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Abstract. In CHES 2017, Chakraborti et al. proposed COFB, a rate-1 sequential
block cipher-based authenticated encryption (AE) with only 1.5n-bit state, where n
denotes the block size. They used a novel approach, the so-called combined feedback,
where each block cipher input has a combined effect of the previous block cipher
output and the current plaintext block. In this paper, we first study the security
of a general rate-1 feedback-based AE scheme in terms of its overall internal state
size. For a large class of feedback functions, we show that the overlying AE scheme
can be attacked in 2τ queries if the internal state size is n+ τ bits for some τ ≥ 0.
This automatically shows that a birthday bound (i.e. 2n/2 queries) secure AE scheme
must have at least 1.5n-bit state, whence COFB is almost-optimal (use 1.5n-bit state
and provides security up to 2n/2/n queries). We propose a new feedback function,
called the hybrid feedback or HyFB, which is a hybrid composition of plaintext and
ciphertext feedbacks. HyFB has a key advantage of lower XOR counts over the
combined feedback function. This essentially helps in reducing the hardware footprint.
Based on HyFB we propose a new AE scheme, called HyENA, that achieves the state
size, rate, and security of COFB. In addition, HyENA has significantly lower XOR
counts as compared to COFB, whence it is expected to have a smaller implementation
as compared to COFB.
Keywords: COFB · feedback functions · authenticated encryption · lightweight ·
lower bound

1 Introduction
The era of the so-called Internet of Things (IoT)—communication networks interconnecting
several small devices—is rapidly emerging. Security is one of the biggest concern in
widespread adoption of IoT technologies. Authenticated encryption or AE is a symmetric-
key cryptographic primitive that is expected to play a key role in securing IoT networks.
This expectation is largely due to the fact that AE schemes can achieve both confidentiality
and authenticity—two major concerns in information security. In particular lightweight1

AE schemes have seen a sudden surge in demand. The recently concluded CAESAR
competition and the ongoing NIST LwC project gave new impetus to the design and analysis
of lightweight AE schemes. As a result, several lightweight AE schemes have mushroomed
in recent years, including: Ascon [DEMS16], ACORN [Wu16], CLOC/SILC [IMG+,IMG+16],
JAMBU [WH16] etc. from the CAESAR competition, and COFB [CIMN17a], Beetle
[CDNY18], SUNDAE [BBLT18], SAEB [NMSS18] etc. from the ongoing NIST LwC project.

1Resource (memory, power etc.) constrained environments.
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1.1 Block Cipher-based Lightweight AE Schemes
Block ciphers have been the most popular choice for constructing AE schemes [KR16,
Dwo11,BBLT18,ABD+16,CSR04,MP15,CIMN17a], though of late many permutation-
based AE schemes [BJDAK16,CDNY18,BCDM,DHAK18] have also been proposed. In
general, lightweight AE schemes follow sequential in nature. This is mainly due to two
reasons. First, sequential modes have lesser hardware footprint. Second, lightweight
environments rarely permit parallel computation infrastructure. In this work we study
block cipher-based lightweight AE schemes with birthday bound security.

One of the most popular design paradigm of block cipher-based sequential AE schemes
is as follows: First, the input to the AE scheme is parsed into n-bit blocks, where n denotes
the block size of the underlying block cipher. Second, starting with a fixed initial state the
parsed input is processed block-wise in sequential fashion. Third, a feedback function is
applied on the previous block cipher output, some auxiliary secret state, and the current
input (message or associated data) block to derive the next block cipher input, updated
auxiliary secret state, and the current output (in case of message blocks). Thus, any block
cipher based sequential AE scheme can be described by the underlying block cipher, the
auxiliary secret state and the feedback function. Consequently, the efficiency and the
hardware footprint of the overall AE scheme largely depends upon the underlying block
cipher, the feedback function, and the auxiliary secret state.

In the following discussion, we assume that we have an ultra-lightweight and efficient
block cipher to instantiate the AE scheme. Then the efficiency will depend upon the
Rate—the number of data blocks processed per block cipher call—of the AE scheme and
the Latency—time taken to produce the output—of the feedback function. Similarly, the
circuit size of the feedback function and the internal state of the AE scheme will determine
the overall hardware overhead of the AE schemes. A trivial upper bound on rate is 1. A
trivial lower bound on the internal state of the AE scheme is n+ k, where n and k denote
the block and key size of the block cipher. A trivial lower bound on the circuit complexity
of the feedback function is n-bit XORs2.

An easy way to avoid the auxiliary secret state is to decrease the rate. Some rate-1/2
schemes like JAMBU [WH16], SAEB [NMSS18] and SUNDAE [BBLT18] follow this approach
(we call it approach 1 ), albeit with slightly different security goals. Yet another approach is
to keep the scheme rate-1 and concentrate on minimizing the auxiliary state and the circuit
complexity of the feedback function. iFEED [ZWSW14] and COFB [CIMN17a] follow this
approach (we call it approach 2 ). This latter approach has two advantages. First, the
energy consumption will be lower as the number of block cipher calls is smaller. Second, if
the auxiliary state and the feedback functions are optimal then the throughput/area ratio
will be high due to higher rate and comparable hardware area. In this work, we focus on
approach 2, i.e., we concentrate on rate-1 schemes.

1.1.1 Rate-1 Feedback-based AE Schemes

In [ZWSW14], Zhang et al. proposed a plaintext feedback-based mode iFEED that achieves
optimal rate (i.e. rate-1). However, it requires a large state size of (3n+ k) bits. CPFB by
Montes et al. [MP15] is a notable scheme which reduces the state size to (2n + k) bits,
at the cost of reducing the rate to 3/4. In CHES 2017, Chakraborti et al. [CIMN17a]
proposed the first feedback-based AE scheme that achieves rate-1 with an impressive state
size of just 1.5n+ k bits. The main feature of COFB is a novel feedback function, called
combined feedback. In the same paper they also posed the following question

How small can we go?
2Since, a feedback function takes 2n-bit input and produces n-bit output, we need an n-bit binary

operation. As XOR is one of the most simple operation, we believe that the trivial lower bound of the
feedback function is n-bit XORs.
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Here small means the hardware area, which directly depends on the internal state size and
the circuit complexity of the feedback function. Thus, the answer to the above question
depends on the answers to two sub-questions:

1. What is the smallest internal state size?

2. What is the minimum circuit complexity of the feedback function?

1.2 Our Contributions
This paper investigates the above two questions. Consequently, our contributions are
twofold:
• General Rate-1 Feedback-based AE Scheme: We study a generalized feedback-

based rate-1 AE scheme (see section 3). First, we give a linear algebra-based formal-
ization of the underlying feedback function and identify some necessary properties of
the associated feedback matrix. Second, based on this formalization we show the
following results

1. Any rate-1 feedback-based AE mode without any auxiliary state is insecure
(see Lemma 1). Note that this also validates the decrease in rate in approach 1
discussed in section 1.1 above.

2. We show that AE modes based on CFB or OFB are insecure even in the presence
of auxiliary states. For AE modes based on PFB we show that at least n-bit
auxiliary state is necessary for security.

3. For any rate-1 feedback-based AE mode with τ -bit auxiliary state there exist
an adversary that can break the mode in O(2τ ) many queries (see Lemma 2).
Specifically, for any τ < n/2 the AE mode can be broken in less than 2n/2

queries, i.e. at least n/2-bit auxiliary state is necessary for security up to 2n/2

queries. Thus, our result implies that COFB [CIMN17a] is almost-optimal 3 in
terms of auxiliary state size.

• HyFB Feedback Function and the HyENA mode of AE: Although COFB
achieves the minimum internal state size, we observe that the use of the combined
feedback requires 2.5n-bit XORs, which could be improved further.

1. HyFB Feedback Function: With an aim of reducing the XOR counts, we
propose a new feedback function, called the Hybrid feedback or HyFB, which
is a hybrid of PFB and CFB (see section 4.1). Along the way, we study
several hybrids and give some intuitive arguments on the insecurity of other
combinations, namely PFB+OFB and CFB+OFB.

2. HyENA Mode: We propose a new birthday bound secure authenticated
encryption mode called HyENA based on the HyFB feedback function (see
section 4.2). HyENA, like COFB, uses an n/2-bit auxiliary secret state and
achieves almost-optimal internal state size of 1.5n + k. However, HyENA
significantly improves over the XOR counts in COFB, reducing the XOR counts
from 2.5n-bit to 1.5n-bit. In short, HyENA achieves (n/2− logn)-bit security
using overall 1.5n-bit state and only 1.5n-bit XOR4 operations.

To summarize, we answer question 1 of section 1.1.1 with a concrete lower bound, and
show that question 2 is worth exploring (by proposing HyFB, a lighter feedback function
as compared to COFB). A concrete bound for question 2 (and a construction that achieves
that bound) will close this line of research.

