3d+2`−1]
i

Algorithm 2: Procedure of Φ for the i-th query (δi, X̄i) with δi = −
Input: X̄i = X

[2d+2`..3d+2`−1]
i ∈ {0, 1}dn

Output: X [1..d]
i ∈ {0, 1}dn

1. X [1..2d+2`−1]
i ← P (−, 2d+ 2`− 1, X [2d+2`..3d+2`−1]

i )
2. return X

[1..d]
i

Figure 4: Procedure of Φ. It internally invokes P (+, 1, ·) or P (−, 2d + 2` − 1, ·), and
returns a part of their output.

Algorithm 3: Procedure of P for the i-th query (δi, xi, X̄i) with δi = +

Input: xi ∈ [1..2d+ 2`− 1], X̄i = X
[xi..xi+d−1]
i ∈ {0, 1}dn

Output: X [1..xi−1]
i ‖X [xi+d..3d+2`−1]

i ∈ {0, 1}(2d+2`−1)n

1. for y = xi − 1, . . . , 1 do (xi 6= 1)
Xy

i ← P−1
y (X [y+1..y+d−1]

i , Xy+d
i )

2. for y = xi, . . . , 2d+ 2`− 1 do
Xy+d

i ← Py(X [y+1..y+d−1]
i , Xy

i )
3. return X

[1..xi−1]
i ‖X [xi+d..3d+2`−1]

i

Algorithm 4: Procedure of P for the i-th query (δi, xi, X̄i) with δi = −
Input: xi ∈ [1..2d+ 2`− 1], X̄i = X

[xi+1..xi+d]
i ∈ {0, 1}dn

Output: X [1..xi]
i ‖X [xi+d+1..3d+2`−1]

i ∈ {0, 1}(2d+2`−1)n

1. for y = xi, . . . , 1 do
Xy

i ← P−1
y (X [y+1..y+d−1]

i , Xy+d
i )

2. for y = xi + 1, . . . , 2d+ 2`− 1 do (xi 6= 2d+ 2`− 1)
Xy+d

i ← Py(X [y+1..y+d−1]
i , Xy

i )
3. return X

[1..xi]
i ‖X [xi+d+1..3d+2`−1]

i

Figure 5: Procedure of P . If δi = +, then it internally invokes P−1
1 , . . . , P−1

xi−1 and
Pxi , . . . , P2d+2`−1, and returns all the internal variables. The case δi = − is analogously
defined.
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X1 X2 X3

P1

X2 X3 X4

P2

X3 X4 X5

P3

X4 X5 X6

P4

X5 X6 X7

P5

X6 X7 X8

P6

X7 X8 X9

P7

X8 X9 X10

Figure 6: Φ7[E1, . . . , E7] for d = 3 and ` = 1
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Ideal World Oracles. Next, in the ideal world, i.e., when (Oc,Op) = (Π , S), we define Π
as in Algorithms 5 and 6 in Fig. 7 and S as in Algorithms 7 and 8 in Fig. 8.

The definition of Π in Algorithms 5 and 6 is straightforward. The definition of S in
Algorithms 7 and 8 simulates P1, . . . , P2d+2`+1 (and their decryption functions) with the
lazy-sampling approach. In Fig. 8, for y ∈ [1..2d+ 2`− 1], the computation

X y
i ← {Xy+d

j | j < i ∧X [y+1..y+d−1]
i = X

[y+1..y+d−1]
j }

Xy+d
i

$← {0, 1}n \ X y
i

simulates Xy+d
i ← Py(X [y+1..y+d−1]

i , Xy
i ), and the computation

X y
i ← {Xy

j | j < i ∧X [y+1..y+d−1]
i = X

[y+1..y+d−1]
j }

Xy
i

$← {0, 1}n \ X y
i

simulates Xy
i ← P−1

y (X [y+1..y+d−1]
i , Xy+d

i ). Observe that it works as follows:

• If the i-th primitive query is (δi, xi, X̄i) with xi ∈ [1..d+`−1] or (δi, xi, X̄i) with δi = +
and xi = d+ `, then S simulates P1, . . . , Pd+`−1 (or their decryption functions) and
Pd+`, . . . , Pd+2`−1, and computes X1

i , . . . , X
3d+2`−1
i , where X1

i , . . . , X
2d+2`−1
i are in-

puts or computed as in the real world, and the remaining valuesX2d+2`
i , . . . , X3d+2`−1

i

are computed with π.

