
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. S1, pp. 390–416. DOI:10.13154/tosc.v2020.iS1.390-416

Isap v2.0
Christoph Dobraunig1,2, Maria Eichlseder2, Stefan Mangard2, Florian

Mendel3, Bart Mennink1, Robert Primas2 and Thomas Unterluggauer2

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
2 Graz University of Technology, Graz, Austria

3 Infineon Technologies AG, Neubiberg, Germany
https://isap.iaik.tugraz.at

isap@iaik.tugraz.at

Abstract. We specify Isap v2.0, a lightweight permutation-based authenticated
encryption algorithm that is designed to ease protection against side-channel and fault
attacks. This design is an improved version of the previously published Isap v1.0, and
offers increased protection against implementation attacks as well as more efficient
implementations. Isap v2.0 is a candidate in NIST’s LightWeight Cryptography
(LWC) project, which aims to identify and standardize authenticated ciphers that are
well-suited for applications in constrained environments. We provide a self-contained
specification of the new Isap v2.0 mode and discuss its design rationale. We formally
prove the security of the Isap v2.0 mode in the leakage-resilient setting. Finally, in
an extensive implementation overview, we show that Isap v2.0 can be implemented
securely with very low area requirements.
Keywords: Authenticated encryption · NIST LWC · Leakage resilience · Sponges

1 Introduction
Ever since the publication of side-channel and fault attacks [Koc96,KJJ99,BDL97,BS97]
it has become evident that implementations of cryptographic schemes cannot be con-
sidered as a black box, especially in scenarios where an attacker has physical access to
the device performing a cryptographic task. However, restricting the access to devices
performing cryptographic tasks provides a considerable limitation on the applications in
which cryptography can be used at all. As a consequence, shortly after the introduction
of side-channel and fault attacks, countermeasures that harden the implementations of
cryptographic primitives, such as masking [GP99,CJRR99], have been introduced.

However, cryptographic primitives like the AES [DR02] as well as ARX-based primi-
tives [Ber08,Nat15a] turned out to be costly to protect against implementation attacks,
especially considering (higher-order) masking against (higher-order) side-channel attacks.
As a consequence, primitives have been introduced that allow for more efficient mask-
ing, such as the blockciphers Noekeon [DPVR00], PICARO [PRC12], Zorro [GGNPS13],
Robin, or Fantomas [GLSV14] or the permutations used in Ascon [DEMS16], Kec-
cak [BDPV11,Nat15b], or Xoodoo [DHVV18]. Likewise, dedicated modes for symmetric
encryption have been introduced that reduce the requirements for countermeasures on the
primitive level for protection against side-channel attacks. These modes typically fall in
the categories of leakage-resilient cryptography [DP08] or fresh re-keying [MSGR10].

Inspired by these research directions, Isap v1.0 was designed and published at ToSC
2017 [DEM+17], introducing an authenticated encryption scheme focusing on the protection
against side-channel attacks. Isap v1.0 is an encrypt-then-MAC [BN00,KJJR11] scheme
utilizing the sponge construction [BDPV07,BDPV08]. It combines a sponge-based stream

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-12-10, Accepted: 2020-02-15, Published: 2020-06-22

https://doi.org/10.13154/tosc.v2020.iS1.390-416
https://isap.iaik.tugraz.at
mailto:isap@iaik.tugraz.at
http://creativecommons.org/licenses/by/4.0/

Dobraunig, Eichlseder, Mangard, Mendel, Mennink, Primas, and Unterluggauer 391

cipher with a suffix keyed sponge acting as MAC in a specific way to provide resistance
against side-channel attacks. In particular, both parts derive session keys in a GGM-tree-
like [GGM86] manner (similar to [TS14]) in order to harden this key derivation against
side-channel attacks. All ingredients combine to a nonce-based authenticated encryption
scheme that provides protection against (higher-order) differential power analysis without
the need for (higher-order) masking.

1.1 Contributions
In this paper, we present the improved version Isap v2.0. Its specification is given in
Section 2. Isap v2.0 retains Isap v1.0’s outstanding properties with respect to side-channel
protection, but the mode differs subtly from Isap v1.0 so as to achieve increased protection
against other implementation attacks. Additionally, Isap v2.0 introduces new, more
efficient instantiations. The rationale of Isap v2.0 and its improvements over Isap v1.0
are detailed in Section 3. In this paper, unless stated otherwise, Isap always refers to
Isap v2.0.

The main design goal of Isap v2.0 is to provide out-of-the-box robustness against certain
types of implementation attacks while allowing to add additional defense mechanisms at
low cost. This is essential whenever cryptographic devices are deployed in locations that
are physically accessible by potential attackers – a typical scenario in IoT (Internet of
Things) applications. Secure software and firmware updates on such devices in particular
are both crucial and challenging.

The Isap mode of operation can be instantiated with any suitable permutation. We
propose four instantiations of Isap v2.0 (see also Subsection 2.2): two based on the
400-bit permutation Keccak-p[400] [BDPV11,Nat15b], and two based on the 320-bit
permutation used in Ascon [DEMS16,DEMS19], which has recently been selected as first
choice for the use case of lightweight applications (resource constrained environments) in
the final CAESAR portfolio [CAE14]. The security claims corresponding to these four
instantiations are summarized in Subsection 2.3. Note that by implementing either of
the two permutations, other cryptographic functionalities can be realized with minimal
implementation overhead, including hashing [BDPV11,DEMS19].

Whereas Isap v1.0 was published without a formal security proof, we complement this
paper with a proof of security in the leakage-resilient setting for Isap v2.0. Although
the robustness of the Isap mode against implementation attacks is rather intuitive (see
Section 3), formally proving so turns out to be subtle. The reason for this is that Isap
is built of a sponge-based stream cipher with a suffix-keyed sponge, both of which are,
from a generic perspective, modes with structurally different properties. The leakage
resilience of these two components has recently been investigated by Dobraunig and
Mennink [DM19a,DM20]. In Section 4, we show how these two disjoint leakage resilience
results seamlessly fuse together to leakage resilience of the Isap mode.1

In Section 5, we provide an extensive implementation overview for all instances of
Isap. For instance, we demonstrate that one can implement the Ascon-based instance
Isap-A-128a in software to process long messages with up to 21.9 cycles/byte on modern
desktop CPUs. We furthermore investigate the cost of hardware implementations, and
demonstrate, e.g., that protected implementations are possible with area below 14 kGE.
We finalize Section 5 by discussing various aspects of implementation security and the
possibility of online implementations.

1.2 Novelty Compared with Previously Published Work
We briefly summarize the novelty of this work compared to previous related publications.

1On a related note, Guo et al. [GPPS19] independently constructed a security argument for Isap.

392 ISAP v2.0

• Specification: Isap v1.0 was first published in [DEM+17]. Isap v2.0 updates this
specification in numerous aspects in order to improve the protection against a
wider range of implementation attacks including fault attacks, as we summarize in
Section 3. Isap v2.0 is a candidate in the NIST LightWeight Cryptography (LWC)
project [DEM+19], but was not published elsewhere.

• Security proof: Isap v1.0 was published without a formal proof. In this paper,
we prove the security of Isap v2.0 in a leakage-resilient setting. A preliminary
version of the proof given in Section 4 has appeared as a workshop record without
proceedings [DM19b].

• Implementation: Section 5 includes new implementation results. We created opti-
mized implementations for all Isap instantiations and for various platforms ranging
from high-end 64-bit CPUs to low-end 32-bit microprocessors. We also discuss the
implications of implementing Isap in an online instead of a two-pass fashion.

1.3 Related Work
The area of leakage resilient cryptography [DP08] popularized the idea of designing
modes of operation that provide some resilience against side-channel attacks. For a
long time, the majority of leakage-resilient constructions were based on (tweakable)
block ciphers [Pie09,DP10,YSPY10, FPS12,MSJ12, SPY13, PSV15,MSNF16, BPPS17,
BGP+19,GSWY20]. However, recently, the focus of leakage-resilient cryptography also
started to include permutation-based constructions [DM19a, DM20, GPPS19]. A di-
rection with a similar goal is fresh re-keying [MSGR10], which brought forward many
schemes [MPR+11,BDH+14,DKM+15,DFH+16] and served as motivation to start de-
signing Isap v1.0 [DEM+17]. Around the publication of Isap v1.0, several other papers
appeared that also focus on authenticated encryption that provides increased resistance
against side-channel attacks [BPPS17,BMOS17].

Clearly, the concept of authenticated encryption predates the constructions mentioned
before. The first concepts that provided authentication and encryption where typically
so-called generic compositions that combine an encryption scheme and a message authen-
tication code (MAC) in one way or another [BN00,Kra01]. More efficient constructions
that provide authenticated encryption were introduced by Jutla [Jut01, Jut08]. Later,
Rogaway [Rog02] introduced the notion of authenticated encryption with associated data.
The research in authenticated encryption led to a competition called CAESAR [CAE14].
Recently, the final portfolio of CAESAR was announced, which includes the authenticated
encryption schemes Ascon [DEMS16] and ACORN [Wu15] recommended for lightweight
applications, AEGIS-128 [WP16] and OCB [KR16] for high-performance applications, and
Deoxys-II [JNPS16] and COLM [ABD+16] for defense in depth.

2 Specification of ISAP
Isap is a family of permutation-based authenticated encryption schemes. The Isap
instances are parameterized by the security parameter k, which defines the cryptographic
security level of k bits, as well as a set of permutations with different round numbers.
The authenticated encryption algorithm E gets as input a key K ∈ {0, 1}k, a nonce
N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗. It outputs a
ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k, where |M | denotes the bitlength of M .
The decryption algorithm D takes K, N , A, C, and T , and returns either the message M
or an error ⊥.

Dobraunig, Eichlseder, Mangard, Mendel, Mennink, Primas, and Unterluggauer 393

2.1 Mode
Authenticated encryption E and authenticated decryption D are described in Algorithm 1
and 2. Isap is an encrypt-then-MAC design, where the same k-bit key is used for encryption
and message authentication. The encryption IsapEnc is specified in Algorithm 3 and
the message authentication IsapMAC in Algorithm 5. Both functions internally use a
re-keying function IsapRK, which is specified in Algorithm 4. The three functions are
specified in more detail below.