3By almost-optimal, we mean a nominal security degradation of a factor of n.
4We exclude the XORs required for constant field multiplications with 2 or 3 (required for updating

the secret state) as the secret state update function is identical in both HyENA and COFB.
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1.2.1 Comparative Results for HyENA

We provide a brief design comparison between HyENA and few existing feedback-based
AE modes (in Table 1). Among rate-1 schemes, HyENA and COFB achieve almost-optimal
state size, and HyENA has significantly better XOR count as compared to COFB. Among
rate < 1, schemes JAMBU and SUNDAE are the closest competitors for HyENA. Although
SUNDAE has better state size and XOR counts than HyENA, the rate is quite low which
might not be desirable in certain scenarios. In summary, HyENA seems to be the best
choice among rate-1 candidates.

We would like to point out that we do not include any parallel AE modes such as
iFEED [ZWSW14], OCB3 [KR16], and OTR [Min16], in this comparison as they generally
tend to have higher state sizes and their overall motivation is different.

Table 1: Comparison between AE modes using an n-bit block cipher with k-bit keys.
Scheme Rate State Size XOR Count Security Ref
HyENA 1 1.5n+ k 1.5n (n/2− logn) This work

COFB 1 1.5n+ k 2.5n (n/2− logn) [CIMN17a,CIMN17b]
JAMBU 1/2 1.5n+ k 2n n/2 [WH16]
SUNDAE 1/2 n+ k n n/2 [BBLT18]

CLOC/SILC 1/2 2n+ k n n/2 [IMG+16]

2 Preliminaries
We fix the block size to n bits. We write {0, 1}∗ and {0, 1}n to denote the set of all
binary strings (including the empty string λ), and the set of all binary strings of length
n, respectively. |X| denotes the number of the bits in the string X. For any X ∈ {0, 1}n,
dXe and bXc denote the n/2 most and least significant bits of X respectively. For all
practical purposes, we use the big endian format for representing binary strings, i.e. the
least significant bit is the right most bit. We use the notation ⊕ to denote binary addition.
For two strings A,B ∈ {0, 1}?, A‖B to denotes the concatenation of A and B. We use the
notation (X`−1, . . . , X0) n← X to denote parsing of the string X into ` blocks such that
for 0 ≤ i ≤ `− 2, |Xi| = n and 1 ≤ |X`−1| ≤ n. The expression E? a : b evaluates to a if
E holds and b otherwise. For any binary string X with |X| ≤ n, we define the padding
function Pad as

Pad(X) =
{
X if |X| mod n = 0
0n−|X|−1‖1‖X otherwise.

Let γ = (γ[1], . . . , γ[s]) be a tuple of equal-length strings. We define mColl(γ) = m if
there exist distinct i1, . . . , im ∈ [1..s] such that γ[i1] = · · · = γ[im] and m is the maximum
of such integer. We say that {i1, . . . , im} is an m-multi-collision set for γ. For n, τ, κ ∈ N,
E-n/κ denotes a block cipher family E, parametrized by the block length n, and key length
κ. For K ∈ {0, 1}κ, and M ∈ {0, 1}n, we use EK(M) := E(K,M) to denote invocation
of the encryption function of E on input K, and M . We fix positive even integers n, κ,
r and t to denote the block size, key size, nonce size, and tag size, respectively, in bits.
Throughout this document, we fix n = 128, and κ = 128, r = 96, and t = n. We use the
notation In×n and 0n×n to denote n× n identity and zero bit-matrices, respectively. We
drop the dimension of the matrix whenever it is clear form the context.

2.1 Finite Field Arithmetic
The set {0, 1}n/2 can be viewed as the finite field F2n/2 consisting of 2n/2 elements. We
interchangeably think of an element A ∈ F2n/2 in any of the following ways: (i) as an n/2-
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bit string an
2−1 . . . a1a0 ∈ {0, 1}n/2; (ii) as a polynomial A(x) = an

2−1x
n/2−1 +an

2−2x
n
2−2 +

· · · + a1x + a0 over the field F2; (iii) a non-negative integer a < 2n/2; (iv) an abstract
element in the field. Addition in F2n/2 is just bitwise XOR of two n/2-bit strings, and
hence denoted by ⊕. P (x) denotes the primitive polynomial used to represent the field
F2n/2 , and α denotes the primitive element in this representation. The multiplication of
A,B ∈ F2n/2 is defined as A�B := A(x) ·B(x) (mod P (x)), i.e. polynomial multiplication
modulo P (x) in F2. For n

2 = 64, we fix the primitive polynomial [CSR05, IK03]

P (x) = x64 + x4 + x3 + x+ 1. (1)

Then, α, the primitive element, is 2 ∈ F264 . It is well-known [Rog04,KR11] that multi-
plication of any field element with α is computationally efficient. For any A ∈ F264 , we
have

A� α =
{
A� 1 if a|A|−1 = 0,
(A� 1)⊕ 05911011 if a|A|−1 = 1.

Clearly, we need one shift and one conditional XOR. We refer to this process of multiplying
any element A ∈ F264 with α, as α-multiplication.

2.2 Authenticated Encryption and Security Definitions
An authenticated encryption (AE) is an integrated scheme that provides both privacy
of a plaintext M ∈ {0, 1}∗ and authenticity of M as well as associated data A ∈ {0, 1}∗.
Taking a nonce N (which is a value unique for each encryption) together with associated
data A and plaintext M , the encryption function of AE, EK , produces a tagged-ciphertext
(C, T ) where |C| = |M | and |T | = t. Typically, t is fixed and we assume n = t throughout
the paper. The corresponding decryption function, DK , takes (N,A,C, T ) and returns
a decrypted plaintext M when the verification on (N,A,C, T ) is successful, otherwise
returns the atomic error symbol denoted by ⊥.

Privacy. Given an adversary A, we define the PRF-advantage of A against E as
Advprf

E (A) = |Pr[AEK = 1] − Pr[A$ = 1]|, where $ returns a random string of the
same length as the output length of EK , by assuming that the output length of EK is
uniquely determined by the query. The PRF-advantage of E is defined as

Advprf
E (q, σ, t) = max

A
Advprf

E (A) ,

where the maximum is taken over all adversaries running in time t and making q queries
with the total number of blocks in all the queries being at most σ. If EK is an encryption
function of AE, we call it the privacy advantage and write as Advpriv

E (q, σ, t), as the
maximum of all nonce-respecting adversaries (that is, the adversary can arbitrarily choose
nonces provided all nonce values in the encryption queries are distinct).

Authenticity. We say that an adversary A forges an AE scheme (E ,D) if A is able to
compute a tuple (N,A,C, T ) satisfying DK(N,A,C, T ) 6= ⊥, without querying (N,A,M)
for some M to EK and receiving (C, T ), i.e. (N,A,C, T ) is a non-trivial forgery.

In general, a forger is nonce-respecting with respect to encryption queries, but can
make qf forging attempts without restriction on N in the decryption queries, that is,
N can be repeated in the decryption queries and an encryption query and a decryption
query can use the same N . The forging advantage for an adversary A is written as
Advauth

E (A) = Pr[AEK ,DK forges], and we write

Advauth
E ((qe, qf ), (σe, σf ), t) = max

A
Advauth

E (A)
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to denote the maximum forging advantage for all adversaries running in time t, making qe
encryption and qf decryption queries with total number of queried blocks being at most
σe and σf , respectively.

Unified Security Notion for AE. The privacy and authenticity advantages can be
unified into a single security notion as introduced in [FFL12,RS06]. Let A be an adversary
that only makes non-repeating queries to DK . Then, we define the AE-advantage of A
against E as

AdvAE
E (A) = |Pr[AEK ,DK = 1]− Pr[A$,⊥ = 1]| ,

where the ⊥-oracle always returns ⊥ and the $-oracle is as the privacy advantage. We
similarly define AdvAE

E ((qe, qf ), (σe, σf ), t) = maxAAdvAE
E (A), where the maximum is

taken over all adversaries running in time t, making qe encryption and qf decryption
queries with the total number of blocks being at most σe and σf , respectively.

Pseudo Random Permutation. We use a block cipher E as the underlying primitive,
and we assume the security of E as a PRP (pseudorandom permutation). The PRP-
advantage of a block cipher E is defined as Advprp

E (A) = |Pr[AEK = 1] − Pr[AP = 1]|,
where P is a random permutation uniformly distributed over all permutations over {0, 1}n.
We write

Advprp
E (q, t) = max

A
Advprp

E (A) ,

where the maximum is taken over all adversaries running in time t and making q queries.
Here, σ does not appear as each query has a fixed length.