• On the other hand, if the i-th primitive query is (δi, xi, X̄i) with xi ∈ [d + ` +
1..2d + 2` − 1] or (δi, xi, X̄i) with δi = − and xi = d + `, then S simulates
P−1

d+1, . . . , P
−1
d+` and Pd+`+1, . . . , P2d+2`−1 (or their decryption functions), and com-

putes X1
i , . . . , X

3d+2`−1
i , where Xd+1

i , . . . , X3d+2`−1
i are inputs or computed as in

the real world, and the remaining values X1
i , . . . , X

d
i are computed with π−1.

The above observation motivates us to define an upper query and a lower query.
We call a primitive query (δ, x, X̄) an upper query if x ∈ [1..d+`−1] or δ = +∧x = d+`,

and we call a query that is not an upper query a lower query; a query (δ, x, X̄) is a lower
query if x ∈ [d+ `+ 1..2d+ 2`− 1] or δ = − ∧ x = d+ `.

Example 2. For example, let d = 3 and ` = 1, and consider Φ7 in Fig. 6. Then,
a query (δ, x, X̄) to S, where X̄ ∈ {X [1..3], X [2..4], X [3..5], X [4..6]}, is an upper query
regardless of the query direction δ. Similarly, a query (δ, x, X̄) to S, where X̄ ∈
{X [5..7], X [6..8], X [7..9], X [8..10]}, is a lower query regardless of δ.

For an upper query, S simulates P1 or P−1
1 , P2 or P−1

2 , P3 or P−1
3 , and P4, and for a

lower query, it simulates P5 or P−1
5 , P6 or P−1

6 , P7 or P−1
7 , and P−1

4 . For example, for
A’s upper query (+, 4, X [4..6]) to S, S simulates P−1

1 , P−1
2 , P−1

3 , and P4, and computes

X3 ← P−1
3 (X4 ‖X5, X6)

X2 ← P−1
2 (X3 ‖X4, X5)

X1 ← P−1
1 (X2 ‖X3, X4)

and

X7 ← P4(X5 ‖X6, X4) .

Then, it makes a query (+, X [1..3]) to Π and receives X [8..10]. It returns X [1..3] ‖X [7..10]

to A.
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Algorithm 5: Procedure of Π for the i-th query (δi, X̄i) with δi = +

Input: X̄i = X
[1..d]
i ∈ {0, 1}dn

Output: X [2d+2`..3d+2`−1]
i ∈ {0, 1}dn

1. X [2d+2`..3d+2`−1]
i ← π(X [1..d]

i )
2. return X

[2d+2`..3d+2`−1]
i

Algorithm 6: Procedure of Π for the i-th query (δi, X̄i) with δi = −
Input: X̄i = X

[2d+2`..3d+2`−1]
i ∈ {0, 1}dn

Output: X [1..d]
i ∈ {0, 1}dn

1. X [1..d]
i ← π−1(X [2d+2`..3d+2`−1]

i )
2. return X

[1..d]
i

Figure 7: Procedure of Π . The definition is straightforward.

Transcripts. We assume without loss of generality that A is deterministic, does not repeat
a query, and does not make a redundant query. This implies that:

• If A makes a query (+, X [1..d]) to Oc and obtains X [2d+2`..3d+2`−1], then it does not
make a query (−, X [2d+2`..3d+2`−1]) to Oc, and vice versa.

• If A makes a query (+, x,X [x..x+d−1]) to Op and obtains X [1..x−1] ‖X [x+d..3d+2`−1]

or it makes a query (−, x,X [x+1..x+d]) to Op and obtains X [1..x] ‖X [x+d+1..3d+2`−1],
then it does not make a query (+, X [1..d]) nor (−, X [2d+2`..3d+2`−1]) to Oc, and it does
not make a query (+, y,X [y..y+d−1]) nor (−, y,X [y+1..y+d]) for any y ∈ [1..2d+2`−1]
to Op.