In these algorithms, pH, pB, pE, pK denote permutations updating an n-bit state S.
Their instantiations are further elaborated on in Subsection 2.2.

The instances are further parameterized by two rate values rH and rB. The rate r
defines how the state S is split into an r-bit outer part Sr and a c-bit inner part Sc as
S = Sr ‖Sc = dSer ‖ bScc, where c = n − r, ‖ denotes concatenation of bitstrings, dSer
denotes the first (most significant) r bits of bitstring S, and bScc denotes the last (least
significant) c bits of bitstring S. Rate rH is applied for states in the unkeyed sponge and
in the keyed sponge that are unlikely to be evaluated more than once for different outer
parts with a fixed inner part, which means that rH may be reasonably large. Rate rB is
applied for states in the keyed sponge that may be evaluated more than once, which means
that we must bound the amount of leakage by limiting the total number of evaluations
that may be made for that state. In each of the members of Isap, we set rH = n − 2k,
cH = 2k and rB = 1, cB = n− 1 (see also Table 1).

2.1.1 Re-Keying with IsapRK

The re-keying function IsapRK is called by IsapEnc and IsapMAC to generate session
keys K∗E and K∗A to perform encryption and authentication, respectively. The function
gets as input a k-bit key K, a k-bit string Y , a constant IV, and an output size z, where

(IV, z) =
{

(IVKE, n− k) , if called by IsapEnc,
(IVKA, k) , if called by IsapMAC,

and transforms these into a subkey K∗ of size z bits. The function is described in
Algorithm 4 and illustrated in Figure 1a. It is instantiated using permutations pK and pB:
pK is called in the beginning (to process the master key K) and at the end (to generate
subkey K∗), and pB is called for all intermediate duplexes using a very small rate rB.

2.1.2 Encryption with IsapEnc

Encryption is performed by using the keyed sponge construction in streaming mode, with
the notable difference that, first, IsapRK is called to generate a subkey K∗E. IsapEnc gets
as input a k-bit key K, a k-bit nonce N , and an arbitrarily large messageM , and generates
a ciphertext C of size |M |. The function is described in Algorithm 3 and Figure 1b. It first
calls IsapRK for encryption using the constant initial value IV = IVKE and z = n − k
in order to derive an (n − k)-bit subkey K∗E. Once this subkey is generated, a regular
sponge-based streaming mode using permutation pE is evaluated at high rate rH.

IsapEnc is a streaming mode, so decryption is identical with the roles ofM,C swapped.

2.1.3 Authentication with IsapMAC

For message authentication, we use a sponge-based hash function to build a suffix-MAC.
IsapMAC gets as input a k-bit key K, a k-bit nonce N , arbitrarily large associated data
A, and arbitrarily large ciphertext C, and it outputs a tag T of size k bits. The function is
described in Algorithm 5 and Figure 1c. It starts by initializing the state as N ‖ IVA and
absorbing the non-secret inputs (A,C) in plain sponge mode using permutation pH with

394 ISAP v2.0

high rate rH. Note that domain separation between A and C is performed using the xor
of a single bit ‘1’ to the inner part of the state. The resulting state S is then split into a
k-bit value dSek and an (n− k)-bit value bScn−k. The value dSek is fed as input string to
IsapRK to generate a subkey K∗A, and a final call to the permutation pH is made on input
K∗A ‖ bScn−k to obtain the k-bit tag T .

For verification, the tag T ′ is re-computed in the same way from the received nonce N ,
associated data A, and ciphertext C, and compared with the received tag T .

K ‖ IV

pK

Initialize

Yi
rB

pB
cB

Re-keying

Yw
rB

cB

pK

K∗

z

Squeeze

(a) IsapRK, with (IV, z) = (IVKE, n−k)
in IsapEnc and (IV, z) = (IVKA, k) in
IsapMAC

N

k

IsapRK

K(IVKE, n−k)
k

K∗en−k

Initialize

pE

Mi Ci

rH

cH

Encrypt Plaintext

pE

Mt Ct

≤ rH

(b) IsapEnc

N

IVA

pH

k

Initialize

Ai
rH

pH
cH

Authenticate Ass. Data

As
rH

pH
cH

0∗ ‖ 1

Ci
rH

pH
cH

Authenticate Ciphertext

Ct
rH

pH
cH

pHIsapRK

T

K(IVKA, k)

k

k

Y
k

K∗ak

Finalize

(c) IsapMAC

Figure 1: Isap authenticated encryption

2.2 Instantiation

Isap is instantiated with either the well-analyzed 400-bit permutation Keccak-p[400]
[BDPV11,Nat15b] or the well-analyzed 320-bit permutation used in Ascon [DEMS16,
DEMS19]. In total, we specify four instances, which are summarized in Table 1. For each
of these instances, we specify the number of rounds of the permutations: sH, sB, sE, sK for
permutations pH, pB, pE, pK, respectively. All four instances have security level k = 128.
We provide a short description of the two permutations in Subsection A.1 and A.2.

The initial values IVA, IVKA, and IVKE, which serve as domain separation between
the different algorithms, are specified in Table 2. They are defined as the concatenated
8-bit integer values of all relevant parameters of the instance, plus a constant for the role
of each IV. The initial values are then padded with zeros until they reach the required
length of n− k bits. For Isap-K-128 and Isap-K-128a, the resulting IVs have a length
of 272 bits, while those for Isap-A-128 and Isap-A-128a are 192 bits long.

Dobraunig, Eichlseder, Mangard, Mendel, Mennink, Primas, and Unterluggauer 395

Algorithm 1 E(K,N,A,M)
Input: key K ∈ {0, 1}k,

nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
plaintext M ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}|M|,
tag T ∈ {0, 1}k

Encryption
C ← IsapEnc(K, N, M)

Authentication
T ← IsapMAC(K, N, A, C)
return C, T

Algorithm 2 D(K,N,A,C, T)
Input: key K ∈ {0, 1}k,

nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
ciphertext C ∈ {0, 1}∗,
tag T ∈ {0, 1}k

Output: plaintext M ∈ {0, 1}∗, or error ⊥

Verification
T ′ ← IsapMAC(K, N, A, C)
if T 6= T ′ return ⊥

Decryption
M ← IsapEnc(K, N, C)
return M

Algorithm 3 IsapEnc(K,N,M)
Input: key K ∈ {0, 1}k,

nonce N ∈ {0, 1}k,
message M ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}|M|

Initialization
M1. . . Mt←rH-bit blocks of M‖0−|M|mod rH

K∗E ← IsapRK(K, N, IVKE, n− k)
S ← K∗E ‖N

Squeeze
for i = 1, . . . , t do

S ← pE(S)
Ci ← SrH ⊕Mi

C ← dC1 ‖ . . . ‖Cte|M|
return C

Algorithm 4 IsapRK(K,Y, IV, z)
Input: key K ∈ {0, 1}k,

string Y ∈ {0, 1}k,
constant IV ∈ {IVKE, IVKA},
output size z ∈ {n− k, k}

Output: session key K∗ ∈ {0, 1}z

Initialization
Y1 . . . Yw ← rB-bit blocks of Y ‖ 0−k mod rB

S ← K ‖ IV
S ← pK(S)

Absorb
for i = 1, . . . , w − 1 do

S ← pB((SrB ⊕ Yi) ‖ScB)
S ← pK((SrB ⊕ Yw) ‖ScB)

Squeeze
K∗ ← dSez
return K∗

Algorithm 5 IsapMAC(K,N,A,C)
Input: key K ∈ {0, 1}k,

nonce N ∈ {0, 1}k,
associated data A ∈ {0, 1}∗,
ciphertext C ∈ {0, 1}∗

Output: tag T ∈ {0, 1}k

Initialization
A1. . .As←rH-bit bl. of A‖1‖0−|A|−1 mod rH

C1. . .Ct ←rH-bit bl. of C‖1‖0−|C|−1 mod rH

S ← N ‖ IVA
S ← pH(S)

Absorbing Associated Data
for i = 1, . . . , s do

S ← pH((SrH ⊕Ai) ‖ScH)
S ← S ⊕ (0n−1 ‖ 1)

Absorbing Ciphertext
for i = 1, . . . , t do

S ← pH((SrH ⊕ Ci) ‖ScH)
Squeezing Tag

K∗A ← IsapRK(K, dSek , IVKA, k)
S ← pH(K∗A ‖ bScn−k)
T ← dSek
return T

396 ISAP v2.0

Table 1: Recommended parameter configurations for Isap.

Name Permutation
Security level Bit size of Rounds

k n rH rB sH sB sE sK

Isap-K-128a Keccak-p[400] 128 400 144 1 16 1 8 8
Isap-A-128a Ascon-p 128 320 64 1 12 1 6 12
Isap-K-128 Keccak-p[400] 128 400 144 1 20 12 12 12
Isap-A-128 Ascon-p 128 320 64 1 12 12 12 12

Table 2: Initial values for Isap instances in hex notation.

Isap
IVA 1 ‖ k ‖ rH‖rB ‖ sH‖sB‖sE‖sK ‖ 0∗
IVKA 2 ‖ k ‖ rH‖rB ‖ sH‖sB‖sE‖sK ‖ 0∗
IVKE 3 ‖ k ‖ rH‖rB ‖ sH‖sB‖sE‖sK ‖ 0∗

Isap-K-128a
IVA 01 80 9001 10010808 00*

IVKA 02 80 9001 10010808 00*

IVKE 03 80 9001 10010808 00*

Isap-A-128a
IVA 01 80 4001 0C01060C 00*

IVKA 02 80 4001 0C01060C 00*

IVKE 03 80 4001 0C01060C 00*

Isap-K-128
IVA 01 80 9001 140C0C0C 00*

IVKA 02 80 9001 140C0C0C 00*

IVKE 03 80 9001 140C0C0C 00*

Isap-A-128
IVA 01 80 4001 0C0C0C0C 00*

IVKA 02 80 4001 0C0C0C0C 00*

IVKE 03 80 4001 0C0C0C0C 00*

2.3 Security Claims
All Isap family members provide 128-bit security against cryptographic attacks in the notion
of nonce-based authenticated encryption with associated data (AEAD): they protect the
confidentiality of the plaintext (except its length) and the integrity of ciphertext including
the associated data (under adaptive forgery attempts). See also Table 3. Note that, as
usual, a security loss by a small constant factor is expected.

Table 3: Security claims for recommended parameter configurations of Isap.

Requirement
Security in bits

Isap-K-128a Isap-A-128a Isap-K-128 Isap-A-128
Confidentiality of plaintext 128 128 128 128
Integrity of plaintext 128 128 128 128
Integrity of associated data 128 128 128 128
Integrity of nonce 128 128 128 128

In order to fulfill the security claims stated in Table 3, implementations must ensure
that the nonce is never repeated for two encryptions under the same key, and that the
decryption process is only started after successful verification of the final tag. Except
for the single-use requirement, there are no constraints on the choice of the nonce. It is
possible to use a simple counter. It is beneficial that a system or protocol implementing
the algorithm monitors and, if necessary, limits the number of tag verification failures per
key. After reaching this limit, the decryption algorithm rejects all tags. Such a limit is not
required for the security claims above, but may be reasonable in practice to increase the

Dobraunig, Eichlseder, Mangard, Mendel, Mennink, Primas, and Unterluggauer 397

robustness against certain implementation attacks.
All algorithms are designed to achieve practical security against recovery of the secret

master key by passive side-channel attacks assuming an implementation that is secured
against simple power analysis (SPA) including template attacks. Furthermore, Isap is
designed to improve robustness against other implementation attacks, including certain
fault attacks.

3 Rationale
The main goal of Isap v1.0 [DEM+17] was to provide protection against differential power
analysis (DPA) [KJJ99]. For Isap v2.0 [DEM+19], we provided several modifications on
the mode to achieve additional robustness against other implementation attacks, such as
fault attacks.

To achieve robustness against DPA, Isap v1.0 and Isap v2.0 incorporate a re-keying
approach [MSGR10] in an efficient encrypt-then-MAC [BN00,KJJR11] scheme. While
simple re-keying of both a MAC and an encryption scheme can only provide side-channel
robustness for the encryption process, our scheme achieves side-channel robustness for
multiple decryptions as well. Namely, the verification provides security of the decryption
part in case of maliciously modified ciphertexts, while the MAC is protected by making its
session key depend on the authenticated message itself.

The most significant difference of Isap v2.0 versus Isap v1.0 lies in the absorption of the
nonce N during IsapEnc. In Isap v2.0, we decided to make the re-keying performed during
IsapEnc hard to invert by overwriting part of the state with the nonce N . The change is
clearly visible in Figure 1b: one can consider IsapRK to serve as re-keying function for a
plain sponge-based stream cipher execution with key input K∗E ‖N . The change implies
that an attacker who is able to recover the state during the generation of the keystream
cannot recover the master key K. As a result, neither the knowledge of the session key K∗A
nor of the session key K∗E leads to a recovery of the master key K. This change results in an
increased robustness of Isap v2.0 against active implementations attacks like Differential
Fault Analysis (DFA) [BS97], Statistical Fault Attacks (SFA) [FJLT13, DEK+16], or
Statistical Ineffective Fault Attacks (SIFA) [DEK+18,DMMP18,DEG+18].

Other changes include the use of a single key for both IsapMAC and IsapEnc instead
of two independent keys. This has the advantage that less key material has to be stored
than before. Furthermore, as Isap is a mode of operation that can be instantiated with
any suitable permutation, we specify additional instances that use the 320-bit permutation
of Ascon [DEMS16], which has recently been announced as the first choice for the use
case of lightweight applications (resource constrained environments) in the final CAESAR
portfolio [CAE14]. Compared to Keccak-p[400], Ascon-p maintains a smaller state size
and is furthermore better suited for implementation on modern 64-bit CPUs.

4 Security of the ISAP Mode
In essence, the components of Isap follow two different permutation-based design strategies.
IsapRK and IsapEnc are instances of a keyed duplex that initialize the state with a key
and subsequently evolve the state by duplexing calls with extraction or absorption. The
function IsapMAC, on the other hand, first absorbs data and finalizes the state with a
key.

In two recent articles, Dobraunig and Mennink (DoMe) set out to perform a leakage
resilience analysis of these two components. In [DM19a], DoMe proved leakage resilience
of the generalized keyed duplex mode. This mode in particular covers IsapRK and
the stream encryption within IsapEnc. DoMe showed how these two can be combined

398 ISAP v2.0

to obtain confidentiality of a variant of Isap [DM19a, Section 7]. In [DM20], DoMe
introduced and formalized the suffix keyed sponge and proved its leakage resilience. The
authentication part of Isap, IsapMAC, is a special type of suffix keyed sponge. These
two works [DM19a,DM20] lead to the leakage resilience of Isap, with two caveats:

• The demonstration of how the duplex can be used to achieve confidentiality in
[DM19a] is slightly different from how Isap performs encryption. The composition
has yet to be described in detail.

• The security proof of the suffix keyed sponge abstracts the key absorption. In Isap,
this key absorption is done by IsapRK, which is also called by IsapEnc. This
means that we cannot directly conclude security of Isap from the disjoint results
of [DM19a] and [DM20], but the combination must be spelled out.

Next, we show how the leakage resilience of the keyed duplex and the leakage resilience
of the suffix keyed sponge accumulate to the leakage resilience of the Isap mode. (A
preliminary version of this section appeared before as workshop records without proceed-
ings [DM19b]). We want to note that we consider further cryptanalysis and also the
evaluation of implementations of Isap to be crucial to get a deeper insight in the security
of Isap.

4.1 Security Model
We consider security of Isap = (E ,D) in the random permutation model. We consider a
simplified setting where p1 := pK = pB, p2 := pE, and p3 := pH are uniformly randomly
drawn from the set of all n-bit permutations: p1, p2, p3

$←− perm(n). Let K $←− {0, 1}k. Let
$∗+k be a function that for each (N,A,M) outputs a uniform random string of length
|M |+ k bits (noting that a nonce should never be repeated), and let ⊥ be a function that
always returns ⊥.

In the black-box security model, one would consider an adversary that has access
to either (Ep

K ,D
p
K ,p

±) in the real world or ($∗+k,⊥,p±) in the ideal world, where p =
(p1, p2, p3) and where “±” stands for bi-directional query access:

Advae
Isap(A) = ∆A

(
Ep
K ,D

p
K ,p

± ; $∗+k,⊥,p±
)
.

In case of leakage resilience, we adopt the conventional approach of non-adaptive leakage
resilience, e.g., [Pie09,YSPY10,FPS12,SPY+10,DP10], where the adversary has access
to a leak-free version of the construction, which it has to distinguish from random, and
a leaky version, which it may use to gather information. We assume that, a priori, any
permutation evaluation within the leaky construction may leak information.

Formally, we obtain the following model, which follows Barwell et al. [BMOS17] with
the difference that we consider security in the ideal permutation model. Let p,K, $∗+k
be as above. Let L = {L : {0, 1}n × {0, 1}n → {0, 1}λ} be a class of leakage functions
independent of the permutations, and for any leakage function L ∈ L, define by [Ep

K]L
(resp., [Dp

K]L) an evaluation of Ep
K (resp., Dp

K) where each permutation call within leaks λ
bits of its input plus output. We now consider an adversary that in addition to the oracles
in the black-box model has access to [Ep

K]L and [Dp
K]L:

Advnalr-ae
Isap (A) = max

L∈L
∆A

(
[Ep
K]L , [D

p
K]L , E

p
K ,D

p
K ,p

± ; [Ep
K]L , [D

p
K]L , $∗+k,⊥,p

±) . (1)

The adversary is not allowed to make an encryption query (to the leaky or leak-free oracle)
under a repeated nonce.

Dobraunig, Eichlseder, Mangard, Mendel, Mennink, Primas, and Unterluggauer 399

4.2 Multicollision Limit Function
Daemen et al. [DMV17] introduced the multicollision limit function in the context of keyed
sponge proofs. Let q, n, k ∈ N such that k ≤ n. Consider the experiment of throwing q
balls uniformly at random in 2n−k bins, and denote by µ the maximum number of balls in
any single bin. The multicollision limit function µqn−k,k is defined as the smallest natural
number x that satisfies

Pr (µ > x) ≤ x

2k .

Daemen et al. [DMV17] also gave an in-depth analysis of the term µqn−k,k. The analysis is
tedious, but the conclusion is that the term behaves as follows:

µqn−k,k .

n/ log2

(
2n−k
q

)
, for q . 2n−k ,

n · q

2n−k , for q & 2n−k .

4.3 Main Result
We present the main result on the leakage resilience of the Isap mode. The result is stated
with respect to the formalism of Subsection 4.1.

Theorem 1. Assume that 4 ≤ k ≤ n, and 1 ≤ λ ≤ 2n. Let p = (p1, p2, p3) $←− perm(n)3

and K $←− {0, 1}k. Let L = {L : {0, 1}n×{0, 1}n → {0, 1}λ} be a class of leakage functions.
For any adversary making qe ≥ 2 encryption queries with unique nonces and qv verification
queries (writing q = qe + qv) with a total amount of Q plaintext blocks, and P ≤ 2n−1

primitive queries to each of p1, p2, p3,

Advnalr-ae
Isap (A) ≤

4
(4+2kq+P

2
)

+ 2
(
Q+P

2
)

+ 6
(
P
2
)

2n +
2
(
Q
2
)

2n−λ + 32kqP + 16k2q2

2n−4λ

+
2µ2(P−q)

k,n−k

2n−k +
2µ2q

k,n−k · P
2n−k−λ + 2P + 2qQ

2n−k−2λ

+ 8P 2

22k +
4µQn−2k,2k · (P + 1)

22k−2λ + qv + 4
2k + 8P

2k−2λ +
2µ2(P−q)

n−k,k · P

2k−λ−µ
2(P−q)
k,n−k λ

.

The proof is included in Subsection 4.4.

4.4 Proof of Theorem 1
Note that both encryption E and decryption D of Isap can be specified as function of
IsapRK =: IR, IsapEnc =: IE, and IsapMAC =: IM:

Ep
K = E IRp1

K
,IEp2

K?
ke
,IMp3

K?
ka ,

Dp
K = DIRp1

K
,IEp2

K?
ke
,IMp3

K?
ka ,

where K?
ke is defined as the output states of IRp1

K for IV = IVKE, and K?
ka the output

states of IRp1
K for IV = IVKA. Here, the ? is used to explicitly remind of the fact that the

keys come from IRp1
K . Note that these values are, in particular, defined by the inputs to

IEp2 and IMp3 .

400 ISAP v2.0

Let L ∈ L be any leakage and A be any adversary. Our goal is to bound

∆A
(
[Ep
K]L , [D

p
K]L , E

p
K ,D

p
K ,p

± ; [Ep
K]L , [D

p
K]L , $∗+k,⊥,p

±)
=∆A

([
E IRp1

K
,IEp2

K?
ke
,IMp3

K?
ka

]
L

,

[
DIRp1

K
,IEp2

K?
ke
,IMp3

K?
ka

]
L

, E IRp1
K
,IEp2

K?
ke
,IMp3

K?
ka ,DIRp1

K
,IEp2

K?
ke
,IMp3

K?
ka ,p±;[

E IRp1
K
,IEp2

K?
ke
,IMp3

K?
ka

]
L

,

[
DIRp1

K
,IEp2

K?
ke
,IMp3

K?
ka

]
L

, $∗+k,⊥,p±
)
.

(2)

4.4.1 Eliminating IRp1

The function IRp1
K is called a total amount of at most 2q = 2(qe + qv) times: q times

for IV = IVKE with a requested output of n − k bits, and q times for IV = IVA with a
requested output of k bits. Note that repeated evaluations of IRp1

K for the same nonce give
the same output and are not counted doubly. It is a duplex construction, and we can rely
on the leakage resilience of the duplex [DM19a]. Concretely, we can view it as an idealized
duplex function AIXIF1ro based on a random oracle. Details about this idealized duplex
function can be found in [DM19a], but for the specific case of IRp1

K , one can think of it as
a random function that simply absorbs all data (K,Y, IV) and outputs either n− k or k
bits of output, and that outputs dummy leakages for each duplexing call. The following
Proposition 1 is very similar to [DM19a, Corollary 1]: it is based on slightly different
parametrization, but we have performed the same simplifications on the bound.

Proposition 1. Assume that 4 ≤ k ≤ n, and 1 ≤ λ ≤ 2n. Let p1
$←− perm(n) and

K
$←− {0, 1}k. Let AIXIF1ro be an idealized duplex function based on a random oracle

(details can be found in [DM19a]). Let L = {L : {0, 1}n × {0, 1}n → {0, 1}λ} be a class of
leakage functions. For any adversary A′ making q ≥ 2 queries for IVKE and q ≥ 2 queries
for IVKA, all of length at most k bits, and P primitive queries to p1,

Advnalr-duplex
IR (A′) = max

L∈L
∆A′

(
[IRp1

K]L , p
±
1 ; [AIXIF1ro

K]L , p
±
1
)

≤ 8kqP + 4k2q2

2n−4λ +
(4+2kq+P

2
)

+
(
P
2
)

2n + 2P
2k−2λ + 1

2k . (3)

In addition, except with probability at most the same bound, all output states after absorption
have min-entropy at least n− λ.

A simple hybrid reduction allows us to replace IRp1
K by AIXIF1ro

K in (2):

(2) ≤ ∆A
([
EAIXIF1ro

K ,IE
p2
K?

ke
,IMp3

K?
ka

]
L

,

[
DAIXIF1ro

K ,IE
p2
K?

ke
,IMp3

K?
ka

]
L

,

EAIXIF1ro
K ,IE

p2
K?

ke
,IMp3

K?
ka ,DAIXIF1ro

K ,IE
p2
K?

ke
,IMp3

K?
ka ,p± ;[

EAIXIF1ro
K ,IE

p2
K?

ke
,IMp3

K?
ka

]
L

,

[
DAIXIF1ro

K ,IE
p2
K?

ke
,IMp3

K?
ka

]
L

, $∗+k,⊥,p±
)

+ 2 ·∆A′
(
[IRp1

K]L , p
±
1 ; [AIXIF1ro

K]L , p
±
1
)

≤ ∆A
([
EAIXIF1ro

K ,IE
p2
K?

ke
,IMp3

K?
ka

]
L

,

[
DAIXIF1ro

K ,IE
p2
K?

ke
,IMp3

K?
ka

]
L

,

EAIXIF1ro
K ,IE

p2
K?

ke
,IMp3

K?
ka ,DAIXIF1ro

K ,IE
p2
K?

ke
,IMp3

K?
ka ,p± ;[

EAIXIF1ro
K ,IE

p2
K?

ke
,IMp3

K?
ka

]
L

,

[
DAIXIF1ro

K ,IE
p2
K?

ke
,IMp3

K?
ka

]
L

, $∗+k,⊥,p±
)

+ 2 · (3) . (4)

Dobraunig, Eichlseder, Mangard, Mendel, Mennink, Primas, and Unterluggauer 401

4.4.2 Towards mutually independent IEp2 and IMp3

The function AIXIF1ro
K is independent of all other functions in the oracles, and the adversary

never gets its outcomes. This means that we can basically plainly replace K?
ke by a

dummy Kke
DK←−− ({0, 1}n−k)2k consisting of keys with min-entropy n− k − λ. Note that

AIXIF1ro
K is called by IEp2 for at most q different values, namely the nonces, and each

nonce henceforth lets IEp2
Kke

select the resulting key. Likewise, we can replace K?
ka by a

dummy Kka
DK←−− ({0, 1}k)2k consisting of keys with min-entropy k − λ, with the remark

that identical evaluations of AIXIF1ro
K by IMp3 yield identical outputs and thus identical

selections from Kka. Here, distribution DK takes the leakage into account, but details of
DK are irrelevant: all that matters is that the resulting values have a min-entropy n−k−λ
resp. k − λ after leakage. The step is done at the price of the bound of Proposition 1,
noting that except with that bound the output states of AIXIF1ro

K have min-entropy at
least n − k − λ resp. k − λ. Now, there is no need to keep “AIXIF1ro

K” in the equation
anymore, and we obtain from (4):

(2) ≤ ∆A
([
E IEp2

Kke
,IMp3

Kka

]
L
,
[
DIEp2

Kke
,IMp3

Kka

]
L
, E IEp2

Kke
,IMp3

Kka ,DIEp2
Kke

,IMp3
Kka ,p± ;[

E IEp2
Kke

,IMp3
Kka

]
L
,
[
DIEp2

Kke
,IMp3

Kka

]
L
, $∗+k,⊥,p±

)
+ 4 · (3) . (5)

In both worlds, the encryption and authentication are mutually independent: the former is
instantiated with p2

$←− perm(n) and Kke
DK←−− ({0, 1}n−k)2k and the latter is instantiated

with p3
$←− perm(n) and Kka

DK←−− ({0, 1}k)2k . We can therefore cleanly replace both
functionalities independently.

4.4.3 Individual results on IEp2 and IMp3

For the encryption IEp2
Kke

, we consider it to be a duplex construction, and derive a leakage
resilience bound from [DM19a, Theorem 1]. For the specific case of IEp2

Kke
, the idealized

duplex function can be thought of as simply absorbing (sub-)key K∗E and nonce N and
outputting a sufficiently large keystream. Note that, in fact, IEp2

Kke
is only slightly different

from the construction considered in [DM19a, Corollary 2] and we can follow a comparable
line of reasoning, but now with the differences that, if nonces are not repeated, Ω and
νfix (both related to the number of evaluations where an adversary can set the outer part
of the state to a certain value) now equal 0, and qIV (the maximum number of queries
for a single nonce) equals 1. Here, it is important to note that IEp2

Kke
gets called at most

q = qe + qv times: the qe encryption calls are always for different nonces, the qv verification
calls might be for repeated nonces. However, if this happens, also the key under which it is
queried is identical, and this means that the evaluation of IEp2

Kke
is a repeated query and

is not counted doubly. In addition, theoretically IEp2
Kke

might be called multiple times for
the same key with different nonces. This, however, only happens with a small probability.
Therefore, we also bound the term qδ, the maximum number of initialization calls for single
key, probabilistically by 1. This incurs an extra term (q2)

2n−k−2λ . That term is, eventually,
absorbed in the simplification performed on the bound.

Concretely, we take the general bound of [DM19a, Theorem 1] for the following
parameters:

• State, capacity, and rate are n, 2k, and n− 2k, respectively. Key size is n− k, and
the min-entropy of the key is n− k − λ.

• The parameter α, that rotates the input to the initialization of the duplex, equals 0.

402 ISAP v2.0

• The number of instances, or “users”, equals the number of initialization calls: q. The
online complexity is Q and the offline complexity P .

• As nonces are unique, qIV = 1. The parameter qδ, that measures the number of
initialization calls for a single key (with different nonces), is bounded to equal 1. As
explained above, this bound incurs an extra term (q2)

2n−k−2λ .

• Parameters L, Ω, and νfix, that measure the number of duplexing calls for which the
adversary knows/influences the outer part input, equal 0. Additionally, paths in the
duplex do not repeat and we have R = 1.

With these parameters, we obtain below Proposition 2 from [DM19a, Theorem 1].

Proposition 2. Assume that 4 ≤ k ≤ n, and 1 ≤ λ ≤ 2n. Let p2
$←− perm(n) and

Kke
DK←−− ({0, 1}n−k)q be a random array of keys each with min-entropy at least n− k− λ.

Let AIXIF2ro be an idealized duplex function based on a random oracle (details can be found
in [DM19a]). Let L = {L : {0, 1}n × {0, 1}n → {0, 1}λ} be a class of leakage functions.
For any adversary A′′ making q ≥ 2 queries with unique nonces and Q plaintext blocks,
and P ≤ 2n−1 primitive queries to p2,

Advnalr-duplex
IE (A′′) = max

L∈L
∆A′′

([
IEp2

Kke

]
L
, p±2 ;

[
AIXIF2ro

Kke

]
L
, p±2

)
+

(
q
2
)

2n−k−2λ

≤
2µQn−2k,2k · (P + 1)

22k−2λ +
(
Q
2
)

2n−λ + P + qQ

2n−k−2λ +
(
Q+P

2
)

+
(
P
2
)

2n . (6)

For the message authentication IMp3
Kka

, this is basically a suffix keyed sponge with
properly protected key absorption functionG that is 2−(k−λ)-uniform and 2−(k−λ)-universal.
It operates on capacity c = 2k − 1, noting that the addition of 0∗ ‖ 1 as domain separator
between the hashing of associated data and ciphertext reduces the capacity by 1. We
obtain below Proposition 3 immediately from [DM20, Theorem 3].

Proposition 3. Let p3
$←− perm(n) and Kke

DK←−− ({0, 1}k)q be a random array of keys
each with min-entropy at least k−λ. Let $k be a function that outputs random k-bit strings
for each new arbitrarily-long input. Let L = {L : {0, 1}n ×{0, 1}n → {0, 1}λ} be a class of
leakage functions. For any adversary A′′′ making q ≥ 2 queries, all of length at most k
bits, and P ≤ 2n−1 primitive queries to p3,

Advnalr-prf
IM (A′′′) = max

L∈L
∆A′′′

([
IMp3

Kka

]
L
, IMp3

Kka
, p±3 ;

[
IMp3

Kka

]
L
, $k, p±3

)
≤ 2P 2

22k−1 +
µ

2(P−q)
k,n−k

2n−k +
µ

2(P−q)
n−k,k · P

2k−λ−µ
2(P−q)
k,n−k λ

+
µ2q
k,n−k · P
2n−k−λ . (7)

4.4.4 Completing the proof

We will apply above propositions to (5) to conclude the proof. Informally, we will first
replace IEp2

Kke
with AIXIF2ro

Kke
at the cost of Advnalr-duplex

IE (A′′) of Proposition 2. Then, we
replace IMp3

Kka
with $k at the cost of Advnalr-prf

IM (A′′′) of Proposition 3. These transitions
have to be performed in both worlds of (5), yielding a factor 2.

Formally, we obtain from (5), for adversaries A′′ and A′′′ as quantified in Proposition 2

Dobraunig, Eichlseder, Mangard, Mendel, Mennink, Primas, and Unterluggauer 403

and Proposition 3, respectively:

(2) ≤∆A
([
EAIXIF2ro

Kke ,IM
p3
Kka

]
L
,
[
DAIXIF2ro

Kke ,IM
p3
Kka

]
L
, EAIXIF2ro

Kke ,IM
p3
Kka ,DAIXIF2ro

Kke ,IM
p3
Kka ,p±;[

EAIXIF2ro
Kke ,IM

p3
Kka

]
L
,
[
DAIXIF2ro

Kke ,IM
p3
Kka

]
L
, $∗+k,⊥,p±

)
+ 4 · (3) + 2 ·Advnalr-duplex

IE (A′′)

≤∆A
([
EAIXIF2ro

Kke ,IM
p3
Kka

]
L
,
[
DAIXIF2ro

Kke ,IM
p3
Kka

]
L
, EAIXIF2ro

Kke ,IM
p3
Kka ,DAIXIF2ro

Kke ,IM
p3
Kka ,p±;[

EAIXIF2ro
Kke ,IM

p3
Kka

]
L
,
[
DAIXIF2ro

Kke ,IM
p3
Kka

]
L
, $∗+k,⊥,p±

)
+ 4 · (3) + 2 · (6)

≤∆A
([
EAIXIF2ro

Kke ,IM
p3
Kka

]
L
,
[
DAIXIF2ro

Kke ,IM
p3
Kka

]
L
, EAIXIF2ro

Kke ,$k ,DAIXIF2ro
Kke ,$k ,p± ;[

EAIXIF2ro
Kke ,IM

p3
Kka

]
L
,
[
DAIXIF2ro

Kke ,IM
p3
Kka

]
L
, $∗+k,⊥,p±

)
+ 4 · (3) + 2 · (6) + 2 ·Advnalr-prf

IM (A′′′)

≤∆A
([
EAIXIF2ro

Kke ,IM
p3
Kka

]
L
,
[
DAIXIF2ro

Kke ,IM
p3
Kka

]
L
, EAIXIF2ro

Kke ,$k ,DAIXIF2ro
Kke ,$k ,p± ;[

EAIXIF2ro
Kke ,IM

p3
Kka

]
L
,
[
DAIXIF2ro

Kke ,IM
p3
Kka

]
L
, $∗+k,⊥,p±

)
+ 4 · (3) + 2 · (6) + 2 · (7) . (8)

The remaining distance of (8) boils down to forging a tag for DAIXIF2ro
Kke ,$k , in which the

adversary succeeds with probability at most qv
2k :

(2) ≤ 4 · (3) + 2 · (6) + 2 · (7) + qv
2k . (9)

5 Implementation

The main design goal of Isap is to provide out-of-the-box robustness against certain types
of implementation attacks while allowing to add additional defense mechanisms at low
cost. This is essential in situations where cryptographic devices are deployed in locations
where they are physically accessible by potential attackers. The area requirements of Isap
are very low even with integrated countermeasures against side-channel attacks, so the
scheme is suitable for deployment in software or hardware on very constrained devices
that are exposed to adversarial access. These features make Isap an excellent choice for a
variety of applications on constrained devices in the IoT (Internet of Things), particularly
for highly sensitive processes with bulk data, such as software and firmware updates.

This section covers implementation aspects of Isap. We first provide an overview
of Isap’s performance in software and hardware in Subsection 5.1 and Subsection 5.2,
respectively. We then discuss the robustness of Isap against implementation attacks and
specific aspects to consider for securely implementing Isap in Subsection 5.3. Finally, in
Subsection 5.4 we discuss what happens if implementations break with the strict structure
of Isap that the verification has to be executed before the decryption. A simultaneous
processing of ciphertext blocks in the verification and decryption is likely to provide a
similar protection of cryptographic keys against implementation attacks but loses side-
channel protection of the plaintext during decryption. Up-to-date implementations of Isap
can be found on https://isap.iaik.tugraz.at/implementations.

https://isap.iaik.tugraz.at/implementations

404 ISAP v2.0

5.1 Software Implementations
We developed generic and platform-optimized implementations of all Isap instantiations
for various CPU architectures such as x64, ARMv6, and ARMv7. The codebase thus
covers high performance scenarios like 64-bit CPUs, as well as more constrained devices
such as 32-bit ARM Cortex-A application processors and Cortex-M microprocessors, where
implementation security is often of particular interest.

We benchmarked our implementations on various platforms, covering scenarios from
high-end desktop CPUs (such as AMD Ryzen 7 1700) to low end microprocessors (such as
STM32F405). The benchmarked scenarios include authenticated encryption of relatively
small messages (64 bytes), typical Ethernet II frame sizes (1536 bytes), and very large
messages (long2). The resulting performance metrics are listed in Table 4.

Table 4: Encryption performance of Isap in cycles/byte for different message lengths.

(a) Instances based on Ascon-p

Isap-A-128a Isap-A-128
Message length in Bytes 64B 1536B long 64B 1536B long
AMD Ryzen 7 1700 (x64) 85.7 24.5 21.9 511.0 48.9 29.8
Intel i5-6200U (x64) 104.0 34.3 31.4 698.0 68.1 42.0
Raspberry Pi 1B (ARMv6M) 966.0 190.0 161.0 3771.0 347.0 211.0
STM32F405 (ARMv7M) 1223.0 352.0 311.0 6818.0 675.0 406.0

(b) Instances based on Keccak-p[400]

Isap-K-128a Isap-K-128
Message length in Bytes 64B 1536B long 64B 1536B long
AMD Ryzen 7 1700 (x64) 295.0 64.1 54.3 2108.0 156.0 75.0
Intel i5-6200U (x64) 342.0 72.8 61.3 2318.0 173.0 84.0
Raspberry Pi 1B (ARMv6M) 3464.0 743.0 635.0 23 917.0 1790.0 878.0
STM32F405 (ARMv7M) 4007.0 808.0 658.0 25 472.0 1909.0 869.0

When compared to the reported performance numbers of the original NIST submission
document [DEM+19], we can see performance improvements in all scenarios. For small
messages the runtime of Isap is dominated by the re-keying operation IsapRK while
the runtime of hashing and encrypting dominates for processing longer messages. The
high speed-up of Isap-A-128a and Isap-K-128a, when compared to their conservative
counterparts, is due to the parametrization of the initialization for short messages, and
due to parametrization of encryption and authentication for long messages.

5.2 Hardware Implementations
We provide estimations for the performance and area requirements of Isap in hardware.
The numbers are based on concrete ASIC implementations of Isap from the original FSE
paper [DEM+17] (Isap v1.0 in the following), but accommodate for the modifications in
this proposal.

The Isap family members differ in the permutation’s round function, the rate, and
the number of rounds. The implementations employ a single instance of the permutation

2Long messages represent 1/512 of the difference in cycle counts between processing 2048-byte and
1536-byte inputs.

Dobraunig, Eichlseder, Mangard, Mendel, Mennink, Primas, and Unterluggauer 405

(Keccak-p[400] or Ascon-p) that performs one round per cycle. The number of rounds
performed is chosen at runtime depending on the executed algorithm, i.e., IsapEnc,
IsapMAC, or IsapRK. Table 5 shows the synthesis results for Isap v1.0 based on 130 nm
UMC technology. We expect these numbers to be quite accurate for Isap’s Keccak-based
instances since area requirements have not changed compared to Isap v1.0 and the impact
of different round numbers on the runtime is easy to estimate. For the Ascon-based
instances we refer to synthesis results of the fast one-round permutation in 90 nm UMC
technology by [GWDE15]. We combine these results with the existing design but replace
the area/performance metrics for the permutation. These numbers are thus rougher and
more pessimistic estimates and will be refined once dedicated ASIC implementations are
available.

Table 5: Hardware characteristics of all Isap instantiations.

Function Area Frequency Initialization Runtime per byte
[kGE] [MHz] [cycles] [µs] [cycles] [ns]

Isap-A-128a ≤ 12.78 ≥ 169 556 4 2.75 ≤ 15.00
Isap-A-128 ≤ 12.78 ≥ 169 3 374 21 3.50 ≤ 20.00
Isap-K-128a 14.00 169 580 4 1.55 8.88
Isap-K-128 14.00 169 3 406 21 2.00 11.11

5.2.1 Area

As Isap-K-128 and Isap-K-128a use the same implementation design, they consume
roughly the same chip area if the same permutation is used. Most of the chip area is due
to the permutation core, which consumes 8.3 kGE (Keccak-p[400]) or ≤ 7.08 kGE (full
Ascon scheme including the mode [GWDE15]). The remaining logic of about 5.7 kGE
is required for multiplexing and a temporary state register to hold the hash value within
IsapMAC while executing the re-keying function IsapRK. A standalone implementation
of IsapRK yields roughly the same size as the Keccak core itself and is thus smaller
than other re-keying functions like a masked polynomial multiplication [MSGR10] or an
implementation of the GGM tree using an AES core computing 1 round per cycle [SPY+10].

5.2.2 Runtime

The runtime can be divided into two parts: the time for performing initialization/finaliza-
tion and the time for processing data blocks. The initialization/finalization runtime is
dominated by the re-keying operations in both IsapEnc and IsapMAC and is independent
of the length of the message. Its impact on runtime thus vanishes for long messages. The
runtime for processing a single block is also independent of the length of the message, but
defines the overall runtime for long messages.

Compared to the conservative parameterization in Isap-K-128, Isap-K-128a yields a
speed-up of 83% for initialization and 22% for the processing of a message block. The
substantial speed-up during initialization is highly relevant for short messages, while the
speed-up observed for encryption and authentication of a 144-bit message block dominates
for long messages.

5.2.3 Comparison

Isap is an efficient authenticated encryption scheme with low hardware footprint that pre-
vents DPA by design. Isap can be implemented securely using a standard implementation
of the 400-bit Keccak permutation and adds only a small hardware overhead, while a

406 ISAP v2.0

first-order secure threshold implementation to achieve DPA protection on the primitive
level would increase the area by a factor of 3 to 4 [BDN+13]. For other cryptographic
primitives such as the AES, the area overhead for first-order secure masked implementa-
tions is similar or even worse [DRB+16,GMK17]. When higher-order DPA robustness
is required, the hardware overhead of masking rises even more [GMK17]. Consequently,
the implementation cost of standard authenticated encryption modes for AES such as
AES-CCM and AES-GCM secured via masking rises accordingly.

5.3 Implementation Security
Two main directions in counteracting implementation attacks exist. The first approach
works by hardening the implementation of cryptographic algorithms with techniques like
hiding or masking [GP99,CJRR99]. The second approach to counteract implementation
attacks is to use cryptographic protocols that ensure that certain types of attacks cannot
be performed at all on the underlying cryptographic primitive [DP08,Pie09,MSGR10,
MPR+11,DKM+15].

Isap combines both approaches by providing a mode of operation that increases
resistance against implementation attacks, which is instantiated with permutations that
lend themselves to efficient countermeasures on the primitive level. While the original
proposal Isap v1.0 at FSE 2017 [DEM+17] already provides robustness against DPA attacks
by design [DMP20], the additional modifications in current proposal Isap v2.0 also provide
hardening against several types of fault attacks such as DFA [BS97], SFA [FJLT13,DEK+16],
or SIFA [DEK+18,DMMP18,DEG+18], the last of which is especially hard to prevent on
a primitive level. As a consequence, most parts of the underlying cryptographic primitive
only need to be secured against passive attacks that can extract information about the
key by observing cryptographic operations for a single fixed input, i.e., SPA. This induces
a significantly lower implementation overhead of the protected primitive compared to
implementations that need protection against DPA attacks on a primitive-level.

In summary, Isap’s robustness against passive implementation attacks rests on the
following pillars:

1. IsapEnc and IsapMAC, the encryption/decryption and authentication procedures,
are inherently protected against DPA by Isap’s Encrypt-then-MAC mode with its
re-keying function, which guarantees that fresh keys are used whenever processing
new data.

2. IsapEnc’s and IsapMAC’s robustness against SPA follows directly from the under-
lying sponge construction under a generous bounded-leakage assumption.

3. IsapRK, the re-keying procedure called internally by IsapEnc and IsapMAC, is
the sponge-based equivalent of the 2-limiting GGM construction and thus protected
against DPA.

4. IsapRK’s robustness against SPA follows from the same model and assumptions as
IsapEnc’s.

5.3.1 SPA Leakage

Isap has primarily been designed to be robust against DPA attacks. Furthermore, the
design of Isap’s components IsapMAC, IsapRK, and IsapEnc have an increased capacity
in order to better withstand SPA attacks. Still, like for any scheme, robustness against
SPA attacks such as template attacks relies on limiting the leakage per execution, which
may require additional implementation countermeasures such as hiding. This applies in
particular for the decryption, where an attacker may obtain several measurements for the
same data.

Dobraunig, Eichlseder, Mangard, Mendel, Mennink, Primas, and Unterluggauer 407

As pointed out by Medwed et al. [MSJ12], the concrete security of a construction
against side-channel attacks highly depends on the way it is implemented and on the
platform on which it is executed. For instance, they show that an implementation of the
GGM construction using AES-128 on an 8-bit microcontroller can be broken by using
template attacks. By making assumptions on the implementation, e.g., parallel execution
of the S-boxes, Medwed et al. [MSJ12,MSNF16] were able to provide security guarantees
with respect to side-channel attacks for their constructions. In contrast, in this work we
do not make any assumption on the way Isap is implemented and on the countermeasures
used to protect the implementations. Clearly, an 8-bit microcontroller implementation
needs more sophisticated SPA countermeasures than a parallel implementation of the round
function. We consider the evaluation of the SPA robustness of various implementation
strategies for Isap to be an interesting topic for further research.

5.3.2 Tag Comparison

Special care has to be taken for tag comparison. On the one hand, an active attacker
performing fault attacks to skip the tag comparison will be able to break the authenticity of
the scheme. Therefore, additional implementation countermeasures are needed to prevent
this. On the other hand, as observed by Berti et al. [BGP+19], the comparison of the tag
should be done in a side-channel secured manner to minimize the leakage of the correctly
computed tag. One option to do this is to mask the comparison. Another option is to do
the comparison after another permutation call: the computed tag T ′ and the transmitted
tag T are compared by first looking at k bits of bpH(T ′‖0∗)ck ⊕ bpH(T‖0∗)ck, and the
comparison of T, T ′ is only executed if the first comparison was successful. Learning k bits
of information of the output pH(T ′‖0∗) is of no help in the quest of recovering T ′ in order
to mount a forgery.

5.3.3 Fault Attacks

Isap’s updated mode also provides robustness against certain fault attacks. Since the
nonce changes for each authenticated encryption call, so do K∗A and K∗E, which renders
classical fault attacks like DFA impractical against the authenticated encryption. Other
fault attacks like SFA [FJLT13,DEK+16] or SIFA [DEK+18,DMMP18,DEG+18] might
still be applicable in this setting, but we expect that the SPA countermeasures that are
typically in place to cope with SPA attacks will drastically increase the complexity of these
attacks. In particular, the extremely small rate and the resulting data complexity of 2
in the re-keying function of Isap will significantly increase the complexity of extracting
Kusing SFA or SIFA. Additionally, in case an attacker manages to obtain one of the two
session keys K∗A or K∗E, it is infeasible to recover the master key K without performing
additional implementation attacks, since the re-keying function IsapRK is hard to invert.

During authenticated decryption, the nonce can be kept constant for multiple compu-
tations, which potentially enables DFA on the decryption. As mitigation, Isap’s re-keying
function is hard to invert, forcing an attacker to mount the attack on the re-keying function
itself. However, since the session keys produced by the re-keying function can typically
not be simply observed by the attacker, DFA attacks on the scheme are significantly more
complicated. Additionally, we can track the number of failed verifications and halt the
device after a few verification failures. This will significantly increase the robustness of the
implementation against fault attacks.

5.4 Online Implementations of ISAP
Considering the authenticated encryption mode of Isap, it appears that it does not make
a big difference on its security against side-channel attacks if first all ciphertext blocks

408 ISAP v2.0

are produced and then absorbed by IsapMAC, or if block are absorbed by IsapMAC
when they are ready, as long as the nonce is unique and an attacker does not act in an
adaptive way. Hence, it is possible to implement the authenticated encryption of Isap
online. However, this is not true for the decryption. In this section, we discuss the resulting
implications of violating the necessity for Isap that the verification of the ciphertext has
to be performed before the decryption of it starts.

5.4.1 Implementation Security

As discussed in Subsection 5.3, Isap’s hardening/protection against key extraction via
implementation attacks mainly relies on the usage of a hard to invert and leakage-resilient
re-keying function during encryption and tag generation. In this scenario, IsapEnc and
IsapMAC are not necessarily required to be called in order, and consequently, an online
implementation of Isap also retains these properties. However, all confidentiality of
decrypted plaintexts in the presence of implementation attacks can be lost if the tag
verification is not completed before the decryption of the ciphertext starts.

5.4.2 State Size

Implementing Isap in an online manner requires that the states for IsapEnc and IsapMAC
are instantiated simultaneously. While this is not an issue for software implementations,
it technically could result in a noticeable area increase for hardware implementations.
However, when taking a closer look at the finalization of IsapMAC in Figure 1, one can
observe that the two-pass version of Isap already needs to temporarily store an additional
n − k bits during the re-keying operation that could be reused to hold a second state
during plain-/ciphertext processing. On top of that, an online implementation of Isap
does not need to store the nonce. This saves an additional k bits of registers and thus,
roughly, evens out the register requirements of both implementation options.

5.4.3 Runtime

Software implementations of Isap’s Keccak instantiations can suffer from the fact that
the algorithmic description of Keccak-p[400] is based on 16-bit lanes. 32-bit and 64-bit
CPUs can hence not always fully utilize their larger registers, which leads to a performance
degradation on these platforms. However, performing IsapEnc in parallel with IsapMAC
allows for two permutation calls on both states in parallel. More concretely, one could
instantiate both Keccak-p[400] states (each 5× 5× 16 bits) as one larger state (5× 5× 32
bits) and then perform the encryption of Mi to Ci, as well as the absorption of Ci−1
concurrently. This could result in a speedup of about 50% for the Keccak instantiations
of Isap on 32- or 64-bit processors, and in a similar spirit, to a 50% speedup for the Ascon
instantiations of Isap on more powerful CPUs that can operate on 128-bit registers.

Acknowledgments. The authors want to thank Mario Werner and Robert Schilling for
helpful discussions and providing their hardware descriptions of Keccak.

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement
No 681402), the Austrian Research Promotion Agency (FFG) via the K-project DeSSnet,
which is funded in the context of COMET – Competence Centers for Excellent Technologies
by BMVIT, BMWFW, Styria and Carinthia, the Austrian Research Promotion Agency
(FFG) via the project ESPRESSO, which is funded by the province of Styria and the
Business Promotion Agencies of Styria and Carinthia, and the Austrian Science Fund
(FWF): J 4277-N38. Additionally, Bart Mennink is supported by a postdoctoral fellowship
from the Netherlands Organisation for Scientific Research (NWO) under Veni grant
016.Veni.173.017.

Dobraunig, Eichlseder, Mangard, Mendel, Mennink, Primas, and Unterluggauer 409

References
[ABD+16] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx, Bart Men-

nink, Mridul Nandi, Elmar Tischhauser, and Kan Yasuda. COLM v1. CAE-
SAR, second choice for defense in depth, https://competitions.cr.yp.to/
caesar-submissions.html, 2016.

[BDH+14] Sonia Belaïd, Fabrizio De Santis, Johann Heyszl, Stefan Mangard, Marcel
Medwed, Jörn-Marc Schmidt, François-Xavier Standaert, and Stefan Tillich.
Towards fresh re-keying with leakage-resilient PRFs: cipher design principles
and analysis. J. Cryptographic Engineering, 4(3):157–171, 2014.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, EUROCRYPT ’97, volume 1233 of LNCS, pages 37–51. Springer,
1997.

[BDN+13] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen,
and Gilles Van Assche. Efficient and first-order DPA resistant implementations
of Keccak. In Aurélien Francillon and Pankaj Rohatgi, editors, CARDIS
2013, volume 8419 of LNCS, pages 187–199. Springer, 2013.

[BDPV07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. Ecrypt Hash Workshop 2007, May 2007.

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the indifferentiability of the sponge construction. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 181–197. Springer, 2008.

[BDPV11] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Ass-
che. The Keccak reference (version 3.0). https://keccak.team/files/
Keccak-reference-3.0.pdf, 2011.

[Ber08] Daniel J. Bernstein. ChaCha, a variant of Salsa20, January 2008.

[BGP+19] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. TEDT, a leakage-resist AEAD mode for high physical
security applications, Nov. 2019.

[BMOS17] Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Au-
thenticated encryption in the face of protocol and side channel leakage. In
ASIACRYPT 2017, volume 10624 of LNCS, pages 693–723. Springer, 2017.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Rela-
tions among notions and analysis of the generic composition paradigm. In
Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages
531–545. Springer, 2000.

[BPPS17] Francesco Berti, Olivier Pereira, Thomas Peters, and François-Xavier Stan-
daert. On leakage-resilient authenticated encryption with decryption leakages.
IACR Transactions on Symmetric Cryptology, 2017(3):271–293, Sep. 2017.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Burton S. Kaliski Jr., editor, CRYPTO ’97, volume 1294 of LNCS,
pages 513–525. Springer, 1997.

[CAE14] CAESAR committee. CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness, 2014.

https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf

410 ISAP v2.0

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In CRYPTO
’99, volume 1666 of LNCS, pages 398–412. Springer, 1999.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Gross, Stefan Mangard,
Florian Mendel, and Robert Primas. Statistical ineffective fault attacks on
masked AES with fault countermeasures. In Thomas Peyrin and Steven D.
Galbraith, editors, ASIACRYPT 2018, volume 11273 of LNCS, pages 315–342.
Springer, 2018.

[DEK+16] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné, and
Florian Mendel. Statistical fault attacks on nonce-based authenticated encryp-
tion schemes. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT
2016, volume 10031 of LNCS, pages 369–395, 2016.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. SIFA: exploiting ineffective fault inductions
on symmetric cryptography. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2018(3):547–572, 2018.

[DEM+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP – towards side-channel secure authenticated
encryption. IACR Transactions on Symmetric Cryptology, 2017(1):80–105,
2017.

[DEM+19] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. ISAP v2.0.
Submission to NIST Lightweight Cryptography, 2019.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläf-
fer. Ascon v1.2. CAESAR, first choice for lightweight applications
(resource constrained environments), https://competitions.cr.yp.to/
caesar-submissions.html, 2016.

[DEMS19] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Submission to NIST Lightweight Cryptography, 2019.

[DFH+16] Stefan Dziembowski, Sebastian Faust, Gottfried Herold, Anthony Journault,
Daniel Masny, and François-Xavier Standaert. Towards sound fresh re-keying
with hard (physical) learning problems. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, volume 9815 of LNCS, pages 272–301. Springer,
2016.

[DHVV18] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The
design of xoodoo and xoofff. IACR Transactions on Symmetric Cryptology,
2018(4):1–38, Dec. 2018.

[DKM+15] Christoph Dobraunig, François Koeune, Stefan Mangard, Florian Mendel,
and François-Xavier Standaert. Towards fresh and hybrid re-keying schemes
with beyond birthday security. In Naofumi Homma and Marcel Medwed,
editors, CARDIS 2015, volume 9514 of LNCS, pages 225–241. Springer, 2015.

[DM19a] Christoph Dobraunig and Bart Mennink. Leakage resilience of the duplex
construction. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT
2019, volume 11923 of LNCS, pages 225–255. Springer, 2019.

https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html

Dobraunig, Eichlseder, Mangard, Mendel, Mennink, Primas, and Unterluggauer 411

[DM19b] Christoph Dobraunig and Bart Mennink. Leakage Resilience of the ISAP
Mode: a Vulgarized Summary, 2019. NIST Lightweight Cryptography Work-
shop 2019.

[DM20] Christoph Dobraunig and Bart Mennink. Security of the suffix keyed sponge.
IACR Transactions on Symmetric Cryptology, 2019(4):223–248, Jan. 2020.

[DMMP18] Christoph Dobraunig, Stefan Mangard, Florian Mendel, and Robert Primas.
Fault attacks on nonce-based authenticated encryption: Application to Keyak
and Ketje. In Carlos Cid and Michael J. Jacobson Jr., editors, SAC 2018,
volume 11349 of LNCS, pages 257–277. Springer, 2018.

[DMP20] Christoph Dobraunig, Bart Mennink, and Robert Primas. Exploring the
golden mean between leakage and fault resilience and practice. Cryptology
ePrint Archive, Report 2020/200, 2020. https://eprint.iacr.org/2020/
200.

[DMV17] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-state keyed duplex
with built-in multi-user support. In ASIACRYPT 2017, volume 10625 of
LNCS, pages 606–637. Springer, 2017.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography.
In FOCS 2008, pages 293–302, 2008.

[DP10] Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-resilient pseudorandom
functions and side-channel attacks on feistel networks. In CRYPTO 2010,
volume 6223 of LNCS, pages 21–40. Springer, 2010.

[DPVR00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. The
NOEKEON block cipher, 2000. Nessie Proposal.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES – The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[DRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d + 1 shares in hardware.
In Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume
9813 of LNCS, pages 194–212. Springer, 2016.

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In Wieland Fischer and Jörn-
Marc Schmidt, editors, FDTC 2013, pages 108–118. IEEE Computer Society,
2013.

[FPS12] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical leakage-
resilient symmetric cryptography. In CHES 2012, volume 7428 of LNCS,
pages 213–232. Springer, 2012.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, 1986.

[GGNPS13] Benoît Gérard, Vincent Grosso, María Naya-Plasencia, and François-Xavier
Standaert. Block ciphers that are easier to mask: How far can we go? In
Guido Bertoni and Jean-Sébastien Coron, editors, CHES 2013, volume 8086
of LNCS, pages 383–399. Springer, 2013.

https://eprint.iacr.org/2020/200
https://eprint.iacr.org/2020/200

412 ISAP v2.0

[GLSV14] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici.
LS-designs: Bitslice encryption for efficient masked software implementations.
In Carlos Cid and Christian Rechberger, editors, FSE 2014, volume 8540 of
LNCS, pages 18–37. Springer, 2014.

[GMK17] Hannes Gross, Stefan Mangard, and Thomas Korak. An efficient side-channel
protected AES implementation with arbitrary protection order. In Helena
Handschuh, editor, CT-RSA 2017, volume 10159 of LNCS, pages 95–112.
Springer, 2017.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analysis (the
“duplication” method). In CHES’99, volume 1717 of LNCS, pages 158–172.
Springer, 1999.

[GPPS19] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Towards lightweight side-channel security and the leakage-resilience of the
duplex sponge. Cryptology ePrint Archive, Report 2019/193, 2019.

[GSWY20] Chun Guo, François-Xavier Standaert, Weijia Wang, and Yu Yu. Efficient side-
channel secure message authentication with better bounds. IACR Transactions
on Symmetric Cryptology, 2019(4):23–53, Jan. 2020.

[GWDE15] Hannes Gross, Erich Wenger, Christoph Dobraunig, and Christoph Ehrenhöfer.
Suit up! made-to-measure hardware implementations of ascon. Cryptology
ePrint Archive, Report 2015/034, 2015.

[JNPS16] Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. Deoxys
v1.41. CAESAR, first choice for defense in depth, https://competitions.
cr.yp.to/caesar-submissions.html, 2016.

[Jut01] Charanjit S. Jutla. Encryption modes with almost free message integrity. In
Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages
529–544. Springer, 2001.

[Jut08] Charanjit S. Jutla. Encryption modes with almost free message integrity. J.
Cryptology, 21(4):547–578, 2008.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In CRYPTO ’99, volume 1666 of LNCS, pages 388–397. Springer, 1999.

[KJJR11] Paul C. Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduc-
tion to differential power analysis. J. Cryptographic Engineering, 1(1):5–27,
2011.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In CRYPTO ’96, volume 1109 of LNCS, pages
104–113. Springer, 1996.

[KR16] Ted Krovetz and Phillip Rogaway. OCB (v1.1). CAESAR,
for high-performance applications, https://competitions.cr.yp.to/
caesar-submissions.html, 2016.

[Kra01] Hugo Krawczyk. The order of encryption and authentication for protecting
communications (or: How secure is SSL?). In Joe Kilian, editor, CRYPTO
2001, volume 2139 of LNCS, pages 310–331. Springer, 2001.

https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html

Dobraunig, Eichlseder, Mangard, Mendel, Mennink, Primas, and Unterluggauer 413

[MPR+11] Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu Renauld,
and François-Xavier Standaert. Fresh re-keying II: securing multiple parties
against side-channel and fault attacks. In Emmanuel Prouff, editor, CARDIS
2011, volume 7079 of LNCS, pages 115–132. Springer, 2011.

[MSGR10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and
Francesco Regazzoni. Fresh re-keying: Security against side-channel and
fault attacks for low-cost devices. In Daniel J. Bernstein and Tanja Lange, ed-
itors, AFRICACRYPT 2010, volume 6055 of LNCS, pages 279–296. Springer,
2010.

[MSJ12] Marcel Medwed, François-Xavier Standaert, and Antoine Joux. Towards
super-exponential side-channel security with efficient leakage-resilient prfs. In
Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428
of LNCS, pages 193–212. Springer, 2012.

[MSNF16] Marcel Medwed, François-Xavier Standaert, Ventzislav Nikov, and Martin
Feldhofer. Unknown-input attacks in the parallel setting: Improving the
security of the CHES 2012 leakage-resilient PRF. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, volume 10031 of LNCS, pages
602–623, 2016.

[Nat15a] National Institute of Standards and Technology. FIPS PUB 180-4: Secure
hash standard (SHS). Federal Information Processing Standards Publication
180-4, August 2015.

[Nat15b] National Institute of Standards and Technology. FIPS PUB 202: SHA-3
Standard: Permutation-based hash and extendable-output functions. Fed-
eral Information Processing Standards Publication 202, U.S. Department of
Commerce, 8 2015.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT
2009, volume 5479 of LNCS, pages 462–482. Springer, 2009.

[PRC12] Gilles Piret, Thomas Roche, and Claude Carlet. PICARO - A block cipher
allowing efficient higher-order side-channel resistance. In Feng Bao, Pierangela
Samarati, and Jianying Zhou, editors, ACNS 2012, volume 7341 of LNCS,
pages 311–328. Springer, 2012.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-
resilient authentication and encryption from symmetric cryptographic primi-
tives. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, CCS
2015, pages 96–108. ACM, 2015.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijay-
alakshmi Atluri, editor, CCS 2002, pages 98–107. ACM, 2002.

[SPY+10] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater,
Moti Yung, and Elisabeth Oswald. Leakage resilient cryptography in practice.
In Ahmad-Reza Sadeghi and David Naccache, editors, Towards Hardware-
Intrinsic Security, Information Security and Cryptography, pages 99–134.
Springer, 2010.

[SPY13] François-Xavier Standaert, Olivier Pereira, and Yu Yu. Leakage-resilient
symmetric cryptography under empirically verifiable assumptions. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, volume 8042 of LNCS,
pages 335–352. Springer, 2013.

414 ISAP v2.0

[TS14] Mostafa M. I. Taha and Patrick Schaumont. Side-channel countermeasure
for SHA-3 at almost-zero area overhead. In HOST 2014, pages 93–96. IEEE
Computer Society, 2014.

[WP16] Hongjun Wu and Bart Preneel. AEGIS: a fast authenticated encryption
algorithm (v1.1). CAESAR, for high-performance applications, https://
competitions.cr.yp.to/caesar-submissions.html, 2016.

[Wu15] Hongjun Wu. ACORN: A lightweight authenticated cipher (v2). CAESAR,
second choice for lightweight applications (resource constrained environments),
https://competitions.cr.yp.to/caesar-submissions.html, 2015.

[YSPY10] Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung. Practical
leakage-resilient pseudorandom generators. In CCS 2010, pages 141–151.
ACM, 2010.

A Specification of Permutations
A.1 Specification of Keccak-p[400]
Keccak-p[400] is specified in [BDPV11,Nat15b]. In the following, we briefly recall the
permutation’s state geometry and the round function’s five steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ .

The 400-bit state of Keccak-p[400] is labeled as a three-dimensional bit array a[x][y][z]
with 0 ≤ x < 5, 0 ≤ y < 5, and 0 ≤ z < 16. This state is mapped to the bitstring S
as S[16(5y + x) + z] = a[x][y][z], where the outer part for rate r corresponds to the bit
positions S[0, . . . , r − 1].

The steps are defined by

θ : a[x][y][z]← a[x][y][z]⊕
4⊕

y′=0
a[x− 1][y′][z]⊕

4⊕
y′=0

a[x+ 1][y′][z − 1] ,

ρ : a[x][y][z]← a[x][y][z − (t+ 1)(t+ 2)/2], with t < 24 s.t.
(

0 1
2 3

)t(1
0

)
=
(
x
y

)
or t = −1 if x = y = 0,

π : a[x][y]← a[x+ 3y][x],
χ : a[x]← a[x]⊕ (a[x+ 1]⊕ 1) · a[x+ 2] ,
ι : a← a⊕ RC[ir] ,

where multiplications are over F2 (bitwise and) and all index computations are modulo
5 (for x, y) or modulo 16 (for z). The round constants are RC[ir][x][y] = 0 except for
RC[ir][0][0][z] = rc[j + 7ir] for all z = 2j − 1, 0 ≤ j ≤ 4, where rc[i] is specified by an
LFSR with the primitive monomial p(X) = X8 +X6 +X5 +X4 + 1 and i gives the cycles
starting from an initialized binary value of ‘1000000’. If Keccak-p[400] is instantiated
with nr rounds, ir ranges from 20 − nr to 19. For a more detailed description, we refer
to [BDPV11,Nat15b].

A.2 Specification of Ascon-p
The following description of the Ascon-p permutation is adapted from the Ascon specifi-
cation [DEMS16,DEMS19].

https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html

Dobraunig, Eichlseder, Mangard, Mendel, Mennink, Primas, and Unterluggauer 415

All members of the Ascon cipher suite operate on a state of 320 bits which they
update with permutations pa (a rounds) and pb (b rounds). The 320-bit state S is divided
into an outer part Sr of r bits and an inner part Sc of c bits, where the rate r and capacity
c = 320− r depend on the Ascon variant.

For the description and application of the round transformations, the 320-bit state S is
split into five 64-bit registers words xi:

S = Sr ‖Sc = x0 ‖x1 ‖x2 ‖x3 ‖x4 .

Whenever S needs to be interpreted as a byte-array (or bitstring) for the sponge interface,
this starts with the most significant byte (or bit) of x0 as byte 0 and ends with the least
significant byte (or bit) of x4 as byte 39.

Table 6 lists the notation and symbols used in the following description.

Table 6: Notation used for Ascon’s permutation.
pC , pS , pL constant-addition, substitution and linear layer of p = pL ◦ pS ◦ pC
x0, . . . , x4 The five 64-bit words of the state S
x0,i, . . . , x4,i Bit i, 0 ≤ i < 64, of words x0, . . . , x4, with x·,0 the rightmost bit (LSB)
x⊕ y Bitwise xor of 64-bit words or bits x and y
x� y Bitwise and of 64-bit words or bits x and y (denoted x y in the ANF)
	x Bitwise not of 64-bit word or bit x
x≫ i Right-rotation (circular shift) by i bits of 64-bit word x

Isap uses Ascon’s two 320-bit permutations pa and pb, as well as an additional
variant reduced to one round, p1. The permutations iteratively apply an SPN-based round
transformation p that in turn consists of three steps pC , pS , pL and differ only in the
number of rounds:

p = pL ◦ pS ◦ pC .

For the description and application of the round transformations, the 320-bit state S is
split into five 64-bit registers words xi, S = x0 ‖x1 ‖x2 ‖x3 ‖x4.

Addition of Constants

The constant addition step pC adds a round constant cr to register word x2 of the state S
in round i. Both indices r and i start from zero and we use r = i for pa and r = i+ a− b
for pb (see Table 7):

x2 ← x2 ⊕ cr .

Table 7: The round constants cr used in each round i of pa and pb.
p12 p8 p6 Constant cr p12 p8 p6 Constant cr
0 00000000000000f0 6 2 0 0000000000000096
1 00000000000000e1 7 3 1 0000000000000087
2 00000000000000d2 8 4 2 0000000000000078
3 00000000000000c3 9 5 3 0000000000000069
4 0 00000000000000b4 10 6 4 000000000000005a
5 1 00000000000000a5 11 7 5 000000000000004b

Substitution Layer

The substitution layer pS updates the state S with 64 parallel applications of the 5-bit
S-box S(x) defined in 2a to each bit-slice of the five registers x0 . . . x4. It is typically
implemented in bitsliced form with operations performed on the 64-bit words.

416 ISAP v2.0

Linear Diffusion Layer

The linear diffusion layer pL provides diffusion within each 64-bit register word xi. It
applies a linear function Σi(xi) defined in 2b to each word xi:

xi ← Σi(xi), 0 ≤ i ≤ 4.

x0

x1

x2

x3

x4

x0

x1

x2

x3

x4

(a) Ascon’s 5-bit S-box S(x)

x0 ← Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 ← Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 ← Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 ← Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ← Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(b) Ascon’s linear layer with 64-bit functions Σi(xi)

Figure 2: Ascon’s substitution layer and linear diffusion layer.

	Introduction
	Contributions
	Novelty Compared with Previously Published Work
	Related Work

	Specification of ISAP
	Mode
	Instantiation
	Security Claims

	Rationale
	Security of the ISAP Mode
	Security Model
	Multicollision Limit Function
	Main Result
	Proof of Theorem 1

	Implementation
	Software Implementations
	Hardware Implementations
	Implementation Security
	Online Implementations of ISAP

	Specification of Permutations
	Specification of Keccak-p[400]
	Specification of Ascon-p