2.3 Coefficients-H Technique
We outline the Coefficients-H technique developed by Patarin, which serves as a convenient
tool for bounding the advantage (see [Pat91,Vau03]). We will use this technique (without
giving a proof) to prove our main theorem. Consider two oracles O0 = ($,⊥) (the ideal
oracle for the game) and O1 (real, i.e. our construction in the same game). Let V denote
the set of all possible views an adversary can obtain. For any view τ ∈ V, we will denote
the probability to realize the view as ipreal(τ) (or ipideal(τ)) when it is interacting with the
real (or ideal respectively) oracle. We call these interpolation probabilities. Without loss of
generality, we assume that the adversary is deterministic and fixed. Then, the probability
space for the interpolation probabilities is uniquely determined by the underlying oracle.
As we deal with stateless oracles, these probabilities are independent of the order of query
responses in the view. Suppose we have a set of views, Vgood ⊆ V, which we call good
views, and the following conditions hold:

1. In the game involving the ideal oracle O0 (and the fixed adversary), the probability
of getting a view in Vgood is at least 1− ε1.

2. For any view τ ∈ Vgood, we have ipreal(τ) ≥ (1− ε2) · ipideal(τ).

Then we have |Pr[AO0 = 1]−Pr[AO1 = 1]| ≤ ε1 + ε2. The proof can be found in [Vau03].

3 Feedback-based Rate-1 Authenticated Encryption
In this section, we provide a simple generic structure for rate-1 feedback-based authenticated
encryption modes. We assume that the only non-linear component considered in the mode
is the underlying block cipher. Along with the main block cipher input-output state of
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n-bit, the mode uses a τ -bit auxiliary secret state,5 which can be used as another source
of randomness. This auxiliary secret state can be viewed as some (non-linear) function
on N . At each step, a feedback function is applied on the input data block, previous
block cipher output, and the auxiliary secret state to generate the output data (ciphertext)
block, next block cipher input and an updated auxiliary secret state. In case of associated
data processing, the feedback function generates the next block cipher input and updates
the auxiliary secret state. The generic structure is depicted in Fig. 1. We use the notation
ρi to denote the ith feedback function during the processing of plaintext blocks. For the
associated data, we use the notation γi.

N EK γ0 EK γ1 γa−1 EK Y [a]

A[0]

S[0]

A[1]

S[1]

A[a− 1]

S[a− 1]

Y [0] X[1] Y [1] · · ·

Y [a] ρ0 EK ρ1 ρm−1 EK T

M [0] C[0] M [1] C[1] M [m− 1] C[m− 1]

S[a] S[a+ 1] S[a+m− 1]

X[a+ 1] Y [a+ 1] · · ·

Figure 1: General Structure of Feedback-based Authenticated Encryption Modes.

3.1 Formal Representation of the Feedback Function
In this section, we provide a simple matrix based representation of the feedback function.
Assuming the block size to be n and auxiliary secret state size to be τ , the linear feedback
function ρi for the ith block is defined by a (2n+ τ)× (2n+ τ) matrix Ei as given below:X[i]

C[i]
S[i]

 = Ei ·

Y [i− 1]
M [i]

S[i− 1]

 ,

where

Ei :=

(Eiy→x)n×n (Eim→x)n×n (Eis→x)n×τ
(Eiy→c)n×n (Eim→c)n×n (Eis→c)n×τ
(Eiy→s)τ×n (Eim→s)τ×n (Eis→s)τ×τ

 .

Here (Eiv1→v2
)u×v denotes a submatrix of size (u × v) that shows the contribution of

variable V1 on V2. Any rate-1 feedback-based authenticated encryption is defined by
specifying these Ei matrices. The corresponding decryption function is given byX[i]

M [i]
S[i]

 = Di ·

Y [i− 1]
C[i]

S[i− 1]

 ,

5The exact requirement of this secret state will be justified later.
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where the decryption matrix is given by:

Di =

Di
y→x Di

c→x Di
s→x

Di
y→m Di

c→m Di
s→m

Di
y→s Di

c→s Di
s→s

 .

The dimensions of decryption sub-matrices are analogous to the dimension of the encryption
sub-matrices.

3.1.1 Necessary Properties of the Matrix

We now enumerate some necessary properties of the feedback matrices that will be used
later in the section.

1. Eim→c, Di
c→m is invertible: This is due to the fact that C[i] should have full effect of

M [i] (during encryption), and M [i] should have full effect of C[i] (during decryption).
Otherwise, the correctness of the algorithm doesn’t hold.

2. [Eiy→c : Eis→c] has rank n: If not, then there exists a 1 × n row vector ∆ such
that ∆ · [Eiy→c : Eis→c] = 0. Thus, we can get a deterministic 1-bit relation
∆ · C = ∆ · Eim→c ·M , which leads to a privacy attack.

3.1.2 Examples: Classical Feedback functions

We briefly mention some popular feedback functions:

1. Plaintext Feedback (PFB). Here the plaintext itself is used as the next block cipher
input.

2. Ciphertext Feedback (CFB). Here the ciphertext is used as the next block cipher
input.

3. Output Feedback (OFB). Here the previous block cipher output is used as the next
block cipher input.

X[i− 1]

M [i] X[i]

EK

⊕

C[i]

X[i− 1]

M [i]

X[i]

EK

⊕

C[i]

X[i− 1]

M [i] dX[i]e

EK

⊕

C[i]

Figure 2: Types of Feedback: (i) PFB, (ii) CFB and (iii) OFB. This figure doesn’t consider
the effect of the auxiliary secret state

For all the classical feedback-based authenticated modes, we consider the traditional choice
of (i) generating the ciphertext block by XORing the corresponding plaintext block with
the previous block cipher output and (ii) updating the auxiliary secret state w/o depending
on the plaintext or the previous block cipher output. Typically, the auxiliary secret state
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is updated by multiplying the previous state value with some constant field element (2 or
3) etc. Based on these traditional choices, we write down the encryption and decryption
matrices for authenticated encryptions with PFB, CFB and OFB functions:

EiOFB =

I 0 ?
I I ?
0 0 ?

 , EiCFB =

I I ?
I I ?
0 0 ?

 , EiPFB =

0 I ?
I I ?
0 0 ?

 ,

Here ? can be any binary matrix of appropriate dimension. The corresponding decryption
matrices for these constructions are given as:

Di
OFB =

I 0 ?
I I ?
0 0 ?

 , Di
CFB =

0 I ?
I I ?
0 0 ?

 , Di
PFB =

I I ?
I I ?
0 0 ?

 ,

3.2 Insecurity of Rate-1 Feedback-based AE w/o Auxiliary State
Here we show the necessity of the secret auxiliary state for rate-1 feedback-based AE
modes:

Lemma 1. Any rate-1 feedback-based authenticated encryption mode without an auxiliary
secret state is insecure.

Proof. We describe an adversary A that makes 1 encryption query and then forges with a
single decryption query.

1. A makes an authenticated encryption query (N,A,M [0],M [1]). Let the tagged
ciphertext be (C[0], C[1], T ).

2. A computes the values of Y [a] and Y [a+ 1] from the following two equations:

C[0] = E0
y→c · Y [a] + E0

m→c ·M [0], C[1] = E1
y→c · Y [a+ 1] + E1

m→c ·M [1].

This follows from the fact that rank(Eiy→c) = n, as it is invertible (see Sect. 3.1.1).

3. A calculates Cf [0] such that

D0
y→x · Y [a]⊕D0

c→x · Cf [0] = X[a+ 1].

A can easily find such a Cf [0] by computing at its own end.

4. Finally, A forges with (Nf := N, Af := A, Cf [0], T f = T ).

It is trivial to see that A forges with probability 1.

3.3 Rate-1 Feedback-based AE with Auxiliary State
In this section, we analyze the classical feedback-based AE as well as a newly proposed
combined feedback-based AE with auxiliary state. The objective is to have an estimate
on the size of the auxiliary state necessary to ensure birthday bound security (up to 2n/2

queries) for the AE construction.
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3.3.1 Classical Feedback-based AE with Auxiliary State

We briefly discuss the security of classical feedback-based AE with auxiliary secret state.
We first show that use of CFB or OFB doesn’t provide a secure mode even with auxiliary
secret state. Moreover, we claim that with PFB type feedback function, one needs n-bit
auxiliary secret state to achieve the desired security.

1. Ciphertext Feedback-based (CFB) AE. Here an adversary exploits the fact that
during decryption, previous block cipher outputs do not affect the next block cipher
input: Di

y→x = 0, and hence an adversary can mount the following attack:

• Make a query: (N,A,M [1],M [2]). Let ciphertext be ((C[1], C[2]), T ).
• Forge with (N,A, (C ′[1], C[2]), T ), for any C ′[1] 6= C[1].

Note that, the above attack would work even with auxiliary state.

2. Output Feedback-based (OFB) AE. Here an adversary exploits the fact that during
decryption, ciphertext blocks do not affect the next block cipher input: Di

c→x = 0,
and hence an adversary can mount the following attack:

• Make a query: (N,A,M [1]). Let ciphertext be (C[1], T ).
• Forge with (N,A′, C ′[1], T ), for any (A′, C ′[1]) 6= (A,C[1]).

Similar to CFB, this mode also does not achieve security even with auxiliary secret
state.

3. Plaintext Feedback-based (PFB) AE. Here an adversary can use the fact that the
previous block cipher outputs do not affect the next block cipher input: Eix→y = 0.
It is easy to see that to achieve privacy (with query complexity 2n/2) of the mode,
at least n-bit auxiliary state and it’s full entropy is required.

In the above discussion, we see that PFB is the only choice for building an secure
authenticated encryption, however at the cost of n-bit additional state. So, it was an
interesting research direction whether it is possible to reduce the additional state size with
some modified feedback functions.

3.3.2 Combined Feedback-based Authenticated Encryption

In CHES 2017, Chakraborti et al. [CIMN17a,CIMN17b] came up with a new feedback
based function, termed combined feedback that uses a combination of previous block cipher
output and the plaintext block to define the next block cipher input as depicted in Fig. 3.

The encryption and decryption matrix for this combined feedback function is given as:

EiCOFB =

G I Jn/2
I I 0
0 0 U i

 , Di
COFB =

G+ I I Jn/2
I I 0
0 0 U i

,

where G 6= I is an invertible matrix such that I +G is also invertible (see [CIMN17a,
CIMN17b] for the exact instance of G), Ui matrix for COFB corresponds to the matrix for
field mutiplication with 2 or 3 using the primitive polynomial p(x) = x64 + x4 + x3 + x+ 1

over F264 . We use the notation Jb to denote the matrix
(
Ib
0b

)
.

Based on this feedback they defined an authenticated encryption scheme called COFB that
achieves the desired security with only n/2-bit additional masking state.
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X[i− 1]

M [i] X[i]

EK

G

⊕
⊕

C[i]

Figure 3: Combined Feedback

3.4 Optimality of the Auxiliary State Size
We show that n/2-bit additional state is necessary to achieve 2n/2 query security in any
rate-1 feedback based authenticated encryption. More specifically, we prove the following
lemma:

Lemma 2. For any rate-1 feedback-based authenticated encryption mode with an additional
state of size τ -bit, there exists an adversary that breaks the construction with query
complexity of 2τ -bits.

Proof. Here we describe an adversary A that makes 1 encryption query and tries to forge
with 2τ many queries and succeeds in one forgery.

1. A makes an authenticated encryption query (N,A,M = M [0]‖M [1]). Let the tagged
ciphertext be (C[0]‖C[1]‖T ).

2. Using the matrices E1 and E2, A obtains a matrix F such that the following holds:

F ·


Y [a]
M [0]
S[a]

Y [a+ 1]
M [1]

 =
(
C[0]
C[1]

)

Note that, S[a+ 1] can be written in terms of Y [a],M [0] and S[a], hence we do not
consider S[a + 1] separately. As the values of M [0] and M [1] are known, one can
represent the above as follows:

(F 1)2n×(2n+τ) ·

 Y [a]
S[a]

Y [a+ 1]


(2n+τ)×1

=
(
C[0]⊕ α
C[1]⊕ β

)
2n×1

3. Here we claim that rank(F 1) = 2n, as explained in the second necessary condition
(see Sect. 3.1.1).

4. Since rank(F 1) = 2n, using standard linear algebra results, A can find (F 2)τ×(2n+τ)
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such that the following holds:
(
F 1

F 2

)
in invertible and

(
F 1

F 2

)
·

 Y [a]
S[a]

Y [a+ 1]

 =

C[0]⊕ α
C[1]⊕ β

∆

 .

5. For each guess of ∆, the adversary A does the following:

(a) A computes the values of Y [a], S[a] and Y [a+ 1]: Y [a]
S[a]

Y [a+ 1]

 =
(
F 1

F 2

)−1
·

C[0]⊕ α
C[1]⊕ β

∆

 .

(b) A finds Cf [0] such that

Dy→x · Y [a]⊕Dc→x · Cf [0]⊕Ds→x · S[a] = X[a+ 1].

(c) A tries to forge with (Nf := N, Af := A, Cf [0], T f = T ).

It is easy to see that by definition adversary A makes an attempt of exactly 2τ many
forging queries, and succeeds with probability 1 (as step 4 holds for at least 1 ∆ value
among all 2τ values).
Remark 1. The previous attack can be easily extended to have a same length forgery
attacks.

The above attack essentially shows that COFB indeed achieves the desired security with
the optimal state size. However, COFB requires a total of 5n/2-bit XORs (n-bit XORs to
define the ciphertext, 3n/2-bit XORs to define the next block cipher input that includes
n/2-bit XORs for masking).

3.5 Hybrid Feedback
Motivated by the above question, in this section, we investigate on reducing the number of
XORs further. For any construction it is quite intuitive that n-bit XORs are mandatory
to define the ciphertext and the next block input. It also seems reasonable that one would
require an additional n/2-bit XORs to incorporate the secret auxiliary state. Keeping this
intuition in mind, we propose a new type of feedback function, called hybrid feedback,
which requires 3n/2-bit state as well as 3n/2-bit XORs. As the name suggests, the hybrid
feedback can use a combination of (PFB,CFB) or (PFB,OFB) or (CFB,OFB) to define the
next block cipher input. Here we provide an informal intuitive argument on the security
of AE modes with these hybrid feedback functions:

1. (PFB,CFB) Feedback: Since, this mode combines PFB and CFB, it achieves privacy
up to n/4 bits (since encryption uses n/2 bits of CFB) but no authenticity without
the secret auxiliary state. However, an additional n/2 bit auxiliary secret state (that
is dependent on the nonce and updated with each block) can be XORed to the PFB
part to provide the desired birthday bound security. Intuitively, this is due to the
facts that (i) the additional state restricts state collision for different indices, and (ii)
the use of (PFB,CFB) simultaneously in both encryption and decryption restricts
state collisions at the same index.

2. (PFB,OFB) Feedback: As this mode combines PFB and OFB, and for the OFB part
the updated state does not depend on the previous plaintext or ciphertext block,
this hybrid feedback based mode will not be secure even with additional states. Here
we briefly mention a simple attack on this mode:
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X[i− 1]

M [i] dX[i]e

bX[i]c

EK

⊕

C[i]

X[i− 1]

M [i] dX[i]e

bX[i]c

EK

⊕

C[i]

X[i− 1]

M [i] dX[i]e

bX[i]c

EK

⊕

C[i]

Figure 4: Types of Hybrid Feedback (from left to right): (PFB,CFB): dX[i]e =
dM [i]e , bX[i]c = bC[i]c, (CFB,OFB): dX[i]e = dC[i]e , bX[i]c = bY [i]c, (PFB,OFB):
dX[i]e = dM [i]e , bX[i]c = bY [i]c.

• Make a query: (N,A,M [1],M [2]). Let ciphertext be (C[1], C[2], T ).
• Forge with (N,A,C[1], dC[2]e‖?, T ).

It is easy to see that this attack can be easily extended even if additional states are
maintained.

3. (CFB,OFB) Feedback: This mode combines CFB and OFB, and the above attack
holds in this case as well.

Based on the above discussion, from now on we write hybrid feedback or HyFB to denote
(PFB,CFB) feedback, which can be represented by the following encryption matrix:

EiHyFB =

Jn/2 I Kn/2
I I 0
0 0 Ui

 , Di
HyFB =

Kn/2 I Kn/2
I I 0
0 0 U i

 ,

where the U i matrix for HyFB is the same as COFB defined earlier and Kb matrix is
defined as

(
0b
Ib

)
.

4 HyENA Authenticated Encryption Mode
In this section, we present the complete specification of HyENA. We also give detailed
algorithmic descriptions for the modes. The HyENA authenticated encryption mode
receives an encryption keyK ∈ {0, 1}κ, a nonce N ∈ {0, 1}r, an associated data A ∈ {0, 1}∗,
and a message M ∈ {0, 1}∗ as inputs, and returns a ciphertext C ∈ {0, 1}|M | and a tag
T ∈ {0, 1}n. The decryption algorithm receives a key K ∈ {0, 1}κ, an associated data
A ∈ {0, 1}∗, a nonce N ∈ {0, 1}r, a ciphertext C ∈ {0, 1}∗ and a tag T ∈ {0, 1}n as inputs
and returns the plaintext M ∈ {0, 1}|C|, corresponding to the ciphertext C, if the tag T
authenticates.

4.1 Hybrid FeedBack Function
The hybrid feedback function is illustrated in Figure 5 and 6. For any n-bit string S with
|S| ≤ n, we define SL as the most significant n/2 bits of S, if |S| ≥ n/2, otherwise SL is
set as S. Similarly, we define SR as the least significant i bits of S, where |S| = n/2 + i. If
|S| ≤ n/2, SR is empty.
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(a) HyFB+ module.
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(b) HyFB- module.

Figure 5: HyFB module of HyENA for full data blocks. The number of XOR count is
equals to 3n/2.
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(a) HyFB+ module.
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(b) HyFB- module.

Figure 6: HyFB module of HyENA for partial data blocks. Similar to the full block case,
the number of XOR count here also equals to 3n/2.

4.2 HyENA Mode
The complete specification of HyENA mode is presented in Algorithm 7. A pictorial
description of HyENA is given in Figure 8.

4.2.1 Initialization

We define the initial state as

IV ← N‖0n−r−2‖b0‖b1,

where b0 is a bit indicating whether the associated data is empty or not (b0 = 0 iff
associated data is empty) and b1 is a bit indicating whether there is any data or not
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(b1 = 0 iff both associated data and plaintext are empty). Note that, the combination
(b0, b1) = (1, 0) is impossible. This initial vector is encrypted to generate the initial state
Y [0]. The least significant n/2 bits of Y [0] is considered as the masking value ∆. Formally,
we define

∆← bEK(IV )c.

Remark 2. Here we would like to point out that, in the CAESAR API it is possible to
get the values of b0 and b1 directly from the two signals EOT (End-Of-Type) and EOF
(End-Of-File) resp. On the other hand, it is not possible to have an information on whether
plaintext is empty or not at the beginning. By this initialization approach, we do not
separate the cases of (non-empty AD, empty plaintext) and (non-empty AD, non-empty
plaintext), rather we will take care of this separation in the finalization phase.

4.2.2 Associated Data Processing

For associated data processing, first we parse the associated data in n-bit blocks. We
perform a 10∗ padding on the associated data in the following cases: (i) when associated
data is empty, and (ii) when final associated data block is partial. After the padding is
done, we process the associated data blocks sequentially and update the state and the
masking value as follows:

∆ ← 2 ·∆ ,

(X[i], ?) ← HyFB + (Y [i− 1], A[i],∆[i]) ,
Y [i] ← EK(X[i]) ,

where ? denotes some value that we do not bother about. To process the final associated
data block, we multiply ∆ by 3 (for full) or 32 (for partial) for the purpose of domain
separation.

4.2.3 Plaintext Processing

For plaintext processing, first we parse the plaintext in n-bit blocks. We perform an 10∗
padding on the plaintext only when the final plaintext block is partial. Note that, we do
not perform any operation if plaintext is empty. After the padding is done, we process the
plaintext blocks sequentially and updates the state and the masking value as follows:

∆ ← 2 ·∆ ,

(X[a+ i], C[i]) ← HyFB + (Y [a+ i− 1],M [i],∆[i]) ,
Y [a+ i] ← EK(X[a+ i]).

To process the final plaintext block, we multiply ∆ by 3 (for full) or 32 (for partial) for
the purpose of domain separation.

4.2.4 Tag Generation

To generate the tag, we swap the most significant and least significant n/2 bits of the state
and performs a block cipher encryption:

T ← EK(XR[a+m]‖XL[a+m])
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Algorithm HyENA-Enc(K, N, A, M)

1. Y ← Init(N, A, M)
2. (X, ∆)← Proc-AD(Y, A)
3. if |M | 6= 0 then
4. (X, C)← Proc-TXT(X, ∆, M, +)
5. T ← Tag-Gen(X)
6. return (C, T )

Algorithm Init(N, A, M)

1. b0 ← (|A| = 0)? 1 : 0
2. b1 ← (|A|+ |M | = 0)? 1 : 0
3. Y ← EK(N‖0n−r−2‖b1‖b0)
4. return Y

Algorithm Proc-AD(Y, A)

1. ∆← YR

2. if |A| = 0 then
3. ∆← 32 �∆
4. (X, ?)← HyFB+(Y, ∆, 0n−11)
5. return (X, ∆)
6. else
7. (Aa−1, . . . , A0) n← A

8. for i = 0 to a− 2
9. ∆← 2�∆
10. (X, ?)← HyFB+(Y, ∆, Ai)
11. Y ← EK(X)
12. t← (|Aa−1| = n)? 1 : 2
13. ∆← 3t �∆
14. (X, ?)← HyFB+(Y, ∆, Aa−1)
15. return (X, ∆)

Algorithm Tag-Gen(X)

1. T ← EK(XR‖XL)
2. return T

Algorithm HyENA-Dec(K, N, A, C, T )

1. Y ← Init(N, A, M)
2. (X, ∆)← Proc-AD(Y, A)
3. if |C| 6= 0 then
4. (X, M)← Proc-TXT(X, ∆, C,−)
5. T ′ ← Tag-Gen(X)
6. if T ′ = T then return M

7. else return ⊥

Algorithm HyFB+(Y, ∆, M)

1. C ← Trunc|M|(Y )⊕M

2. M ← Pad(M), C ← Pad(C)

3. B ←
(

ML‖(CR ⊕∆)
)

4. X ← B ⊕ Y

5. return (X, C)

Algorithm HyFB−(Y, ∆, C)

1. M ← Trunc|C|(Y )⊕ C

2. M ← Pad(M), C ← Pad(C)

3. B ←
(

ML‖(CR ⊕∆)
)

4. X ← B ⊕ Y

5. return (X, M)

Algorithm Proc-TXT(X, ∆, D, dir)

1. (Dd−1, . . . , D0) n← D

2. for i = 0 to d− 2
3. ∆← 2�∆
4. Y ← EK(X)
5. if dir = + then
6. (X, Oi)← HyFB+(Y, ∆, Di)
7. else
8. (X, Oi)← HyFB−(Y, ∆, Di)
9. t← (|Dd−1| = n)? 1 : 2
10. ∆← 3t �∆
11. Y ← EK(X)
12. if dir = + then
13. (X, Od−1)← HyFB+(Y, ∆, Dd−1)
14. else
15. (X, Od−1)← HyFB−(Y, ∆, Dd−1)
16. return (X, (Od−1‖ . . . ‖O0))

Figure 7: Formal Specification of HyENA Authenticated Encryption and Decryption
algorithm. We use the notation ? to denote values that we do not care.
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Figure 8: HyENA authenticated encryption mode for full data blocks.

4.3 Recommended Instantiation
In this section, we recommend an instance of HyENA. HyENA is parametrized by
the choice of the underlying block cipher E and the nonce size r. We instantiate the
block cipher with GIFT-128/128 [BPP+17] with 128-bit key and 128-bit block. Note that,
the block cipher is well-defined and in this paper we do not include any description of
GIFT-128/128. We fix r = 96.

4.4 Design Rationale
Here we briefly mention the rationale behind the design of HyENA.

4.4.1 Choice of Hybrid Feedback

To achieve a reduced memory implementation, it is natural to use sequential feedback
at the cost of losing parallelizability. There exists several feedback based modes such as
CFB, PFB and OFB (described earlier) and none of them fulfill our needs either in terms
of the security bound or in terms of the storage size (all of them need to store an n-bit
secret mask to achieve the birthday bound security) while processing data with rate 1.
However, COFB fulfills our security requirements as it optimizes the storage size with the
birthday bound security (it needs n/2-bit secret mask storage to achieve the birthday
bound security), but COFB needs higher XOR counts. Hybrid feedback mode optimizes
both the parameters as

• it provides birthday bound security with only n/2-bit additional storage (same as
COFB) as well as

• it has much lower XOR counts as compared to COFB.

Considering all the above points, the hybrid feedback optimizes both the storage size as
well as reduces the number of xor gates over all the existing feedback based modes with
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rate 1.

4.4.2 Choice of the Masking

We adopt a standard masking procedure equipped with an efficient domain separation
technique. We would first like to mention that we maintain a secret mask ∆ throughout
the construction where ∆ is computed by the n/2 least significant bits of the encrypted
nonce. Note that, we can safely extract ∆ during the associated data processing phase as
it is not exposed (during message processing this values are exposed using the message
and the ciphertext blocks). Thus, when the associated data is empty, we need an extra
block cipher call to process a dummy empty block. From the implementation perspective,
the masking function takes the current ∆ and updates it by multiplying with either 2,
3 or 32 depending on the domains. Mathematically, we can represent this function as
mask : {0, 1}n/2 × N2 → {0, 1}n/2 as

mask(∆, a, b) = 2a � 3b �∆,

where we efficiently control a and b to separate the domains. The paper [Rog04] showed
that ∀(a, b) ∈ {0, · · · , 251} ×{0, · · · , 210}, 2a � 3b are distinct for the specific primitive
polynomial we use in this construction. This masking is similar to the one used in COFB.

5 Security
In this section, we provide the security of HyENA, mainly we prove the following Theorem:

Theorem 1.

AdvAE
HyENA(qe, qv, σe, σv, t) ≤Advprp

EK
(q′, t′) + 2σe

2n/2 + σ2
e

2n + max{n, nqe/2n/4}
2n/4

+ nqe
2n/2 + max{n, nqe/2n/4}qe

23n/4 + 3nqv
2n/2

+ 2max{n, nqe/2n/4}qv
23n/4 + nqv

23n/4 + qv
2n + 2nσv

2n/2 .

where q′ = qe + σe + qv + σv which corresponds to the total number of block cipher calls
through the game and t′ = t+O(q′).

Proof. Without loss of generality, we can assume that q′ ≤ 2n/2−1, since otherwise the
right hand side becomes more than 1. The first transition we make is to use an n-bit
(uniform) random permutation P instead of Ek and then use an n-bit (uniform) random
function R instead of P. The probabilities corresponding to these two transitions are
given in the first two terms of our bound. They are derived from the standard PRP-PRF
switching lemma and from the computation of information theoretic reduction. The rest
of the proof is done in the following sections.

5.1 Notations and Set-up
Fix a deterministic non-repeating query making distinguisher adv that interacts with either
(1) the real oracle or (2) the ideal oracle making at most

1. qe encryption queries (N+
i , A

+
i ,M

+
i )i=1..qe with an aggregate of total σe many blocks

and

2. attempts to forge with qv many queries (N−i , A
−
i , C

−
i , T

−
i )i=1..qv having a total of

σv many blocks.
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We assume that ∀i, M+
i and A+

i have m+
i and a+

i blocks respectively and C−i and A−i
have c−i and a−i blocks respectively. We use the notation X,Y to denote the intermediate
variables. Let

(Si[0], Si[1], · · · , Si[l+i − 1])← (A+
i [0], · · · , A+

i [a+
i − 1],M+

i [0], · · · ,M+
i [m+

i − 1])

where l+i = a+
i +m+

i . If bitwise representation of n-bit string G is (Gn−1 · · ·G0). Then
for u > w, we denote (Gu · · ·Gw) by Gu−w which is a u− w + 1-bit substring of G from
uth bit to wth bit of G.

5.2 Overview of the Attack Transcript
We begin with a description of the ideal oracle which consists of two phases.

• Online phase: For the ith encryption query (N+
i , A

+
i = (Ai[0], . . . , A+

i [ai−1]),M+
i =

(M+
i [0], . . . , M+

i [mi−1])), the oracle samples (Y +
i [a+

i ], . . . , Y +
i [l+i ])←$ {0, 1}n(m+

i
+1)

independently. It next sets the tag T+
i = Y +

i [l+i ] and C+
i = (C+

i [0], . . . , C+
i [m+

i − 1])
where C+

i [j] = Y +
i [j + a+

i ]⊕M+
i [j] for 0 ≤ j ≤ m+

i − 1 and returns (C+
i , T

+
i ) to A.

• Offline phase: After A makes all the queries the oracle samples other Y + values
as Y +

i [j]←$ {0, 1}n, for 0 ≤ j ≤ ai − 1.

For convenience, we slightly modify the experiment where we reveal to the adversary
A (after A made all its queries and obtains corresponding responses but before it outputs
its decision) the Y +-values and now the adversary can set all intermediate values X+

i [j]
using Si[j] and Y +

i [j]. Note that ∆+
i = bY +

i [0]c and ∆−i = bY −i [0]c.
Overall, the transcript of the adversary τ := (τe, τv) be the list of queries and responses of
A that constitutes the query response transcript of A, where

• τe = (N+
i , A

+
i ,M

+
i , X

+
i , Y

+
i , T

+
i )i=1..qe ,

• τv = (N−j , A
−
j , C

−
j , T

−
j ,⊥)j=1..qv .

A prefix for a decryption query is defined as the common prefix blocks between the
decryption query input string and an encryption query (if any) output string prepended
with the nonce and the associated data. The length of the longest common prefix for the
ith decryption query is denoted as pi. Note that if the decryption query uses a fresh nonce
(not occurred during encryption queries), then it does not share any common prefix with
any of the encryption queries then we set pi = −1.

By ipideal and ipreal we denote the interpolation probability distribution of transcript
τ induced by the ideal world and real world respectively. Note that, we use Patarin’s
Coefficient-H technique and below we start the proof by first identifying the bad events.

5.3 Identifying and Bounding Bad Events
Now, we define a set of events (initial bad events) for which the adversary aborts.

(i) B1: mColl(Λ) > n where Λ is the tuple of all bX+
i [l+i ]c and dX+

i [j]e values for
0 ≤ j < li.
This event signifies that n-multi-collision occurs in the upper part of the inputs of
all blocks except the last blocks and the lower part of the inputs of all last blocks
corresponding to the encryption queries.

(ii) B2: mColl(X+[l](n/2−1)−n/4) > c where c = dnqe/2n/4e and X+[l](n/2−1)−n/4 is the
tuple of all X+

i [l+i ](n/2−1)−n/4 values (it is the second n/4-bit chunk of X+
i [l+i ]. For

example, when n = 128 it is X+
i [l+i ]63−32) for i ∈ [1 · · · qe],
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(iii) B3: X+
i [j] = X+

i′ [0] for some i, i′ ∈ [1 · · · qe] and 0 < j < l+i .

(iv) B4: X+
i [l+i ] = X+

i′ [0] for some i, i′ ∈ [1 · · · qe]

(v) B5: X+
i [j] = X+

i′ [j′] for some (i, j) 6= (i′, j′) and j, j′ > 0.

(vi) B6: X−i [pi + 1] = X+
i′ [j′] for some i, i′ and 0 < j′ < l+i′ .

(vii) B7: X−i [pi + 1] = X+
i′ [l

+
i′ ] for some i and i′.

(viii) B8: X−i [pi + 1] = X+
i1

[0] and X−i [pi + 2] = X+
i′ [j′] for some pi(≥ 0), i, i′, i1 and

0 < j′ ≤ l+i′ .

The following lemma bounds the probability of bad transcripts in ideal oracle:

Lemma 3. For any transcript τ ,

ipideal(τ ∈ Vbad) ≤ Pr[B1] + Pr[B2] + Pr[B3 ∧B1c] + Pr[B4 ∧B2c] + Pr[B5]
+ Pr[B6 ∧B1c] + Pr[B7 ∧B1c ∧B2c] + Pr[B8 ∧B1c]

≤ 2σe
2n/2 + σ2

e

2n + max{n, nqe/2n/4}
2n/4 + nqe

2n/2 + max{n, nqe/2n/4}qe
23n/4 + 3nqv

2n/2

+ 2max{n, nqe/2n/4}qv
23n/4 + nqv

23n/4

Proof. Throughout the proof, we assume that all probabilities are defined over the ideal
game. Here we provide the upper bounds for the bad events (in ideal oracle) one by one,
as follows:

1. Pr[B1]. The event B1 is a multi-collision event for randomly chosen n many n/2-bit
strings out of σe many n/2-bit strings. As the Y +-values are sampled uniformly and
independently in the ideal game, we have,

Pr[B1] ≤
(
σe
n

)
2n/2(n−1) ≤

(
2σe
2n/2

)n
≤ 2σe

2n/2 .

The last inequality follows from the assumption that σe ≤ 2n/2−1.

2. Pr[B2].This event is a multicollision event for randomly chosen c (dnqe/2n/4e) many
n/4-bit strings out of qe many n/4-bit strings. Hence,

Pr[B2] ≤ 2n/4
(

eqe
c2n/4

)c
≤ 2n/4

(
e
n

)max{n,nqe/2n/4}

≤ 2n/4
(

1
2n

)
≤ 1

23n/4 .

The first inequality follows from the well-known results on multicollision [Gon81,
BYG91] and e is the Euler’s number. The third inequality follows from the assumption
that n ≥ 2e.

3. Pr[B3 ∧ B1c]. Fix a pair of integers (i, j) such that i ∈ [1 · · · qe]. Then for j < l+i ,
we have

X+
i [j] = N+

i′ ||0
n−r−2||b+

1i′b
+
0i′

where r is the nonce size and we can express bX+
i [j]c as bSi[j]c ⊕ 2a �∆+

i for some
constant a. Here, ∆+

i is uniformly distributed. Note that there could be at most n
many (i, j) indices for each i′ and there are qe many i′ indices. Hence,

Pr[B3 ∧B1c] ≤ nqe
2n/2 .



Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Snehal Mitragotri, Mridul Nandi 437

4. Pr[B4∧ B2c]. Fix an integer i such that i ∈ [1 · · · qe]. Then for j = l+i and for some
constants a, b, we have

dN+
i′ en/2 = bSi[l+i − 1]c ⊕ 2a � 3b �∆+

i (= dX+
i [li]e)

bN+
i′ cn/4||0n−r−2||b+

1i′b
+
0i′ = dSi[l+i − 1]e ⊕ dY +

i [l+i − 1]e(= bX+
i [li]c).

Here, ∆+
i and dY +

i [l+i − 1]e are independent and uniformly distributed. Also i′ can
take at most qe many values and B2c implies that i can take at most c many values.
Hence,

Pr[B4 ∧B2c] ≤ cqe
23n/4 ≤

max{n, nqe/2n/4}qe
23n/4 .

5. Pr[B5]. For any (i, j) 6= (i′, j′) and j, j′ > 0, we have the following three possibilities:
Case(i): j < l+i , j

′ < l+i′ Then for any (i, j) 6= (i′, j′),the event X+
i [j] = X+

i′ [j′] is
nothing but two non-trivial linear equations. One is on dY +

i [j−1]e & dY +
i′ [j′−1]e and

other is on Constj �∆+
i & Constj′ �∆+

i′ for some constants Constj & Constj′ . For
i 6= i′, we have dY +

i [j − 1]e, dY +
i′ [j′− 1]e,∆+

i and ∆+
i′ are independent and uniformly

distributed. For i = i′, we have Constj 6= Constj′ and dY +
i [j − 1]e, dY +

i′ [j′ − 1]e are
independent and uniformly distributed. Hence this event has probability at most
2−n. Therefore,

Pr[X+
i [j] = X+

i′ [j
′]] ≤ (σe − qe)2

2n .

Similarly, we can argue for the other cases also.
Case(ii): For j < l+i , j

′ = l+i′ we have

Pr[X+
i [j] = X+

i′ [j
′]] ≤ (σe − qe)qe

2n

Case(iii): For j = l+i , j
′ = l+i′ , we have

Pr[X+
i [j] = X+

i′ [j
′]] ≤ q2

e

2n

Therefore,

Pr[B5] ≤ (σe − qe)σe + q2
e

2n ≤ 2σ2
e

2n .

6. Pr[B6∧B1c] For i ∈ [1 · · · qv] and l+i′ > j′ > 0, we need to find the probability of
the equality event X−i [pi + 1] = X+

i′ [j′]. The event B1c implies that there are at
most n many possible values for (i′, j′). So if we fix (i′, j′) then we need to bound
the probability for equality for the rest n/2 bits.
Case(i): pi = −1. Here we have the equality event as X−i [0] = X+

i′ [j′]. Since pi = −1,
N−i 6= N+

i′ ,∀i′ ∈ [1 · · · qe]. Hence,

Pr[X−i [0] = X+
i′ [j
′] ∧B1c] ≤ nqv

2n/2 .

Note that ∆+
i′ is uniformly distributed.

Case(ii): 0 ≤ pi < l−i − 1. Since pi ≥ 0, we have N−i = N+
k for some kth encryption

query. Suppose k 6= i′. Then we obtain a non-trivial linear equation on ∆+
i′ .

Therefore, the probability in this case is at most nqv
2n/2 .

Suppose k = i′. Then we must have j′ 6= pi + 1. Otherwise we get C−i [pi] = C+
k [pi]
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which contradicts the definition of pi. Hence we get the probability at most qv
2n/2 .

Case(iii): pi = l−i − 1. Here we have

Pr[X−i [l−i ] = X+
i′ [j
′] ∧B1c] ≤ nqv

2n/2 .

In all of the above cases, we get the probability at most nqv
2n/2 . Hence,

Pr[B6 ∧B1c] ≤ nqv
2n/2 .

7. Pr[B7∧ B1c∧ B2c].
Case(i): pi = −1. Here, ∆+

i′ and dY +
i′ [l+i′ − 1]e are independent and uniformly

distributed. Also i and i′ can take at most qv and c many values respectively. Then

Pr[X−i [0] = X+
i′ [l

+
i′ ] ∧B2c] ≤ c qv

23n/4 ≤
max{n, nqe/2n/4}qv

23n/4 .

Case(ii): 0 ≤ pi < l−i − 1. Suppose N−i 6= N+
i′ . Then the equality event X−i [pi + 1] =

X+
i′ [l

+
i′ ] gives the two n/2-bit non-trivial equations, one is in ∆−i and another is

in ∆+
i′ . The event B1c implies that i′ can take at most n many values. Hence the

probability of this event is at most nqv
2n/2 .

Suppose N−i = N+
i′ . Then we must have pi + 1 6= l+i′ (otherwise we get contradiction

to the definition of pi).Therefore, the equality event X−i [pi + 1] = X+
i′ [l

+
i′ ] gives a

non-trivial equation in ∆+
i′ . Then the probability is at most qv

2n/2 .
Case(iii): pi = l−i − 1. Here we get the same probability bound as in Case(ii). Hence,

Pr[B7 ∧B1c ∧B2c] ≤ max{n, nqe/2n/4}qv
23n/4 + nqv

2n/2 .

8. Pr[B8∧B1c].Fix i ∈ [1 · · · qv]. Since pi ≥ 0, we have N−i = N+
k for some kth

encryption query. Then for a fixed i,

Pr[X−i [pi + 1] = X+
i1

[0]] = Pr[bY +
k [pi]c ⊕ bC−i [pi]c ⊕ Constpi+1 �∆+

k

= bN+
i1
cn/4||0n−r−2||b+

1i1b
+
0i1 ]

Then we can bound this event with probability 1/2n/4.
Also the event B1c implies that (i′, j′) can take at most n many values.

Pr[X−i [pi + 2] = X+
i′ [j
′] ∧B1c] ≤ n

2n/2 .

Hence,
Pr[B8 ∧B1c] ≤ nqv

23n/4 .

By adding all these probabilities we prove the lemma.

5.4 Lower Bound of ipreal(τ )
We need to find out the lower bound for the ratio of ipreal and ipideal. For that, we fix
τ ∈ Vgood, where τ = (τe, τv) and

τe = (N+
i , A

+
i ,M

+
i , X

+
i , Y

+
i , T

+
i )i=1..qe ,

τv = (N−i , A
−
i , C

−
i , T

−
i ,⊥)i=1..qv
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. We assume that all the probability space (except for ipideal(∗)) are defined over the real
game. Clearly, ipideal(τ) = 1

2n(σe+qe) . Now we consider the real case. As B3, B4, B5 do
not hold for this good transcript τ , all the inputs of the random function inside τe are
distinct and hence all the Y +-values are independent and uniformly distributed. Also the
X+-values are uniquely determined from Y +, A+ and M+.
Therefore, Pr[τe] = 1

2n(σe+qe) . Now we have to calculate

ipreal(τ) = Pr[τe, τv]
= Pr[τv|τe]Pr[τe]

= 1
2n(σe+qe)Pr[τv|τe].

(2)

Let η be the event that ∀i ∈ [1 · · · qv], X−i [j] for pi < j ≤ l−i can not collide with any
X+-values in τe and X−i [j]’for j 6= j′. As the events B6, B7, B8 can not hold for the
good transcript, Y −i [pi + 1] is uniformly random. Due to the property of feedback function,
X−i [pi + 2] is also uniformly random.
Now we need to calculate Pr[τv|τe].

P r[τv|τe] = 1− Pr[τ cv |τe]
= 1− (Pr[τ cv , η|τe] + Pr[τ cv , ηc|τe])

(3)

Here, Pr[τ cv , η|τe] is the probability that ∃i ∈ [1 · · · qv] such that T−i is correct. But
T−i = Y −i [l−i ] and the event η implies that Y −i [l−i ] is uniformly random. Hence Pr[τ cv , η|τe]
is the probability of guessing T−i correctly.
Therefore,

Pr[τ cv , η|τe] ≤
qv
2n (4)

Now, Pr[τ cv , ηc|τe] and the event ηc can be described as
for i ∈ [1 · · · qv] and pi + 1 ≤ j ≤ l−i , X

−
i [j] = X+

i1
[j1] ∨ X−i [j] = X−i [j′] for some

i1, j1, j
′ 6= j and j′ > pi.

The event B1c can not hold for the good transcript. Hence (i1, j1) can take at most n
many values. Then for a fixed i, we have
Pr[X−i [j] = X+

i1
[j1]] ≤ n.l−

i

2n/2 and Pr[X−i [j] = X−i [j′] ∧ T−i is correct] ≤ (l−
i

)2

2n/2
1

2n/2 . Also∑
1≤i≤qv (l−i ) ≤ σv and

∑
1≤i≤qv (l−i )2 ≤ σ2

v .

Therefore,

Pr[τ cv , ηc|τe] ≤
nσv
2n/2 + σ2

v

2n ≤
2nσv
2n/2 (5)

Combining (5), (6), (7) and (8), we get

ipreal[τ ] ≥ 1
2n(σe+qe)

(
1− qv

2n −
2nσv
2n/2

)
≥ ipideal[τ ]

(
1− qv

2n −
2nσv
2n/2

)
.

The result follows from Coefficient-H technique combined with Lemma 1.

6 Hardware Implementation of HyENA
HyENA aims to achieve a lightweight implementation on low resource devices. HyENA has
a simple structure with a block cipher and a few linear operations. It has a small state
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Table 2: Clock cycles per message byte for HyENA

Message length (Bytes)
16 32 64 128 256 512 1024 2048 4096 16384 32768 262144

cpb 10.563 6.656 4.7031 3.727 3.238 2.9941 2.872 2.811 2.781 2.758 2.754 2.750

size and the complete circuit size is dominated by the underlying block cipher. In this
section we provide hardware implementation details of HyENA instantiated with the GIFT
block cipher.

6.1 Clock Cycle Analysis
We provide a conventional way for speed estimation, i.e, the number of clock cycles to
process input bytes. Since HyENA processes at least one associated data (AD) block
(one dummy block when AD is empty), we calculate the cpb assuming one AD block and
m message blocks. We use 40 round GIFT and need 40 cycles for the GIFT module. We
use 4 more cycles to compute the feedback and update the ∆ value. Overall, HyENA
needs (44(m + 1) + 81) cycles. Table 2 shows the number of average cycles per input
message bytes, which we call cycles per byte (cpb). The cpb is (44(m+ 1) + 81)/16m and
it converges to 2.75 for very large m.

6.2 Hardware Architecture
This section describes the hardware implementation details of HyENA. The architecture
is round based (without any pipelining) with 128-bit datapath and is modular. Due to
the similarity between the associated data and the message processing phase, the same
hardware module can be used for both. A single bit switching can be used to distinguish
these data types. The hardware architecture is described in Fig. 9. The main architecture
has the following modules.

1. State Registers. State registers store the block cipher intermediate states and the
secret mask values after each clock cycles. There are one 128-bit State register to
store the block cipher state, a 64-bit ∆ register to store the ∆, and an 128-bit Key
register to store the master key. State and Key are used by the BC module.

2. BC Round. GIFTr module runs one GIFT round computation along with a round
key update. The round key register is initialized with the master key from the Key
register, each time the round function is invoked. The output from GIFTr is sent to
the State register, that is input to the next round. Each block process needs r + 1
cycles. After block process is done the value in Key is inverted to master key.

3. Swap Module. The Swap module just swaps the internal state by applying an n/2
bit left rotation.

4. Update Module. Update module updates the ∆ register. It receives the current
∆ value and updates it by multiplying with 2 or 3 or 32. Multiplication by 32

can be computed with 3 multiplication in two consecutive clock cycles. Overall we
allocate total 4 clock cycles as we need maximum 4 cycle to compute αa.(1 + α)b
(i.e., a+ b ≤ 4). We use 3 : 1 multiplexor implemented using scan registers.

Note that, we do not explicitly describe the control unit as we emphasize more on the
explicit functional modules related to the pseudocode.
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Figure 9: Hardware Architecture Diagram

Table 3: FPGA implementation results of HyENA

Design (Platform)
Slice

Registers LUTs Slices
Frequency
(MHz)

Throughput
(Gbps) Mbps/LUT Mbps/Slice

HyENA (Virtex 7) 336 668 322 410.295 1.28 1.916 3.975

Basic Implementation. At the begining, the State register is loaded with N , next the
initialization process encrypts N with GIFT. 64 bits from the encrypted nonce is truncated
by the “chop” function. This chopped value is stored in ∆ to initialize it. After the
initialization, 128-bit AD blocks are fetched and sent to the HyFB module to compute an
128 bit intermediate state. It is next partially masked with the value in ∆ for every GIFT
call. After the AD is processed, the message blocks are processed in the same manner,
except the ciphertext blocks are released. Finally, the tag is generated using an additional
block cipher call.

6.3 Implementation Results
We implement HyENA on Xilinx Virtex 6 and Virtex 7, using VHDL and Xilinx ISE 13.4.
Table 3 presents the implementation results of HyENA on Virtex 7.We follow the RTL
approach and a basic iterative type architecture with 128-bit datapath. The ares are
provided in the number of LUTs and slices. Frequency (MHz), Throughput (Gbps), and
throughput-area efficiencies are also reported in addition to the hardware areas. Table 3
presents the mapped hardware results of HyENA.

The architecture for GIFT uses three registers State, RK and Round to hold the
blockcipher state, current round key and the round counter respectively. The architecture
is divided into four modules SN , BP , ARK and ARC, UKEY . operations. SN module
applies a 4-bit sbox to each of the 4-bit nibbles of the state. BP applies the bit permutation
on the state. ARK performs the round key addition on the state and ARC applies round
constant addition on the state. UKEY updates the round key and stores it in RK. The
architecture also uses another module EXT to extract a part of the round key to be added
to the state.
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Table 4: Comparison on Virtex 7 [ATH] (Results are taken by selecting
CAESAR Round 2 and Standards implemented results (following CAESAR API)
in [ATH]). The results for CLOC-AES-Optimized and NORX-Optimized implementations
(based on custom API, but not CAESAR API) have been taken from [KHKC17]. Results
for COFB have been taken from [CIMN17b]. ‘-‘ implies data not available

Scheme LUT Slices T’put (Gbps) Mbps / LUT Mbps / Slice
HyENA 668 322 1.28 1.916 3.975

COFB[AES] 1440 564 2.933 2.031 5.191
COFB[AES]-CAESAR-API 1496 579 2.747 1.842 4.395

COFB[GIFT] 771 316 2.230 2.892 6.623
COFB[GIFT]-CAESAR-API 1041 355 1.164 1.174 2.604

ACORN 499 155 3.437 6.888 22.174
AEGIS 7504 1983 94.208 12.554 47.508

AES-COPA 7795 2221 2.770 0.355 1.247
AES-GCM 3478 949 3.837 1.103 4.043
AES-OTR 4263 1204 3.187 0.748 2.647

AEZ 4686 1645 8.421 0.719 2.047
ASCON-128 1373 401 3.852 2.806 9.606
ASCON-128a 1836 506 5.476 2.982 10.821
CLOC-AES 3552 1087 3.252 0.478 1.561

CLOC-TWINE 1552 439 0.432 0.278 0.984
DEOXYS 3234 954 1.472 0.455 2.981

ELmD 4490 1306 4.025 0.896 3.082
JAMBU-AES 1595 457 1.824 1.144 3.991

JAMBU-SIMON 1200 419 0.368 0.307 0.878
Joltik 1261 390 0.402 0.319 1.031

Ketje-Jr 1567 518 4.080 2.604 7.876
Ketje-Sr 2592 724 6.752 2.605 9.326

Minalpher 2941 802 2.447 0.832 3.051
NORX 2881 857 10.328 3.585 12.051

PRIMATES-HANUMAN 1148 370 1.072 0.934 2.897
OCB 4269 1228 3.608 0.845 2.889

SCREAM 2315 696 1.100 0.475 1.580
SILC-AES 3040 910 4.365 1.436 4.796
SILC-LED 1682 524 0.267 0.159 0.510

SILC-PRESENT 1514 484 0.479 0.316 0.990
Tiaoxin 7556 1985 75.776 10.029 38.174

TriviA-ck 2221 684 14.852 6.687 21.713

6.4 Benchmarking with ATHENa Database

We benchmark our implemented results using the results in ATHENa Database [ATH],
taking Virtex 7 (XC71140T) as our target platform. In Table 4, we provide comparisons
on Virtex 7. Note that, we also add two custom API based implementation results (for
CLOC-AES-Optimized and NORX-Optimized) provided in [KHKC17]. The other results
in [KHKC17] have been collected in ASIC platform and hence are not compatible with our
figures.

We also remark that it is basically hard to compare HyENA with other non-block-cipher-
based designs in the right way, because of the difference in the primitives and the types of
security guarantee. For example, ACORN is built from scratch and does not have any prov-
able security result, and is subjected to several cryptanalyses [DRA16,SWB+16,SBD+16,
LLMH16]. Sponge AE schemes (ASCON, Ketje, NORX, and PRIMATES-HANUMAN) use
a keyless permutation of a large block size to avoid key scheduling circuit and have the
provable security relying on the random permutation model.

Observation on comparison with COFB: Note that, HyENA is close to COFB in
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structure. However, the FPGA results show that HyENA achieves a fewer LUTs than
GIFT-COFB but with a worse throughput. We would like to mention that, our main motiva-
tion is to optimize the hardware area rather than optimizing the throughput. Thus, overall
our implementation performs very well in the number of LUTs at the cost throughput and
throughput/area metric.

7 Conclusion
This paper completely characterizes feedback based rate 1 authenticated encryption modes
and proposes a new feedback called hybrid feedback that combines plaintext and ciphertext
feedback in a hybrid manner. Using this feedback, a new block cipher based mode for AE,
called HyENA, is proposed that focuses on minimizing the state size and more importantly
minimizing the XOR counts. When instantiated with an n-bit block cipher, HyENA
operates at rate one with almost-optimal state size (3n/2 bits) as well as XOR count
(3n/2 bits) and is provable secure up to O(2n/2/n) queries based on the standard PRP
assumption on the block cipher.
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