Since A is deterministic and makes qc queries to Oc and qc + qp queries to Op, these
queries and responses can be summarized in a transcript τ = (τc, τp), where

τc = ((δ1, X
[1..d]
1 , X

[2d+2`..3d+2`−1]
1 ), . . . , (δqc , X

[1..d]
qc

, X [2d+2`..3d+2`−1]
qc

))

and

τp = ((δ1, x1, X
[1..3d+2`−1]
1 ), . . . , (δqc+qp

, xqc+qp
, X

[1..3d+2`−1]
qc+qp

)) .

We denote by T re (resp. T id) the probability distribution of transcripts when A interacts
with (Φ, P ) (resp. (Π , S)).

We consider an attainable transcript τ = (τc, τp); τc that can be obtained with interact-
ing with Π and τp that can be obtained with interacting S. Since A does not repeat a
query and does not make a redundant query, it holds in τp that

X
[1..3d+2`−1]
i 6= X

[1..3d+2`−1]
j

for any 1 ≤ j < i ≤ qc + qp. In the real world, we also see that

X
[x..x+d−1]
i 6= X

[x..x+d−1]
j (2)

holds for any x ∈ [1..2d + 2`] and 1 ≤ j < i ≤ qc + qp, since each of the round
ϕ[P1], . . . , ϕ[P2d+2`−1] is a permutation on {0, 1}dn. From the same reasoning, in the
ideal world, it holds that

X
[x..x+d−1]
i 6= X

[x..x+d−1]
j (3)
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Algorithm 7: Procedure of S for the i-th query (δi, xi, X̄i) with δi = +

Input: xi ∈ [1..2d+ 2`− 1], X̄i = X
[xi..xi+d−1]
i ∈ {0, 1}dn

Output: X [1..xi−1]
i ‖X [xi+d..3d+2`−1]

i ∈ {0, 1}(2d+2`−1)n

1. if xi ∈ [1..d+ `]
for y = xi − 1, . . . , 1 do (xi 6= 1)
X y

i ← {Xy
j | j < i ∧X [y+1..y+d−1]

i = X
[y+1..y+d−1]
j }

Xy
i

$← {0, 1}n \ X y
i

for y = xi, . . . , d+ 2`− 1 do
X y

i ← {Xy+d
j | j < i ∧X [y+1..y+d−1]

i = X
[y+1..y+d−1]
j }

Xy+d
i

$← {0, 1}n \ X y
i

X
[2d+2`..3d+2`−1]
i ← Π (+, X [1..d]

i )
2. else

for y = xi − 1, . . . , d+ 1 do
X y

i ← {Xy
j | j < i ∧X [y+1..y+d−1]

i = X
[y+1..y+d−1]
j }

Xy
i

$← {0, 1}n \ X y
i

for y = xi, . . . , 2d+ 2`− 1 do
X y

i ← {Xy+d
j | j < i ∧X [y+1..y+d−1]

i = X
[y+1..y+d−1]
j }

Xy+d
i

$← {0, 1}n \ X y
i

X
[1..d]
i ← Π (−, X [2d+2`..3d+2`−1]

i )
3. return X

[1..xi−1]
i ‖X [xi+d..3d+2`−1]

i

Algorithm 8: Procedure of S for the i-th query (δi, xi, X̄i) with δi = −
Input: xi ∈ [1..2d+ 2`− 1], X̄i = X

[xi+1..xi+d]
i ∈ {0, 1}dn

Output: X [1..xi]
i ‖X [xi+d+1..3d+2`−1]

i ∈ {0, 1}(2d+2`−1)n

1. if xi ∈ [1..d+ `− 1]
for y = xi, . . . , 1 do
X y

i ← {Xy
j | j < i ∧X [y+1..y+d−1]

i = X
[y+1..y+d−1]
j }

Xy
i

$← {0, 1}n \ X y
i

for y = xi + 1, . . . , d+ 2`− 1 do
X y

i ← {Xy+d
j | j < i ∧X [y+1..y+d−1]

i = X
[y+1..y+d−1]
j }

Xy+d
i

$← {0, 1}n \ X y
i

X
[2d+2`..3d+2`−1]
i ← Π (+, X [1..d]

i )
2. else

for y = xi, . . . , d+ 1 do
X y

i ← {Xy
j | j < i ∧X [y+1..y+d−1]

