| Introduction | Permutation-Based MACs | PDMMAC | Security of PDM*MAC | Good Events | Conclusion |
|--------------|------------------------|--------|---------------------|-------------|------------|
| 0000         | 0000000                | 00000  | 000                 | 000         | 0          |

# On the Composition of Single-Keyed Tweakable Even-Mansour for Achieving BBB Security

Avik Chakraborti, Mridul Nandi, Suprita Talnikar, Kan Yasuda

Permutation-Based MACs Security of PDM\*MAC Introduction PDMMAC

Good Events

# Message Authentication Codes (MAC)

- Symmetric Key: Alice and Bob share the same secret key.
- Active Attacker: Eve may intercept and manipulate the message.
- Authentication: Alice computes and appends a tag, which Bob recomputes and matches with the received tag.





# Message Authentication Codes (MAC)

- Verification: Bob verifies the tag with the shared key and only reads the message if tags match.
- Forgery: Eve cannnot modify the message without forging a new and correct tag.







996

э



- BBB security is useful in lightweight cryptography.
- Consider the following security advantages for  $\epsilon = 2^{-10}$ , n = 64 and  $\ell = 2^{16}$  blocks.

| Construction | Security          | # of queries   |
|--------------|-------------------|----------------|
| ECBC         | $16q_m^2/2^n$     | $pprox 2^{25}$ |
| PMAC         | $5\ell q_m^2/2^n$ | $pprox 2^{18}$ |

Table: Data limit of constructions acheiving birthday bound security.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

BBB security allows processing of a larger number of blocks per session key.



Block-Ciphers Vs Random Permutations as Primitives



#### **Random Permutations**

Oracles:



イロト 不得 トイヨト イヨト

3



## Even-Mansour, with and without Tweak

## $\operatorname{EM}_{K}[\pi](M) := \pi(M \oplus K_{1}) \oplus K_{2}$

Round keys replaced by functions  $f_i(K_i, t)$  of *tweaks* t, resulting in the tweakable Even-Mansour (TEM) construction:



Figure: TEM[ $\pi$ ](M) :=  $\pi(M \oplus 2^t \cdot K) \oplus 2^t \cdot K$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

| Introduction<br>0000 | Permutation-Based MACs | PDMMAC<br>00000 | Security of PDM*MAC | Good Events | Conclusion<br>O |
|----------------------|------------------------|-----------------|---------------------|-------------|-----------------|
| Cum of               | Even Mansour           |                 |                     |             |                 |

## Sum of Even-Mansour



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @



Key-recovery attack on SoEM22: Verify keys by repeatedly checking –

 $C\oplus C'=v\oplus v'\oplus y\oplus y'.$ 



A D > A P > A B > A B >

| Introduction | Permutation-Based MACs | PDMMAC | Security of PDM*MAC | Good Events | Conclusion |
|--------------|------------------------|--------|---------------------|-------------|------------|
| 0000         | 0000000                | 00000  | 000                 | 000         | 0          |
|              |                        |        |                     |             |            |

# Sum of Key Alternating Ciphers



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



Check the following for each key value:

 $v \oplus x \oplus v' \oplus x' = 0.$ 



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

| Introduction<br>0000 | Permutation-Based MACs<br>○○○○○○●○ | PDMMAC<br>00000 | Security of PDM*MAC | Good Events | Conclusion<br>O |
|----------------------|------------------------------------|-----------------|---------------------|-------------|-----------------|
| Attack               | on Sok $\Delta C21$                |                 |                     |             |                 |





| Introduction | Permutation-Based MACs | PDMMAC | Security of PDM*MAC | Good Events | Conclusion |
|--------------|------------------------|--------|---------------------|-------------|------------|
| 0000         | 0000000                | 00000  | 000                 | 000         | 0          |
|              |                        |        |                     |             |            |

