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Abstract. Observing the growing popularity of random permutation (RP)-based
designs (e.g, Sponge), Bart Mennink in CRYPTO 2019 has initiated an interesting
research in the direction of RP-based pseudorandom functions (PRFs). Both are
claimed to achieve beyond-the-birthday-bound (BBB) security of 2n/3 bits (n being
the input block size in bits) but require two instances of RPs and can handle only one-
block inputs. In this work, we extend research in this direction by providing two new
BBB-secure constructions by composing the tweakable Even-Mansour appropriately.
Our first construction requires only one instance of an RP and requires only one key.
Our second construction extends the first to a nonce-based Message Authentication
Code (MAC) using a universal hash to deal with multi-block inputs. We show that
the hash key can be derived from the original key when the underlying hash is the
Poly hash. We provide matching attacks for both constructions to demonstrate the
tightness of the proven security bounds.
Keywords: PDMMAC · Davis-Meyer · PRF · MAC · permutation · beyond the
birthday bound security

1 Introduction
There is significant research on the design of PRFs from PRPs and vice versa. The most
relevant work based on PRP-from-PRF has been the Luby-Rackoff construction [LR88].
However, this direction is not very popular as PRPs are easier to build than PRFs and
several cryptographic designs desire to be instantiated with PRFs. In fact, the research
community has found it a better proposition to go the other way around - constructing
PRFs from PRPs. Numerous works have been done in this area. The main reason behind
this is that a PRP can be more easily designed from a PRF than a PRF from a PRP.

PRP-Based PRFs
The most obvious way a PRF can be constructed is to consider a PRP P (popular choice
is an n-bit block cipher with uniformly sampled key eK for some integer n) itself as a
PRF. However, this leads to an n/2-bit secure PRF. This result comes from the fact
that 2n/2 evaluations of the PRF will lead to a collision with significant probability
while the collision probability in case of a PRP will be zero. This is also termed the
PRP-PRF switching [BKR00,BR06,CN08,HWKS98]. In light of the recent research in
lightweight cryptography, this bound may not be acceptable to designers. The value of
n is generally chosen to be small because the state size of the PRF directly depends
on n and lightweight designs aim to optimize it. For example, several lightweight block
ciphers [BSS+13,BCG+12,BJK+16,BKL+07,BPP+17] that are proposed with a 64-bit
state (i.e, n = 64) achieve only 32-bit security and can be broken with practical query
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complexity. This idea has resulted in several attempts to design a PRF from a PRP with
more than n/2-bit security. They are popularly known as Beyond-the-Birthday-bound
(BBB)-secure PRFs.

A first attempt to construct such a BBB-secure PRF denoted by Truncm(eK(x)), was
proposed by Hall et al. [HWKS98], where m < n (note that a block cipher is a popular
candidate for a PRP), and its security was bounded by 2n−m/2 queries [BI99, GG16].
Later in [BKR98], Bellare et al. proposed n-bit security [BI99,DHT17,Luc00,Pat10] of
eK1(x)⊕ eK2(x) where K1 and K2 are independently sampled. Seurin et al. proposed a
22n/3 query-secure PRF, which they called EDM [CS18],

eK2(eK1(x)⊕ x).

The security of this construction has been improved by Mennink [MN17] using Patarin’s
mirror theory [NPV17,Pat05,Pat10,Pat16]. Note that all constructions are deterministic
(no use of nonce) and are instantiated with block ciphers with inputs considered to be of
fixed length. However, there are a number of BBB-secure constructions that deal with
arbitrary length inputs.

Generally, the technique is to incorporate a nonce and a keyed hash. The nonce is
processed with a deterministic PRF and the output is properly integrated with the hashed
value of the arbitrary length message. Note that, except a few, most of the PRFs do not
allow nonce misuse. The WC-MAC [CW79,WC81] (Wegman-Carter MAC) is one of such
constructions where the nonce is processed with a PRP-based PRF and a universal hash
processes the message. Next, both the outputs are added and passed through another
instance of PRP to generate the output. This design is vulnerable to nonce misuse
but secure up to only birthday bound under nonce respect. Later, Cogliati and Seurin
updated the WC MAC and designed the EWC-MAC [CS18] (Encrypted Wegman-Carter):
eK2(fK1(x)⊕HKh(x)) (f is a deterministic PRF, H is a key universal hash and K1, K2
and Kh are unform and independent), which is birthday bound secure under both nonce
misuse and respect scenario (can be proved using the PRP-PRF switching lemma). The
most important question that arises is “How can a BBB secure PRF be designed?” The
first prominent design in this area is the EWCDM construction:

eK2((eK1(N)⊕N)⊕HKh(x))

by Cogliati et al. [CS18], where the PRF is instantiated by Davis-Meyer and is used in
the EWC mode. This design achieves BBB security of 2n/3-bits (though n-bit security
was conjectured and proved by Mennink et al. [MN17] using mirror theory) under nonce
respect and birthday bound under nonce misuse. However, this construction is not minimal
in structure as it uses two independent instances of keys K1 and K2. Datta et al.,
in [DDNY18a,DDNY18b] proposed DWCDM which is a BBB secure construction (under
nonce respect), and uses only one instance of the PRP where eK2 is replaced by e−1

K1
. In

the security proof, the authors extended mirror theory and provide a concrete proof of
security up to 22n/3queries under nonce respect and birthday bound complexity under
nonce misuse. Nevertheless, the bound is not tight as there does not exist any attack below
2n queries. In fact the design is conjectured to have n-bit security.

Permutation-Based Designs
With the advent of public permutation-based designs and the efficiencies of permuta-
tions in the forward direction, several inverse-free hash and authenticated encryption
schemes have been proposed. The most prominent of such designs are the Sponge designs
introduced in SHA3 through the Keccak hash [BDPA15], this research direction later
being extended by popular designs like PHOTON [GPP11]. Several AEAD designs like
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Keyed Sponge [ADMA15, BDPA11b, BDPA11a,MRV15], SPONGENT [BKL+11], AS-
CON [DEMS16], Beetle [CDNY18] have later been proposed. Permutation-based designs
generally provide lower security bounds and it can be highly interesting to design RP-based
PRF with BBB security on the permutation size. Mennink et al., [CLM19a] recently in
CRYPTO 2019, studied permutation-based PRFs and proposed two BBB secure construc-
tions denoted as SOEM and SOKAC. However, both designs are not minimal in structure
and cannot handle arbitrary-length data. Both use two independent instances of random
permutations and at least one randomly sampled key. They are deterministic and do not
handle nonce. In this paper, we explore this direction of research and address the following
relevant questions: Can we design minimally structured PRF? (i.e, with one instance of
random permutation) Does there exist a nonce-based MAC constructed using an RP which
is again minimal in structure and can handle arbitrary-length data? We found the answer
to be “yes”, and we mainly propose two BBB secure deterministic and nonce based designs
using only one instance of a random permutation and one uniformly sampled construction
key. We list our contributions below.

1.1 Motivation
The initial motivation for our construction arises from the fact that there are no sin-
gle key, single permutation-based MACs with BBB security. No similar BBB secure
permutation-based (or even nonce-based) MAC construction currently exists other than
SoEM22 [CLM19a], which is also based on two permutations. In fact, [CLM19a] also
provides birthday bound attacks for the 2-permutations-1-keyed (π1, π2, K) and 1-
permutation-2-keyed (π, K1, K2) constructions, thus leaving no scope for improvement in
SoEM. It is therefore clear that a sequential construction is required for a minimization;
SoKAC [CLM19a] is the only existing sequential construction, a birthday bound attack to
which is present in [Nan20].

Two variants of SoKAC, namely SoKAC1 and SoKAC21 seem to have the following
inconsistencies:

1. The authors claim a birthday bound security of SoKAC1 in Proposition 5 of [CLM19a],
whose proof claims a distinguishing attack that does not seem to work. Hence, a
corrected attack is required for SoKAC1.

2. SoKAC21 is claimed to achieve a tight 2n/3-bit security in Proposition 6 of [CLM19a],
accompanied by an attack with a query complexity of O

(
22n/3). This security is

proved flawed in [Nan20], which shows a birthday bound attack on SoKAC21.
The main reason behind the above inconsistencies is the fixing of the input to the

second permutation π2 (or π) by the output of the first permutation π1 (or π). Thus,
although the final tag is a sum of the outputs of π1, π2 and a secret key, the fixing of the
permutation input prevents construction of a transcript-inducing graph and subsequent
use of Mirror theory.
This implies that the current form of SoKAC may not be a convincing construction to
build upon. Our construction takes a different direction from SoKAC, and is inspired by
DWCDM [DDNY18a,DDNY18b] - the output of only one permutation is involved in the
tag generation and the sum of permutations occurs between the two permutation instances,
allowing a query fixing the input and output of the construction (not the permutations) to
be clearly described by an inducing graph, which was not the case in SoKAC. Thus, Mirror
theory in its present form can be directly applied to our construction.

1.2 Our Contributions
We address the problem of designing a generic BBB secure MAC based on RP with
the minimal structure. The term “minimal” refers to the number of instances of the
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Table 1: Comparison of existing PRFs. #Keys and #Primitives denote number of key and
primitive instances.

#Key #Primitive MAC Security Nonce Multi-Block
Construction Instances Instances in n-bits (tightness) Based Inputs

Based on permutations

PDMMAC [This work] 1 1 2n/3 (tight)
PDM∗MAC [This work] 1 + 1 (hash key) 1 2n/3 (tight) X X
1K-PDM∗MAC [This work] 1 1 2n/3 (tight) X X
SoEM1 [CLM19a] 2 1 - (birthday attack)
SoEM21 [CLM19a] 1 2 - (birthday attack)
SoEM22 [CLM19a] 2 2 2n/3 (tight)
SoKAC1 [CLM19a] 2 1 - (birthday attack)
SoKAC21 [CLM19a] 1 2 - (birthday attack) [Nan20]

Based on Block Ciphers

EDM [CS18] 2 2 2n/3 (not tight)
EWCDM [CS18] 2 + 1 (hash key) 2 2n/3 (not tight) X X
DWCDM [DDNY18a,DDNY18b] 1 + 1 (hash key) 1 2n/3 (not tight) X X
1K-DWCDM [DDNY18a,DDNY18b] 1 1 2n/3 (not tight) X X

internal mathematical components (similar to DWCDM - Decrypted Wegman-Carter with
Davies-Meyer, which minimizes the number of block cipher instances). Our proposal only
uses one key and two calls of the same permutation (one forward and one inverse). The
key is used to generate three sub-keys that are injected in between the two permutation
calls. Precisely:

• We propose a deterministic MAC denoted by PDMMAC (Permutation based Davis-
Meyer) using one permutation and one key instance. We prove its PRF (which also
upper bounds the MAC security) security up to 22n/3 queries under the random
permutation model. We provide a proof using the coefficients-H technique. The
bound has been proven to be tight with a matching attack with query complexity
22n/3.

• The previous result sparks curiosity about the achievability of 2n/3-bit security
by a minimal construction that can process arbitrary length inputs. We propose
a nonce-based MAC denoted by PDM∗MAC using an additional keyed hash. We
provide a BBB secure nonce-based MAC security proof of 22n/3 query complexity
under the nonce-respect scenario. We show the tightness of the proven security
bound by demonstrating a matching attack.

• We propose a one keyed instance of PDM∗MAC denoted by 1K-PDM∗MAC by instan-
tiating the hash key Kh as Kh = π(K), where π is the underlying RP. In addition,
the underlying nonce is chosen to be non zero and the hash function is chosen as
Poly hash. This instance achieves the same security bound as PDM∗MAC.

Table 1 describes the structures of several well known constructions in terms of the
primitives and other design properties.