i = X
[y+1..y+d−1]
j }

Xy
i

$← {0, 1}n \ X y
i

for y = xi + 1, . . . , 2d+ 2`− 1 do (xi 6= 2d+ 2`− 1)
X y

i ← {Xy+d
j | j < i ∧X [y+1..y+d−1]

i = X
[y+1..y+d−1]
j }

Xy+d
i

$← {0, 1}n \ X y
i

X
[1..d]
i ← Π (−, X [2d+2`..3d+2`−1]

i )
3. return X

[1..xi]
i ‖X [xi+d+1..3d+2`−1]

i

Figure 8: Procedure of S. See the main body for the explanation. Note that line 1 in both
Algorithms 7 and 8 handles upper queries, and they are essentially the same. Similarly,
line 2 in both Algorithms 7 and 8 handles lower queries.
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for any x ∈ [1..d+ 2`]∪ {2d+ 2`} and 1 ≤ j < i ≤ qc + qp when the i-th query is an upper
query, and for any x ∈ [d+ 1..2d+ 2`] ∪ {1} and 1 ≤ j < i ≤ qc + qp when the i-th query
is a lower query.
Example 3. For example, let d = 3 and ` = 1, and consider Φ7 in Fig. 6. In the real
world, (2) states that the following inequalities hold for any 1 ≤ j < i ≤ qc + qp:

X
[1..3]
i 6= X

[1..3]
j

X
[2..4]
i 6= X

[2..4]
j

X
[3..5]
i 6= X

[3..5]
j

X
[4..6]
i 6= X

[4..6]
j

X
[5..7]
i 6= X

[5..7]
j

X
[6..8]
i 6= X

[6..8]
j

X
[7..9]
i 6= X

[7..9]
j

X
[8..10]
i 6= X

[8..10]
j

In the ideal world, on the other hand, (3) states that the inequalities X [1..3]
i 6= X

[1..3]
j ,

X
[2..4]
i 6= X

[2..4]
j , X [3..5]

i 6= X
[3..5]
j , X [4..6]

i 6= X
[4..6]
j , X [5..7]

i 6= X
[5..7]
j , and X [8..10]

i 6= X
[8..10]
j

hold for any 1 ≤ j < i ≤ qc + qp if the i-th query is an upper query. However, there
is no guarantee that we have X [6..8]

i 6= X
[6..8]
j or X [7..9]

i 6= X
[7..9]
j . Similarly, if the i-th

query is a lower query, then we have X [1..3]
i 6= X

[1..3]
j , X [4..6]

i 6= X
[4..6]
j , X [5..7]

i 6= X
[5..7]
j ,

X
[6..8]
i 6= X

[6..8]
j , X [7..9]

i 6= X
[7..9]
j , and X

[8..10]
i 6= X

[8..10]
j . However, X [2..4]

i = X
[2..4]
j or

X
[3..5]
i = X

[3..5]
j may hold, which follows from the definition of the simulator.

We now define the set of good transcripts as

T good = {τ = (τc, τp) | Pr[T re = τ ] > 0} .

The set of bad transcripts is defined as T bad = T all \ T good, where T all is the set of all
attainable transcripts. Recall that we call a transcript τ attainable if Pr[T id = τ ] > 0
holds, i.e., if τ can be obtained with interacting (Π , S).

Evaluation of Pr[T id ∈ T bad]. We consider τ ∈ T bad first. We prove the following
lemma.

Lemma 2. Let qc + qp ≤ 2n. Then Pr[T id ∈ T bad] ≤ (qc + qp)2

2(`+1)n
+ (`− 1)(qc + qp)2

2dn
.

Proof. In the ideal world, from the definition of T bad, we have (τc, τp) ∈ T bad if it holds
in τp that

X
[x..x+d−1]
i = X

[x..x+d−1]
j

for some x ∈ [2..2d+ 2`− 1] and 1 ≤ j < i ≤ qc + qp.

Example 4. For example, let d = 3 and ` = 1. We have (τc, τp) ∈ T bad if X [2..4]
i = X

[2..4]
j ,

X
[3..5]
i = X

[3..5]
j , X [4..6]

i = X
[4..6]
j , X [5..7]

i = X
[5..7]
j , X [6..8]

i = X
[6..8]
j , or X [7..9]

i = X
[7..9]
j

holds for some 1 ≤ j < i ≤ qc + qp.2

2We note that, even though they are included for notational simplicity, X
[4..6]
i = X

[4..6]
j and X

[5..7]
i =

X
[5..7]
j can never happen. We also note that X

[1..3]
i = X

[1..3]
j and X

[8..10]
i = X

[8..10]
j cannot happen as

the adversary does not repeat a query and does not make a redundant query.
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We denote by is the smallest i such that X [x..x+d−1]
i = X

[x..x+d−1]
j holds for some

x ∈ [2..2d+ 2`− 1] and j ∈ [1..i− 1] in τp. We have

Pr[T id ∈ T bad] ≤
∑

i∈[1..qc+qp]

Pr[is = i]

and Pr[is = i] = 0 for i = 1.
We next analyze Pr[is = i] when the i-th query is a lower query. Then, Pr[is = i] is

the probability that at least one of the following collisions occurs for some j ∈ [1..i− 1] in
the ideal world:

X
[1..d]
i = X

[1..d]
j

...
X

[`..d+`−1]
i = X

[`..d+`−1]
j

X
[`+1..d−1]
i ‖X [d..d+`]

i = X
[`+1..d−1]
j ‖X [d..d+`]

j
...

X
[d..d+`]
i ‖X [d+`+1..2d−1]

i = X
[d..d+`]
j ‖X [d+`+1..2d−1]

j

(4)

Here, Pr[X [1..d]
i = X

[1..d]
j ] = 0 since A does not repeat a query and does not make a

redundant query. Note that is is the smallest index that we have a collision, and thus
when we consider Pr[is = i], we assume that, for x ∈ [2..2d+ 2`− 1], there does not exist
a collision between the elements in {X [x..x+d−1]

j | j ∈ [1..i− 1]}.
Example 5. For example, let d = 3 and ` = 1. Then (4) states that Pr[is = i] is the
probability of X [1..3]

i = X
[1..3]
j , X2

i ‖X
[3..4]
i = X2

j ‖X
[3..4]
j , or X [3..4]

i ‖X5
i = X

[3..4]
j ‖X5

j

holds for some j ∈ [1..i − 1]. Among them, X [1..3]
i = X

[1..3]
j does not occur. Here, we

assume that {X [2..4]
j | j ∈ [1..i − 1]}, {X [3..5]

j | j ∈ [1..i − 1]}, {X [4..6]
j | j ∈ [1..i − 1]},

{X [5..7]
j | j ∈ [1..i− 1]}, {X [6..8]

j | j ∈ [1..i− 1]}, and {X [7..9]
j | j ∈ [1..i− 1]} do not contain

a collision.

Then, we have

Pr[is = i] ≤
∑

j∈[1..i−1]

Pr[X [d..d+`]
i = X

[d..d+`]
j ] (5)

+
∑

x∈[2..`]

∑
j∈[1..i−1]

Pr[X [x..x+d−1]
i = X

[x..x+d−1]
j ] (6)

when ` ∈ [2..d− 1], and

Pr[is = i] ≤
∑

j∈[1..i−1]

Pr[X [d..d+1]
i = X

[d..d+1]
j ] (7)

when ` = 1. Here, the first ` collisions in (4) appear in (6), and the last d− ` collisions
in (4) appear in (5), where in the latter case, we focus on X [d..d+`]

i and ignore the rest.
When ` = 1, we focus on the last ` = 1 collision in (4) to obtain (7).

Now, X [2..d+`]
1 , . . . , X

[2..d+`]
i−1 are given to A and thus are fixed strings, and X2

i , . . . , X
d
i

are the random variables generated by the dn-bit random permutation. Note that, for the
i-th query to S, X [1..d]

i generated by the dn-bit random permutation is selected uniformly
at random from the set of size 2dn − (i− 1) when the i-th query is a lower query, because
of the assumption of A’s order of queries. Therefore, we have for ` ∈ [2..d− 1],

Pr[is = i] ≤

 ∑
j∈[1..i−1]

Pr[X [d+1..d+`]
i = X

[d+1..d+`]
j ]

 · 2(d−1)n

2dn − (i− 1) (8)



84 BBB Secure Cryptographic Permutations from Ideal Ciphers with Long Keys

+
∑

x∈[2..`]

 ∑
j∈[1..i−1]

Pr[X [d+1..x+d−1]
i = X

[d+1..x+d−1]
j ]

 · 2(x−1)n

2dn − (i− 1)

 ,

(9)

where (8) is obtained by extracting Xd
i from (5) that appears as 2(d−1)n/(2dn − (i− 1)),

and (9) is obtained by extracting X [x..d]
i from (6) that appears as 2(x−1)n/(2dn − (i− 1)).

We make a minor adjustment to the range of x in (9) to obtain

Pr[is = i] ≤

 ∑
j∈[1..i−1]

Pr[X [d+1..d+`]
i = X

[d+1..d+`]
j ]

 · 2(d−1)n

2dn − (i− 1)

+
∑

x∈[1..`−1]

 ∑
j∈[1..i−1]

Pr[X [d+1..d+x]
i = X

[d+1..d+x]
j ]

 · 2xn

2dn − (i− 1)

 .

From Algorithms 7 and 8, for y = `, . . . , 1, we let Xd+y
i

$← {0, 1}n \ X d+y
i . Therefore,

for each j ∈ [1..i− 1] and x ∈ [1..`], we have

Pr[X [d+1..d+x]
i = X

[d+1..d+x]
j ] ≤ 1∏

y∈[1..x]

(2n − |X d+y
i |)

.

Our next task is to count the number of j ∈ [1..i − 1] satisfying Pr[X [d+1..d+x]
i =

X
[d+1..d+x]
j ] = 0. Assume that we have Xd+y

j ∈ X d+y
i for some y ∈ [1..x]. Then,

X
[d+y+1..2d+y−1]
i = X

[d+y+1..2d+y−1]
j holds from the definition of X d+y

i , and Xd+y
i is

generated so that Xd+y
i 6= Xd+y

j holds.

• From the former, it follows that Xd+z
j /∈ X d+z

i holds for all z ∈ [y + 1..x].

• From the latter, we have Pr[X [d+1..d+x]
i = X

[d+1..d+x]
j ] = 0.

An important observation here is that if Xd+y
j ∈ X d+y

i holds for some y ∈ [1..x], then
Xd+z

j /∈ X d+z
i holds for all z ∈ [y + 1..x]. Since this holds true for all y ∈ [1..x], the sets

{j | Xd+1
j ∈ X d+1

i }, . . . , {j | Xd+x
j ∈ X d+x

i } do not contain common elements. Therefore,
the number of j ∈ [1..i − 1] satisfying Pr[X [d+1..d+x]

i = X
[d+1..d+x]
j ] = 0 is at least∑

y∈[1..x] |{j | X
d+y
j ∈ X d+y

i }| = ∑y∈[1..x] |X
d+y
i |. From this observation, we obtain

∑
j∈[1..i−1]

Pr[X [d+1..d+x]
i = X

[d+1..d+x]
j ] ≤

(i− 1)−

 ∑
y∈[1..x]

|X d+y
i |


∏

y∈[1..x]

(2n − |X d+y
i |)

.

At this point, we use the following inequality, which holds under the assumption of
q ≤ 2n.3

(i− 1)−

 ∑
y∈[1..x]

|X d+y
i |


∏

y∈[1..x]

(2n − |X d+y
i |)

· 1
2dn − (i− 1) ≤

2(i− 1)
2(d+x)n

. (10)

3We use the assumption of q ≤ 2n here.
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The proof is elementary, and almost the same inequality was used in [NI19, Appendix A].
We present in Appendix A a proof for completeness.

Then, we have for q ≤ 2n and ` ∈ [2..d− 1],

Pr[is = i] ≤

(i− 1)−

 ∑
y∈[1..`]

|X d+y
i |


∏

y∈[1..`]

(2n − |X d+y
i |)

· 2(d−1)n

2dn − (i− 1)

+
∑

x∈[1..`−1]


(i− 1)−

 ∑
y∈[1..x]

|X d+y
i |


∏

y∈[1..x]

(2n − |X d+y
i |)

· 2xn

2dn − (i− 1)


≤ 2(i− 1)

2(d+`)n
· 2(d−1)n +

∑
x∈[1..`−1]

(
2(i− 1)
2(d+x)n

· 2xn

)

= 2(i− 1)
2(`+1)n

+ 2(`− 1)(i− 1)
2dn

.

This also holds true for ` = 1, since we have for q ≤ 2n and ` = 1,

Pr[is = i] ≤
∑

j∈[1..i−1]

(
Pr[Xd

i = Xd
j ] · Pr[Xd+1

i = Xd+1
j ]

)
≤ (i− 1)− |X d+1

i |
2n − |X d+1

i |
· 2(d−1)n

2dn − (i− 1)

≤ 2(i− 1)
2(d+1)n

· 2(d−1)n

= 2(i− 1)
22n

.

By following the same analysis, if the i-th query is an upper query, it holds for q ≤ 2n

and ` ∈ [1..d− 1] that

Pr[is = i] ≤ 2(i− 1)
2(`+1)n

+ 2(`− 1)(i− 1)
2dn

.

Therefore, we have

Pr[T id ∈ T bad] ≤
∑

i∈[1..qc+qp]

(
2(i− 1)
2(`+1)n

+ 2(`− 1)(i− 1)
2dn

)

≤ (qc + qp)2

2(`+1)n
+ (`− 1)(qc + qp)2

2dn
.

Evaluation of Pr[T re = τ ]/Pr[T id = τ ]. We next consider τ ∈ T good. We prove the
following lemma.

Lemma 3. For any transcript τ ∈ T good, it holds that

Pr[T re = τ ]
Pr[T id = τ ] ≥ 1− 0.5(qc + qp)2

2dn
.
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Proof. We define

Qupper = {i | A’s i-th query to Op is an upper query}

and

Qlower = {i | A’s i-th query to Op is a lower query} .

Clearly, we have |Qupper|+ |Qlower| = qc + qp.
In the ideal world, τ determines qc +qp input-output pairs of π and (d+2`−1)×(qc +qp)

random variables each of which is chosen uniformly at random from the set of size 2n−|X x
i |

for x ∈ [1..d + 2` − 1] and i ∈ Qupper, and for x ∈ [d + 1..2d + 2` − 1] and i ∈ Qlower.
Therefore, we have

Pr[T id = τ ] =

 ∏
i∈[1..qc+qp]

1
2dn − (i− 1)

 ·
 ∏

i∈Qupper

∏
x∈[1..d+2`−1]

1
2n − |X x

i |


·

 ∏
i∈Qlower

∏
x∈[d+1..2d+2`−1]

1
2n − |X x

i |

 .

In the real world, τ determines qc +qp input-output pairs of Px for all x ∈ [1..2d+2`−1].
We define Yx

i for x ∈ [1..2d+ 2`− 1] and i ∈ [1..qc + qp] as

Yx
i = {Xx

j | X [x+1..x+d−1]
i = X

[x+1..x+d−1]
j } .

Since τ ∈ T good holds, we have |X x
i | = |Yx

i | for x ∈ [1..d+ 2`− 1] and i ∈ Qupper, and for
x ∈ [d+ 1..2d+ 2`− 1] and i ∈ Qlower. Therefore, we have

Pr[T re = τ ] =
∏

i∈[1..qc+qp]

∏
x∈[1..2d+2`−1]

1
2n − |Yx

i |

≥

 ∏
i∈Qupper

 ∏
x∈[1..d+2`−1]

1
2n − |X x

i |

 ·
 ∏

x∈[d+2`..2d+2`−1]

1
2n


·

 ∏
i∈Qlower

 ∏
x∈[1..d]

1
2n

 ·
 ∏

x∈[d+1..2d+2`−1]

1
2n − |X x

i |


=

 ∏
i∈[1..qc+qp]

1
2dn

 ·
 ∏

i∈Qupper

∏
x∈[1..d+2`−1]

1
2n − |X x

i |


·

 ∏
i∈Qlower

∏
x∈[d+1..2d+2`−1]

1
2n − |X x

i |

 .

From the above, we have

Pr[T re = τ ]
Pr[T id = τ ] ≥

∏
i∈[1..qc+qp]

2dn − (i− 1)
2dn

≥ 1− 0.5(qc + qp)2

2dn
.

From Lemma 2, Lemma 3, and Lemma 1, we conclude the proof of Theorem 1.
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6 Conclusions
We showed that the (2d+2`−1)-round dn-bit cryptographic permutation based on 2d+2`−1
independent n-bit ideal ciphers with κn-bit keys, where d = κ+ 1, has an indifferentiability
security bound of O(q2/2(`+1)n) under the assumption that q ≤ 2n, where 1 ≤ ` ≤ d− 1.
This implies that a 5-round version of Coron et al.’s construction and (2d+1)-round version
of Guo and Lin’s construction have an indifferentiability security bound of O(q2/22n),
and this also shows that the security bound of Guo and Lin’s construction exponentially
improves by adding every two more rounds, up to 4d − 3 rounds. To the best of our
knowledge, these results give the first cryptographic permutation that is built from n-bit
ideal ciphers and has a full n-bit indifferentiability security bound.

There are open questions. First, we do not know the tightness of our security bounds,
e.g., we do not know if the 5-round version of Coron et al.’s construction and (2d+1)-round
version of Guo and Lin’s construction are differentiable with O(2n) queries. The tightness
of the results in [CDMS10, GL15] is also unknown, and these are all left as an open question.
We also do not know the security of a 4-round version of Coron et al.’s construction nor a
2d-round version of Guo and Lin’s construction. It would also be interesting to see if the
condition of q ≤ 2n can be removed from Theorem 1. Finally, all the result of this paper
and those in [CDMS10, GL15] rely on the fact that ideal ciphers are independent, and it
would be interesting to see the security of a construction where we use one ideal cipher in
all rounds.
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A Proof of Equation (10)
We prove for qc + qp ≤ 2n that

(i− 1)−

 ∑
y∈[1..x]

|X d+y
i |


∏

y∈[1..x]

(2n − |X d+y
i |)

· 1
2dn − (i− 1) ≤

2(i− 1)
2(d+x)n

.

Here, d ≥ 2, ` ∈ [1..d− 1], x ∈ [1..`], and 0 ≤∑y∈[1..x] |X
d+y
i | < i ≤ qc + qp ≤ 2n.

Proof. We subtract the left hand side from the right hand side:

2(i− 1)
2(d+x)n

−

(i− 1)−

 ∑
y∈[1..x]

|X d+y
i |


∏

y∈[1..x]

(2n − |X d+y
i |)

· 1
2dn − (i− 1)

≥

2(i− 1) ·

2xn −

 ∑
y∈[1..x]

|X d+y
i |

 · 2(x−1)n

 · (2dn − (i− 1))

2(d+x)n ·

 ∏
y∈[1..x]

(2n − |X d+y
i |)

 · (2dn − (i− 1))

−

(i− 1)−

 ∑
y∈[1..x]

|X d+y
i |

 · 2(d+x)n

2(d+x)n ·

 ∏
y∈[1..x]

(2n − |X d+y
i |)

 · (2dn − (i− 1))

.

Clearly, the denominator is positive. Therefore, we prove (the numerator) ≥ 0. Let
σi =

∑
y∈[1..x] |X

d+y
i |, then we have

(the numerator) = 2(i− 1) · (2n − σi) · 2(x−1)n · (2dn − (i− 1))− ((i− 1)− σi) · 2(d+x)n

= 2(i− 1) · 2(x−1)n ·
(

2(d+1)n − σi · 2dn − (2n − σi)(i− 1)
)

− (i− 1) · 2(d+x)n + σi · 2(d+x)n

= (i− 1) · 2(x−1)n ·
(

2(d+1)n − 2σi · 2dn − 2(2n − σi)(i− 1)
)

+ σi · 2(d+x)n

= (i− 1) · 2(x−1)n ·
(
(2n − σi) · 2dn − 2(2n − σi)(i− 1)

)
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− (i− 1) · σi · 2(d+x−1)n + σi · 2(d+x)n

= (i− 1) · 2(x−1)n · (2n − σi)
(
2dn − 2(i− 1)

)
+ σi · (2n − (i− 1)) · 2(d+x−1)n

≥ 0 .
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