# Comparision with Existing Constructions

|                                     | #Key             | #Primitive | MAC Security                          | Nonce        | Multi-Block  |
|-------------------------------------|------------------|------------|---------------------------------------|--------------|--------------|
| Construction                        | Instances        | Instances  | in $n$ -bits (tightness)              | Based        | Inputs       |
| Based on permutations               |                  |            |                                       |              |              |
| PDMMAC [This work]                  | 1                | 1          | 2n/3 (tight)                          |              |              |
| PDM <sup>*</sup> MAC [This work]    | 1 + 1 (hash key) | 1          | 2n/3 (tight)                          | $\checkmark$ | $\checkmark$ |
| 1K-PDM <sup>*</sup> MAC [This work] | 1                | 1          | 2n/3 (tight)                          | $\checkmark$ | $\checkmark$ |
| SoEM1                               | 2                | 1          | <ul> <li>(birthday attack)</li> </ul> |              |              |
| SoEM21                              | 1                | 2          | <ul> <li>(birthday attack)</li> </ul> |              |              |
| SoEM22                              | 2                | 2          | 2n/3 (tight)                          |              |              |
| SoKAC1                              | 2                | 1          | <ul> <li>(birthday attack)</li> </ul> |              |              |
| SoKAC21                             | 1                | 2          | - (birthday attack)                   |              |              |
| Based on Block Ciphers              |                  |            |                                       |              |              |
| EDM                                 | 2                | 2          | 2n/3 (not tight)                      |              |              |
| EWCDM                               | 2 + 1 (hash key) | 2          | 2n/3 (not tight)                      | $\checkmark$ | $\checkmark$ |
| DWCDM                               | 1 + 1 (hash key) | 1          | 2n/3 (not tight)                      | $\checkmark$ | $\checkmark$ |
| 1K-DWCDM                            | 1                | 1          | 2n/3 (not tight)                      | $\checkmark$ | $\checkmark$ |

| Introduction<br>0000 | Permutation-Based MACs | <b>PDMMAC</b><br>••••• | Security of PDM*MAC | Good Events | Conclusion<br>O |
|----------------------|------------------------|------------------------|---------------------|-------------|-----------------|
| PDMM                 | AC                     |                        |                     |             |                 |

Constructions with  $\mathcal{O}(2^{2n/3})$ -Tight Security: ( $\mathcal{O}(2^{2n/3})$ -Query Attacks Exist)

Permutation-based Davies-Meyer MAC:



Figure: PDMMAC - A single-permutation  $\pi$  and single-key K based PRF.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



#### Permutation-based Davies-Meyer MAC with Nonce:



Figure: PDM\*MAC - A one key K-, one RP  $\pi$ - and hash  $\mathcal{H}$ -based PRF.

# Single-Keyed Permutation-based Davies-Meyer MAC with Nonce:

The hash key H is initialized using the construction key K and primitive  $\pi$  as  $H = \pi(K)$  in the singled-keyed **1K-PDM\*MAC**.



# Check for each key value, whether the following equation is satisfied:

$$N \oplus v \oplus y \oplus N' \oplus v' \oplus y' = 0.$$



・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э.



## **DDM** (Decrypted Davies-Meyer):



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



### **DWCDM** (Decrypted Wegman-Carter with Davies-Meyer):



▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙







There exist  $i \neq j \in [q_m], k \in [p]$  such that  $(N_i \oplus T_j = 3K) \land (2K \oplus T_i = \tilde{u}_k)$ . Pr [B8]  $\leq \frac{pq_m^2}{2^{2n}}$ .



There exist  $i \neq j \in [q_m], k \in [p]$  such that  $(N_i \oplus T_j = 3K) \land (2K \oplus T_i = \tilde{u}_k)$ . Pr  $[B8] \leq \frac{pq_m^2}{2^{2n+1}} \land \langle B \rangle \land \langle B \rangle \land \langle B \rangle \land \langle B \rangle$ 



There exist  $i \in [q_m]$ ,  $a \in [q_v]$  such that  $(N_i = N'_a) \land (H_i = H'_a) \land (T_i = T'_a)$ . Pr [B12]  $\leq q_v \epsilon$ .