2 Preliminaries
The set of all n-bit binary strings is denoted by {0, 1}n, for an integer n ∈ N. We denote
the empty string by λ. {0, 1}∗ set of all strings such that {0, 1}∗ = {0, 1}+ ∪ {λ}. For
x, y ∈ {0, 1}∗, x‖y is used to denote the concatenation of x and y. 〈i〉m denotes the binary
representation of an integer i in m bits. We use Func(D,R) to denote the set of all functions
from the set D to R and Perm(S) to denote the set of all permutations over the set S.
Typically the choices of D, R and S are taken over binary strings. We also denote a set of
consecutive integers {1, . . . , r} simply by [r].
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2.1 PRF Security in the Random Permutation Model
Consider a function f : K ×M → T , where K, M and T are the key space, message
space and the tag space respectively. We discuss the pseudorandom security of f under the
random permutation model. We assume that f makes internal public-random-permutation
calls to π and π−1 (f can make calls to multiple random permutations when all of them
are independent and uniform on the set of message blocks Perm(B)). For simplicity, we
use fπK to denote f with uniform K and uniform π. The distinguisher D is given access
to either (fπK , π, π−1) for K $←− {0, 1}k or (ψ, π, π−1) where ψ $←− Func(K ×M, T ) is a
random oracle. The distinguishing probability of D is represented by Advprf

f (D), such that

Advprf
f (D) = |Pr[D(fπK ,π,π

−1) = 1]− Pr[D(ψ,π,π−1) = 1]|.

To be precise, we call f an ε-PRF against (qm, p)-adversaries if AdvPRFF (D) ≤ ε for all
distinguishers D making qm queries to fπK and p offline queries to π.

2.2 MAC Security in the Random Permutation Model
Consider f and another function Ver : K ×M× T → {0, 1} (similar to fπK , we use the
notation VerπK) such that for (M , T ), if fπK(M) = T then VerπK(M,T ) = 1 (otherwise
VerπK(M,T ) = 0 ). Consider a (qm, p, qv) adversary A making qm queries to fπK , p queries
to π and qv queries to VerπK . We say that A forges if any of its queries (M,T ) to VerπK
returns 1, such that M has not been queried to fπK before. The advantage of A against
the MAC security of f is defined as

AdvMAC
f (A) = Pr[K $←− K, π $←− Perm(B) : A forges].

To be precise, we call f an ε-MAC against (qm, p, qv)-adversaries if AdvMAC
f (A) ≤ ε for all

adversaries A making qm queries to fπK , p queries to π and qv queries to VerπK .

2.3 Nonce-Based MAC Security in the Random Permutation Model
Consider nonce based versions of f and Ver (takes an additional input N ∈ N .) such that
for an input (N , M , T ), VerπK(N,M, T ) = 1 if fπK(N,M) = T and 0 otherwise. Consider
a (qm, p, qv) adversary A making qm queries to fπK without repeating the nonce, p queries
to π and qv queries to VerπK . We say that A forges if any of its queries (N,M, T ) to VerπK ,
such that (N,M) has not been queried to fπK , returns 1. The advantage of A against the
MAC security of f is defined as

AdvMAC
f (A) = Pr[K $←− K, π $←− Perm(B) : A forges].

We call f an ε-MAC against (qm, p, qv)-adversaries if AdvMAC
f (A) ≤ ε for all (qm, p, qv)-

adversaries A.

2.3.1 Upper Bound on AdvMAC
f (Page 5, [DJN17]):

To get an upper bound for AdvMAC
f , we consider a random oracle ψ $←− Func(K×N ×M, T )

and reject oracle Rej : N ×M× T → {0}. The advantage AdvMAC
f is upper bounded by

max
D

∣∣∣Pr[D(fπK ,VerπK ,π,π
−1) = 1]− Pr[D(ψ,Rej,π,π−1) = 1]

∣∣∣ .
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2.4 Keyed Hash
Regular Hash: A function H : K ×D → R is said to be an ε-regular hash function if ∀
d ∈ D and r ∈ R,

Pr
Kh

$←−K
[H(Kh, d) = r] ≤ ε.

AXU Hash: A function H : K ×D → R is said to be an ε-AXU hash function if for two
distinct d and d′ from D and r ∈ R,

Pr
Kh

$←−K
[H(Kh, d)⊕H(Kh, d

′) = r] ≤ ε.

3-Way Regular Hash: A function H : K×D → R is said to be an ε-3-way regular hash
function if for three distinct d, d′ and d′′ from D and for any non-zero r from R,

Pr
Kh

$←−K
[H(Kh, d)⊕H(Kh, d

′)⊕H(Kh, d
′′) = r] ≤ ε.

An example of 3-way regular hash is Poly hash (with the secret key Kh) where the padded
message x∗ = x1‖ · · · ‖x` is processed as

PolyKh(x∗) = x` ·Kh ⊕ x`−1 ·K2
h ⊕ · · · ⊕ x1 ·K`

h.

2.5 Coefficients-H Technique
We outline the Coefficients-H technique developed by Patarin, which serves as a convenient
tool for bounding the advantage (see [Pat91,Vau03]). We will use this technique (without
giving a proof) to prove our main theorem. Consider two oracles O0 = ($,⊥) (the ideal
oracle for the relaxed 1 game) and O1 (real, i.e. our construction in the same relaxed
game). Let T denote the set of all possible transcripts an adversary can obtain (i.e. the
set of all attainable transcripts in the ideal world). We let Xre be the random variable that
takes values τ ∈ T when the adversary interacts with the real world and Xid to be the
random variable that takes values τ ∈ T when it interacts with the ideal world. Without
loss of generality, we assume that the adversary is deterministic and fixed. Then the
sample space for Xre and Xid is uniquely determined by the underlying oracle. As we deal
with stateless oracles, these probabilities are independent of the order of query responses
in the transcript. Suppose we have a set of transcripts, Tgood ⊆ T , which we call good
transcripts, and the following conditions hold:

1. In the game involving the ideal oracle O0 (and the fixed adversary), the probability
of getting a transcript in Tgood is at least 1− ε1.

2. For any transcript τ ∈ Tgood, we have
Pr [Xre = τ ] ≥ (1− ε2) · Pr [Xid = τ ].

Then |Pr[DO0 = 1]− Pr[DO1 = 1]| ≤ ε1 + ε2. The proof can be found in (say) [Vau03].

2.6 Two Sum-Capture Lemmas
Let T ? be a multiset of size q. Denote by µ (T ?), the maximum over all subsets A,B of
{0, 1}n, both of size q, of the quantity

µ (T ?, A,B) = |{(Ti, ṽa, z̃b) ∈ T ? ×A×B | Ti = ṽa ⊕ z̃b}| .
1the term relax denotes that in addition to the query input-output tuples, additional state values may

be supplied to the adversary (after all the queries are made) as a part of the transcripts
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Recall lemma 1 of [CS18]:
Let T ∗ be a multiset of q ≥ 1 uniformly random and independently chosen elements of
{0, 1}n. Then-

Pr
[
µ(T ∗) ≥ q3

2n + q
√

3nq
]
≤ 2

2n .

This lemma can be slightly altered by simply taking the sizes of the multiset T ∗ and
the sets A,B to be q, p1, p2, respectively:

Lemma 1. Let T ? = {T1, . . . , Tq} be the multiset of all the tags received through the [q]
queries to the construction. Denote by µ (T ?), the maximum over all subsets A,B of
{0, 1}n, of size p1 and p2 respectively, of the quantity

µ (T ?, A,B) = |{(Ti, ṽa, z̃b) ∈ T ? ×A×B | Ti = ṽa ⊕ z̃b}| .

Pr
[
µ (T ?) ≥ p1p2q

2n +
√

3np1p2q
]
≤ 2

2n . (1)

If the set A is replaced by a multiset A∗, then this result is further modified into the
following lemma:

Lemma 2. Let T ∗, A∗ be multisets of {0, 1}n and B ⊆ {0, 1}n. Define-

µ(T ∗, A∗, B) = |{(t, a, b) ∈ T ∗ ×A∗ ×B : t = a⊕ b}| and

µ(T ∗) = max
A∗,B

|T∗|=q1,|A∗|=q2,|B|=p

µ(T ∗, A∗, B).

If T ∗, A∗ are multisets of respectively q1, q2 uniformly random and independently chosen
elements of {0, 1}n and B is a subset of {0, 1}n of size p, then

Pr
[
µ(T ∗) ≥ q1q2p

2n +
√

3np(q1 + q2)
2n

]
≤ 2

2n . (2)

A proof is available in Supplementary Material A

3 Mirror Theory
Mirror Theory: Mirror theory is a tool for finding the number of solutions to affine sys-
tems of equalities and non-equalities. Mirror theory by Patarin [NPV17,Pat05,Pat10,Pat16]
provides a lower bound on such a number for a finite set of affine bi-variate equations,
which is such that its variables are sampled without replacement. The proof is verifiable
up to a bound of 2n/3 bits.

Equation-Inducing Graph: Consider an undirected graph Geq = (Veq,Eeq,L), where
Veq = {X1, . . . , Xm} and the edge-label function L : Eeq → F2n assigns a label λ to each
edge e ∈ Eeq.
If each vertex Xi is assumed to represent a unique variable (also denoted Xi, for the sake
of convenience), then such a graph Geq can be considered to induce a system of equations
defined by-

Xi ⊕Xj = λi,j , whenever ei,j := {Xi, Xj} ∈ Eeq and L(ei,j) = λi,j .

Observe that should any of the following cases occur, the graph Geq might induce a system
of equations which is either inconsistent or has redundant equations:
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• Existence of a cycle: A cycle arises in Geq if there exists a sequence of edges
{Xi1 , Xj1}, . . . , {Xir , Xjr} ∈ Eeq such that Xja = Xia+1 ∀ a ∈ [r−1] and Xjr = Xi1 .
A loop i.e. Xi = Xj for some edge {Xi, Xj} ∈ E is also considered a cycle.

• Zero Path Label: The path label of a path P of edges in Eeq is defined as
L(P ) =

∑
e∈P
L(e). Thus, a zero path-label arises when there exists a path P in G

such that L(P ) = 0.

Extended Mirror Theory: Extended mirror theory gives a lower bound for the number
of solutions to a combination of a system of bi-variate affine equations (as in Mirror Theory)
and a system of bi-variate affine non-equations of the form Xi⊕Yi 6= c. [DNT19] contains
a detailed treatment of such a combination of systems.

Equations-and-Non-Equations-Inducing Graph: Consider an undirected graph Geq =
(Veq,Eeq,Leq), where Veq = {X1, . . . , Xm} and the edge-label function Leq : Eeq → F2n

assigns a label λ to each edge e ∈ Eeq.

If each vertex Xi is assumed to represent a unique variable (also denoted Xi, for the sake
of convenience), then such a graph Geq can be considered to induce a system of equations
defined by-

Xi ⊕Xj = λi,j , whenever Ei,j := {Xi, Xj} ∈ Eeq and Leq(Ei,j) = λi,j .

Now consider an undirected graph Geq,neq = (V,EeqtEneq,L), where Veq = {X1, . . . , Xm} ⊆
V = {X1, . . . , Xv} and the edge-label function L : Eeq t Eneq → F2n assigns a label λ to
each edge e ∈ Eeq t Eneq.

Again assuming each vertex Xi, Geq,neq can be considered to induce a system of equations
and a system of non-equations defined by-

Xi ⊕Xj = λi,j , whenever ei,j := {Xi, Xj} ∈ Eeq and
L(ei,j) = λi,j , ∀Xi, Xj ∈ Veq

X ′i ⊕X ′j 6= λ′i,j , whenever e′i,j := {X ′i, X ′j} ∈ Eneq and
L(e′i,j) = λ′i,j , ∀X ′i, X ′j ∈ V.

Let Geq,neq = (V,Eeq t Eneq,L) be a graph that induces a system of affine bivariate
equations and non-equations over α distinct variables. Suppose Geq,neq has α vertices
and q′m + qv edges with |Eeq| = q′m, |Eneq| = qv. Let C1, . . . , Ck be all the components
(i.e. maximal subgraphs where any two vertices are connected to each other by a path)
of Geq = (V,Eeq,L

∣∣
Eeq

), Ci of size wi, and let σi = (w1 + · · ·+ wi). Denote by ξmax, the
size of the component of Geq with the maximum number of vertices. Using an extended
version of mirror theory, we can provide a lower bound on the number of injective solutions
when the maximum component size is ξmax. We now state the following lemma, which
summarizes the result of Theorem 3 in [DNT19]

Lemma 3. The total number of injective solutions chosen from a set Z of size 2n − c, for
some c ≥ 0, for the induced system of equations and non-equations Geq,neq is at least:

(2n)α

(
1−

k∑
i=1

6σ2
i−1
(
ξi
2
)

22n − 2(qv + cα)
2n

)
,

provided σkξmax ≤ 2n/4, and assuming σ0 = 0.
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This lemma thus provides a bound for a solution from a subset of {0, 1}n. However,
applying this lemma to our results (Thm. 1, 2 and 3 ) generates the term p(p+q)

2n for the
non-equations, as c takes the value p, which is not a constant. We wish for a beyond-the-
birthday bound on this number, which could possibly have been achieved by the results
in [DDNY18a,DDNY18b] . In spite of this providing a stronger bound, there are two
problems. First, non-equations are unaccounted, which could be easily included (by the
same method as in the proof of Cor. 2). Second, a maximum component size of only 2 is
allowed for the equations-inducing subgraph. A modification of this result is presented
here (Cor. 1 and Cor. 2), which not only takes non-equations into account and allows for a
maximum size of 3 for equation-components, but also provides an improved bound.

3.1 Extended Mirror Theory

Some Probability Results
Recall the following result from [DDNY18b]: Let S′ ⊆ {0, 1}n be a subset of size (2n − s′)
and Un ← {0, 1}n. Let (V,W ) $←−−

wor
S′(2) be a WOR sample of size 2 drawn from S′. Then,

V ⊕W �ε1(s′) Un over F?2n := F2n \ {0n}, (3)

where ε1(s′) is a quantity with value at most s′2

(2n−s′)2 . This result can be extended for
three random variables as follows:

Lemma 4. Let S′ ⊆ {0, 1}n be a subset of size (2n − p′) and Un, Vn ← {0, 1}n. Let
(P,Q,R) $←−−

wor
S′ be a WOR sample of size 3 drawn from S′(3). Then,

(P ⊕Q,Q⊕R) �ε2(p′) (Un, Vn), (4)

where ε2(p′) is a quantity with value at most 3·2n·p′2−p′3
(2n−p′)3 .

The proof is similar to that of the previous result, and is detailed in Sect. B of the Appendix.

Results on Mirror Theory

Eqn.s 3 and 4 can be easily extended for systems of equations as follows-

Corollary 1. Let S′ ⊆ {0, 1}n be a subset of size (2n − p′) and

(X1, X2, . . . , Xt, Y1, Y2, . . . , Yt, Z1, Z2, . . . Zt)
$←−−

wor
S′

be a WOR sample of size 3t drawn from S′(3). Then for constants λ1, λ2, . . . , λ2t in {0, 1}n,

Pr [(X1⊕Y1=λ1)∧(X2⊕Y2=λ2)∧...∧(Xt⊕Yt=λt)] ≥
1
2n

(
1− t · p′2

(2n − p′)2

)
, (5)

by eqn.(3), and

Pr
[(
X1⊕Y1=λ1,
Z1⊕Y1=λ2

)
∧
(
X2⊕Y2=λ3,
Z2⊕Y2=λ4

)
∧ . . . ∧

(
Xt⊕Yt=λ2t−1,
Zt⊕Yt=λ2t

)]
≥ 1

22nt

(
1− 3t · 2n · p′2

(2n − p′)3

)
, (6)

by eqn.(4) of lemma 4.



10
On the Composition of Single-Keyed Tweakable Even-Mansour for Achieving BBB

Security

Proof. Observe that by eqn.(3),

Pr [(X1 ⊕ Y1 = λ1) ∧ (X2 ⊕ Y2 = λ2) ∧ . . . ∧ (Xt ⊕ Yt = λt)]

= Pr
[
X1⊕Y1=λ1

∣∣∣∣∣ X1,Y1∈S′
are distinct

]
× · · · × Pr

[
Xt⊕Yt = λt

∣∣∣∣∣ Xt,Yt∈S′
\{X1,...,Xt−1,Y1,...,Yt−1}

are distinct

]

≥ 1
2n (1− ε1(p′))× 1

2n (1− ε1(p′ − 2)) · · · × 1
2n (1− ε1(p′ − (2t− 2)))

≥
t∏
i=1

1
2n (1− ε1(p′)) ≥ 1

2nt
t∑
i=1

1
2n (1− ε1(p′)) ≥ 1

2nt

(
1− tp′2

(2n − p′)2

)
.

Similarly, by eqn.(4),

Pr
[(
X1⊕Y1=λ1,
Z1⊕Y1=λ2

)
∧
(
X2⊕Y2=λ3,
Z2⊕Y2=λ4

)
∧ . . . ∧

(
Xt⊕Yt=λ2t−1,
Zt⊕Yt=λ2t

)]

= Pr
[
X1⊕Y1=λ1,
Z1⊕Y1=λ2

∣∣ X1,Y1,Z1∈S′
are distinct

]
× Pr

[
X2⊕Y2=λ3,
Z2⊕Y2=λ4

∣∣ X2,Y2,Z2∈S′\{X1,Y1,Z1}
are distinct

]
...

× Pr
[
Xt⊕Yt=λ2t−1,
Zt⊕Yt=λ2t

∣∣∣∣ Xt,Yt,Zt∈S′\{X1,...,Xt−1,Y1,...,Yt−1,Z1,...,Zt−1}
are distinct

]
≥ 1

22n (1− ε2(p′))× 1
22n (1− ε2(p′ − 3)) · · · × 1

22n (1− ε2(p′ − 3(t− 1)))

≥
t∏
i=1

1
22n (1− ε2(p′)) ≥ 1

22nt

(
1−

t∑
i=1

ε2(p′)
)
≥ 1

22nt

(
1− 3t · 2n · p′2

(2n − p′)3

)
.

The following bound on probability of a valid solution for a combination of a system of
equations and a system of non-equations can also be obtained from Eqn.s 3 and 4-

Corollary 2. Let Geq,neq = (V,Eeq t Eneq,L) be an equations-and-non-equations-inducing
graph such that the subgraph Geq only has components of size 2 or 3. If |V \ Veq| = qv
and λi (i ∈ [qm]) are edge-labels of the edges in Eeq in the same order as the components,
then the probability of the induced systems of equations and non-equations attaining any
solution from a set S′ ⊆ {0, 1}n of size (2n − p′) for all the variables represented only by
the vertices in Veq is bounded by-

1
2nqm

(
1− 1200q3

m + 312(p′ + 3qv)q2
m + 2(p′ + 3qv)2qm

22n

)(
1− qv

2n
)
. (7)

Proof. Suppose Gτeq has exactly qm − t components with-

1. t components (Xi, Yi, Zi)ti=1 of size 3 and

2. qm − 2t components (Xi, Yi)qm−2t
i=t+1 of size 2.

. Let wi,j be the number of edges in Eneq that connect one vertex of the ith component of
Gτeq to one vertex of its jth component. Also let w(v) be the number of edges in Eneq from
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some vertex in V \ Veq incident on a vertex v ∈ Veq. The number of solutions for all the
variables represented by vertices in Veq can then be computed as-

Pr
[(
X1⊕Y1=λ1,
Z1⊕Y1=λ2

)
,
(
X1⊕Y1=λ2,
Z1⊕Y1=λ4

)
, . . . ,

(
Xt⊕Yt=λ2t−1,
Zt⊕Yt=λ2t

)
,

(Xt+1⊕Yt+1=λ2t+1),(Xt+2⊕Yt+2=λt+2),
...,(Xqm−2t⊕Yqm−2t=λqm )

]
= Pr

[
X1⊕Y1=λ1,
Z1⊕Y1=λ2

∣∣ X1,Y1,Z1∈S′
are distinct

]
× Pr

[
X2⊕Y2=λ3,
Z2⊕Y2=λ4

∣∣ X2,Y2,Z2∈S′\{X1,Y1,Z1}
are distinct

]
...

× Pr
[
Xt⊕Yt=λ2t−1,
Zt⊕Yt=λ2t1

∣∣∣∣ Xt,Yt,Zt∈S′\{X1,...,Xt−1,Y1,...,Yt−1,Z1,...,Zt−1}
are distinct

]
× Pr

[
Xt+1⊕Yt+1=λ2t+1

∣∣∣∣∣ Xt+1,Yt+1∈S′
\{X1,...,Xt,Y1,...,Yt,Z1,...,Zt}

are distinct

]
...

× Pr
[
Xqm−t⊕Yqm−t=λqm

∣∣∣∣∣ Xqm−t,Yqm−t∈S
′

\{X1,...,Xqm−t,Y1,...,Yqm−t,Z1,...,Zqm−t}
are distinct

]
.

The vertices in Geq,neq representing X1, Y1 and Z1 can be chosen after removing one
value from S′ for each non-equation edge joining one of these vertices to some other
vertex of Geq,neq. Thus, the choice for their values must be made from a set of size
p′ + w(X1) + w(Y1) + w(Z1). Next, X2, Y2 and Z2 can be chosen only after all the
previously assigned values, all values conflicting with any non-equation edges connecting
X2, Y2 and Z2 to some vertex in V \ Veq and all values conflicting with any non-equation
edges joining some vertex of the first component (i.e. X1, Y1 or Z1) with the second
component (i.e. X2, Y2 or Z2) are removed from the set S′. This leaves a set of size no less
than p′+3+w(X2)+w(Y2)+w(Z2)+w1,2. Similar calculations for the remaining components
give the following lower bound for Pr

[(
X1⊕Y1=λ1,Z1⊕Y1=λ2,...,
Xt⊕Yt=λ2t−1,Zt⊕Yt=λ2t

)
,
(
Xt+1⊕Yt+1=λ2t+1,...,
Xqm−2t⊕Yqm−2t=λqm

)]
:

1
22n (1− ε2 (p′ + w(X1) + w(Y1) + w(Z1)))

× 1
22n (1− ε2 (p′ + 3 + w(X2) + w(Y2) + w(Z2) + w1,2))

...

× 1
22n

(
1− ε2

(
p′ + 3(t− 1) + w(Xt) + w(Yt) + w(Zt) +

t−1∑
j=1

wj,t

))

× 1
2n

1− ε1

p′ + 3t+ w(Xt+1) + w(Yt+1) +
t∑

j=1
wj,t+1


...

× 1
2n

(
1− ε1

(
p′ + 3t+ 2(qm − t− 1) + w(Xqm−t) + w(Yqm−t) +

qm−t−1∑
j=1

wj,qm−t

))
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≥ 1
22n

(
1− 24(p′ + 3qv)2

22n

)

× 1
22n

(
1− 24(p′ + 3 + 3qv + 9)2

22n

)
...

× 1
22n

(
1− 24(p′ + 3(t− 1) + 3qv + 9(t− 1))2

22n

)

× 1
2n

(
1− 4(p′ + 3t+ 2qv + 6t)2

22n

)

...

× 1
2n

(
1− 4(p′ + 3t+ 2(qm − t− 1) + 2qv + 6t+ 4(qm − t− 1))2

22n

)

≥ 1
22nt

(
1− 24

22n

t−1∑
i=0

(p′ + 12i+ 3qv)2

)

× 1
2n(qm−2t)

(
1− 4

22n

qm−t∑
i=t

(p′ + 7t+ 6i+ 2qv)2

)

≥ 1
22nt

(
1− 24

22n

(
48q3

m + 12(p′ + 3qv)q2
m + (p′ + 3qv)2qm

))

× 1
2n(qm−2t)

(
1− 4

22n

(
12q3

m + 6(p′ + 2qv)q2
m + (p′ + 2qv)2qm

))
, since t ≤ qm.

Next, observe that the only vertices in V that remain after this computation are those
connected by edges in Eneq. The number of valid solutions for these vertices is minimum
when they form a single component. Since there can be at most 2q′v ≤ 2qv vertices in
V \ Veq, the lower bound for the probability of any combination of values represented by
these 2q′v vertices is:

Pr
[

(X ′1 ⊕X ′2 6= λ′1) ∧ (X ′2 ⊕X ′3 6= λ′2) ∧

. . . ∧
(
X ′2q′v−1 ⊕X ′2q′v 6= λ′2q′v−1

) ]
= 1− Pr

[
(X ′1 ⊕X ′2 = λ′1) ∨ (X ′2 ⊕X ′3 = λ′2) ∨

. . . ∨
(
X ′2q′v−1 ⊕X ′2q′v = λ′2q′v−1

) ]
≥ 1−

(
Pr [X ′1 ⊕X ′2 = λ′1] + Pr [X ′2 ⊕X ′3 = λ′2] +

. . .+ Pr
[
X ′2q′v−1 ⊕X ′2q′v = λ′2q′v−1

] )
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≥ 1−
2q′v−1∑
a=1

1
2n

(
1− p′2

(2n − p′)2

)

= 1− (2q′v − 1) (2n − 2p′)
(2n − p′)2

≥ 1− q′v
2n , since 2p′ ≤ 2n/2.

Since q′v ≤ qv, any solution to the combined systems of equations and non-equations
must therefore have a probability of at least-

1
2nqm

(
1− 1200q3

m + 312(p′ + 3qv)q2
m + 2(p′ + 3qv)2qm

22n

)(
1− qv

2n
)
.

4 Related Work
We describe some constructions relevant for our proposals. We have also identified an issue
in the cryptanalysis of SoKAC proposed in CRYPTO-19 [CLM19b].
Tweakable Even-Mansour: Even and Mansour pioneered the design and analysis
of random permutation-based blockciphers [EM97]. Let π be an ideal n-bit (public)
permutation and K1,K2 ∈ {0, 1}n be the secret keys. The Even-Mansour construction is
defined as follows:

EMK1,K2 [π](x) := π(x⊕K1)⊕K2, ∀x ∈ {0, 1}n.

When K1 = K2, we simply write EMK1 [π]. In order to incorporate a tweak t in the
Even-Mansour construction, Cogliati et al. replace the round keys by some functions
fi(Ki, t) and called it Tweakable Even-Mansour (TEM) construction. This is exactly the
spirit of the TWEAKEY framework introduced by Jean et al. [JNP14]. In this paper we
consider the following simple instantiation of TEM.

TEMK [π](x, t) := π(x⊕ (2t ·K))⊕ (2t ·K), ∀x, t ∈ {0, 1}n.

Here, 2 denotes a primitive element in the binary field {0, 1}n. Other similar known
approaches can be found in [LRW02,Rog04,CLS15,Men16] etc.
Davis-Meyer: For a permutation π (public or keyed), Davis Meyer construction is defined
as DM[π](x) := π(x)⊕ x. This method has been popularly adopted to design both hash
and PRF from an ideal permutation or cipher. When the permutation π is a blockcipher
eK , we write DMK [e](x) := eK(x)⊕ x.

4.1 Some Examples of Permutation-based PRFs
SoEM: Sum of Even-Mansour. It is a permutation based PRF that uses two instances of
EM to simply add them up to output the sum. Precisely,

SoEMK1,K2 [π1, π2](x) := EMK1 [π1](x)⊕ EMK2 [π2](x).

SOEM has three instances denoted by

• SoEM1 with π1 = π2 and K1,K2 are independent,
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• SoEM21 with π1, π2 are independent with K1 = K2 and

• SoEM22 with π1, π2 are independent and K1,K2 are independent.

Security of SoEM: Both SoEM1 and SoEM21 achieves the birthday bound security and
associated with matching birthday attacks in query complexity. SoEM22 achieves BBB
security of 2n/3-bits with a matching attack in query complexity. Below, we will briefly
discuss about the birthday bound attack on SoEM with a single random permutation (i.e,
SoEM1). Note that, we use O(f(n)) to denote c · f(n) computations, where c is a small
constant. From now on, we use this notation throughout our paper when needed.
Attack Idea: The attack exploits the parallel structure of SoEM as well the usage of
the same permutation in both the branches. In other words, if the inputs to the two
branches swap then the final outputs will collide. Such a structure of inputs (M,M ′) can
be obtained using O(2n/2) queries by adjusting the left and the right half of the inputs.
The condition on the choice of (M,M ′) is M ⊕M ′ = K1 ⊕K2. This condition can be
easily detected as the output of the messages M and M ′ would be same (see Fig.1).

M

K1 x

π

M

x′

π

K2

K1 ⊕K2

C

M ′

K1
x′

π

M ′

x

π

K2

K1 ⊕K2

C

Figure 1: SoEM1 - Swapping x and x′.

SoKAC: These are mainly Even-Mansour followed by Davis-Meyer type of constructions.
More precisely,

SoKAC1K1,K2 [π1](x) := DMK1 [e](EMK1,K2 [π1](x))
SoKAC21(x) := DMK [e′](EMK [π1](x))

where eK(x) = π1(x)⊕K and e′K(x) = π2(x)⊕K.
Proposition 5 in [CLM19b] claims that the same birthday bound attack as on SoEM1

can be applied to SoKAC1. Also, Proposition 6 of the same paper claims that the same
beyond birthday bound attack as on SoEM21 can be applied to SoKAC21. We observe
that the attacks possibly do not work with the claimed complexities. The main reason is
the serial structure of SoKAC, wherein a fresh input to the first permutation π1 makes the
internal state random. Hence, an extended attack on SoKAC is unknown to us. Recently,
Nandi proposed a birthday bound attack on SoKAC21 in [Nan20], giving SoKAC21 a
birthday bound security; a 2n/3-bit security was claimed in Theorem 2 of [CLM19b].
Additionally, this paper presents an independent attack against SoKAC1 with O(22n/3)
query complexity in Fig. 3.

M

K1

⊕ π
u v

K2

⊕ π
x y

K1

C⊕

Figure 2: SoKAC1 - One permutation instance π (= π1 = π2), two key instances K1 and K2.
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5 · 22n/3-Query Attack on SoKAC1

1. Queries M1, . . . ,Mq ← {0, 1}n to the authentication oracle O with q = 2 · 22n/3

(say Mi = 〈i〉2n/3‖0n/3 for i < 22n/3, Mi = 〈i − 22n/3 + 1〉2n/3‖1‖0n/3−1 for
22n/3 ≤ i < 2 · 22n/3).

2. ũ1, . . . , ũp1 with p1 = 2 · 22n/3 forward queries to the primitive π (say ũa =
0n/3‖〈a〉2n/3 for a < 22n/3, ũa = 0n/3−1‖1‖〈a − 22n/3 + 1〉2n/3 for 22n/3 ≤ a <

2 · 22n/3); receive responses ṽa = π(ũa), a ∈ [p1].

3. ỹ1, . . . , ỹp2
$←−−

wor
{0, 1}n with p2 = 2 · 22n/3 backward primitive queries to the

primitive π; receive responses x̃b, b ∈ [p2].

4. Set ExtK := {(i, a, b) ∈ [q]× [p1]× [p2] | (Mi ⊕ ũa = K1) ∧ (Ci ⊕ x̃b ⊕ ỹb = K1)}
and set K̂ = φ.

5. For all K ∈ K with |ExtK | ≥ 2, check whether:
For all pairs of tuples (i, a, b) 6= (i′, a′, b′) in ExtK , if (ṽa ⊕ x̃b ⊕ ṽa′ ⊕ x̃b′ = 0),
then add K to K̂.

Figure 3: Interaction of the adversary with (O, π), where O is either the random oracle or the
real construction oracle SoKAC1πK and the primitive π.

Analysis of the attack: Observe that for the values q = p1 = p2 = 2 · 22n/3, the set
ExtK has size O(1) with high probability, for each value K ∈ K. Furthermore, if K?

denotes the true key of the construction, then Pr[K? ∈ K̂] = Pr [|ExtK? | ≥ 2] ≥ 1
4 , and

thus, the expected size, E
[∣∣∣K̂∣∣∣], of the guess-key set K̂ is O(1).

4.2 Block cipher-based PRFs
EDM: Encrypted Davis Meyer. It encrypts the output of DM. More formally,

EDMK1,K2 [e] := eK2(DMK1 [e](x)).

EDM is a 2n/3-bit BBB secure PRF. The query complexity of the attack against EDM is
O(2n) query complexity. Hence, the security bound is not tight. Later, Mennink proposed
the dual of EDM defined as DMK2 [e](eK1(x)). This design achieves the same security
bound as EDM but the bound is not tight. It has even been proven to be n-bit secure
using mirror theory. The proof is not verified and the attack complexity is again up to
O(2n) queries.
DDM: Decrypted Davis Meyer. DDM optimizes EDM in the number of block cipher
instances. In other words DDM replaces the outer eK2 by e−1

K1
. Formally,

DDMK [e] := e−1
K (DMK(x)).

The proven security bound of DDM is exactly the same as EDM. However, this bound is
not known to be tight and is accompanied by an attack with O(2n) queries.
EWCDM: All the constructions above can handle fixed length inputs. EWCDM [CS16]
extends the input domain of EDM to handle multi-block inputs. It takes a nonce N ∈ N
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and an input x ∈ M (where M is the set of all multi-block inputs) to generate a tag
T ∈ T . EWCDMK1,K2,Kh [e,H] with N and x as the inputs is defined as

T = eK2(eK1(N)⊕N ⊕HKh(x)).

Here, H is ε1-regular hash, ε2-AXU hash and ε3-3-way regular hash. For Poly hash, we
have ε1 = ε2 = ε3 = `

2n .
DWCDM: In CRYPTO 2018 [DDNY18b], Datta et al. proposed DWCDM which optimizes
EWCDM the number of block cipher instances to one without any compromise in the
security level.

It takes a nonce N ∈ N and an input x ∈M (M is the set of all multi-block inputs)
to generate a tag T ∈ T . DWCDMK,Kh [e, e−1,H] with N and x is defined as

T = e−1
K (eK(N)⊕N ⊕HKh(x)).

Here, the last n/3-bits of N are 0 and H is ε1-regular hash, ε2-AXU hash and ε3-3-way
regular hash. For Poly hash, we have ε1 = ε2 = ε3 = `

2n .

5 PDMMAC and PDM∗MAC Constructions

5.1 Specification and Security of PDMMAC

Specification of PDMMAC: Let K $←− {0, 1}n and π $←− Perm(n). The PRF that we
propose in this paper is a construction that takes a message M ∈ {0, 1}n as an input and
return n-bit tag T := PDMMACπK(M). The construction PDMMAC is defined as

T = π−1 (π(K ⊕M)⊕ 3K ⊕M)⊕ 2K. (8)

Design Rationale: Our design PDMMAC is motivated by DDM. Let

TEMK(t,M) = π(M ⊕ 2t ·K)⊕ 2t ·K

be a specific instantiation of tweakable Even-Mansour construction. The construction
PDMMAC can be equivalently described as (see Fig.4)

T = TEM−1
K (1,TEMK(0,M)⊕M) . (9)

M

K

⊕ π

K

⊕ ⊕

2 ·K

⊕ π−1

2 ·K

T⊕

TEM(0, ·) TEM−1(1, ·)

Figure 4: The construction PDMMAC

Security of PDMMAC: We prove that PDMMAC for one instance of uniform π and
uniform key K is secure up to attack complexity O(22n/3). We also propose an attack
matching this bound.
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Theorem 1. Let M ∈ M, and consider PDMMACπK based on one permutation π
$←−

Perm({0, 1}n) and one key K
$←− {0, 1}n. For any distinguisher D making at most q

construction queries at most p primitive queries to π±, we have,

Advprf
PDMMAC(D) ≤ q2 + 2q3 + 3pq2 + p2q + 8q(p+ q)2

22n

+ 6 + q + q
√

3np+
√

6npq + p
√

3nq
2n .

The proof for this theorem can be found in Sect. 6. Note that the dominating term of

advantage is
√

3n(pq2 + qp2)
22n . So the construction is secure as long as p, q � 22n/3

n1/3 .

A Matching Attack with O(22n/3) Queries: We have a matching attack (up to the
logarithmic factor). The attack is similar to that of PDM∗MAC, and henceforth omitted.
We include the attack for PDM∗MAC instead of PDMMAC as it is more robust.

5.2 Specification and Security of PDM∗MAC
Specification of PDM∗MAC: The previous construction does not allow arbitrary-
length messages. We now propose a construction similar to DWCDM, which uses a single
ideal permutation π $←− Perm(n) and an n-bit key K. To process a message M ∈ {0, 1}∗,
a hash function H with a key Kh sampled independently of K is required, which is almost
xor-universal, regular and 3-way regular. The construction PDM∗MAC for an n-bit nonce
N and a message M ∈ {0, 1}∗, with B = {0, 1}n computes T = PDM∗MACπK,Kh(N,M) as
follows:

T = π−1 (π(K ⊕N)⊕ 3K ⊕N ⊕HKh(M))⊕ 2K. (10)

Instance of H: PolyHash [MI11] is an example of a keyed hash which is `
2n -regular, AXU

and 3-way regular, where ` is the maximum number of n-bit blocks. The hash first uses
an injective 10∗ (one followed by zeros) padding to pad an input M ∈ {0, 1}∗ to multiple
of n-bits. Precisely, M‖10j = M1‖M2‖ . . . ‖M` where j = n− |M | mod n− 1. The hash
value is generated as

PolyH(M) = M` ·Kh ⊕M`−1 ·K2
h ⊕ · · · ⊕M1 ·K`

h.

Design Rationale: This construction is motivated by DWCDM. Like PDMMAC, the
nonce and the hash of the message are XOR-ed between two permutation calls. Similar
designs have been adapted for DWCDM from DDM. The construction PDM∗MAC can be
equivalently described as (see Fig.5)-

T = TEM−1
K (1,TEMK(0, N)⊕N ⊕HKh(M)) . (11)

N

K

⊕ π

K

⊕

HKh(M)

⊕

2 ·K

⊕ π−1

2 ·K

T⊕

TEMK(0, ·) TEM−1
K

(1, ·)

Figure 5: The construction PDM∗MAC
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Security of PDM∗MAC: We prove the security of PDM∗MAC up to an attack com-
plexity of O(22n/3) for one instance of uniform π and uniform key K. We also propose an
attack matching this bound in Fig. 6.

A Matching Attack on PDM∗MAC with O(22n/3) Queries

1. Queries (N1,M), . . . , (Nq,M) with q = 2 · 22n/3 to authentication oracle O (say
Ni = 〈i〉2n/3‖0n/3 for i < 22n/3, Ni = 〈i − 22n/3 + 1〉2n/3‖1‖0n/3−1 for 22n/3 ≤
i < 2 · 22n/3); receive responses Ti = O(Mi), i ∈ [q].

2. ũ1, . . . , ũp1 forward queries to the primitive π with p1 = 2 · 22n/3 (say ũa =
0n/3‖〈a〉2n/3 for a < 22n/3, ũa = 0n/3−1‖1‖〈a − 22n/3 + 1〉2n/3 for 22n/3 ≤ a <

2 · 22n/3); receive responses ṽa = π(ũa), a ∈ [p1].

3. ỹ1, . . . , ỹp2
$←−−

wor
{0, 1}n backward queries to the primitive π with p2 = 2 · 22n/3;

receive responses x̃b, b ∈ [p2].

4. Set ExtK := {(i, a, b) ∈ [q]× [p1]× [p2] | (Ni ⊕ ũa = K)∧ (Ti ⊕ x̃b = 2K)} and set
K̂ = φ.

5. For all K ∈ K with |ExtK | ≥ 2, carry out the following check:
For all pairs of tuples (i, a, b) 6= (i′, a′, b′) in ExtK , if

(Ni ⊕ ṽa ⊕ ỹb ⊕Ni′ ⊕ ṽa′ ⊕ ỹb′ = 0) ,

then add K to K̂.

Figure 6: Interaction of the adversary with (O, π), where O is either the random oracle or the
real construction oracle PDM∗MACπK and the primitive π.

Analysis of the attack: Observe that since IK := {(i, a) |Ni⊕ ũa = K} has size O(2n/3)
for each value K ∈ K, and for the values q = p1 = p2 = 2 ·22n/3, the set ExtK has size O(1)
with high probability. Furthermore, if K? denotes the true key of the construction, then
Pr[K? ∈ K̂] = Pr [|ExtK? | ≥ 2] ≥ 1

4 , and thus, the expected size, E
[∣∣∣K̂∣∣∣], of the guess-key

set K̂ is O(1).

Theorem 2. Let n ∈ N , and consider PDM∗MACπK,Kh based on one permutation π
$←−

Perm({0, 1}n), one key K $←− {0, 1}n and one hash key Kh
$←− {0, 1}n. For any distinguisher

D making at most qm construction queries, at most p primitive queries to π± and at most
qv queries to the verification oracle, we have,

AdvMAC
PDM∗MAC(D) ≤ qvε+ q2

m(1 + 1202qm + 3p+ 312(p+ qm + 3qv)) + p2(qm + qv)
22n +

2(p+ qm + 3qv)2qm
22n + 6 + 2q2

mε+ qm +
√

6npqm + qm
√

3np+ p
√

3nqm + 3q2
mqvε+ qv

2n .

The proof for this theorem can be found in Sect. 7. If we assume ε ≈ 2−n, the

dominating term of advantage is
√

3n(pq2
m + qmp

2)
22n . So the construction is secure as long

as p, q � 22n/3

n1/3 .
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5.3 Single Keyed Version of PDM∗MAC: 1K-PDM∗MAC
The PDM∗MAC construction calls one permutation, one key K associated with the permu-
tation and one independent hash key Kh. We extend the specification of PDM∗MAC to a
single keyed version denoted by 1K-PDM∗MAC. We use the technique of instantiating the
hash key Kh by Kh = π(K). We also assume that N 6= 0 and H is Poly hash. However,
this technique is similar to that used in DWCDM (where Kh = EK(0)). We prove that
1K-PDM∗MAC for one instance of uniform π and uniform key K is secure up to attack
complexity O(22n/3).

Theorem 3. Let n ∈ N , and consider 1K-PDM∗MACπK based on one permutation
π

$←− Perm({0, 1}n), one key K
$←− {0, 1}n. For any distinguisher D making at most

qm construction queries, at most p primitive queries to π± and at most qv queries to the
verification oracle, we have,

AdvMAC
1K−PDM∗MAC(D) ≤ qvε+ q2

m(1 + 1202qm + 3p+ 312(p+ qm + 3qv)) + p2(qm + qv)
22n +

2(p+ qm + 3qv)2qm
22n +6 + q2

mε(2 + 3qv) + 3qm + 2p+
√

6npqm + qm
√

3np+ p
√

3nqm + qv
2n .

The proof for this theorem can be found in Sect. 8.

6 Proof of Theorem 1
We use Coefficient-H technique [Pat91,Vau03] (described in Sect. 2.5) to prove the theorem.
The details are given below.

Game Description
We denote by q, the number of queries that D makes to one of the construction oracles
PDMMACπK or ϕ, the queries being summarized by the transcript
τq = {(M1, T1), . . . , (Mq, Tq)}. D also makes p queries to the primitive π, which are
summarized by τp = {(ũ1, ṽ1), . . . , (ũp, ṽp)}. It may be assumed without loss of generality
that both τq and τp have distinct elements.

After D has interacted with the oracles but before it has output its decision, the key
K is also revealed to it. In the real world, this is the key used in the construction, while
in the ideal world, it is a dummy value drawn uniformly at random from {0, 1}n. The
full transcript of the interaction is denoted by τ = (τq, τp,K). The set of all attainable
transcripts is denoted by T , and we partition T as Tgood t Tbad, as described shortly. We
let Xre be the random variable that takes values τ ∈ T when D interacts with the real
world and Xid to be the random variable that takes values τ ∈ T when D interacts with
the ideal world.

Transcript Equations Induced by the Distinguishing Game
This distinguishing game results in a system of equations obtained through the queries to
the construction and primitive oracles. These are of the form-

Construction equations:

π(M1 ⊕K)⊕ π(T1 ⊕ 2K) = 3K ⊕M1
...

π(Mq ⊕K)⊕ π(Tq ⊕ 2K) = 3K ⊕Mq

Queries to primitive π:

π(ũ1) = ṽ1
...

π(ũp) = ṽp
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Furthermore, these equations can be expressed graphically as described in the supplementary
material.

6.1 Bad Events
A transcript τ = (τq, τp,K) is said to be in Tbad and is called a bad transcript if and
only if at least one of the following is satisfied-

Collision amongst two construction queries-

B1. There exist i 6= j ∈ [q] such that (Ti ⊕Mj = 3K) ∧ (Tj ⊕Mi = 3K).

Collision within one construction query-

B2. There exists i ∈ [q] such that Ti ⊕Mi = 3K.

Collision amongst three construction queries-

B3. There exist i, j, k ∈ [q] such that Ti ⊕Mj = Tj ⊕Mk = 3K.

B4. There exist i, j, k ∈ [q] such that Ti = Tj = Tk.

B5. There exist i, j, k ∈ [q] such that Ti = Tj = Mk ⊕ 3K.

Collision amongst two construction queries and one primitive query-

B6. There exist i 6= j ∈ [q], k ∈ [p] such that (Mi ⊕ Tj = 3K) ∧ (2K ⊕ Ti = ũk).

B7. There exist i 6= j ∈ [q], k ∈ [p] such that (Mi ⊕ Tj = 3K) ∧ (K ⊕Mj = ũk).

Collision amongst one construction queries and two primitive queries-

B8. There exist i ∈ [q], j, k ∈ [p] such that (K ⊕Mi = ũk) ∧ (2K ⊕ Ti = ũj).

Any transcript τ ∈ Tgood = T \ Tbad is said to be a good transcript. A figurative
and graphical description of the bad events is given in Fig.7. In addition, a circled vertex
in any graph describing a bad event denotes a collision with a primitive query.

6.1.1 Probability of Bad Transcripts

Now, Pr[τ ∈ Tbad] ≤
8∑
i=1

Pr[Bi].

Probability of events B1, B2, B4 and B5. Consider event B1. Since there are q con-
struction queries (with randomness only in Ti and Tj , but not in Mi and Mj),

Pr[B1] ≤ q2

22n , Pr[B2] ≤ q

2n , Pr[B4] ≤ q3

22n and Pr[B5] ≤ q3

22n .

Probability of event B3. Let A3 be any constant value. Define Ω3 = {(j, i, k)|Tj ⊕Mj =
Ti ⊕Mk}. Then-

Pr[B3] = Pr [(Tj ⊕Mj = Ti ⊕Mk) ∧ (3K = Tj ⊕Mk)]
≤ Pr [(3K = Tj ⊕Mk) ∧ (|Ω3| ≥ A3)] + Pr [(3K = Tj ⊕Mk) ∧ (|Ω3| ≤ A3)]

≤ Pr[|Ω3| ≥ A3] · 1
2n +A3 ·

1
2n .

If A3 = pq2

2n +
√

6npq
2n , then by Lemma 2 of Sect. 2.6,

Pr[B7] ≤ pq2

22n +
√

6npq
2n + 2

2n .
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B1. π π−1 π π−1

Mi ⊕K = Tj ⊕ 2K

Ti ⊕ 2K = Mj ⊕K

B2. π π−1

Ti ⊕ 2K = Mi ⊕K

B3.

π π−1

π π−1

π π−1

Ti ⊕Mj = 3K

Tj ⊕Mk = 3K

B4.

π π−1

π π−1

π π−1

Ti = Tj = Tk

B5.

π π−1

π π−1

π π−1

Ti = Tj = Mk ⊕ 3K

B6.

π π−1

π π−1

π

Mi ⊕K = Tj ⊕ 2K

Ti ⊕ 2K = ũk

B7.

π π−1

π π−1

π

Mi ⊕K = Tj ⊕ 2K

Mj ⊕K = ũk

B8.

π π−1

π

π

Mi ⊕K = ũk

Ti ⊕ 2K = ũj

Figure 7: Collisions amongst construction equations and/or primitive queries - figurative and
graphical representations of the bad events.
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Probability of event B6. Since there are q construction queries and p queries to the

primitive, Pr[B6] ≤ pq2

22n .

Probability of event B7. Let A7 be any constant value. Define Ω7 = {(j, i, k)|Tj⊕3Mj =
Mi ⊕ 3ũk}. Then-

Pr[B7] = Pr [(Tj ⊕ 3Mj = Mi ⊕ 3ũk) ∧ (3K = Tj ⊕Mi)]
≤ Pr [(3K = Tj ⊕Mi) ∧ (|Ω7| ≥ A7)] + Pr [(3K = Tj ⊕Mi) ∧ (|Ω7| ≤ A7)]

≤ Pr[|Ω7| ≥ A7] · 1
2n +A7 ·

1
2n .

If A7 = pq2

2n + q
√

3np, then by Lemma 1 of Sect. 2.6,

Pr[B7] ≤ pq2

22n + q
√

3np
2n + 2

2n .

Probability of event B8. Let A8 be any constant value. Define Ω8 = {(i, k, j)|2Mi⊕Ti =
2ũk ⊕ ũj}. Then-

Pr[B8] = Pr [(2Mi ⊕ Ti = 2ũk ⊕ ũj) ∧ (2K = Ti ⊕ ũj)]
≤ Pr [(2K = Ti ⊕ ũj) ∧ (|Ω8| ≥ A8)] + Pr [(2K = Ti ⊕ ũj) ∧ (|Ω8| ≤ A8)]

≤ Pr[|Ω8| ≥ A8] · 1
2n +A8 ·

1
2n .

If A8 = p2q

2n + p
√

3nq, then by Lemma 1 of Sect. 2.6,

Pr[B8] ≤ p2q

22n + p
√

3nq
2n + 2

2n .

Thus,

Pr[τ ∈ Tbad] ≤ q2 + 2q3 + 3pq2 + p2q

22n + 6 + q + q
√

3np+
√

6npq + p
√

3nq
2n .

6.2 Good Transcripts
Observe that any good transcript τ ∈ Tgood must necessarily be induced by a graph Gτeq,
which satisfies the following conditions:

• There is no cycle in Gτeq = (Veq,Eeq,Leq).

• There is no path P in Gτeq such that Leq(P ) :=
∑
e∈P
L(e) = 0.

Also, it may perhaps contain some circled vertices (denoting collisions with some permuta-
tion queries). In fact, every component of Gτeq has size at most 3, due to the restrictions
of bad events B3, B4 and B5. Furthermore, no component of Gτeq of size 3 has a circled
vertex due to B6 and B7, and components of size 2 may have at most one circled vertex
due to B8. We first modify the good transcripts so as to make certain that none of the
vertices of Gτeq are circled, as follows:

• If there exists i ∈ [q] and k ∈ [p] such that K ⊕Mi = ũk, then remove (Mi, Ti) from
τq and add (2K ⊕ Ti, 3K ⊕Mi ⊕ ṽk) to τp.
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• If there exists i ∈ [q] and j ∈ [p] such that 2K ⊕ Ti = ũj , then remove (Mi, Ti) from
τq and add (K ⊕Mi, 3K ⊕Mi ⊕ ṽj) to τp.

Denote the new transcript of primitive queries by F , so that |F | = p′ = p+s and q′ = q−s.
Let S′ = {0, 1}n \ {ṽk | (ũk, ṽk) ∈ F}. Denoting Q = T ⊕ 2K and P = M ⊕K, assume
that for a modified good transcript τ , there are t1 construction equations of the form

π(P1)⊕ π(Q) = λ1

π(P2)⊕ π(Q) = λ2,

t2 construction equations of the form

π(P )⊕ π(Q1) = λ1

π(Q1)⊕ π(Q2) = λ2,

and q′ − t1 − t2 construction equations of the form π(P )⊕ π(Q) = λ.
Let pre be the probability of a modified transcript τ satisfying the system of equations
π(Mi ⊕K)⊕ π(Ti ⊕ 2K) = 3K ⊕Mi, i ∈ [q′].

6.2.1 Good Transcript Analysis

The probabilities that Xre and Xid attain a particular value τ can be computed as

Pr[Xid = τ ] = 1
2nq ·

1
(2n)p

· 1
2n and

Pr[Xre = τ ] = pre ·
1

(2n)p′
· 1

2n ,

where pre can be computed using equations (3) and (4) as follows.

Probability that construction equations are satisfied.

Cases I and II. (π(P2i−1)⊕ π(Qi) = λ2i−1, π(P2i)⊕ π(Qi) = λ2i or
π(P2t1+j)⊕ π(Qt1+2j) = λ2t1+2j−1, π(Qt1+2j−1)⊕ π(Qt1+2j) = λ2t1+2j.)
By eqn.(6),

Pr
[

π(P1)⊕π(Q1)=λ1,π(P2)⊕π(Q1)=λ2,...,
π(P2t1+t2 )⊕π(Qt1+2t2−1)=λ2t1+2t2−1,π(Qt1+2t2−1)⊕π(Qt1+2t2 )=λ2t1+2t2

]
≥ 1

22n(t1+t2)

(
1− 3 · q′ · 2n · p′2

(2n − p′)3

)
, since t1 + t2 ≤ q′.

Case III. (π(P2t1+t2+l)⊕ π(Qt1+2t2+l) = λ2t1+2t2+l.)
By eqn.(5),

Pr
[
π(P2t1+t2+1)⊕π(Qt1+2t2+1)=λ2t1+2t2+1,...,

π(Pq′−t2 )⊕π(Qq′−t1 )=λq′

]
≥ 1

2n(q′−2t1−2t2)

(
1− q′ · p′2

(2n − p′)2

)
, since q′ − 2t1 − 2t2 ≤ q′.
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Thus, pre ≥ 1
2nq′

(
1− 3 · q′ · 2n · p′2

(2n − p′)3

)(
1− q′ · p′2

(2n − p′)2

)
≥ 1

2nq′
(

1− 6 · 2n · q(p+ q)2

22n

)(
1− 2 · 2n · q(p+ q)2

22n

)
(
since q ≥ q′, 2

2n ≥ p
′ ≥ p and (p+ q) ≥ p′

)
≥ 1

2nq′
(

1− 8 · 2n · q(p+ q)2

22n

)
.

Thus, Pr [Xre]
Pr [Xid] ≥ 2nq

2nq′ ·
(2n)p
(2n)p′

·
(

1− 8q(p+ q)2

22n

)
≥
(

1− 8q(p+ q)2

22n

)
,

i.e. Pr [Xre]
Pr [Xid] ≥ (1− εgood) , where εgood = 8q(p+ q)2

22n .

7 Proof of Theorem 2
We use Coefficient-H technique [Pat91,Vau03] (described in Sect. 2.5) to prove the theorem.

Forging Game
An upper bound for the nonce-based MAC advantage can be computed by adapting
the distinguishing game in Sect. 2.3 (the game is described in Page 5, [DJN17]) as
follows. D makes qm queries to one of the construction (authentication, or Auth) oracles
PDM∗MACπK,Kh or ϕ, the queries being summarized by the authentication transcript

τm0 = {(N1,M1, T1), . . . , (Nqm ,Mqm , Tqm)},

and by qv, the number of verification queries that D makes to one of the construction
(verification, or Ver) oracles VerπK,Kh or ⊥, the queries being summarized by the verifi-
cation transcript τv0 = {(N ′1,M ′1, T ′1, b1), . . . , (N ′qv ,M

′
qv , T

′
qv , bqv)}, where ∀a, ba ∈ {0, 1}

are the output values of the verification oracle (in the real world, the oracle checks if
Auth(N ′a,M ′a) = T ′i , and returns 1 or 0 according to whether the equality holds or not,
respectively, while in the ideal world, ba = 0 for all a). D also makes p queries to the
primitive π, which are summarized by τp = {(ũ1, ṽ1), . . . , (ũp, ṽp)}. It may be assumed
without loss of generality that each of τm0 , τv0 , τ has distinct elements.

After D has interacted with the oracles but before it has output its decision, the keys K
and Kh are also revealed to it. In the real world, these are the keys used in the construction,
while in the ideal world, they are dummy values drawn uniformly at random from {0, 1}n.
The full transcript of the interaction is denoted by τ = (τm0 , τv0 , τp,K,Kh). The set of all
attainable transcripts is denoted by T , and we partition T as Tgood t Tbad, as described
shortly.

Transcript Equations Induced by the Forging Game: The system of equations has
a similar form, and is extended by a system of non-equations, as given below-

Authentication equations:

π(N1 ⊕K)⊕ π(T1 ⊕ 2K) = 3K ⊕N1 ⊕H1
...

π(Nqm ⊕K)⊕ π(Tqm ⊕ 2K) = 3K ⊕Nqm ⊕Hqm
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Verification non-equations:

π(N ′1 ⊕K)⊕ π(T ′1 ⊕ 2K) 6= 3K ⊕N ′1 ⊕H ′1
...

π(N ′qv ⊕K)⊕ π(T ′qv ⊕ 2K) 6= 3K ⊕N ′qv ⊕H
′
qv

Queries to primitive π:

π(ũ1) = ṽ1
...

π(ũp) = ṽp,

where Hi = HKh(Mi),∀i ∈ [qm] and H ′j = H′Kh(M ′j),∀j ∈ [qv].

7.1 Bad Events
A transcript τ = (τm0 , τv0 , τp,K,Kh) is said to be in Tbad and is called a bad transcript if
and only if there exists a tuple (Ni,Mi, Ti) ∈ τm0 , (N ′a,M ′a, T ′a) ∈ τv0 and (ũj , ṽj), (x̃k, ỹk) ∈
τp such that at least one of the following is satisfied-

Collision amongst two authentication queries-

B1. There exist i 6= j ∈ [qm] such that (Ti = Tj) ∧ (Ni ⊕Hi = Nj ⊕Hj).

B2. There exist i 6= j ∈ [qm] such that (Ti ⊕Nj = 3K) ∧ (Ni ⊕Hi = Nj ⊕Hj).

B3. There exist i 6= j ∈ [qm] such that (Ti ⊕Nj = 3K) ∧ (Tj ⊕Ni = 3K).

Collision within one authentication query-

B4. There exists i ∈ [qm] such that Ti ⊕Ni = 3K.

Collision amongst three authentication queries-

B5. There exist i, j, k ∈ [qm] such that Ti ⊕Nj = Tj ⊕Nk = 3K.

B6. There exist i, j, k ∈ [qm] such that Ti = Tj = Tk.

B7. There exist i, j, k ∈ [qm] such that Ti = Tj = Nk ⊕ 3K.

Collision amongst two authentication queries and one primitive query-

B8. There exist i 6= j ∈ [qm], k ∈ [p] such that (Ni ⊕ Tj = 3K) ∧ (2K ⊕ Ti = ũk).

B9. There exist i 6= j ∈ [qm], k ∈ [p] such that (Ni ⊕ Tj = 3K) ∧ (K ⊕Nj = ũk).

Collision amongst one authentication query and two primitive queries-

B10. There exist i ∈ [qm], j, k ∈ [p] such that (K ⊕Ni = ũk) ∧ (2K ⊕ Ti = ũj).

Collision amongst one verification query and two primitive queries-

B11. There exist a ∈ [qv], j, k ∈ [p] such that (K ⊕N ′a = ũk) ∧ (2K ⊕ T ′a = ũj).

Collision amongst one authentication and one verification query-

B12. There exist i ∈ [qm], a ∈ [qv] such that (Ni = N ′a) ∧ (Hi = H ′a) ∧ (Ti = T ′a).
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Collision amongst two authentication queries and one verification query, with an extra
condition-
B13. There exist i, j ∈ [qm], a ∈ [qv] such that (Hi ⊕Hj ⊕H ′a = Ni ⊕Nj ⊕N ′a ⊕ 2K) and

(N ′a = Ni) ∧ (Ti ⊕Nj = 3K) ∧ (Tj = T ′a).

B14. There exist i, j ∈ [qm], a ∈ [qv] such that (Hi ⊕Hj ⊕H ′a = Ni ⊕Nj ⊕N ′a ⊕ 2K) and
(T ′a ⊕Ni = 3K) ∧ (Ti ⊕Nj = 3K) ∧ (Tj ⊕N ′a = 3K).

B15. There exist i, j ∈ [qm], a ∈ [qv] such that (Hi ⊕Hj ⊕H ′a = Ni ⊕Nj ⊕N ′a ⊕ 2K) and
(N ′a = Ni) ∧ (Ti = Tj) ∧ (T ′a ⊕Nj = 3K).

Any transcript τ ∈ Tgood = T \ Tbad is said to be a good transcript. A figurative and
graphical description of the bad events is given in the supplementary material. In these
figures, a circled vertex in any graph describing a bad event denotes a collision with a
primitive query.

7.1.1 Probability of Bad Transcripts

Now, Pr[τ ∈ Tbad] ≤
15∑
i=1

Pr[Bi].

Probability of events B1, B2, B3, B4, B6 and B7. Consider event B1. Since there are
qm authentication queries (with randomness only in Ti and Tj , but not in Ni and Nj)

and sinceH is an ε-differential hash function, Pr[B1] ≤ q2
mε

2n . Similarly, Pr[B2] ≤ q2
mε

2n ,

Pr[B3] ≤ q2
m

22n , Pr[B4] ≤ qm
2n , Pr[B6] ≤ q3

m

22n and Pr[B7] ≤ q3
m

22n .

Probability of event B5. Let A5 be any constant value. Define Ω5 = {(j, i, k)|Tj ⊕Nj =
Ti ⊕Nk}. Then-

Pr[B5] = Pr [(Tj ⊕Nj = Ti ⊕Nk) ∧ (3K = Tj ⊕Ni)]
≤ Pr [(3K = Tj ⊕Ni) ∧ (|Ω5| ≥ A5)] + Pr [(3K = Tj ⊕Ni) ∧ (|Ω5| ≤ A5)]

≤ Pr[|Ω5| ≥ A5] · 1
2n +A5 ·

1
2n .

If A5 = pq2
m

2n +
√

6npqm
2n , then by Lemma 2 of Sect. 2.6,

Pr[B5] ≤ pq2
m

22n +
√

6npqm
2n + 2

2n .

Probability of event B8. Since there are qm authentication queries and p queries to the

primitive, Pr[B8] ≤ pq2
m

22n .

Probability of event B9. Let A9 be any constant value. Define Ω9 = {(j, i, k)|Tj ⊕Nj =
Ti ⊕Nk}. Then-

Pr[B9] = Pr [(Tj ⊕ 3Nj = Ni ⊕ 3ũk) ∧ (3K = Tj ⊕Ni)]
≤ Pr [(3K = Tj ⊕Ni) ∧ (|Ω9| ≥ A9)] + Pr [(3K = Tj ⊕Ni) ∧ (|Ω9| ≤ A9)]

≤ Pr[|Ω9| ≥ A9] · 1
2n +A9 ·

1
2n .

If A9 = pq2
m

2n + qm
√

3np, then by Lemma 1 of Sect. 2.6,

Pr[B9] ≤ pq2
m

22n + qm
√

3np
2n + 2

2n .
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Probability of event B10. Let A10 be any constant value. Define Ω10 = {(i, k, j)|2Ni ⊕
Ti = 2ũk ⊕ ũj}. Then-

Pr[B10] = Pr [(2Ni ⊕ Ti = 2ũk ⊕ ũj) ∧ (2K = Ti ⊕ ũj)]
≤ Pr [(2K = Ti ⊕ ũj) ∧ (|Ω10| ≥ A10)] + Pr [(2K = Ti ⊕ ũj) ∧ (|Ω10| ≤ A10)]

≤ Pr[|Ω10| ≥ A10] · 1
2n +A10 ·

1
2n .

If A10 = p2qm
2n + p

√
3nqm, then by Lemma 1 of Sect. 2.6,

Pr[B10] ≤ p2qm
22n + p

√
3nqm
2n + 2

2n .

Probability of event B11. Since there are qv verification queries and p queries to the

primitive, Pr[B11] ≤ p2qv
22n .

Probability of event B12. Since there are qv verification queries and H is an ε-differential
hash function, Pr[B12] ≤ qvε.

Probability of events B13, B14 and B15. For all three events, Hi ⊕Hj ⊕H ′a = (Ni ⊕
Nj ⊕N ′a)⊕ 3K. Since there are qm authentication queries and qv verification queries
and assuming H is an ε-3-way-regular hash function, Pr[B13], Pr[B14] and Pr[B15]

are all at most q
2
mqvε

2n .

Thus,

Pr[τ ∈ Tbad] ≤ q2
m + 2q3

m + 3pq2
m + p2qm + p2qv

22n

+ 2q2
mε+ qm + qm

√
3np+

√
6npqm + p

√
3nqm + 6 + 3q2

mqvε

2n + qvε.

7.2 Good Transcripts
Observe that any good transcript τ ∈ Tgood must necessarily be induced by a graph Gτeq,neq,
which satisfies the following conditions:

• There is no cycle of equation-inducing edges in Gτeq = (Veq,Eeq,L
∣∣
Eeq

).

• There is no path P in Gτeq such that L(P ) :=
∑
e∈P
L(e) = 0.

• For all the cycles C in Gτeq,neq whose edge set consists of all but one equation edges
e ∈ Eeq and exactly one non-equation edge e′ ∈ Eneq, L(C) 6= 0.

It may perhaps contain some circled vertices (denoting collisions with some permutation
queries). It shall be assumed that the edges in Eτeq are continuous edges, colored green,
and edges in Eτneq are dotted edges, colored red. In fact, every component of Gτeq has size at
most 3, due to the restrictions of bad events B5, B6 and B7. Furthermore, no component
of Gτeq of size 3 has a circled vertex due to B8 and B9, and components of size 2 of Gτeq
as well as Gτeq,neq may have at most one circled vertex due to B10 and B11. Finally, the
restrictions by bad events B13, B14 and B15 ensure that Gτeq,neq satisfies the condition
L(C) 6= 0 for a cycle containig exactly one non-equation edge.

We first modify the good transcripts in such a way that no vertices remain circled:
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• If there exists i ∈ [qm] and k ∈ [p] such that K ⊕Ni = ũk, then remove (Ni,Mi, Ti)
from τm0 and add (2K ⊕ Ti, 3K ⊕Ni ⊕Hi ⊕ ṽk) to τp.

• If there exists i ∈ [qm] and j ∈ [p] such that 2K ⊕ Ti = ũj , then remove (Ni,Mi, Ti)
from τm0 and add (K ⊕Ni, 3K ⊕Ni ⊕Hi ⊕ ṽj) to τp.

Denote the new set of primitive transcripts by F , so that |F | = p′ = p+ s and q′m = qm− s.
Let S′ ⊆ {0, 1}n such that S′ = {0, 1}n \ {ṽk | (ũk, ṽk) ∈ F}.
Let pre be the probability of a modified transcript τ satisfying the system of equations
π(Ni ⊕K)⊕ π(Ti ⊕ 2K) = 3K ⊕Ni ⊕HKh(Mi), i ∈ [q′].

7.2.1 Good Transcript Analysis

The probabilities of Xre and Xid attaining a particular value τ can be computed as follows-

Pr[Xid = τ ] = 1
2nqm · 1 ·

1
(2n)p

·
(

1
2n

)2
and

Pr[Xre = τ ] = pre ·
1

(2n)p′
·
(

1
2n

)2
.

Probability that authentication equations and verification non-equations are satisfied.

By Corroloary 2,

Pr



(
π(P1)⊕π(Q1)=λ1,π(P2)⊕π(Q1)=λ2,...,

π(P2t1+t2 )⊕π(Qt1+2t2−1)=λ2t1+2t2−1,π(Qt1+2t2−1)⊕π(Qt1+2t2 )=λ2t1+2t2
π(P2t1+t2+1)⊕π(Qt1+2t2+1)=λ2t1+2t2+1,...,

π(Pq′m−t2 )⊕π(Qq′m−t1 )=λq′m

)
∧((

π(X′1)⊕π(X′2) 6=λ′1
)
∧
(
π(X′2)⊕π(X′3) 6=λ′2

)
∧...∧

(
π(X′2q′v−1)⊕π(X′2q′v

)6=λ′2q′v−1

))


≤ 1

2nq′m
(

1− 1200q′m
3 + 312(p′ + 3qv)q′m

2 + 2(p′ + 3qv)2q′m
22n

)(
1− qv

2n
)
.

Therefore, pre must be at least 1
2nqm

(
1− 1200q3

m+312(p′+3qv)q2
m+2(p′+3qv)2qm

22n

)(
1− qv

2n

)
,

so that-

Pr [Xre]
Pr [Xid] ≥ 2nqm

2nq′m ·
(2n)p
(2n)p′

(
1− qv

2n
)(

1− 1200q′m
3 + 312(p′ + 3qv)q′m

2 + 2(p′ + 3qv)2q′m
22n

)
≥

(
1− qv

2n
)
·
(

1− 1200q3
m + 312(p+ qm + 3qv)q2

m + 2(p+ qm + 3qv)2qm
22n

)
,

since q′m ≤ qm, p′ ≤ p+ qm

≥ (1− εgood) , where

εgood = qv
2n + 1200q3

m + 312(p+ qm + 3qv)q2
m + 2(p+ qm + 3qv)2qm

22n .

8 Proof of Theorem 3
The proof is similar to that of PDM∗MAC, except for some extra bad cases. We add the
following cases after B14. The cases are as follows.

B16. There exists i ∈ [qm] such that Ti = 3K.
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B17. There exists i ∈ [qm] such that π(Ni ⊕K)⊕HKh(Mi)⊕Ni ⊕ 3K = Kh.

B18. There exists k ∈ [p] such that ũk = K.

B19. There exists k ∈ [p] such that ỹk = Kh.

Probability of B16. There are qm authentication queries. Hence, Pr[B16] ≤ qm
2n .

Probability of B17. In this case, Ni and Mi are fixed. Thus, Pr[B17] = Pr[π(Ni ⊕K)⊕
3K = HKh(Mi)⊕Ni ⊕Kh]. As K and Kh are independently sampled in the ideal
world, we obtain Pr[B17] ≤ qm

2n , by conditioning H.

Probability of B18 and B19. Since there are p queries to the primitive, Pr[B18],Pr[B19] ≤
p

2n .

Good Transcript Analysis
The good transcript analysis is exactly the same except in this case Pr[Xre = τ ] =
pre · 1

(2n)p′
·
( 1

2n
)
(as only the construction key K needs to be sampled, the last term in the

expression is 1
2n instead ( 1

2n )2). However, this does not change the lower bound of Pr[Xre]
Pr[Xid] .

9 Open Problems
Our designs are minimal in structure in the number of permutation and key instances.
However, PDMMAC makes two calls to one permutation π, one forward call to π and
another inverse call to π−1. We already know that PRFs with one permutation call can
not provide more than birthday bound security and hence we need at least two calls to
the permutation. Thus, the question

Can we design a BBB secure PRF with one permutation with two forward calls?
remains unanswered and the design of such a construction can be interesting to the com-
munity. A possible approach to proceed with this problem is to prove the 2n/3-bit BBB
security of SoKAC1. This design has been mentioned to be at most n/2-bit secure [CLM19a]
accompanied by a birthday bound attack. However, the attack is possibly wrong and
SoKAC1 may provide 2n/3-bit BBB security.
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Supplementary Material

A Proof of Sum-Capture Lemma 2
Here, we provide a proof for Lemma 2. For a basic review of the definitions and notations
used in this proof, please refer [CS18].

Lemma 2. Let T ∗, A∗ be multisets of {0, 1}n and B ⊆ {0, 1}n. Define-

µ(T ∗, A∗, B) = |{(t, a, b) ∈ T ∗ ×A∗ ×B : t = a⊕ b}| and

µ(T ∗) = max
A∗,B

|T∗|=q1,|A∗|=q2,|B|=p

µ(T ∗, A∗, B).

If T ∗, A∗ are multisets of respectively q1, q2 uniformly random and independently chosen
elements of {0, 1}n and B is a subset of {0, 1}n of size p, Then

Pr
[
µ(T ∗) ≥ q1q2p

2n +
√

3np(q1 + q2)
2n

]
≤ 2

2n .

Proof.

µ(T ∗, A∗, B) =
∑

t,a∈{0,1}n
δT∗(t)δA∗(a)1B(b)

=
∑

t∈{0,1}n
δT∗(t) (δA∗ ? 1B) (t)

= 2n
∑

α∈{0,1}n
δ̂T∗(α)

(
̂δA∗ ? 1B

)
(α)

= 22n
∑

α∈{0,1}n
δ̂T∗(α)δ̂A∗(α)1̂B(α)

= 22nδ̂T∗(0)δ̂A∗(0)1̂B(0) + 22n
∑
α 6=0

δ̂T∗(α)δ̂A∗(α)1̂B(α),

where δ̂T∗(0) = |T
∗|

2n , δ̂A∗(0) = |A
∗|

2n , 1̂B(0) = |B|2n imply

µ(T ∗, A∗, B) = q1q2p

2n + 22n
∑
α6=0

δ̂T∗(α)δ̂A∗(α)1̂B(α)

≤ q1q2p

2n + 22n
∑
α6=0

∣∣∣δ̂T∗(α)
∣∣∣ ∣∣∣δ̂A∗(α)

∣∣∣ ∣∣∣1̂B(α)
∣∣∣

≤ q1q2p

2n + Φ(T ∗)Φ(A∗)
∑
α6=0

∣∣∣1̂B(α)
∣∣∣ ,

where Φ(T ∗) = max
α6=0

{
2n
∣∣∣δ̂T∗(α)

∣∣∣}
and Φ(A∗) = max

α6=0

{
2n
∣∣∣δ̂A∗(α)

∣∣∣} .
Now,

∑
α

∈ {0, 1}n
∣∣∣1̂B(α)

∣∣∣2 ≥

(∑
α

6= 0
∣∣∣1̂B(α)

∣∣∣)2

− 2 ·
∑

0≤α<β<2n

∣∣∣1̂B(α)
∣∣∣ · ∣∣∣1̂B(β)

∣∣∣
=⇒

∑
α6=0

∣∣∣1̂B(α)
∣∣∣ ≤

√√√√ |B|
2n + 2

∑
0≤α<β<2n

∣∣∣1̂B(α)
∣∣∣ · ∣∣∣1̂B(β)

∣∣∣ ≤
√
|B|
2n .
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Therefore, µ(T ∗, A∗, B) ≤ q1q2p
2n + Φ(T ∗)Φ(A∗) ·

√
p

2n . Since this holds for any A∗, B ⊆
{0, 1}n, it follows that

q1q2p

2n +
√

p

2n · C ≤ µ(T ∗) ≤ q1q2p

2n + Φ(T ∗)Φ(A∗) ·
√

p

2n

for some appropriate value of C, which implies Pr
[
µ(T ∗) ≥ q1q2p

2n +
√

p
2n · C

]
≤ Pr [Φ(T ∗)Φ(A∗) ≥ C].

Denote T ∗ = {t1, . . . , tq1} and A∗ = {a1, . . . , aq2} using arbitrary orders. Then-

Φ(T ∗) = max
α6=0

{
2n ·

∣∣∣δ̂T∗(α)
∣∣∣}

= max
α6=0


∣∣∣∣∣∣
∑

x∈{0,1}n
δT∗(x) · (−1)α·x

∣∣∣∣∣∣


= max
α6=0


∣∣∣∣∣∣
∑

x∈{0,1}n

q1∑
i=1

1{ti}(x) · (−1)α·x
∣∣∣∣∣∣


= max
α6=0

{∣∣∣∣∣
q1∑
i=1

(−1)α·ti
∣∣∣∣∣
}
.

Similarly, Φ(A∗) = max
α 6=0

{∣∣∣∣∣ q2∑
j=1

(−1)α·aj
∣∣∣∣∣
}
.

∴ Φ(T ∗)Φ(A∗) = max
α6=0

{∣∣∣∣∣
q1∑
i=1

(−1)α·ti
∣∣∣∣∣
}
·max
α6=0


∣∣∣∣∣∣
q2∑
j=1

(−1)α·aj

∣∣∣∣∣∣


= max
α6=0


∣∣∣∣∣∣
q1∑
i=1

(−1)α·ti ·
q2∑
j=1

(−1)α·aj

∣∣∣∣∣∣


= max
α6=0


∣∣∣∣∣∣

∑
(i,j)∈[q1]×[q2]

(−1)α·(ti+aj)

∣∣∣∣∣∣


For α 6= 0, denoting A(α)
(i,j) = (−1)α·(ti+aj) and A(α) =

∑
(i,j)∈[q1]×[q2]

(−1)α·(ti+aj), one

obtains Φ(T ∗)Φ(A∗) = max
α6=0

{∣∣A(α)
∣∣}. The random variable A(α) is the sum of q1 + q2

independent random variables A(α)
(i,j) such that Pr

[
A

(α)
(i,j) = 1

]
= Pr

[
A

(α)
(i,j) = −1

]
= 1

2 .
Therefore, by the Chernoff bound given in Corollary 4.8 of [MU05], for any a > 0,
Pr
[∣∣A(α)

∣∣ ≥ a] ≤ 2e−a2/2(q1+q2).
Let C ≥

√
3n(q1 + q2). Then Pr

[∣∣A(α)
∣∣ ≥ C] ≤ 2e−C2/2(q1+q2)

=⇒ Pr
[
µ(T ∗) ≥ q1q2p

2n +
√

p

2n · C
]

≤ Pr [Φ(T ∗)Φ(A∗) ≥ C]

= Pr
[
max
α 6=0

{∣∣∣A(α)
∣∣∣} ≥ C]

≤
∑
α 6=0

Pr
[∣∣∣A(α)

∣∣∣ ≥ C]
≤ 2e−C

2/2(q1+q2) ≤ 2
2n ,

since e3/4 ≥ 2.
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B Proof of Lemma 4
Consider a set S′ of size 2n − p′, and three random variables P,Q,R $←−−

wor
S′. Fix

λ1, λ2 ∈ F2n . For i ∈ {1, 2, 3}, let

Ai = {(a1, a2, a3)|a1 ⊕ a2 = λ1, a2 ⊕ a3 = λ2, ai 6∈ S′},

so that |Ai| ≤ p′. Thus,

{(p, q, r) ∈ S′(3)|p⊕ q = λ1, q ⊕ r = λ2} =
{(p, p⊕ λ1, p⊕ λ1 ⊕ λ2)|p ∈ {0, 1}n} \ (A1 ∪A2 ∪A3),

which is a set of size no less than 2n − 3p′. Hence,

Pr
[
P⊕Q=λ1,
Q⊕R=λ2

]
= 2n − |A1 ∪A2 ∪A3|

(2n − p′)(2n − p′ − 1)(2n − p′ − 2)

≥ 2n − 3p′

(2n − p′)(2n − p′)(2n − p′)

= 1
22n

(
1− 3 · 2n · p′2 − p′3

(2n − p′)3

)
.

C Figures Describing Bad Events for PDM∗MAC

B1. π π−1 π π−1

λi
λj

Ti = Tj

B2. π π−1 π π−1

λi λj

Ti ⊕ 2K = Nj ⊕K

B3. π π−1 π π−1

Ni ⊕K = Tj ⊕ 2K

Ti ⊕ 2K = Nj ⊕K

B4. π π−1

Ti ⊕ 2K = Ni ⊕K

Figure 8: Collisions amongst one or two authentication queries - Figurative and graphical
representations of the bad events.
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B5.

π π−1

π π−1

π π−1

Ti ⊕Mj = 3K

Tj ⊕Mk = 3K

B6.

π π−1

π π−1

π π−1

Ti = Tj = Tk

B7.

π π−1

π π−1

π π−1

Ti = Tj = Nk ⊕ 3K

Figure 9: Collisions amongst three authentication queries - Figurative and graphical representa-
tions of the bad events.
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B8.

π π−1

π π−1

π

Ni ⊕K = Tj ⊕ 2K

Ti ⊕ 2K = ũk

B9.

π π−1

π π−1

π

Ni ⊕K = Tj ⊕ 2K

Nj ⊕K = ũk

B10.

π π−1

π

π

Ni ⊕K = ũk

Ti ⊕ 2K = ũj

Figure 10: Collisions amongst authentication queries and primitive queries - Figurative and
graphical representations of the bad events.
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B11.

π π−1

π

π

N ′a ⊕K = ũk

T ′a ⊕ 2K = ũj

B12.

π π−1

π π−1

Ni = N ′a

Ti = T ′a

λ′a λi

B13.

π π−1

π π−1

π π−1

Ti ⊕ 2K = Nj ⊕K

Tj = T ′a
Ni = N ′a

⊕λ = 0

B14.

π π−1

π π−1

π π−1

Ti ⊕ 2K = Nj ⊕K

Tj ⊕ 2K = N ′a ⊕K
Ni ⊕K = T ′a ⊕ 2K

⊕λ = 0

B15.

π π−1

π π−1

π π−1

Ti = Tj ⊕K

Nj ⊕K = T ′a ⊕ 2K
Ni = N ′a

⊕λ = 0

Figure 11: Collisions of verification queries with authentication and/or primitive queries -
Figurative and graphical representations of the bad events.
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