・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э



#### Lemma

The total number of injective solutions chosen from a set  $\mathcal{Z}$  of size  $2^n - c$ , for some  $c \ge 0$ , for the induced system of equations and non-equations  $\mathcal{G}_{eq,neq}$  is at least:

$$(2^{n})_{\alpha}\left(1-\sum_{i=1}^{k}\frac{6\sigma_{i-1}^{2}\binom{w_{i}}{2}}{2^{2n}}-\frac{2(q_{v}+c\alpha)}{2^{n}}\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

provided  $\sigma_k w_{\max} \leq 2^n/4$ , and assuming  $\sigma_0 = 0$ .

| Introduction<br>0000     | Permutation-Based MACs | PDMMAC<br>00000 | Security of PDM*MAC | Good Events<br>○●○ | Conclusion<br>O |  |  |
|--------------------------|------------------------|-----------------|---------------------|--------------------|-----------------|--|--|
| Des lister Minner Theory |                        |                 |                     |                    |                 |  |  |

## Results on Mirror Theory

Corollary (1)

Let 
$$S' \subseteq \{0,1\}^n$$
 be a subset of size  $(2^n - p')$  and

$$(X_1, X_2, \ldots, X_t, Y_1, Y_2, \ldots, Y_t, Z_1, Z_2, \ldots, Z_t) \xleftarrow{\$}_{wor} S'$$

be a WOR sample of size 3t drawn from  $S'^{(3)}$ . Then for constants  $\lambda_1, \lambda_2, \ldots, \lambda_{2t}$  in  $\{0, 1\}^n$ ,

$$\Pr\left[(X_1\oplus Y_1=\lambda_1)\wedge(X_2\oplus Y_2=\lambda_2)\wedge\ldots\wedge(X_t\oplus Y_t=\lambda_t)\right]\geq \frac{1}{2^n}\left(1-\frac{t\cdot p'^2}{\left(2^n-p'\right)^2}\right),$$

and 
$$\Pr\left[\begin{pmatrix}X_1 \oplus Y_1 = \lambda_1, \\ Z_1 \oplus Y_1 = \lambda_2\end{pmatrix} \land \begin{pmatrix}X_2 \oplus Y_2 = \lambda_3, \\ Z_2 \oplus Y_2 = \lambda_4\end{pmatrix} \land \dots \land \begin{pmatrix}X_t \oplus Y_t = \lambda_{2t-1}, \\ Z_t \oplus Y_t = \lambda_{2t}\end{pmatrix}\right] \ge \frac{1}{2^{2nt}} \left(1 - \frac{3t \cdot 2^n \cdot p'^2}{(2^n - p')^3}\right).$$

ର ବ ୯

| Introduction<br>0000 | Permutation-Based MACs | PDMMAC<br>00000 | Security of PDM*MAC | Good Events<br>00● | Conclusion<br>O |  |  |
|----------------------|------------------------|-----------------|---------------------|--------------------|-----------------|--|--|
|                      |                        |                 |                     |                    |                 |  |  |

#### Results on Mirror Theory

### Corollary (2)

Let  $\mathcal{G}_{eq,neq} = (V, E_{eq} \sqcup E_{neq}, \mathcal{L})$  be an equations-and-non-equations-inducing graph such that the subgraph  $\mathcal{G}_{eq}$  only has components of size 2 or 3. If  $|V \setminus V_{eq}| = q_v$ and  $\lambda_i$  ( $i \in [q_m]$ ) are edge-labels of the edges in  $E_{eq}$  in the same order as the components, then the probability of the induced systems of equations and non-equations attaining any solution from a set  $S' \subseteq \{0,1\}^n$  of size  $(2^n - p')$  for all the variables represented only by the vertices in  $V_{eq}$  is bounded by-

$$\frac{1}{2^{nq_m}} \left(1 - \frac{1200q_m^3 + 312(p'+3q_v)q_m^2 + 2(p'+3q_v)^2q_m}{2^{2n}}\right) \left(1 - \frac{q_v}{2^n}\right)$$

| Introduction | Permutation-Based MACs | PDMMAC | Security of PDM*MAC | Good Events | Conclusion |
|--------------|------------------------|--------|---------------------|-------------|------------|
| 0000         | 0000000                | 00000  | 000                 | 000         | •          |

- MACs and forgery games.
- BBB security.
- Permutation-based MACs.
- Even-Mansour, SoEM, SoKAC.
- PDMMAC (and variants).
- Transcript-inducing graph (for use in security proof by extended Mirror Theory).
- Final bound of 2n/3.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで