
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. S1, pp. 350–389. DOI:10.13154/tosc.v2020.iS1.350-389

ESTATE: A Lightweight and Low Energy
Authenticated Encryption Mode

Avik Chakraborti1,2, Nilanjan Datta2, Ashwin Jha2, Cuauhtemoc
Mancillas-López3, Mridul Nandi2 and Yu Sasaki1

1 NTT Secure Platform Laboratories, Tokyo, Japan
avikchkrbrti@gmail.com,yu.sasaki.sk@hco.ntt.co.jp

2 Indian Statistical Institute, Kolkata, India
nilanjan_isi_jrf@yahoo.com,ashwin.jha1991@gmail.com,mridul.nandi@gmail.com

3 Computer Science Department, Center for Research and Advanced Studies of the National
Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico

cuauhtemoc.mancillas@cinvestav.mx

Abstract. NIST has recently initiated a standardization project for efficient lightweight
authenticated encryption schemes. SUNDAE, a candidate in this project, achieves
optimal state size which results in low circuit overhead on top of the underlying
block cipher. In addition, SUNDAE provides security in nonce-misuse scenario as well.
However, in addition to the block cipher circuit, SUNDAE also requires some additional
circuitry for multiplication by a primitive element. Further, it requires an additional
block cipher invocation to create the starting state. In this paper, we propose a new
lightweight and low energy authenticated encryption family, called ESTATE, that
significantly improves the design of SUNDAE in terms of implementation costs (both
hardware area and energy) and efficient processing of short messages. In particular,
ESTATE does not require an additional multiplication circuit, and it reduces the
number of block cipher calls by one. Moreover, it provides integrity security even
under the release of unverified plaintext (or RUP) model. ESTATE is based on
short-tweak tweakable block ciphers (or tBC, small ’t’ denotes short tweaks) and we
instantiate it with two recently designed tBCs: TweAES and TweGIFT. We also propose
a low latency variant of ESTATE, called sESTATE, that uses a round-reduced (6
rounds) variant of TweAES called TweAES-6. We provide comprehensive FPGA based
hardware implementation for all the three instances. The implementation results
depict that ESTATE_TweGIFT-128 (681 LUTs, 263 slices) consumes much lesser area
as compared to SUNDAE_GIFT-128 (931 LUTs, 310 slices). When we moved to the
AES variants, along with the area-efficiency (ESTATE_TweAES consumes 1901 LUTs,
602 slices while SUNDAE_AES-128 needs 1922 LUTs, 614 slices), we also achieve
higher throughput for short messages (For 16-byte message, a throughput of 1251.10
and 945.36 Mbps for ESTATE_TweAES and SUNDAE_AES-128 respectively).
Keywords: SUNDAE · TweAES · TweGIFT · tBC · authenticated encryption ·
lightweight · RUP

1 Introduction
In recent years, lightweight authenticated encryption with associated data (AEAD) has
seen a sudden surge in interest due to the advent of Internet of things (IoT). The present
AEAD standards are not suitable in the spectrum of lightweight applications as they are
designed for more general use-cases. This leads to the call for standardization process for
new lightweight AE designs. The designs are mainly (tweakable) block cipher, stream
cipher or permutation-based. Block cipher based designs have one particular advantage

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-12-10, Revised: 2020-03-15, Accepted: 2020-04-01, Published: 2020-06-22

https://doi.org/10.13154/tosc.v2020.iS1.350-389
mailto:avikchkrbrti@gmail.com,yu.sasaki.sk@hco.ntt.co.jp
mailto:nilanjan_isi_jrf@yahoo.com,ashwin.jha1991@gmail.com,mridul.nandi@gmail.com
mailto:cuauhtemoc.mancillas@cinvestav.mx
http://creativecommons.org/licenses/by/4.0/


Chakraborti et al. 351

as we can have a concrete security proof in the standard model. Thus, it is attractive to
design a TBC-based AEAD with a small state (low storage), fewer primitive invocations
(low energy) as well as concrete security analysis. The designs mainly target the following
properties.

1.1 Designing Lightweight Block Cipher Based AEAD
To design a lightweight AE mode, we need to be concerned about implementation properties
as well as security properties. Implementation properties can have two directions: (1) low
area implementations and (2) low energy implementations. Regarding security, it is also
important to have RUP security in addition to the standard security requirements.

1.1.1 Small State Size

JAMBU [WH16] is one of the most relevant modes in terms of small state size using only
1.5n + κ bit state, with an n-bit block cipher and a κ-bit key. Here state size means a
theoretical estimation of the main registers, and a block is defined as a binary string of n
bits, where n is the size (in bits) of the underlying primitive. Although JAMBU has a
small state size, the privacy claim has been proven to be flawed [PSWZ15]. In addition,
JAMBU has rate 1/2 (ratio between the number of data blocks and the number of primitive
invocations), which makes it slow (it also depends on the cost of the underlying primitive).
In 2017, COFB [CIMN17a] surpassed JAMBU in terms of provable security and rate.
Later, SAEB [NMSS18] optimized the state size further but with a compromise in the rate.
Interestingly, all these modes are inverse-free, i.e. we do not need the decryption circuit
for the underlying primitives.

1.1.2 Low Number of Primitives Calls

The energy consumption of any cryptographic scheme is directly dependent on two factors:
a) energy consumption of the underlying primitive, and b) number of primitive calls. Of
the two factors, the former falls under the ambit of block cipher design where several
energy efficient candidates like Midori [BBI+15] and GIFT [BPP+17] are available, while
the latter is accounted in the design of modes of operation. Indeed, minimizing the number
of primitive calls is a common design approach for energy-efficient AEAD modes such as
SUNDAE [BBLT18]. SUNDAE is primarily designed for lightweight applications, where
the messages are generally short (e.g, one block). In this regard, lowering the number of
primitive calls also helps in reducing the overheads for processing short messages. Although,
SUNDAE minimizes the number of primitive calls to a large extent, we observe that it is
still not optimal and there is scope to optimize it further.

1.1.3 Nonce Misuse and RUP Security

Nonce-misuse resistance [RS06] is a security property of AEAD when the attacker can
repeat a nonce during the encryption queries. GIFT-SUNDAE is a prominent nonce-misuse
resistant design. The designers mainly aim to optimize the state size, block cipher calls
along with nonce-misuse resistance.

Decrypted plaintext needs to be verified before it is released. In several applications,
the decrypted plaintext should be kept in a secure buffer before the verification completes.
However, in some resource-constrained environments with limited buffer space, we have to
release a part of the plaintext even before it is verified. This is formalized as RUP [ABL+14],
where integrity is ensured even with the release of unverified plaintext. RUP is mainly
useful for real-time streaming protocols (e.g. SRTP, SRTCP and SSH), Optical Transport
Networks, where block-wise encryption/decryption is required and ciphertext/plaintext



352 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

are released on the fly in order to reduce the end-to-end latency and/or compensate for
low memory.

1.2 SUNDAE: A Lightweight AEAD
SUNDAE is a block cipher based lightweight AEAD that aims at maximal robustness using
small state size, and is particularly efficient for short messages. SUNDAE is optimized
for lightweight applications by optimizing the state size using only one key, a cascade of
block cipher calls and only one full block XOR along with a multiplication with a constant.
The state size for SUNDAE is only n bits (excluding the key storage) using an n-bit block
cipher.

There is still scope for further improvements on the structure of SUNDAE to make it
more efficient for lightweight applications. In [CDN18], Chakraborti et al. showed that
the optimal number of block cipher invocations required to process a data with an input
string consisting of a associated data blocks and m plaintext blocks is (a+ 2m). However,
SUNDAE requires (a+ 2m+ 1) block cipher invocations. This is primarily due to the initial
block cipher invocation for domain separation. The number of block cipher invocations
directly relates to the energy consumption and is quite significant for processing short
messages. Another possible improvement can be RUP security that SUNDAE is missing.

1.3 Our Contribution
In this paper, we propose a new highly secure and hardware efficient tBC based AEAD
mode, named as ESTATE (Energy efficient and Single-state Tweakable block cipher based
MAC-Then-Encrypt). The structure employs an FCBC-like MAC [BR05] followed by
OFB mode [ENC01]. ESTATE is structurally close to SUNDAE, but with an additional
interesting design feature of replacing the block cipher by a tBC along with a few design
changes. We address the points that SUNDAE needs to adopt several internal operations
to deal with domain separation, SUNDAE does not provide any provable RUP security and
SUNDAE is near optimal but not optimal in the number of block cipher invocations (since
it is encrypting a data type and length dependent constant during initialization). We can
remove the above issues in SUNDAE by using different tweaks in the underlying tBC to (i)
reduce the primitive invocation (we pre-compute a fixed tBC encrypted nonce with the
unique tweak value 1 and use it all the time), (ii) provide RUP security (as we use different
tweaks for the tBC used in the encryption and the first tBC call during authentication),
and (iii) clean up the other domain separation related operations in SUNDAE by tweak
adjustments. Overall, ESTATE has the following large set of features:

• Optimum state size: ESTATE has a state size as small as the underlying block
cipher.

• Multiplication-free: ESTATE does not require any field multiplications. In fact,
apart from the tBC call it requires just a 128-bit XOR per block of data, which
seems to be a negligible overhead. Observe that, SUNDAE requires constant field
multiplications with field elements 2 and 4 for the purpose of domain separation. In
contrast, we simply use different tweaks to achieve this.

• Optimal: ESTATE requires (a+ 2m) primitive invocations to process a blocks of
associated data (including the nonce) and m message blocks. In [CDN18], it has
been shown that this is the optimal number of non-linear primitive calls required
for deterministic authenticated encryption. This feature is particularly important
for short messages from the perspective of energy consumption, which is directly
dependent upon the number of primitive calls. SUNDAE requires a constant block
encryption at the beginning primarily because the same block cipher is used in



Chakraborti et al. 353

encryption as well as authentication. We remove this extra call by using different
tweaks for the tBC calls.

• Inverse-Free: ESTATE is inverse-free. Both encryption and decryption algorithms
do not require any decryption call to the underlying tBC. This significantly reduces
the overall hardware footprint in combined encryption-decryption implementations.

• Nonce-misuse Resistant: ESTATE is nonce-misuse resistant and provides full
security even with the repetition of the nonce. Alternatively, it can be viewed as a
deterministic authenticated encryption where the nonce is assumed to be the first
block of the associated data.

• RUP Secure: We separate the block cipher invocations for the OFB functions and
the first tBC input invocation by using different tweaks. This helps us to provide
RUP security for ESTATE. SUNDAE lacks this feature and the designers of SUNDAE
explicitly mentioned that “unverified plaintext from the decryption algorithm should
not be released.”

• Robustness: Most of the AEAD schemes require a unique nonce value, in order
to create a secret (almost) uniform random state. This helps in achieving security
requirements. But the problem with these schemes is the lack of security in the
absence of this secret state. In contrast ESTATE is quite robust, as evident by nonce
misuse resistance and RUP security, to a lack of sufficient randomness or secret
states.

Next, we propose a lighter AEAD mode sESTATE, which is structurally identical to
ESTATE. The only difference between sESTATE and ESTATE is that sESTATE uses a
round-reduced version of the underlying tBC to compute the MAC. The tBC used in the
encryption part remains the same.

Finally, we instantiate ESTATE with both TweGIFT and TweAES and sESTATE with
TweAES (and its reduced version TweAES-6) as the underlying tBC. We provide complete
hardware implementation details on FPGA platform along with benchmarks with the
existing designs. The implementation results depict that ESTATE_TweGIFT-128 (681 LUTs,
263 slices) clearly outperforms SUNDAE_GIFT-128 (931 LUTs, 310 slices) in hardware
area. In addition, ESTATE_TweAES (1901 LUTs, 602 slices) also has better area-efficiency
as compared to SUNDAE_AES-128 (1922 LUTs, 614 slices) and achieves higher throughput
for short messages (as example, for 16 byte message, ESTATE_TweAES has a throughput
of 1251.10 Mbps while SUNDAE_AES-128 achieves 945.36 Mbps).
Remark 1. Although ESTATE’s features like robustness and RUP security are lucrative in
the lightweight scenario, they are also costly in terms of efficiency. In fact, a drawback
for any SIV based scheme, including SUNDAE and ESTATE, is their two-pass nature
which could be an implementation constraint in certain scenarios with low memory buffer.
Clearly, there is a trade-off between additional security guarantees and efficiency, and we
aim to maximize the efficiency after ensuring the additional security guarantees. This is
evident from the optimality and multiplication-free features of ESTATE which are not true
for SUNDAE.

1.4 ESTATE in Light of the NIST Lightweight Competition
NIST lightweight cryptography project [MBTM17] started in 2018 recognizing the lack of
efficient AE standards for lightweight applications. They mainly addressed the growing
security requirements for applications such as sensor networks, distributed control systems
and health care. These applications are mainly involved with resource-restricted devices
communicating among themselves. Here we present a comparative chart in Table 1 to



354 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

study five other Synthetic IV (SIV) based modes submitted to the NIST competition with
our proposal ESTATE. We remark that, out of these four designs, only GIFT-SUNDAE has
been selected for the second round of the NIST Lightweight Project. The above chart

Table 1: Comparative Study on SIV based NIST candidates with ESTATE. A block cipher
with block size of n bits and key size of κ bits is denoted as BC-n/κ and a tweakable block
cipher with n bit block, κ bit key and τ bit tweak is denoted as TBC-n/κ/τ (tBC-n/κ/τ
for short tweaks). Note that the field ’Optimality’ denotes the optimality on the number
of primitive invocations

Submission Primitive State size (bits) Optimality RUP Mult-free

ESTATE tBC-128/128/4 260 X X X

Limdolen BC-128/128 384 × × ×

SIV-Rijndael256 tBC-256/128/4 388 X X X

SIV-TEM-PHOTON TBC-256/128/132 516 X X X

GIFT-SUNDAE BC-128/128 256 × × ×

TRIFLE BC-128/128 384 × × ×

depicts that considering area and energy efficiency as the lightweight metric, ESTATE has
clear advantages over others since (i) it uses a state size of only 260-bits; (ii) does not use
any field multiplications, (iii) achieves optimality on the number of primitive invocations,
hence energy efficient and (iv) secure against RUP adversaries.

2 Preliminaries
2.1 Notations
For n ∈ N, we write {0, 1}+ and {0, 1}n to denote the set of all non-empty binary1 strings,
and the set of all n-bit binary strings (denoted by data blocks), respectively. We write λ
to denote the empty string, and {0, 1}∗ = {0, 1}+ ∪ {λ}. For A ∈ {0, 1}∗, |A| denotes the
length (number of bits) of A, where |λ| = 0 by convention. For all practical purposes, we
assume the least significant bit is the rightmost bit. For any non-empty binary string X,
(Xk−1, . . . , X0) n← x denotes the n-bit block parsing of X, where |Xi| = n for 0 ≤ i ≤ k−2,
and 1 ≤ |Xk−1| ≤ n. For A,B ∈ {0, 1}∗ and |A| = |B|, we write A ⊕ B to denote the
bitwise XOR of A and B. For A,B ∈ {0, 1}∗, A‖B denotes the concatenation of A and B.
Note that A and B denote the left and the right parts, respectively.

For n, τ, κ ∈ N, Ẽ-n/τ/κ denotes a tweakable block cipher family Ẽ, parametrized by the
block length n, tweak length τ , and key length κ. For a key K ∈ {0, 1}κ, tweak T ∈ {0, 1}τ ,
and a message M ∈ {0, 1}n, we use Ẽ

T

K(M) := Ẽ(K,T,M) to denote invocation of the
encryption function of Ẽ on input K, T , andM . We fix positive even integers n, τ , κ, and t
to denote the block size, tweak size, key size, and tag size, respectively, in bits. Throughout
this document, we fix n = 128, τ = 4, and κ = 128, and t = n.

We sometimes use the terms (complete/full) blocks for n-bit strings, and partial blocks
for m-bit strings, where m < n. Throughout, we use the function ozs, defined by the
mapping

∀X ∈
n⋃

m=1
{0, 1}m, X 7→

{
0n−|X|−1‖1‖X if |X| < n,

X otherwise,

as the padding rule to map partial blocks to complete blocks. Note that the mapping is
injective over partial blocks. For any X ∈ {0, 1}+ and 0 ≤ i ≤ |X| − 1, xi denotes the

1Alphabet set is {0, 1}.



Chakraborti et al. 355

i-th bit of X. The function chop takes a string X and an integer i ≤ |X|, and returns the
rightmost i bits of X, i.e. xi−1 · · ·x0. We use the notations X ≪ i and X ≫ i to denote
i bit left and right, respectively, rotations of the bit string X.

For some predicates E1 and E2, and possible evaluations a, b, c, d, we define the
conditional operator ? ::: as follows:

(E1; E2) ? a : b : c : d :=


a if E1 ∧ E2

b if E1 ∧ ¬E2

c if ¬E1 ∧ E2

d if ¬E1 ∧ ¬E2

The expression “E ? a : b” is the special case when E1 ≡ E2, i.e. it evaluates to a if E holds
and b otherwise.

2.2 Authenticated Encryption
An authenticated encryption scheme offers both confidentiality, meaning that its tagged
ciphertexts are indistinguishable from a string uniform at random, and integrity, meaning
that its tags are unforgeable. Typically, we combine the above two functionalities of an
authenticated encryption into a unified one, which is formally defined as:
Definition 1. Let A = (E ,D,V) be an authenticated encryption scheme. The AE security
of A against an adversary A is defined as

AdvAE
A := |Pr[AEK ,VK = 1]− Pr[A$,⊥ = 1]|,

where $ is the random oracle that on input (A,M) returns (C, T ) uniformly at random
and ⊥ is the oracle that on input (A,C, T ), always rejects. The randomness for the first
probability is defined over K $←− {0, 1}k and also over the random coins of A (if any).
Similarly, the randomness for the second probability is defined over the randomness of $,
and over the random choices of A (if any).

We define
AdvAE

A (t, qe, qv, σe, σv) = max
A

AdvAE
A (A),

where the maximum is considered over all adversaries with running time t, qe encryption
queries and qv verification queries such that the total number of queried blocks are at most
σe and σd, respectively.

Now we provide the extended definition of AE security in the released unverified
plaintext (RUP) setting. The RUP model, called AERUP, combines RUP confidentiality
(i.e. PA1) and integrity (i.e. INT-RUP) and was proposed by [CDD+19]. In this model, we
have two worlds: (i) real world that is comprised of encryption, decryption and verification
oracle of the AE algorithm and (ii) ideal world which is also comprised of three oracles:
(a) random oracle $ that on input (A,M), samples the ciphertext C of the same length
uniformly at random, (b) the simulator S with access to the history of encryption queries,
on input (A,C, T ), returns the plaintext in a consistent way, and (c) reject oracle ⊥, that
on input (A,C, T ) always returns ⊥. Note that, it is sufficient to prove AERUP security
as AERUP implies AE security i.e, if a scheme is AERUP secure then it is secure under
conventional confidentiality and authenticity notion. Moreover, it is also secure under
RUP confidentiality and authenticity notion (it is also called INT-RUP security).
Definition 2. Let A = (E ,D,V) be an authenticated encryption scheme. Let A be an
adversary with access to a triplet of oracles (O1,O2,O3). The AERUP security of A against
an adversary A is defined as

AdvAERUP
A = | Pr[AEK ,DK ,VK = 1]− Pr[A$,S,⊥ = 1] | , (1)



356 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

where the randomness is taken over K $←− {0, 1}k in the first probability calculation and
the randomness is defined over $, S in the second probability calculation. However the
randomness is also defined over the random coins of A. Note that, A can query oracle O2
with input that is obtained from O1 as a result of some previous encryption query.

Similar to the previous definition, we define

AdvAERUP
A (t, qe, qd, qv, σe, σd, σv) = max

A
AdvAERUP

A (A),

where the maximum is considered over all adversaries with running time t, qe encryption
queries, qd decryption queries and qv verification queries such that the total number of
queried blocks are at most σe, σd, σv respectively. For brevity, we write σ = σe + σd + σv.
In concrete terms, σ and t denotes the data and time complexity, respectively.

2.3 PRF, (T)PRP Security
The TPRP-advantage of A against Ẽ is defined as

AdvTPRP
Ẽ

(A) = |Pr[AẼK = 1]− Pr[AΠ̃ = 1]|,

where Π̃ is a tweakable random permutation uniformly distributed over the set of all
tweakable permutations over tweak space {0, 1}τ and block space {0, 1}n. We remark that
the adversary has full control over both the tweak value and input of the tweakable block
cipher. We write

AdvTPRP
Ẽ

(t, q) = max
A

AdvTPRP
Ẽ

(A),

where the maximum is taken over all adversaries with running time t and at most q queries
to the oracle.

The PRF advantage of distinguisher A against a keyed family of functions F := {FK :
{0, 1}m → {0, 1}n}K∈{0,1}κ is defined as

AdvPRF
F (A) :=

∣∣Pr[AFK = 1]− Pr[AΓ = 1]
∣∣ ,

where Γ is a random function uniformly distributed over the set of all functions from
{0, 1}m to {0, 1}n. The PRF security of F is defined as

AdvPRF
F (q, t) := max

A
AdvPRF

F (A). (2)

The keyed family of functions PRF is called weak PRF family, if the PRF security holds
when the adversary only gets to see the output of the oracle on uniform random inputs. This
is clearly a weaker notion than PRF. We denote the weak prf advantage as Advwprf

PRF(q, t).

2.4 Patarin’s H-Coefficient Technique
We briefly discuss the H-coefficient technique of Patarin [Pat08, CS14]. Consider a
computationally unbounded deterministic adaptive adversary A that interacts with either
a real oracle Ore or an ideal oracle Oid. After its interaction, A outputs a decision bit.
The collection of all queries-responses obtained by A during its interaction with its oracle
are summarized in a transcript τ . This transcript may contain additional information
about the random oracle that is revealed to the adversary after its interaction but before
it outputs its decision bit. This is without loss of generality: the adversary gains more
knowledge and hence more distinguishing power.

Let Xre and Xid be the random variables that take a transcript τ induced by the real
and the ideal world respectively. The probability of realizing a transcript τ in the ideal



Chakraborti et al. 357

world (i.e. Pr[Xid = τ ]) is called the ideal interpolation probability and the probability of
realizing it in the real world is called the real interpolation probability. A transcript τ is
said to be attainable if the ideal interpolation probability is non-zero. We denote the set of
all attainable transcripts by Θ. Following these notations, we state the main theorem of
the H-coefficient technique as follows [Pat08, CS14].

Theorem 1 (H-coefficient technique). Let A be a fixed computationally unbounded deter-
ministic adversary that has access to either the real oracle Ore or the ideal oracle Oid. Let
Θ = Θgood tΘbad be some partition of the set of all attainable transcripts into good and
bad transcripts. Suppose there exists an εratio ≥ 0 such that for any τ ∈ Θgood,

Pr[Xre = τ ]
Pr[Xid = τ ] ≥ 1− εratio ,

and there exists an εbad ≥ 0 such that Pr[Xid ∈ Θbad] ≤ εbad. Then,

Pr[AOre → 1]− Pr[AOid → 1] ≤ εratio + εbad . (3)

3 Short-Tweak Tweakable Block Ciphers
In this section, we describe two tweakable block ciphers TweAES and TweGIFT [CDJ+19]
which can incorporate 4-bit short tweaks. We will instantiate our modes with these short
tweak tweakable block ciphers.

3.1 Specification of TweAES
In this section we provide the specification of the tweakable block cipher TweAES and
TweAES-6. TweAES is a 128-bit tweakable block cipher with 4-bit tweak and 128-bit key.
As the name suggests, it is a tweakable variant of AES-128/128 [FIP01] block cipher.
TweAES is identical to AES-128/128 except that we inject a tweak value at intervals of 2
rounds. Now we briefly describe the main steps of the TweAES round function.

SubBytes: TweAES uses the same invertible 8-bit S-box as AES and applies it to each
byte of the cipher state.
ShiftRows: The bytes in the i-th row are cyclically shifted by i places to the left.
MixColumns: The state is multiplied by an invertible MDS matrix to achieve good
diffusion. The matrix M is defined as:

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


over the field F8 where field multiplication is done with respect to the irreducible polynomial
x8 + x4 + x3 + x+ 1.
AddRoundKey: A 128-bit round key is extracted from the master key and XORed to the
cipher state.
AddTweak: The 4-bit tweak is first expanded to an 8-bit value:

(x1, x2, x3, x4)→ (x1, x2, x3, x4, S⊕x1, S⊕x2, S⊕x3, S⊕x4), where S = x1⊕x2⊕x3⊕x4.

and then the 8-bit value is XORed to the state at an interval of 2 rounds. To be precise,
the 8-bit tweak is added to the least significant bit of each byte in top two rows of the
state.



358 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

Note that, all the operations, except AddTweak, are identical to that of AES-128/128.

Specification of TweAES-6. We also define a round-reduced version of TweAES, called
TweAES-6, which is composed of the first 6 rounds of TweAES. Notably, the last round
(6-th round) includes the MixColumns operations, and the AddTweak step is called in the
2-nd and 4-th rounds. A detailed description can be found in [CDJ+19].

TweAES-6 was designed to ensure security for use in our modes. This corresponds to
the use of 4-round AES in various AEAD modes, for which no attack is known on the
4-round AES in proper modes under the restriction of the birthday-bound query limit.
TweAES-6 was designed by following the same concept.

3.2 Specification of TweGIFT
TweGIFT is a 128-bit tweakable block cipher with 4-bit tweak and 128-bit key. As the
name suggests, it is a tweakable variant of the GIFT-128 [BPP+17] block cipher. TweGIFT
is composed of 40 rounds and each round is composed of the following operations:

SubCells: TweGIFT uses the same invertible 4-bit S-box as GIFT and applies it to each
nibble of the cipher state.
PermBits: TweGIFT also uses the same bit permutation that is used in GIFT. The permu-
tation maps bit position i of the cipher state to bit position P(i), where

P(i) = 4bi/16
⌋

+ 32
((

3b(i mod 16)/4c+ (i mod 4)
)

mod 4
)

+ (i mod 4).

AddRoundKey: In this step, a 64-bit round key is extracted from the master key state and
added to the cipher state. This operation is also identical to that of GIFT.

AddRoundConstant: A single bit “1” and a 6-bit round constant are XORed into the cipher
state at bit position 127, 23, 19, 15, 11, 7 and 3 respectively. The round constants are
generated using the same 6-bit affine LFSR as GIFT.

AddTweak: The 4-bit tweak is first expanded to a 32-bit value:

(x1, x2, x3, x4)→ (X,X,X,X) , X ← (x1, x2, x3, x4, S ⊕ x1, S ⊕ x2, S ⊕ x3, S ⊕ x4),

where S = x1 ⊕ x2 ⊕ x3 ⊕ x4. Then the 32-bit value is XORed to the state at an interval
of 5 rounds. To be precise, it adds the expanded 32-bit tweak to bit positions 4i + 3,
i = 0 . . . 31. A detailed description can be found in [CDJ+19].

We would like to point out that the area overhead for this tweak injection is negligible.
Infact TweAES has an overhead (in LUTs) of 0.5% (and 0.7%) for combined encryption-
decryption (and encryption only implementation resp), while TweGIFT-128 has an overhead
of 4.04% and 4.32% resp. The details are given in Sect.6.1.

3.3 Efficient Security Evaluation for Elastic Tweak
Regarding differential and linear cryptanalysis, the lower bound of the number of active
S-boxes and the upper bound of the maximum differential characteristic probability can be
obtained by using various tools based on MILP and SAT, however to derive such bounds
for the entire construction is often infeasible. Here, we introduce an efficient method to
ensure the security against differential and linear cryptanalyses by exploiting the fact that
the expanded tweak has a large weight.

Suppose that the expanded tweak is injected to the state every r rounds. Then
we focus on 2r rounds around the tweak injection, namely a sequence of the following
three operations: the r-round transformation, the tweak injection, and another r-round



Chakraborti et al. 359

2𝑅 𝐴𝐸𝑆 

𝑇𝑒 

2𝑅 𝐴𝐸𝑆 

𝑇𝑒 

2𝑅 𝐴𝐸𝑆 

𝑇𝑒 

2𝑅 𝐴𝐸𝑆 

𝑇𝑒 

2𝑅 𝐴𝐸𝑆 

4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 4-𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑒 

Figure 1: 4-round Core of TweAES [∗,∗,∗,2]

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑇1 𝑇2 𝑇3 𝑇4 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑇1 𝑇2 𝑇3 𝑇4 

(𝟗) 

(𝟎) 

(𝟔) 

(𝟎) 

(𝟎) 

(𝟒) 

(𝟎) 

(𝟏𝟏) 

Figure 2: TweAES: Two Examples of Differential Trails with 15 Active S-boxes.

transformation. We call those operations “2r-round core,” which is depicted for AES
and GIFT-64 in Fig. 1. Because the entire construction includes several 2r-round cores,
security of the entire construction can be bounded by accumulating the bound for the
single 2r-round core: this depends of course on the value of r. The large weight of the
expanded tweak ensures a strong security bound for the 2r-round core, which is sufficient
to ensure the security for the entire construction.

3.4 Security Analysis of TweAES
3.4.1 Resistance against Differential and Linear Cryptanalyses

We evaluate the minimum number of differentially and linearly active S-boxes for the
4-round core of TweAES. A 4-bit tweak of TweAES is divided into 4 parts denoted by
T1, T2, T3, T4, where the size of each Ti is 1 bit.

When the tweak input has a non-zero difference, the expanding function ensures that
at least 4 bytes are affected by the tweak difference. It is easy to check by hand that
the minimum number of active S-boxes of the 4-round core under this constraint is 15.
We also modeled the problem by MILP and experimentally verified that the minimum
number of active S-boxes is 15. This is a tight bound and two examples of the differential
trails achieving 15 active S-boxes are given in Fig. 2. Given that the maximum differential
probability of the AES S-box is 2−6, the probability of the differential propagation through
the 4-round core with non-zero tweak difference is upper bounded by 2−6×15 = 2−90. The
probability of the differential propagation of TweAES is upper bounded by 2−90×2 = 2−180

because 10 rounds of TweAES include two 4-round cores.
Thanks to the simple structure of AES, it is also possible to experimentally compute

the lower bound of the number of active S-boxes of the full-round TweAES. When the
tweak input has a non-zero difference, the minimum number of active S-boxes is 40 for
the entire construction. Hence, the probability of the differential propagation is upper
bounded by 2−6×40 = 2−240. This is a tight bound. An example of the differential trail
achieving 40 active S-boxes is given in Fig. 3.



360 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 
𝑇1 𝑇2 𝑇3 𝑇4 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

(𝟎) 

(𝟖) 

(𝟎) 

(𝟏𝟐) 

(𝟖) 

(𝟎) 

(𝟏𝟐) 

(𝟎) 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

(𝟎) (𝟎) 

Figure 3: TweAES: An Example of the Differential Trail with 40 Active S-boxes.

The number of linearly active S-boxes can be evaluated in the same way.

3.4.2 Cryptanalysis from the First Round by Exploiting Tweak

In this section, we will show integral attacks, impossible differential attacks and truncated
differential attacks against reduced-round variants that start form the initial round. The
main purpose is to show the difficulty of exploiting the 4-bit tweak in the attack, thus we
do not discuss the case with the fixed tweak. (When the tweak is fixed, security of TweAES
is the same as the original AES. The attacks on AES can also be applied to TweAES but
those do not reveal any vulnerability introduced by TweAES.)

Integral Attacks. Because the tweak starts to appear only after the second round, it is
difficult to extend the integral attacks by playing with plaintexts. The most reasonable
approach to exploit the tweak is to fix the plaintext and to collect all possible 24 tweak
inputs. The propagation of the property is given in Fig. 4. Because the plaintext is fixed,
the state does not change during the first two rounds. By examining 16 possible tweaks,
each bit of the expanded tweak becomes zero for 8 choices and one for 8 choices. Hence,
when the value before the tweak injection is c, the value after the tweak injection is either
c or c ⊕ 1 and both occur 8 times. From the similar analysis, the balanced property is
preserved after 2 rounds from the tweak injection.

The key recovery starts with 16 ciphertexts. The attacker guesses the 4 bytes of the
last subkey as indicated in Fig. 4. Let W5 be MC−1(K5). Then, by guessing a byte of W5,
the corresponding byte position can be partially decrypted until the beginning of round
5, and thus the attacker can check whether or not the balanced property (a sum of the
byte value among 16 texts is 0) is satisfied. The probability that the balanced property is
observed is 2−8, hence only 1 choice of the byte-difference at W5 will remain as a right key
candidate. The analysis can be iterated for 4 bytes of W5. In the end, for each 232 choice
of 4 bytes of K6, the corresponding 4 bytes of W5 will be fixed. Namely, 64 bits of the key
space is reduced to 32 bits. By using another set of a plaintext with 16 different tweaks,
the key space is reduced to 1.

The memory complexity can be reduced by first preparing two sets of 16 texts, and
then the bytes of K6 are guessed. We can apply the same analysis to all 4 different columns
to determine the key without exhaustive search. Hence, the data complexity is 25, the
computational cost is 25 · 232 · 28 = 245, the memory amount is negligible.

Compared to the integral attack against original AES, we can exploit two blank rounds
thanks to the tweak injection in every two rounds but then the property disappears more
quickly because we need to activate at least 4 byte positions. The attack on the original



Chakraborti et al. 361

𝑆𝐵 𝑆𝑅 𝑀𝐶

𝑆𝐵 𝑆𝑅 𝑀𝐶

𝑆𝐵 𝑆𝑅 𝑀𝐶

𝑆𝐵 𝑆𝑅

𝐾0

𝐾1

𝐾2

𝐾3

𝐾6

𝑇

2 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

2 2 2 2
2 2 2 2

𝑈 𝑈 𝑈 𝑈
𝑈 𝑈 𝑈 𝑈
𝑈 𝑈 𝑈 𝑈
𝑈 𝑈 𝑈 𝑈

𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵

𝑆𝐵 𝑆𝑅 𝑀𝐶 𝐾4

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵
𝐵 𝐵 𝐵 𝐵

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶
𝐶 𝐶 𝐶 𝐶

𝑆𝐵 𝑆𝑅 𝑀𝐶 𝐾5

𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡

𝑟𝑜𝑢𝑛𝑑 1

𝑟𝑜𝑢𝑛𝑑 2

𝑟𝑜𝑢𝑛𝑑 3

𝑟𝑜𝑢𝑛𝑑 4

𝑟𝑜𝑢𝑛𝑑 5

𝑟𝑜𝑢𝑛𝑑 6

𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡

Figure 4: TweAES: Integral Distinguisher on TweAES via Tweak. ‘2’ represents that two
kinds of values appear 8 times each and ‘4’ represents that four kinds of values appear
4 times each. By following the convention, ‘B’ and ‘U ’ denote ‘balanced’ and ‘unknown’
properties, respectively.



362 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

AES appends 1 more round at the beginning of the integral distinguisher, which is difficult
for TweAES via non-zero tweak because of the existence of 2 AES rounds before the first
tweak injection.

Impossible Differential Attacks. With a non-zero tweak difference, the strategy to build
an impossible differential is to inject it in the middle of the conventional 3.5-round
impossible differential, as indicated by Fig. 5. Namely, in the middle round, the top and
the bottom bytes in the left-most column are active with probability 1 in the forward
direction, while those byte are inactive with probability 1 in the backward direction.

𝑇1𝑇2𝑇3𝑇4

𝑅𝑜𝑢𝑛𝑑 2 𝑅𝑜𝑢𝑛𝑑 3 𝑅𝑜𝑢𝑛𝑑 4

𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛

Figure 5: TweAES: 3-Round Impossible Differential with Non-Zero Tweak Difference.

For the key recovery, one round and two rounds can be appended to the beginning and
the end of the 3-round impossible differential, which is illustrated in Fig. 6.

𝑅𝑜𝑢𝑛𝑑 1 𝑆𝐵5

𝐾0 𝑀𝐶−1(𝐾5)

𝑆𝑅5

𝑀𝐶5

𝑆𝐵6

𝑆𝑅6

𝐾6

𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ𝑒𝑟

Figure 6: TweAES: 6-Round Key Recovery in Impossible Differential Attacks.

Because the tweak does not appear during the key recovery rounds, the procedure is
the same as the one with the conventional 3.5-round impossible differential. To collect the
data, the attacker constructs a structure, a set of 232 plaintexts in which 232 values are
considered for active 4 bytes and the other 12 bytes are fixed. This generates

(232

2
)
≈ 263

plaintext pairs. This is iterated X times by changing the value of the fixed 12 bytes of the
plaintexts, which results in X ·232 queries and X ·263 ciphertext pairs. We only pick up the
pairs that have 12 inactive bytes at the ciphertext, thus we obtain X · 263/296 = X · 2−33

pairs.
For each of the X · 2−33 pairs, the attacker generates the wrong values of 9 key bytes;

4 bytes of K0, 1 byte of MC−1(K5) and 4 bytes of K6 as illustrated in Fig. 6. This can
be done by choosing all possible (28) 1-byte differences after the first round and propagate
it back to the S-box output in round 1. Then each active S-box in round 1 has fixed input
and output differences, which indicates the corresponding values for those 4 S-boxes. For
each difference after round 1, the attacker obtains 1 value for those 4 S-boxes on average,
thus obtains 1 candidate of 4 bytes of K0 by taking the xor with plaintext. By analyzing
28 differences after round 1, the attacker collects 28 wrong keys. Similarly, by choosing a
1-byte difference at the input of round 5 and a 4-byte difference at the input of round 6,



Chakraborti et al. 363

the attacker collects 240 wrong keys for the 5 key bytes. By merging the results from two
directions, the attacker obtains 248 wrong keys for 9 key bytes. By iterating the analysis
for X · 2−33 pairs, the attacker obtains X · 215 wrong keys for 9 key bytes. The remaining
key space for those 9 bytes can be computed as follows.

272 ·
(

(1− 2−96)X·2
15
)

= 272 ·
(

(1− 2−96)296·X·2−81
)
≈ 272 · e−X·2

−81
.

Considering e−64 ≈ 2−92, by setting X = 287, the remaining key space becomes less than
one, thus only the right key will remain. After 4 bytes of K0 are recovered, the remaining
12 bytes can be recovered by the exhaustive search.

The attack complexity is 287+32 = 2119 queries and memory accesses to collect the
pairs. 287−33+48 = 2102 partial AES round operations are required to compute wrong keys.
To record the detected wrong keys, it requires memory of size 272.

Truncated Differential Attacks. So far the most successful attempts can break up to
5 rounds of TweAES. There are two possible approaches. The first approach does not
inject the difference from the plaintext and starts the differential propagation from the
first tweak injection. The second one is to inject the difference from the plaintext and to
cancel it at the first tweak injection, which makes the subsequent two rounds blank. Here
we describe both approaches.

The truncated differential trail for the first approach is shown in Fig. 7. The trail

𝑇1𝑇2𝑇3𝑇4

2𝑅 1𝑅
𝑆𝐵
𝑆𝑅

𝑀𝐶
𝑆𝐵
𝑆𝑅

𝑀𝐶−1(𝐾4) 𝐾5

Figure 7: TweAES: 5-round Truncated Differential Attack using Tweak Difference (type
1).

can be satisfied with probability 1. After one pair of ciphertexts is obtained, the attacker
analyzes the last subkey column by column. Namely, the possible number of differences
before MixColumns in round 4 is 224. For each of them, the attacker can derive 1 candidate
for the corresponding 4 subkey bytes of K5, thus the key space is reduced by a factor of 28.
The involved byte positions for 1 column are stressed in Fig. 7 by the bold line. The same
analysis can be iterated by using 4 pairs of ciphertexts to reduce the key space to 1. The
key for the other columns can be identified similarly. The data complexity is 24 paired
queries, which is 25. Time complexity is 4 iterations of derivation of 224 key candidates
which is 226. The memory amount is 224.

One may wonder if it is possible to inject a difference to the plaintext and to cancel it
with the first tweak addition. This is indeed possible and the key can be recovered up to 5
rounds, while it requires a much higher attack complexity. We will explain this inefficient
attack to demonstrate that exploiting the plaintext to control the middle tweak injection
is difficult. The truncated differential trail for the second approach is shown in Fig. 8. The
trail can be satisfied with probability 2−128; 2−64 for the first round and 2−64 towards the
cancellation at the first tweak injection. Hence by generating 2128 pairs, we can expect
one pair following the truncated differential trail.

The attacker makes 264.5 encryption queries of randomly generated distinct plaintexts
to pick up the pairs having 12 inactive bytes at the ciphertext in the byte positions shown



364 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

𝑇1𝑇2𝑇3𝑇4

1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 2𝑅 𝐴𝐸𝑆
L𝑎𝑠𝑡
𝐴𝐸𝑆

Figure 8: TweAES: 5-round Truncated Differential Attack using Tweak Difference (type
2).

in Fig. 8. Among about 2128 pairs, 232 pairs will satisfy the 12 inactive bytes at the
ciphertext and 1 pair is expected to follow the trail. For each of the 232 pairs, the attacker
generates 264 candidate values for the first round key. Hence the 128-bit key space for
the first subkey is reduce to 96 bits (232 × 264). By starting from 266.5 queries to obtain
2132 pairs, the 128-bit key space is reduced to 1. The data complexity is 266.5, the time
complexity is 298 and the memory complexity is 296.

We have tried various differential trails to attack 6 rounds of TweAES, while no attempts
could successfully attack 6 rounds with a complexity significantly lower than the exhaustive
key search. To find an attack on more than 5 rounds is an open problem.

Remarks on Meet-in-the-Middle Attacks. Meet-in-the-middle attacks [DS08, DFJ13]
exploit the 4-round truncated differential 1 → 4 → 16 → 4 → 1 and focus on the fact
that the number of differential characteristics satisfying this differential is at most 280.
The large-weight of the expanded tweak in TweAES does not allow such sparse differential
trails, which makes it hard to apply the meet-in-the-middle attacks.

3.4.3 Cryptanalysis Starting from the Middle of the 4-Round Core

We argue that any reduced-round version of TweAES where the first or the last round
are located in the middle of any 4-round core can be attacked for relatively many rounds.
Owing to this unusual setting, the attacks here do not threaten the security of full TweAES,
however we still demonstrate the attacks for better understanding of the security of
TweAES.

7-Round Boomerang/Sandwich Attacks. The first approach is the boomerang attack
or the more precisely formulated version called the sandwich attack. The boomerang
attack divides the cipher E into two parts E0 and E1 such that E = E1 ◦ E0, and builds
high-probability differential for E0 and E1 almost independently. The attack detects
a quartet of plaintexts generated by a plaintext x that satisfies the non-ideal behavior
shown below with probability p−2q−2, where p and q are the differential probability for
E0 : α→ β and E1 : γ → δ, respectively.

Pr
[
E−1(E(x)⊕ δ

)
⊕ E−1(E(x⊕ α)⊕ δ

)
= α

]
= p−2q−2.

7-rounds of TweAES including four tweak injections that starts from the tweak injection
are divided into E0 and E1 as follows.

E0 := tweak − 1RAES− 1RAES− tweak − 1RAES,
E1 := 1RAES− tweak − 1RAES− 1RAES− tweak − 1RAES.



Chakraborti et al. 365

With this configuration, the attacker can avoid building the trail over the 4-round core for
both of E0 and E1.

The framework of the sandwich attacks shows that by dividing the cipher E into three
parts E = E1 ◦ Em ◦ E0, the probability of the above event is calculated as p−2q−2rqua,
where rqua is the probability for a quartet defined as

rqua := Pr
[
E−1
m

(
Em(x)⊕ γ

)
⊕ E−1

m

(
Em(x⊕ β)⊕ γ

)
= β

]
.

We define Em of this attack as the first S-box layer in the above E1. The configuration
and the differential trails are depicted in Fig. 9. The probability when Em is a single
S-box layer can be measured by using the boomerang connectivity table (BCT). The trails

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 𝑆𝑅 
𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑆𝐵 
𝑆𝑅 

𝑀𝐶 

𝑇1 𝑇2 𝑇3 𝑇4 

𝟐−𝟒𝟖 

𝟐−𝟒𝟖 

𝑇1 𝑇2 𝑇3 𝑇4 

𝟐−𝟑𝟎 

Figure 9: TweAES: Differential Trails for Boomerang Attacks. The cells filled with black
and gray represent active byte positions in E0 and E1, respectively.

for E0 and E1 include 4 active S-boxes, hence the probabilities p and q are both equal
to 2−24. That is, p2q2 = 2−96. The Boomerang Connectivity Table (BCT) of the AES
S-box shows that the probability for each S-box in Em is either 2−5.4, 2−6, or 2−7 if both
of the input and output differences are non-zero, and is 1 otherwise. Hence, the trail
contains 5 active S-boxes with some probabilistic propagation and we assume that the
probability of each S-box is 2−5.4. Then, the probability rqar is 2−5.4×5 = 2−27. In the
end, p−2q−2rqua = 2−123, which would lead to a valid distinguisher for 7 rounds.

The data complexity is 2123 quartet queries, which is 2125. The time complexity is 2125

memory accesses to the queried results. The memory amount is negligible.

8-Round Impossible Differential Attacks against TweAES. Due to 2 interval rounds
between tweaks, distinguishers based on impossible differential attacks can be constructed
for relatively many rounds (6 rounds) by canceling the tweak difference with the state
difference. The distinguisher is depicted in Fig. 10.

The first and last tweak differences are canceled with the state difference with probability
1. Then we have 2 blank rounds. After that, the tweak difference is injected to the state,
which implies that the tweak difference must be propagated to the same tweak difference
after 2 AES rounds. However, this transformation is impossible because

• 1-round propagation in forward direction has 4 active bytes for the right-most column,
while

• 1-round propagation in backward direction has at least 2 inactive bytes in the
right-most column.



366 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

𝑇1 𝑇2 𝑇3 𝑇4 

1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 1𝑅 𝐴𝐸𝑆 

𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

Figure 10: TweAES: 6-round Impossible Differential. The bytes filled with black, white,
and gray have non-zero difference, zero difference, and arbitrary difference, respectively.

For the key recovery, two rounds can be appended to the 6 round impossible differential;
one is at the beginning and the other is at the end, which is illustrated in Fig. 11. As

𝑇1 𝑇2 𝑇3 𝑇4 

6𝑅 𝑇𝑤𝑒𝐴𝐸𝑆 
𝑆𝐵 
𝑆𝑅 

𝐾9 

𝑆𝐵 
𝑆𝑅 
𝑀𝐶 

𝐾1 

Figure 11: TweAES: Extension to 8-round Key Recovery

shown in Fig. 11 the trail includes 8 and 4 active bytes at the input and output states.
Partial computations to the middle 6 rounds involve 8 bytes of subkey K1 and 4 bytes of
subkey K9.

Recall that the tweak size is 4 bits. The attack procedure is as follows.

1. Choose all tweak values denoted by T i where i = 0, 1, . . . , 24 − 1.

2. For each of T i, fix the value of inactive 8 bytes at the input, choose all 8-byte
values at the active byte positions of the input state. Query those 264 values
to get the corresponding outputs. Those outputs are stored in the list Li where
i = 0, 1, . . . , 24 − 1.

3. For all
(24

2
)
≈ 27 pairs of Li and Lj with i 6= j, find the pairs that do not have

difference in 12 inactive bytes of the output state. About 27+64+64−96 = 239 pairs
will be obtained.

4. For each of the obtained pairs, the tweak difference is fixed and the differences at the
input and output states are also fixed. Those fix both of input and output differences
of each S-box in the first round and the last round. Hence, each pair suggests a
wrong key.

5. Repeat the procedure 259 times from the first step by changing the inactive byte
values at the input. After this step, 239+59 = 298 wrong-key candidates (including
overlaps) will be obtained. The remaining key space of the involved 12 bytes becomes
296 × (1− 2−96)298 ≈ 296 × e−2 ≈ 290.2. Hence, the key space for the 8 bytes of K1
and 4 bytes of K9 will be reduced by a factor of 25.77.

The data complexity is 24× 264× 259 = 2127. The time complexity is also 2127 memory
accesses. The memory complexity is to recored the wrong keys of the 12 bytes, which is
296.



Chakraborti et al. 367

Remarks. We demonstrated two attacks against reduced-round variants that start from
the middle of the 4-round core. Because the security of TweAES with non-zero tweak
difference relies on the property that the large-weight tweak difference will diffuse fast in
the subsequent 2 rounds, those reduced-round analysis will not threaten the security of the
full TweAES. From a different viewpoint, one can see the difficulty to extend the analysis
by 1 more round from Figs. 9 and 11. The number of guessed key bytes will reach 16.

3.4.4 Comparison of the Attacks on AES and TweAES Exploiting Tweak

The comparison of the number of attacked rounds and the attack complexity for the
original AES and TweAES is given in Table 2. With our best effort, the number of attacked
rounds for TweAES with a non-zero difference is always smaller than the attacks on AES.
It is an open problem to find attacks on TweAES reaching the same number of rounds as
AES.

Table 2: Comparison of the attacks on AES and TweAES exploiting tweak in Sect. 3.4.2.
R, D, T and M denote the number of rounds, data complexity, time complexity and
memory complexity, respectively.

Attacks Starting from the First Round
Attack AES TweAES

R D T M ref. R D T M

Integral 7 2128 − 2119 2120 264 [FKL+00] 6 25 245 negl.

Imp. Diff. 7 2106.2 2110.2 290.2 [MDRM10] 6 2119 2119 272

Trunc. Diff. 6 272.8 2105 233 [Gra19] 5 25 226 224

Attacks Starting from the Middle of the 4-Round Core
Boomerang not available 7 2125 2125 negl.

Imp. Diff. not available 8 2127 2127 296

3.5 Security Analysis of TweAES-6
In TweAES-6, the number of rounds is reduced from TweAES by considering that the
attackers do not have full control over the block cipher invocation in the modes. From this
background, we do not analyze the security of TweAES-6 as a standalone tweakable block
cipher, but show that the number of active S-boxes is sufficient to prevent attacks.

As a result of running the MILP-based tool, it turned out that the differential trail
achieving the minimum number of active S-boxes with some non-zero tweak difference is
20. Examples of the differential trails achieving 20 active S-boxes is the first six or the last
six rounds of the trail in Fig. 3.

Given that the maximum differential probability of the AES S-box is 2−6, the probability
of the differential propagation is upper bounded by 2−6×20 = 2−120. Because our mode
does not allow the attacker to make 2120 queries, it is impossible to perform differential
cryptanalysis.

Note that AEAD schemes based on the original AES often adopt 4-round AES in the
mode. While 4-round AES is not fully secure as a standalone block cipher, no attack is
known on the 4-round AES in proper modes under the restriction of the birthday-bound
query limit. We designed TweAES-6 by following the same concept to offer a speed-up
from the full-round TweAES in our modes.



368 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

3.6 Security Analysis of TweGIFT
We only consider the security of TweGIFT against attacks exploiting the tweak injection,
because, without the tweak injection, the security of TweGIFT is exactly the same as the
original GIFT-128.

Differential Cryptanalysis. The 4-bit tweak expands to 8 bits and those 8 bits are
duplicated three times to achieve a 32-bit tweak. When the 4-bit tweak has some non-zero
difference, the expanded 32-bit tweak is ensured to have at least 16 active bits, which
ensures at least 16 active S-boxes in 2 rounds around the tweak injection.

We modeled the differential trail search for TweGIFT with MILP under the constraints
that at least 1 bit of the tweak has a difference. Owing to the large state size, the
computation of the tight bound of the maximum probability of the differential characteristic
is not easy even for the 10-round core. After spending 1,462,448 seconds (about 17 days),
the MILP stopped and it turned out that the maximum probability of the differential
characteristic for the 10-round core is 2−79. Given that the entire TweGIFT-128 consists
of 40 rounds and thus contains 4 of the 10-round cores, the upper bound of the entire
construction is 2−79×4 = 2−316, which is sufficient to resist the attack.

Note that it is also difficult to apply the MILP-based differential trail search to the
original GIFT-128 because of the large state size. The designers showed that the lower
bound on the number of active S-boxes for 9 rounds of GIFT-128 is 19 [BPP+17, Table
11] and the bound is tight. The designers also evaluated the differential probability (not
characteristic probability) of the trail matching the bound, which was 2−46.99. Zhu et
al. [ZDY19] introduced some heuristic to search for differential trails of the reduced-round
GIFT-128 with some aid of MILP. They found 12-, 14-, 18-round differential characteristics
with probability 2−62.415, 2−85, and 2−109, respectively [ZDY19, Table 9]. By comparing
those probabilities with the upper bound for the 10-round core, we believe that the best
differential trail would not exploit the tweak difference, thus the tweak injection of TweAES
does not introduce any vulnerability. The comparison of the bounds for the original
GIFT-128 and TweGIFT is given in Table 3.

Table 3: Comparison of the Guaranteed Differential Property for GIFT-128 and TweGIFT
via Non-Zero Tweak

target rounds evaluated object bound type probability reference
GIFT-128 9 differential probability tight bound 2−46.99 [BPP+17]
GIFT-128 12 characteristic probability lower bound 2−62.415 [ZDY19]
GIFT-128 14 characteristic probability lower bound 2−85 [ZDY19]
GIFT-128 18 characteristic probability lower bound 2−109 [ZDY19]
TweGIFT 10 characteristic probability tight bound 2−79 Ours

Basically, GIFT-128 allows a sparse differential propagation. For example, the 18-round
differential trail found by Zhu et al. [ZDY19] is described in Table 4.

The differential mask for the first and last rounds in Table 4 have a relatively large
weight, however this is because the trail is optimized for 18 rounds. The sparse differential
propagation of GIFT-128 is the ground of our belief that to have 16 active S-boxes around
the tweak injection by using non-zero tweak difference strongly resists the attack.

Boomerang Attacks. If the number of attacked rounds is reduced significantly, the tweak
injection actually helps an attacker to attack TweGIFT more efficiently than the original
GIFT-128. An example is the boomerang attack for 10 rounds. If the attacker starts from



Chakraborti et al. 369

Table 4: 18-Round Sparse Differential Trail by Zhu et al. [ZDY19, Table 10]

Round Input Difference Probability
0000 0000 7060 0000 0000 0000 0000 0000

1 0000 0000 0000 0000 0000 0000 00a0 0000 2−5

2 0000 0010 0000 0000 0000 0000 0000 0000 2−7

3 0000 0000 0800 0000 0000 0000 0000 0000 2−10

4 0020 0000 0010 0000 0000 0000 0000 0000 2−12

5 0000 0000 0000 0000 4040 0000 2020 0000 2−17

6 0000 5050 0000 0000 0000 5050 0000 0000 2−25

7 0000 0000 0000 0000 0000 0000 0a00 0a00 2−37

8 0000 0000 0000 0011 0000 0000 0000 0000 2−41

9 0008 0000 0008 0000 0000 0000 0000 0000 2−57

10 0000 0000 0000 0000 2020 0000 1010 0000 2−41

11 0000 5050 0000 0000 0000 5050 0000 0000 2−61

12 0000 0000 0a00 0a00 0000 0000 0000 0000 2−73

13 0000 0000 0011 0000 0000 0000 0000 0000 2−77

14 0090 0000 00c0 0000 0000 0000 0000 0000 2−83

15 1000 0000 0080 0000 0000 0000 0000 0000 2−89

16 0010 0000 0000 0000 0000 0000 8020 0000 2−94

17 0000 0000 8000 0020 0000 0050 0000 0020 2−101

18 0000 0100 0020 0800 0014 0404 0002 0202 2−109

the zero plaintext difference with some non-zero tweak difference, the first 5 rounds do not
have any difference. The tweak injection will introduce differences to multiple S-boxes, but
we change the trail by following the framework of the boomerang attack. In the second
trail that starts from round 6, we also choose the zero-difference to the state input, and
some non-zero difference in the tweak. This also gives another 5 empty rounds. In total,
we have two 5-round trails with probability 1, that easily enables attackers to attack 10
rounds plus a few more rounds by appending some key-recovery rounds. It would also be
possible to extend a few more rounds at the border of the two trails by using the BCT
[CHP+18].

In the original GIFT-128, the minimum number of active S-boxes for 5 rounds is 5.
Hence, the 10-round boomerang trail will certainly require a non-negligible data complexity
to recovery the key. The 10-round attack against TweGIFT should be much more efficient
than the one against original GIFT-128.

However, because the probability of the trails is squared in the boomerang attack, it is
highly unlikely that the attacker can extend the differential trail significantly. Moreover,
recall that the probability of the differential characteristic is upper bounded by 2−72.6 for
the 10-round core. The squared probability is 2−145.2, which is already larger than the
code-book size. The boomerang attack may work efficiently for 10 and a few more rounds
of TweGIFT, but given that the differential trail in Table 4 reaches 18 rounds, we do not
think that the boomerang attack can be the best approach for attacking TweGIFT.

4 ESTATE: A tBC-Based Lightweight AEAD Mode
In this section, we present the formal specification of ESTATE mode of operation based on
tBC. A detailed algorithmic description for the mode is given. Finally, we list the recom-
mended instantiations. ESTATE_TweAES, sESTATE_TweAES-6 and ESTATE_TweGIFT.
We use the tBCs TweAES and TweGIFT, used for listed instantiations.



370 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

4.1 ESTATE AEAD Mode
ESTATE authenticated encryption mode receives an encryption key K ∈ {0, 1}κ, a nonce
N ∈ {0, 1}n, an associated data A ∈ {0, 1}≤2n/2 , and a message M ∈ {0, 1}≤2n/2 as inputs,
and returns a ciphertext C ∈ {0, 1}|M |, and a tag T ∈ {0, 1}n. The decryption algorithm
receives a key K ∈ {0, 1}κ, a nonce N ∈ {0, 1}n, an associated data A ∈ {0, 1}≤2n/2 , a
ciphertext C ∈ {0, 1}≤2n/2 , and a tag T ∈ {0, 1}n as inputs, and return the plaintext
M ∈ {0, 1}|C| corresponding to C, if the tag T is valid.

ESTATE is roughly based on the which is already larger than-then-Encrypt paradigm.
It is composed of an FCBC-like MAC, we call FCBC?, and the OFB mode of encryption.
ESTATE is parametrized by its underlying tweakable block cipher Ẽ-n/τ/κ. It operates on
n-bit data blocks at a time using a tweakable block cipher. The complete specification of
ESTATE is presented in Algorithm 1. The pictorial description is given in Figure 12, 13,
and 14.

4.1.1 FCBC?: Tag Generation Phase

The tag generation phase is a tweakable variant of FCBC, where distinct tweaks are used
to instantiate multiple instantiations of the block cipher. Different tweak values are used
to separate different cases based on the length of the associated data and the message.
The tweak values are represented in 4 bits, and the corresponding integer value of the 4-bit
binary representation is called the tweak value. We use the tweak value 1 while processing
the first block (i.e. nonce N). All the intermediate blocks are processed with tweak 0, to
minimize the overhead.

4.1.2 OFB: Encryption Phase

The encryption phase is built on the well-known OFB mode, where we fix the tweak value
to 0, again to minimize the tweak injection overhead.

Algorithm 1 ESTATE Authenticated Encryption and Verified Decryption Algorithm

1: function ESTATE.Enc[Ẽ](K, N, A, M)
2: T ← MAC[Ẽ](K, N, A, M)
3: C ← OFB[Ẽ](K, T, M)
4: return (C, T )

5: function MAC[Ẽ](K, N, A, M)
6: if |A| = 0 and |M | = 0 then
7: return T ← Ẽ

8
K(N)

8: T ← Ẽ
1
K(N)

9: if |A| > 0 then
10: A[1]‖ · · · ‖A[a]← A

11: t← (|M | > 0 ; |A[a]| = n) ? 2 : 3 : 6 : 7
12: T ← FCBC?[Ẽ](K, T, A, t)
13: if |M | > 0 then
14: M [1]‖ · · · ‖M [m]←M

15: t← (|M [m]| = n)? 4 : 5
16: T ← FCBC?[Ẽ](K, T, M, t)
17: return T

1: function ESTATE.DEC[Ẽ](K, N, A, C, T )
2: M ← OFB[Ẽ](K, T, C)
3: T ′ ← MAC[Ẽ](K, N, A, M)
4: return (T ′ = T )? M : ⊥

5: function FCBC?[Ẽ](K, T, D, t)
6: D[1]‖ · · · ‖D[d]← D

7: for i = 1 to d− 1 do
8: T ← Ẽ

0
K(T ⊕D[i])

9: T ← Ẽ
t

K

(
T ⊕ ozp(D[d])

)
10: return T

11: function OFB[Ẽ](K, T, M)
12: M [1]‖ · · · ‖M [m]←M

13: for i = 1 to m do
14: T ← Ẽ

0
K(T )

15: C[i]← chop(T, |M [i]|)⊕M [i]
16: return (C[1]‖ · · · ‖C[m])



Chakraborti et al. 371

N V

A[1] A[a]

E1
K E0

K E0
K E

2/3
K

⊕ ⊕· · ·

V T

M [1] M [m]

E0
K E0

K E
4/5
K

⊕ ⊕· · ·

E0
K E0

K E0
K

⊕ ⊕ ⊕

T

M [1]

C[1]

M [m− 1]

C[m− 1]

M [m]

C[m]

· · ·

Figure 12: ESTATE with a AD blocks and m message blocks

N T

M [1] M [m]

E1
K E0

K E0
K E

4/5
K

⊕ ⊕· · ·

E0
K E0

K E0
K

⊕ ⊕ ⊕

T

M [1]

C[1]

M [m− 1]

C[m− 1]

M [m]

C[m]

· · ·

Figure 13: ESTATE with empty AD and m message blocks

N T

A[1] A[a]

E1
K E0

K E0
K E

6/7
K

⊕ ⊕· · ·

Figure 14: ESTATE with a AD blocks and empty message

4.2 sESTATE: A Lighter Variant of ESTATE

Along with ESTATE, we also define a lighter version of ESTATE, called sESTATE where
we use two tweakable block ciphers: Ẽ and a round-reduced variant of Ẽ, represented by
F̃. The tweakable block cipher F̃ replaces Ẽ in processing of all the blocks in the MAC
function except the last one. For all other tweakable block cipher calls, i.e. for processing
the last block in the MAC function and the full OFB processing, Ẽ is used as usual. Further
F̃, is always employed with tweak value 15, in order to maintain the maximum distance
between the 0 tweak calls to Ẽ and calls to F̃.



372 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

Algorithm 2 sESTATE Authenticated Encryption and Verified Decryption Algorithm.
Here F̃ is a round-reduced variant of Ẽ

1: function sESTATE.Enc[̃E,̃F](K,N,A,M)
2: T ← MAC[̃E, F̃](K,N,A,M)
3: C ← OFB[̃E](K,T,M)
4: return (C, T )

5: function MAC[̃E,̃F](K,N,A,M)
6: if |A| = 0 and |M | = 0 then
7: return T ← Ẽ

8
K(N)

8: T ← F̃
15
K (N)

9: if |A| > 0 then
10: A[1]‖ · · · ‖A[a]← A

11: t← (|M | > 0 ; |A[a]| = n) ? 2 : 3 : 6 : 7
12: T ← FCBC? [̃E, F̃](K,T,A, t)
13: if |M | > 0 then
14: M [1]‖ · · · ‖M [m]←M

15: t← (|M [m]| = n)? 4 : 5
16: T ← FCBC? [̃E, F̃](K,T,M, t)
17: return T

1: function sESTATE.DEC[̃E,̃F](K,N,A,C, T )
2: M ← OFB[̃E](K,T,C)
3: T ′ ← MAC[̃E, F̃](K,N,A,M)
4: return (T ′ = T )? M : ⊥

5: function FCBC? [̃E,̃F](K,T,D, t)
6: D[1]‖ · · · ‖D[d]← D

7: for i = 1 to d− 1 do
8: T ← F̃

15
K (T ⊕D[i])

9: T ← Ẽ
t

K

(
T ⊕ ozp(D[d])

)
10: return T

11: function OFB[̃E](K,T,M)
12: M [1]‖ · · · ‖M [m]←M

13: for i = 1 to m do
14: T ← Ẽ

0
K(T )

15: Ci ← chop(T, |M [i]|)⊕M [i]
16: return (C[1]‖ · · · ‖C[m])

4.2.1 Tweak Choices

For sESTATE, we always use tweak 15 for the round-reduced block ciphers to maximize
the distance with other tweaks, most importantly tweak 0 whose inputs and outputs are
observed through OFB. In this way, we make TweAES-6 with tweak value 15 and TweAES
with tweak value 0 as much independent as possible.

4.3 Design Rationale
We briefly describe the rationale of our proposal:

1. Choice of the Mode. Our basic goal is to design an ultra-lightweight mode, which
is especially efficient for short messages, and secure against nonce misuses. For this,
we choose SIV as base and then introduce various tweaks to make the construction
single-state and inverse free, much in the same vein as in the case of SUNDAE.

2. Use of Tweakable Block Cipher. We use a tweakable block cipher with 4-bit
tweak primarily for the purpose of domain separation for the type of the current
data (associated data or message), completeness of the final data block (partial
or full), whether the associated data and/or message is empty etc. Note that,
without the use of these tweaks, these domain separations would cost a few constant
field multiplications and/or additional block cipher invocations, which would in
turn increase the hardware footprint as well as decrease the energy efficiency and
throughput for short messages.

3. Rationale of the Tweaks. Here we provide a detailed justification for the choice
of the tweaks.

(i) Tweak for Processing Bulk Messages. We use tweak 0 for all the block ciphers
used in the OFB part and all the intermediate block ciphers in the MAC function.
Since TweAES and TweGIFT with zero tweaks are AES and GIFT respectively,
no additional overhead is introduced in the software for longer messages due to
the use of tweakable block ciphers.



Chakraborti et al. 373

(ii) Tweak for First Block Cipher Invocation. We use a separate tweak (tweak
value 1) for the first block cipher invocation in the MAC function so that the
adversary does not have any control over the inputs of the intermediate block
ciphers. This ensures the RUP security of the mode.

(iii) Tweak for Finalization. For the purpose of domain separation, we use tweak
2 and 3 (full and partial resp.) for the final AD block processing and tweak 4
and 5 (full and partial resp.) for the final plaintext block processing.

4. Rationale of the Tweak Injection Positions for TweAES. The overall structure
of TweAES is similar as KIASU-BC [JNP14], which takes a 64-bit tweak as input and
adds it to the two rows of the state in every rounds. The designers of KIASU-BC
pointed out that if the injection position is two columns, it immediately leads to an
efficient related-key related-tweak attack. This is also the reason for the designers of
KIASU-BC for not supporting a 128-bit and a 96-bit tweak. The proposed analysis is
reasonable and we follow a similar analysis in the design of TweAES, i.e. to inject the
8-bit expanded tweak to the LSB of each byte in the top rows. Bit position inside
the byte can be different, however we determined to inject only to the rightmost part
for implementation.
We also took into account the fact that several researchers [DEM16, TAY16, DL17,
LSG+19] pointed out that many of the attack approaches on AES were extended by
1 more round when they were applied to KIASU-BC. This is mainly caused by the
fact that the same tweak is injected in every round and the expanded tweak can be
directly controlled by the attacker at least for one round. In TweAES, the expansion
by computing the linear code makes it difficult for the attackers to control the value
of the expanded tweak, and the injection in every few rounds does not allow any
single-round iterative characteristic.

4.4 Recommended Instantiations
We recommend the following concrete instantiations:

• ESTATE_TweAES: This AEAD scheme obtained by instantiating the ESTATE mode
of operation with Ẽ:=TweAES. Here the size of the key, nonce and tag are 128 bits
each.

• ESTATE_TweGIFT: This AEAD scheme is obtained by instantiating the ESTATE
mode of operation with Ẽ:= TweGIFT-128. Here the size of the key, nonce and
tag are 128 bits each. We recommend ESTATE_TweGIFT, for hardware-oriented
ultra-lightweight applications.

• sESTATE_TweAES-6: This AEAD scheme is obtained by instantiating the sESTATE
mode of operation with Ẽ:=TweAES, F̃:=TweAES-6, such that F̃ is the 6-round version
of TweAES. Again, the size of the key, nonce and tag are 128 bits each. Notably, the
last round of TweAES-6 (6-th round) includes the MixColumns operations, and the
tweaks are added in the 2-nd and 4-th rounds. We recommend sESTATE_TweAES-6,
for high-throughput and energy-constrained applications.

5 Security of ESTATE
In this section, we prove that ESTATE is an AERUP secure authenticated encryption
scheme:



374 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

Theorem 2 (AERUP security of ESTATE). Consider ESTATE authenticated encryption
scheme based on the tweakable block cipher E : {0, 1}k × {0, 1}n × {0, 1}t → {0, 1}n.
For any adversary A having encryption complexity σe, decryption complexity σd, and
verification complexity σv (number of queried blocks in the qe encryption qd decryption and
qv verification queries, respectively), and operating in time t,

AdvAERUP
ESTATE(A) ≤ AdvTPRP

E (B) + σ2

2n + qv
2n ,

where B is some TPRP adversary that makes σ = σe + σd + σv queries to its oracle.

We consider an adversary A that has access to either (EK ,DK ,VK) or ($,S,⊥), and
tries to distinguish both worlds. We first replace E0

K , . . . , E
7
K by random permutations

P0, . . . , P7, where each Pi
$←− P(n), at the cost of AdvTPRP

E (B) for some distinguisher B that
makes σ queries to its oracle and operates in time t′ ≈ t. Next, we switch from P0, . . . , P7
to random functions R0, . . . , R7 where Ri

$←− F(n) at the cost of
(
σ
2
)
/2n (applying the

standard PRP-PRF switching lemma). For brevity, denote the resulting construction by
Π = (E [R0, . . . , R7],D[R0, . . . , R7],V[R0, . . . , R7]). We have thus obtained

AdvAERUP
ESTATE(A) ≤ AdvTPRP

E (B) +
(
σ

2

)
/2n + AdvAERUP

Π (A) , (4)

and our focus is on upper bounding the remaining distance AdvAERUP
Π (A). The theorem

follows as we bound AdvAERUP
Π (A) ≤ σ2

2n + qv
2n in the following subsection.

5.1 Bounding AdvAERUP
Π (A)

Without loss of generality, A is deterministic. Suppose it makes qe encryption queries
(A+

i ,M
+
i )qei=1 to the encryption oracle, where the block lengths of A+

i and M+
i are denoted

by a+
i and m+

i , with an aggregate of total σe blocks, qd decryption queries (A−i , C
−
i , T

−
i )qdi=1

to the decryption oracle, where the block lengths of A−i and C−i are denoted by a−i and
c−i , with an aggregate of total σd blocks, and qv verification queries (A?i , C?i , T ?i )qvi=1 to
the verification oracle, where the block lengths of A?i and C?i are denoted by a?i and c?i ,
with an aggregate of total σv blocks. We assume that A is non-trivial and non-repeating,
which means that all queries are distinct and there is no (A?i , C?i , T ?i ) that is an answer
of an earlier encryption query. By (i,}), we mean the i-th message of type }, where
} ∈ {+,−, ?}. We use the notation (j,}) ≺ (i,~) to denote that j-th message of type }
was queried prior to the i-th message of type ~.

Description of the Real World. The real world Ore consists of the encryption oracle
Π.E [R], the decryption oracle Π.D[R], and the verification oracle Π.V[R] as outlined
above. After the adversary has made all its queries, the oracles release all the internal
variables. The encryption and verification oracles reveal all (X,Y )’s (block cipher input-
outputs corresponding to authentication part) and all (U, V )’s (block cipher input-outputs
corresponding to OFB part). The decryption oracle reveals all (U, V )’s corresponding to
decryption (the oracle does not verify the MAC). Note that there is some redundancy in
the values, as the U ’s can be deduced from the values M , C, and V , but we reveal these
for completeness.

Description of the Ideal World. The ideal world Oid consists of three oracles ($,S,⊥).
The verification oracle ⊥ simply responds with the ⊥-sign for each input (A?i , C?i , T ?i ). We
will elaborate on the remaining two oracles, encryption $ and decryption S, in detail. For
these two oracles, we maintain an initially empty table L to store (U, V )-tuples.



Chakraborti et al. 375

The encryption oracle $ is a random function that for each input (A+
i ,M

+
i ) =

(A+
i [1 . . . a+

i ],M+
i [1 . . .m+

i ]) generates a ciphertext and tag as

C+
i = C+

i [1 . . .m+
i ] $←− {0, 1}|M

+
i
| ,

T+
i

$←− {0, 1}n .

For later purposes, $ will in addition set the following internal variables, which correspond
to the inputs and outputs of R that are determined by M+

i , C
+
i , T

+
i :

(
U+
i [k] , V +

i [k]
)
←

{(
T+
i , M+

i [1]⊕ C+
i [1]

)
, for k = 1 ,(

V +
i [k − 1] , M+

i [k]⊕ C+
i [k]

)
, for k = 2, . . . ,m+

i .

It stores all the individual (U+
i , V

+
i ) tuples in table L. The decryption oracle S is a

simulator that we define to operate as follows on input of a query (A−i , C
−
i , T

−
i ) =

(A−i [1, . . . , a−i ], C−i [1, . . . , c−i ], T−i ):

• Sets k ← 1 and U−i [1]← T−i

• While U−i [k] ∈ L, sets V −i [k] ← L(U−i [k]), defines M−i [k] ← V −i [k] ⊕ C−i [k] and
U−i [k + 1]← V −i [k] and increment k by 1.

• For j = k to c−i , samples M−i [j] $←− {0, 1}n, sets V −i [j]←M−i [j]⊕ C−i [j], U−i [j]←
V −i [j − 1] and adds (U−i [j], V −i [j]) to L.

• Finally returns M−i [1 . . . c−i ]

Once the adversary has made all queries, we move to an offline phase where the
adversary will be given the internal values (X,Y ) and (U, V ), just like in the real world.
Note that the (U, V )’s have already been defined for encryption and decryption oracle. For
any input query (A?i , C?i , T ?i ), verification oracle ⊥ defines (U, V ) in exactly the similar
way as the decryption oracle defines for an input query (A−i , C

−
i , T

−
i ) and also determines

the underlying message M?
i [1 . . . c?i ] which is released to the adversary. For the (X,Y )’s

we use the following technique to define them. Note that we only have to focus on the
encryption and verification queries; we do not bother about the (X,Y )’s for decryption
queries as a decryption call does not verify the tag. For any query (i,}) with } ∈ {+, ?},
we first find the query (j,~) which has the longest common prefix with (i,}). Let
p < `}i be the length of the longest common prefix of (A}

i ‖M
}
i ) and (A~

j ‖M
~
j ). Next,

we set Y }
i [k] ← Y ~

j [k] for 1 ≤ k ≤ p, and Y }
i [k] $←− {0, 1}n, for p + 1 ≤ k ≤ `}i .

Finally, we set all the X}
i [j] values for j = 1, . . . , `}i . Finally, when the sampling

of internal values is over, Oid returns all the internal values. These are (X+
i , Y

+
i ) =

(X+
i [1 . . . `+i ], Y +

i [1 . . . `+i ]) , (U+
i , V

+
i ) = (U+

i [1 . . .m+
i ], V +

i [1 . . .m+
i ]), for each encryp-

tion query (A+
i ,M

+
i , C

+
i , T

+
i ); (U−i , V

−
i ) = (U−i [1 . . . c−i ], Y −i [1 . . . c−i ]), for each decryp-

tion query (A−i ,M
−
i , C

−
i , T

−
i ), and (X?

i , Y
?
i ) = (X?

i [1 . . . `?i ], Y ?i [1 . . . `?i ]) , (U?i , V ?i ) =
(U?i [1 . . .m?

i ], V ?i [1 . . .m?
i ]), for each verification query (A?i ,M?

i , C
?
i , T

?
i , b

?
i ).

Attainable Transcripts. The overall transcript of the attack is τ = (τe, τd, τv), where

τe = (A+
i ,M

+
i , C

+
i , T

+
i , X

+
i , Y

+
i , U

+
i , V

+
i )qei=1 ,

τd = (A−i ,M
−
i , C

−
i , T

−
i , U

−
i , V

−
i )qdi=1 ,

τv = (A?i ,M?
i , C

?
i , T

?
i , X

?
i , Y

?
i , U

?
i , V

?
i , b

?
i )
qv
i=1 .

A transcript τ = (τe, τd, τv) is said to be attainable (with respect to A) if the probability
to realize this transcript in the ideal world Oid is non-zero. Note that, particularly, for an
attainable transcript τ , any verification query in τv satisfies b?i = ⊥. Following Sect. 2.4,



376 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

we denote by Θ the set of all attainable transcripts, and by Xre and Xid the probability
distributions of transcript τ induced by the real world and ideal world, respectively.

Definition of Bad Transcripts We say that an attainable transcript τ is bad if one of
the following events hold:

1. AccXX1: ∃(j,~) � (i,}) : X}
i [a}i ] = X~

j [a~j ], where A}
i 6= A~

j .

2. AccXX2: ∃(j,~) � (i,}) : X}
i [`}i ] = X~

j [`~j ].

3. AccXX3: ∃(j,~) � (i,}), k, k′( 6= k) : X}
i [k] = X~

j [k′].

4. AccXX4: ∃(j,~) � (i,}), k ≤ a}i : X}
i [k] = X~

j [k], where A}
i [1 . . . k] 6= A~

j [1 . . . k].

5. AccXX5: ∃(j,~) � (i,}), k > a}i : X}
i [k] = X~

j [k], where A}
i = A~

j ,M
}
i [1 . . . (k −

a})] 6= M~
j [1 . . . (k − a})].

6. AccXU: ∃(j,~), (i,}), k(6= 1, `}i ), k′ such that U}
i [k′] = X~

j [k].

7. AccUU: ∃(j,~) � (i,}), k, k′ with
(
} = + or U}

i [1] 6= U~
j [k − k′ + 1]

)
such that U}

i [k′] =
U~
j [k].

8. Forge: ∃(i, ?) such that Y ?i [`?i ] = T ?i .

Note that, considering the real world, AccXX denotes the event of an accidental collision
between two inputs to R in the authentication part, where we exclude trivial collisions due
to common prefix. Event AccXU corresponds to accidental collisions between an input to R
in the authentication and one in the encryption part. Event AccUU corresponds to accidental
collisions between two inputs to R in the encryption part, where we exclude trivial collisions
triggered by a decryption query for a known U -value. Event Forge corresponds to the
event that for any verification query, the last block cipher output in the MAC function
collides with the given tag in the verification query.

In line with the H-coefficient technique (Theorem 1), Θbad denotes the set of all
attainable transcripts that are bad.

Probability of Bad Transcripts. We now bound the probability of a bad event in the
ideal world.

Lemma 1. Let Xid and Θbad be as defined as above. Then,

Pr[Xid ∈ Θbad] ≤
(
σ

2

)
· 1

2n + qv
2n .

Proof. By applying the union bound,

Pr[Xid ∈ Θbad] ≤ Pr[AccXX] + Pr[AccXU] + Pr[AccUU] + Pr[Forge] ,

and we bound the three probabilities individually. We let #X be the number of X’s in
the transcript and #U the number of U ’s.

Bounding AccXX. For all the first four cases, the probability of each case can be bounded
by 1

2n due to the random sampling of Y ~
j [k − 1]. Combining all the four cases, we obtain

Pr[AccXX] ≤
(

#X
2

)
· 1

2n .



Chakraborti et al. 377

Bounding AccXU. The event implies C}
i [k′]⊕M}

i [k′] = Y ~
j [k − 1]⊕ A~

j [k]. If (j,~) ≺
(i,}), we can bound this event by 1

2n due to the random sampling of C}
i [k′] or M}

i [k′] or
Y ~
j [k − 1]. We therefore obtain

Pr[AccXU] ≤ (#X ·#U) · 1
2n .

Bounding AccUU. We consider the following cases:
We obtain

Pr[AccUU] ≤
(

#U
2

)
· 1

2n .

Bounding Forge. For a fixed verification query, the event is trivially bounded by 2−n as
Y ?i [`?] is sampled uniformly at random. Summing over all possible choices of the index i,
we have

Pr[Forge] ≤ qv/2n.

Conclusion. We obtain that

Pr[Xid ∈ Θbad] ≤
((

#X
2

)
+ (#X ·#U) +

(
#U

2

))
· 1

2n .

This completes the proof, noting that(
#X

2

)
+ (#X ·#U) +

(
#U

2

)
=
(

#X + #U
2

)
≤
(
σ

2

)
,

and in addition #U ≤ σ.

Analysis of Good Transcripts. In this section we show that for a good transcript τ ,
realizing τ is almost as likely in the real world as in the ideal world. Formally, we prove
the following lemma.

Lemma 2. Let Xre, Xid, and Θbad be as defined as above. For any good transcript
τ = (τe, τv, τd) ∈ Θ\Θbad,

Pr[Xre = τ ]
Pr[Xid = τ ] = 1 .

Proof. Let τ = (τe, τv, τd) be a good transcript. Let se be the number of distinct X
values in X+ := (X+

1 , . . . , X
+
qe) tuple and sv be the number of distinct X values in

X? := (X?
1 , . . . , X

?
qv ). Moreover, let ki be the number of non-fresh blocks for i-th decryption

query and k′i be the number of non-fresh blocks for i-th verification query. Therefore, there

are σ′d := (σd−
qd∑
i=1

ki) many M ′

i values and σ′v := (σv −
qv∑
i=1

k′i) many M?
i values have been

sampled. This in particular allows us to compute the ideal interpolation probability as
follows: in the online phase the encryption oracle samples qe many tag values and σqe
many cipher text blocks uniformly at random. The decryption oracle samples σ′d many
message blocks and the verification oracle samples σ′v many message blocks. In the offline
phase, the ideal oracle samples total se + sv many Y values. Hence,

Pr[Xid = τ ] =
(

1
2n

)qe
·
(

1
2n

)σe
·
(

1
2n

)σ′d
·
(

1
2n

)σ′v
·
(

1
2n

)se+sv



378 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

Now, we compute the real interpolation probability for τ . Since, τ is a good transcript,
X+
i [`i] is fresh. Therefore, T+

i is uniformly distributed. Moreover, we do not have any
collision in the tuple U+ := (U+

1 , . . . , U
+
qe) as τ is good which gives the uniform distribution

on the cipher text blocks. It is easy to see that the decryption oracle samples exactly
σ′d many message blocks and verification oracle samples exactly σ′v many message blocks.
Morever, as there are se + sv many distinct X values in encryption and verification query
history, we have,

Pr[Xre = τ ] =
(

1
2n

)qe
·
(

1
2n

)σe
·
(

1
2n

)σ′d
·
(

1
2n

)σ′v
·
(

1
2n

)se+sv
This gives the ratio of the real to ideal interpolation probability 1.

Conclusion. By the H-coefficient technique of Theorem 1, we obtain for the remaining
distance of (4):

AdvAERUP
Π (A) ≤ εratio + εbad ,

where εratio = 0 given the bound of Lemma 2 and εbad is set to be the bound of Lemma 1.

6 Implementation
In this section, we mainly focus on hardware benchmarking of the proposed constructions.
However, for the sake of completeness, a short note on the software performance of various
instantiations of ESTATE and sESTATE is given towards the end of this section (see
subsection 6.8).

We first describe the hardware implementation results for TweAES and TweGIFT
followed by the implementation details of our cipher family ESTATE. All the members of
ESTATE have the same structure. The only difference lies in the choice of the underlying
primitives. Hence, it is reasonable to describe the details with respect to one of the
members ESTATE_TweAES. We start with a very brief description of the implementation
of TweAES. Next we describe hardware architecture details of ESTATE_TweAES. Finally,
we provide our implementation results of all the members of the ESTATE family along
with the implementation results of SUNDAE_AES-128 and SUNDAE_GIFT-128. Note that,
we have implemented both instantiations of SUNDAE using exactly the same interface and
following the same architectural properties to have a fair comparison. In addition, we use
the AES only encryption core provided in the GMU Caesar Package [GMU16] for both
ESTATE_TweAES and SUNDAE_AES-128. The details are given below.

6.1 Implementation Results of TweAES and TweGIFT
Here we briefly describe the hardware implementation results for TweAES and TweGIFT.
We present both the encryption/decryption (ED) version and only encryption (E) version.
The VHDL code of our implementations are synthesized using the Xilinx ISE 14.7 tool in
a Virtex 7 FPGA (XC7VX415TFFG1761). We have used the default options (optimized
for speed) and all the S-boxes and memories to store the round keys are mapped to LUTs,
and no block RAM is used. We present the results obtained from the tool after performing
the place and route process.
Table 5 shows that the area-overhead (LUT counts) introduced by the tweak injection
is negligible. Considering the combined encryption-decryption (ED) implementation,
TweAES have an overhead (in LUTs) of 0.5%. As we move to the encryption (E) only
implementation, our recommended TweAES versions have negligible area overheads of 0.7%.
Note that, the reduction in the speed is also negligible.



Chakraborti et al. 379

Table 5: Implementation results for AES and TweAES on Virtex 7 FPGA. Here ED stands
for both encryption and decryption circuit. E stands for encryption only circuit

BC or tBC LUTs FF Slices Frequency Clock Throughput
(MHz) cycles (Mbps)

AES-ED 2945 533 943 297.88 11 3466.24
TweAES-ED 2960 534 1044 295.97 11 3444.01

AES-E 1605 524 559 330.52 11 3846.05
TweAES-E 1617 524 574 328.27 11 3819.87

Table 6: Implementation results for GIFT and TweGIFT on Virtex 7 FPGA

BC or tBC LUTs FF Slices Frequency Clock Throughput
(MHz) cycles (Mbps)

GIFT-128-ED 1113 408 432 447.83 41 1398.10
TweGIFT-128-ED 1223 408 428 429.32 41 1340.31

GIFT-128-E 763 403 330 596.30 41 1861.62
TweGIFT-128-E 805 403 377 598.78 41 1869.36

Table 6 summarizes the hardware performance of TweGIFT along with the original GIFT.
For the ED implementation, TweGIFT-128 has an overhead of 4.04% for a tweak size of 4.
As we move to the E implementation, TweGIFT-128 has an overhead of 4.32%.

6.2 Implementation Results of ESTATE and Benchmark with SUN-
DAE

In this section, we present our implementation of all the members of the ESTATE family. We
also implement both SUNDAE_AES-128 and SUNDAE_GIFT-128 using the same interface.
The underlying combined encryption/decryption architecture of ESTATE_TweAES is given
in Fig. 15. The main modules are described in Appendix A. The hardware implementations
codes of ESTATE and SUNDAE members are written in VHDL and are implemented on
Virtex 7 xc7vx485t (Vivado v.2018.2.2) using RTL and a basic round-based architecture.
The areas are provided in terms of the number of slice registers, slice LUTs and the
number of occupied slices. We also provide 8-bit implementations of ESTATE_TweAES
whose sole motivation is to optimize the hardware area. We observe that it achieves a
much lower hardware area than the above ones. We denote the 8-bit implementation
of ESTATE_TweAES by ESTATE_TweAES (8) which achieves even a significantly lower

M
u
x
1

M
u
x
2

tweAES
Pad

b b

b

N , A i , M i , C i , T

rst

mode

last ad

last msg

b

b

V F

Control
unit

incomplete

AD empty
Msg empty

rdy

data in

start
ini key

done keys

Verification

t

t

 T

N, A, M, C, T

K

C, T, M

Figure 15: Hardware Architecture of ESTATE_TweAES



380 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

hardware area with a significant compromise in the throughput.
The detailed implementation results are depicted in Table 7.

Table 7: ESTATE and SUNDAE (ED Circuit) Implemented FPGA Results

Scheme # Slice
Registers # LUTs # Slices Frequency

(MHz)
Throughput
(Gbps)

Mbps/
LUT

Mbps/
Slice

ESTATE_TweAES 803 1901 602 303.00 1.94 1.02 3.22
sESTATE_TweAES 813 1903 602 302.20 2.42 1.27 4.02

ESTATE_TweAES (8) 284 393 125 316.18 0.19 0.49 1.54
ESTATE_TweGIFT-128 796 681 263 526.00 0.84 1.23 3.20
SUNDAE_AES-128 799 1922 614 302.81 1.93 1.01 3.16
SUNDAE_GIFT-128 682 931 310 526.03 0.84 0.90 2.71

We can observe that the overhead introduced by the implementation of ESTATE is
more significant in case of ESTATE_TweGIFT-128 since GIFT is significantly smaller than
AES. The latency for TweAES is 10 clock cycles configured as bulk encryption while for
the reduced 6-round version it is 6 clock cycles; this is directly reflected in the throughput.
Computing the throughput to process a message, ESTATE_TweAES uses 20 clock cycles
per block and sESTATE_TweAES uses 16. Observe that, both the versions of ESTATE are
better (in hardware area) than SUNDAE. However, ESTATE_TweGIFT-128 is significantly
more area-efficient than SUNDAE_GIFT-128 and the difference between ESTATE_TweAES
and SUNDAE_AES-128 is minimal.

We would like to point out that the difference between ESTATE and SUNDAE (based
on AES) is 1 AES encryption or 10 cycles, which is significant for short messages. For
example, if we process a 16 byte message, ESTATE_TweAES achieves a throughput of
1251.10 Mbps while SUNDAE_AES-128 has a throughput of 945.36 Mbps.

6.3 Handling the 2-Pass Mode
ESTATE is a 2-pass mode and the message is processed twice for MAC and Encrypt. Very
briefly, the adopted technique for handling the 2-pass mode can be storing the message in a
buffer exactly similar as proposed in the GMU Lightweight interface (Sect. 2.1 in [KDT+]).
To be precise, the associated data is processed first and next the message using the MAC
to generate the tag. In addition, the message is stored in a buffer to be encrypted. For
decryption, first the ciphertext is decrypted and the result is stored to a buffer to be
authenticated. Note that, our implementation assumes arrival of the message twice while
this technique needs a large buffer with size bounded by the upper bound of the input
length.

6.4 Very Small Implementation of ESTATE_TweAES
We also introduce two tiny FPGA implementations of ESTATE_TweAES. The main
motivation for the first implementation is to analyze the area-efficiency tradeoff for the
energy efficient version ESTATE_TweAES with low area implementation. In this case, we
use a 32-bit data-path AES based on the implementation introduced in [RSQL04]. This
implementation uses TBOXES stored in Block RAMs, and it takes 45 clock cycles to
encrypt the first block; after that, it can work in bulk mode with one encryption running
for 44 clock cycles. In Table 8 we show the experimental results. The results depict that
the tradeoff remains almost the same (i.e, area efficiency) on Virtex 7 with a significant
decrease in the circuit area with a factor of 5 but with an increase in the throughput
with almost the same factor. We can observe from Table 8, that our implementation of
ESTATE_TweAES in a low power device Artix 7 xc7a12tlcpg238-2L, occupies almost the
same resources as in Virtex 7 device but the frequency is much lower. It is interesting to



Chakraborti et al. 381

see that we can have an Deterministic AE (DAE) mode of operation using AES in just less
than 130 slices. Also the overhead introduced by the mode is less than the size of AES
itself.

We also provide 8-bit implementations of ESTATE_TweAES (using the same strategy
of using Block RAMs). The main aim of the Block RAM based implementation is to
optimize the hardware area. We observe that it achieves even a lower hardware area than
the above one. However, the hardware footprint difference is not significant as the 32-bit
implementation [RSQL04] is highly optimized for FPGA. In addition the frequency has
been reduced significantly. We denote this 8-bit implementation of ESTATE_TweAES by
ESTATE_TweAES (8). The implementation result is given in Table 8. Table 9 also depicts
that the hardware area of ESTATE_TweAES (8) is comparable to that of SAEB(8) while
operating in higher frequency.

Table 8: Very Small Implementations of ESTATE_TweAES in FPGA Results

Scheme # Slice
Registers # LUTs # Slices Frequency

(MHz)
Throughput
(Mbps)

Mbps/
LUT

Mbps/
Slice

AES Artix 7 161 221 88 150.34 437.35 1.97 4.97
AES Virtex 7 165 222 89 280.29 815.39 3.67 9.16

TweAES Artix 7 190 299 102 148.5 432 1.44 4.24
TweAES Virtex 7 190 285 104 277.59 807.53 2.83 7.76

ESTATE_TweAES Artix 7 289 377 120 147.06 213.91 0.56 1.78
ESTATE_TweAES Virtex 7 289 376 124 270.27 393.12 1.05 3.17

ESTATE_TweAES (8) Artix 7 231 317 105 220.18 134.20 0.42 1.28
ESTATE_TweAES (8) Virtex 7 292 352 113 316.18 192.72 0.55 1.71

Table 9: 8-bit Implementation Results (Virtex 7) of ESTATE_TweAES and SAEB

Modules #LUTs #Registers Frequency (MHz)
ESTATE_TweAES (8) 352 292 316.18

SAEB (8) 348 242 145.9

6.5 Power Consumption Results for ESTATE_TweAES
We perform a power consumption analysis on the energy efficient recommendation
ESTATE_TweAES. We also perform a simulation for the two proposed architectures:
one with 128-bit datapath and the other 32-bit datapath (tiny implementation of ES-
TATE_TweAES). We first generate 100 random pairs of AD and Message, next we perform
a post-implementation simulation saving the switching activity. Finally, the saved result
is used by Vivado Power Analyzer to estimate the power consumption under different
operating frequencies. In Table 10 we show the results obtained from the Power Analyzer.

As we are using FPGA platform, the static power is almost constant for both the
architectures implemented in Virtex 7, but the only variation is in the dynamic power,
which is related to the switching activity in the design. We did the power estimation for
the 32-bit data-path architecture in both Artix 7 and Virtex 7 to see the difference in
power consumption. From Table 10, we observe that static power in Virtex 7 is more than
four times than in Artix 7, as Artix 7 is a low power device while Virtex 7 is a high-end one.
The dynamic power is a bit bigger in Virtex 7. For the 128-bit data-path architecture, we
performed the power estimation only in Virtex 7, and its behavior in Artix 7 is expected
to be very similar only with differences in the static power.

6.6 Benchmarking ESTATE
In Table 11, we provide a benchmark of the hardware implementation results of all the
members in the ESTATE family using some of the implementation listed in the Athena



382 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

Table 10: Power consumption of the two proposed architectures for ESTATE_TweAES in
FPGA

Device # Frequency
(MHz)

# Data-path
size

Static
Power (mW)

Dynamic
Power (mW)

Total
Power (mW)

10 58 2 60
Artix 7 50 32 58 8 66

100 58 16 74
148.5 58 23 81
10 242 2 244

Virtex 7 50 32 242 10 252
100 242 20 262

270.27 243 45 288
10 242 3 245

Virtex 7 50 128 243 17 259
100 243 40 283

270.27 244 195 439

website [ATHa] along with the implementation results in [NMSS18, CIMN17a, CIMN17b,
CDNY18a, CDNY18b] on Virtex 7. The results depict that ESTATE can be implemented
with less hardware area keeping a competitive performance. In fact, ESTATE_TweAES
with 32-bit datapath tiny implementation outperforms significantly the other designs
(except SAEB). ESTATE_TweGIFT-128 is also one of the best in the literature (only next
to tiny ESTATE_TweAES, SAEB and ACORN). We would like to mention that we are not
claiming optimality in terms of Mbps/LUT or Mbps/slice, rather our primary focus is to
have an area-efficient design with reasonable performance. Note that, we directly use the
AES only encryption core provided in the GMU Caesar Package [GMU16] and our own
implementation for TweGIFT-128.

6.7 Component Wise Area Calculation for AES
We show how the area is occupied by the different components for the hardware imple-
mentation of ESTATE_TweAES. We observe that the majority of the hardware area is
consumed by TweAES. The distributions are described in Table 12 below. The area labeled
as Logic corresponds to the circuits introduced by the non-tBC components to implement
OFB and CBC modes of operations. The region labeled as registers in FF distribution
corresponds to the input/output registers of the architecture.

6.8 On Software Implementation and Benchmarking
At NIST Lightweight Cryptography Workshop 2019, Renner et al. proposed a custom
framework [RPM19a] for benchmarking software implementations from the NIST LwC
project on embedded devices. The benchmarking framework is publicly available in an
online repository [RPM19b]. This repository contains latest benchmarking results for all
the second round candidates on several microcontrollers including 8-bit, 32-bit and 64-bit
architectures. We refer the readers to [RPM19a, RPM19b] for further exposition on the
framework, the test setup and procedures.

In Table 13, we directly reproduce the benchmarking results for ESTATE_TweAES,
ESTATE_TweGIFT, and sESTATE_TweAES-6, as given in [RPM19b], for several microcon-
troller units. In addition, we also reproduce the benchmarking results for SUNDAE_GIFT-
128 (with 128-bit nonce), the remaining SIV based round 2 candidate, to give a comparative
view. For GIFT based instances of SUNDAE and ESTATE, we use the results for Rhys
Weatherley’s public implementations [Wea20] since they give better performance as com-
pared to respective reference implementations given in the NIST LwC submission. For
AES based ESTATE and sESTATE only reference implementation is available.



Chakraborti et al. 383

Table 11: Comparison on Virtex 7 with some of the implementation results in [ATHb].
Here BC denotes block cipher, SC denotes Stream cipher, (T)BC denotes (Tweakable)
block cipher and BC-RF denotes the block cipher’s round function,‘-’ means that the data
is not available

Scheme Underlying
Primitive # LUTs # Slices Gbps Mbps/

LUT
Mbps/
Slice

ESTATE_TweAES (32-bit datapath Implementation) tBC 376 124 0.393 1.05 3.17
ESTATE_TweAES tBC 1901 602 1.94 1.02 3.22
sESTATE_TweAES tBC 1903 602 2.42 1.27 4.02

ESTATE_TweGIFT-128 tBC (non AES) 681 263 0.84 1.23 3.20
AES-OTR [Min16] BC 4263 1204 3.187 0.748 2.647
AES-OCB [KR16] BC 4269 1228 3.608 0.845 2.889

AES-COPA [ABL+15] BC 7795 2221 2.770 0.355 1.247
AES-GCM BC 3478 949 3.837 1.103 4.043

CLOC-AES [IMG+16] BC 3552 1087 3.252 0.478 1.561
CLOC-TWINE [IMG+16] BC (non AES) 1552 439 0.432 0.278 0.984
SILC-AES [IMG+16] BC 3040 910 4.365 1.436 4.796
SILC-LED [IMG+16] BC (non AES) 1682 524 0.267 0.159 0.510

SILC-PRESENT [IMG+16] BC (non AES) 1514 484 0.479 0.316 0.990
ELmD [DN15] BC 4490 1306 4.025 0.896 3.082

JAMBU-AES [WH16] BC 1595 457 1.824 1.144 3.991
JAMBU-SIMON [WH16] BC (non AES) 1200 419 0.368 0.307 0.878

COFB-AES [CIMN17a, CIMN17a] BC 1456 555 2.820 2.220 5.080
SAEB [NMSS18] BC 348 − − − −
AEGIS [WP16] BC-RF 7504 1983 94.208 12.554 47.508

DEOXYS [JNP16] TBC 3234 954 1.472 0.455 2.981
Beetle[Light+] [CDNY18a, CDNY18b] Sponge 608 312 2.095 3.445 6.715
Beetle[Secure+] [CDNY18a, CDNY18b] Sponge 1101 512 2.993 2.718 5.846

ASCON-128 [DEMS16] Sponge 1373 401 3.852 2.806 9.606
Ketje-Jr [BJDAK16] Sponge 1567 518 4.080 2.604 7.876

NORX [AJN16] Sponge 2881 857 10.328 3.585 12.051
PRIMATES-HANUMAN [ABB+16] Sponge 1148 370 1.072 0.934 2.897

ACORN [Wu16] Stream cipher 499 155 3.437 6.888 22.174
TriviA-ck [CCHN15, CCHN18, CN15] Stream cipher 2221 684 14.852 6.687 21.713

Table 12: Distribution of #LUTs (left) and #FF (right) for ESTATE_TweAES implemen-
tation

Modules Distribution of #LUTs Distribution of #FFs
TweAES 84.43 65.26
Control 2.52 3.49

Logic / Register 13.05 31.26

Acknowledgements. The authors would like to thank Dr. Christina Boura for his
insightful comments and suggestions in preparing the final draft. We would also like to
thank all the anonymous reviewers of ToSC Special Issue for their valuable comments.
Avik Chakraborti, Nilanjan Datta, Ashwin Jha and Mridul Nandi are supported by the
project “Study and Analysis of IoT Security” under Government of India at R.C.Bose
Centre for Cryptology and Security, Indian Statistical Institute, Kolkata.

References
[ABB+16] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel,

Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs
v1.02. Submission to CAESAR, 2016. https://competitions.cr.yp.to/
round2/primatesv102.pdf.

[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,
and Kan Yasuda. How to securely release unverified plaintext in authenti-
cated encryption. In Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and

https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/primatesv102.pdf


384 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

Table 13: Summary of time and ROM usage for round 2 candidates based on ESTATE
and SUNDAE. Time is in microseconds and ROM size is in bytes.

AEAD Implementation
Uno1 F12 ESP3 F74

time ROM time ROM time ROM time ROM

ESTATE_TweAES 3524.86 8690 665.809 18608 154.297 221792 436.12 7644

ESTATE_TweGIFT 201.972 27220 63.784 232496 107.275 17092

sESTATE_TweAES-6 3174.96 8654 568.645 18688 126.148 221840 402.544 7708

SUNDAE-GIFT-128 5880.36 23162 205.741 22588 65.605 227520 111.01 12108

1 Arduino Uno R3 | 2 STM32F1 “bluepill” | 3 Espressif ESP32 WROOM | 4 STM32 NUCLEO-F746ZG
.

Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, pages 105–125, 2014.

[ABL+15] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-
chhauser, and Kan Yasuda. AES-COPA v.2. Submission to CAESAR, 2015.
https://competitions.cr.yp.to/round2/aescopav2.pdf.

[AJN16] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX v3.0.
Submission to CAESAR, 2016. https://competitions.cr.yp.to/round3/
norxv30.pdf.

[ATHa] ATHENa: Automated Tool for Hardware Evaluation. https://
cryptography.gmu.edu/athena.

[ATHb] Authenticated Encryption FPGA Ranking. https://cryptography.gmu.
edu/athenadb/fpga_auth_cipher/rankings_view.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Advances in Cryptology - ASIACRYPT 2015,
Proceedings, Part II, pages 411–436, 2015.

[BBLT18] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser.
Sundae: Small universal deterministic authenticated encryption for the inter-
net of things. IACR Transactions on Symmetric Cryptology, 2018(3):1–35,
Sep. 2018.

[BJDAK16] Guido Bertoni, Michaël Peeters Joan Daemen, Gilles Van Assche, and
Ronny Van Keer. Ketje v2. Submission to CAESAR, 2016. https:
//competitions.cr.yp.to/round3/ketjev2.pdf.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards reaching
the limit of lightweight encryption. In Cryptographic Hardware and Embed-
ded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, pages 321–345, 2017.

[BR05] John Black and Phillip Rogaway. CBC macs for arbitrary-length messages:
The three-key constructions. J. Cryptology, 18(2):111–131, 2005.

[CCHN15] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, and Mridul
Nandi. Trivia: A fast and secure authenticated encryption scheme. In CHES
2015, pages 330–353, 2015.

https://competitions.cr.yp.to/round2/aescopav2.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf
https://cryptography.gmu.edu/athena
https://cryptography.gmu.edu/athena
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://competitions.cr.yp.to/round3/ketjev2.pdf


Chakraborti et al. 385

[CCHN18] Avik Chakraborti, Anupam Chattopadhyay, Muhammad Hassan, and Mridul
Nandi. Trivia and utrivia: two fast and secure authenticated encryption
schemes. J. Cryptographic Engineering, 8(1):29–48, 2018.

[CDD+19] Donghoon Chang, Nilanjan Datta, Avijit Dutta, Bart Mennink, Mridul Nandi,
Somitra Sanadhya, and Ferdinand Sibleyras. Release of unverified plaintext:
Tight unified model and application to anydae. IACR Cryptology ePrint
Archive, 2019:1326, 2019.

[CDJ+19] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López,
Mridul Nandi, and Yu Sasaki. Elastic-tweak: A framework for short tweak
tweakable block cipher. IACR Cryptology ePrint Archive, 2019:440, 2019.

[CDN18] Avik Chakraborti, Nilanjan Datta, and Mridul Nandi. On the optimality
of non-linear computations for symmetric key primitives. J. Mathematical
Cryptology, 12(4):241–259, 2018.

[CDNY18a] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle
family of lightweight and secure authenticated encryption ciphers. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):218–241, 2018.

[CDNY18b] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle
family of lightweight and secure authenticated encryption ciphers. IACR
Cryptology ePrint Archive, 2018:805, 2018.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang
Connectivity Table: A New Cryptanalysis Tool. In EUROCRYPT 2018, Part
II, volume 10821 of LNCS, pages 683–714. Springer, 2018.

[CIMN17a] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? In
Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th Interna-
tional Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, pages
277–298, 2017.

[CIMN17b] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? IACR
Cryptology ePrint Archive, 2017:649, 2017.

[CN15] Avik Chakraborti and Mridul Nandi. TriviA-ck-v2. Submission to CAESAR,
2015. https://competitions.cr.yp.to/round2/triviackv2.pdf.

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages
327–350, 2014.

[DEM16] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Square at-
tack on 7-round Kiasu-BC. In Mark Manulis, Ahmad-Reza Sadeghi, and
Steve Schneider, editors, ACNS 2016, volume 9696 of LNCS, pages 500–517.
Springer, 2016.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Submission to CAESAR, 2016. https://competitions.cr.yp.
to/round3/asconv12.pdf.

https://competitions.cr.yp.to/round2/triviackv2.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf


386 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved Key Re-
covery Attacks on Reduced-Round AES in the Single-Key Setting. In EURO-
CRYPT 2013, volume 7881 of LNCS, pages 371–387. Springer, 2013.

[DL17] Christoph Dobraunig and Eik List. Impossible-differential and boomerang
cryptanalysis of round-reduced kiasu-bc. In Topics in Cryptology - CT-RSA
2017 - San Francisco, CA, USA, February 14-17, 2017, Proceedings, pages
207–222, 2017.

[DN15] Nilanjan Datta and Mridul Nandi. Proposal of ELmD v2.1. Submission to
CAESAR, 2015. https://competitions.cr.yp.to/round2/elmdv21.pdf.

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A Meet-in-the-Middle Attack on
8-Round AES. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of LNCS,
pages 116–126. Springer, 2008.

[ENC01] Recommendation for Block Cipher Modes of Operation: Methods and Tech-
niques. NIST Special Publication 800-38A, 2001. National Institute of
Standards and Technology.

[FIP01] NIST FIPS. Advanced Encryption Standard (AES). Federal Information
Processing Standards Publication, 197, 2001.

[FKL+00] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David A. Wagner, and Doug Whiting. Improved cryptanalysis of rijndael. In
Bruce Schneier, editor, Fast Software Encryption, 7th International Workshop,
FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings, volume 1978
of Lecture Notes in Computer Science, pages 213–230. Springer, 2000.

[GMU16] CAESAR Development Package, 2016. https://cryptography.gmu.edu/
athena/index.php?id=download.

[Gra19] Lorenzo Grassi. Probabilistic mixture differential cryptanalysis on round-
reduced AES. In Kenneth G. Paterson and Douglas Stebila, editors, Selected
Areas in Cryptography - SAC 2019, volume 11959 of LNCS, pages 53–84.
Springer, 2019.

[IMG+16] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita
Kobayashi. CLOC and SILC. Submission to CAESAR, 2016. https://
competitions.cr.yp.to/round3/clocsilcv3.pdf.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In ASIACRYPT 2014, pages 274–288,
2014.

[JNP16] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Deoxys v1.41. Submission
to CAESAR, 2016. https://competitions.cr.yp.to/round3/deoxysv141.
pdf.

[KDT+] Jens-Peter Kaps, William Diehl, Michael Tempelmeier, Farnoud Farah-
mand, Ekawat Homsirikamol, and Kris Gaj. A comprehensive frame-
work for fair and efficient benchmarking of hardware implementations of
lightweight cryptography. https://cryptography.gmu.edu/athena/LWC/
LWC_HW_Benchmarking_Framework.pdf.

[KR16] Ted Krovetz and Phillip Rogaway. OCB(v1.1). Submission to CAESAR, 2016.
https://competitions.cr.yp.to/round3/ocbv11.pdf.

https://competitions.cr.yp.to/round2/elmdv21.pdf
https://cryptography.gmu.edu/athena/index.php?id=download
https://cryptography.gmu.edu/athena/index.php?id=download
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://cryptography.gmu.edu/athena/LWC/LWC_HW_Benchmarking_Framework.pdf
https://cryptography.gmu.edu/athena/LWC/LWC_HW_Benchmarking_Framework.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf


Chakraborti et al. 387

[LSG+19] Ya Liu, Yifan Shi, Dawu Gu, Zhiqiang Zeng, Fengyu Zhao, Wei Li, Zhiqiang
Liu, and Yang Bao. Improved meet-in-the-middle attacks on reduced-round
Kiasu-BC and Joltik-BC. Comput. J., 62(12):1761–1776, 2019.

[MBTM17] Kerry A. McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky Mouha.
Lightweight Cryptography: Round 1 candidates, 2017. https://csrc.nist.
gov/Projects/Lightweight-Cryptography/Round-1-Candidates.

[MDRM10] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud
Modarres-Hashemi. Improved impossible differential cryptanalysis of 7-round
AES-128. In Guang Gong and Kishan Chand Gupta, editors, INDOCRYPT
2010, volume 6498 of LNCS, pages 282–291. Springer, 2010.

[Min16] Kazuhiko Minematsu. AES-OTR v3.1. Submission to CAESAR, 2016. https:
//competitions.cr.yp.to/round3/aesotrv31.pdf.

[NMSS18] Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara, and Daisuke Suzuki. SAEB:
A lightweight blockcipher-based AEAD mode of operation. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(2):192–217, 2018.

[Pat08] Jacques Patarin. The "coefficients h" technique. In Selected Areas in Cryptog-
raphy, 15th International Workshop, SAC 2008, Sackville, New Brunswick,
Canada, August 14-15, Revised Selected Papers, pages 328–345, 2008.

[PSWZ15] Thomas Peyrin, Siang Meng Sim, Lei Wang, and Guoyan Zhang. Cryptanalysis
of JAMBU. In Fast Software Encryption - 22nd International Workshop, FSE
2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected Papers, pages
264–281, 2015.

[RPM19a] Sebastian Renner, Enrico Pozzobon, and Jürgen Mottok. Benchmarking
software implementations of 1st round candidates of the NIST LWC project
on microcontrollers. In NIST Lightweight Cryptography Workshop 2019, 2019.

[RPM19b] Sebastian Renner, Enrico Pozzobon, and Jürgen Mottok. NIST LWC software
performance benchmarks on microcontrollers, 2019. https://lwc.las3.de/.

[RS06] Phillip Rogaway and Thomas Shrimpton. Deterministic authenticated-
encryption: A provable-security treatment of the key-wrap problem. IACR
Cryptology ePrint Archive, 2006:221, 2006.

[RSQL04] Gaël Rouvroy, François-Xavier Standaert, Jean-Jacques Quisquater, and Jean-
Didier Legat. Compact and efficient encryption/decryption module for FPGA
implementation of the AES rijndael very well suited for small embedded
applications. In International Conference on Information Technology: Coding
and Computing (ITCC’04), Volume 2, April 5-7, 2004, Las Vegas, Nevada,
USA, pages 583–587, 2004.

[TAY16] Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. A meet in the
middle attack on reduced round kiasu-bc. IEICE Transactions, 99-A(10):1888–
1890, 2016.

[Wea20] Rhys Weatherley. Lightweight cryptography primitives, 2020. https://
github.com/rweather/lightweight-crypto.

[WH16] Hongjun Wu and Tao Huang. The JAMBU Lightweight Authentica-
tion Encryption Mode (v2.1). Submission to CAESAR, 2016. https:
//competitions.cr.yp.to/round3/jambuv21.pdf.

https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://lwc.las3.de/
https://github.com/rweather/lightweight-crypto
https://github.com/rweather/lightweight-crypto
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf


388 ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode

[WP16] Hongjun Wu and Bart Preneel. AEGIS : A Fast Authenticated Encryption
Algorithm (v1.1). Submission to CAESAR, 2016. https://competitions.
cr.yp.to/round3/aegisv11.pdf.

[Wu16] Hongjun Wu. ACORN: A Lightweight Authenticated Cipher (v3). Submission
to CAESAR, 2016. https://competitions.cr.yp.to/round3/acornv3.
pdf.

[ZDY19] Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. Milp-based differential attack
on round-reduced GIFT. In Mitsuru Matsui, editor, CT-RSA 2019, volume
11405 of LNCS, pages 372–390. Springer, 2019.

A Hardware Architecture Modules
• Registers. An 128-bit register is used in ESTATE_TweAES to maintain the TweAES
state. It is evident as ESTATE is based on feedback based modes CBC and OFB
and we do not require any additional information to store during the lifetime of the
encryption and decryption (not the verification). During verification, it is necessary
to use the nonce to decrypt in the OFB mode and we need to store the tag in the
register labeled as T .

• Multiplexers. Mux1 selects the input to TweAES. TweAES can perform three
operations: encrypt one single block in ECB mode, compute the CBC mode or
generate the encryption/decryption stream in the OFB mode. Using Mux1, TweAES
gets the instruction which mode it should work. The output from TweAES (direct
or xored with input block) is input to Mux2 (to denote whether the architecture
executes encryption or decryption or tag generation).

• Pad. This module receives as input the selected output from Mux2 and outputs
either the full block for tag or partial block for message or cipher text.

• VF. It performs the verification process when the architecture is executed in the
decryption mode, and it compares the content of the register T with the output of
TweAES computed from the associated data and the decrypted message.

• Control unit. It provides specific signals to different modules in the architecture.
To follow the ESTATE_TweAES algorithm, we implement a finite state machine
shown in Fig. 16 containing the following states:

1. Reset: This state resets all the internal variables and signals and prepares the
circuit to start. The control from the Reset state goes to the Wait state.

2. Wait: This state indicates that we should now initialize the cipher functionalities.
It waits until the signal start or ini_keys change to 1.

3. Ini_keys: This state performs the computation of the round keys for TweAES.
4. Enc_N: During the execution of this state, the architecture performs the TBC

encryption of the Nonce. When the message and associated data are empty, the
output generated in this state by TweAES is given as the tag. The only change
for both the cases is the value of the tweak.

5. FCBC_AD: This state executes the CBC mode with associated data blocks as
the input.

6. FCBC_Msg: Same as FCBC_AD but here the input is the message block, the
last output is the tag.

https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf


Chakraborti et al. 389

Reset Wait Ini keys

Enc N

FCBC ADFCBC MsgVerif cation

OFB

Rst=1
ini keys = 1

rdy keys = 1

star t = 1 and mode = 0

mode=1

mode = 0

mode = 1 and i = m

star
t =

1 a
nd

mo
de=

1

|M
| =

0
A = 0 a

nd
rdy

C = 1

ini keys = 0 and star t = 0

rdy keys = 0

rdyC = 0

|A | > 0 and rdyC = 1

i < a

i = a

i <
m

i =
m and

mode
= 0

Figure 16: Finite State Machine

7. OFB: In this state, the architecture is configured to compute the encryption or
decryption in the OFB mode.

8. Verification: This state just activates the output from the component VF.

It is important to note that the value for the tweak is generated inside the state machine
and they are supplied to the TweAES module as shown in Figure 15. Depending on

• whether the encryption or the decryption is performed and

• whether at least one of the associated data and the message is empty,

the order of execution of the states change. The possible scenarios are shown in Table 14.

Table 14: Execution order of states for encryption/decryption and depending on the above
points

Encryption Sequence of states
a > 0,m > 0 Wait→ Enc_N→ FCBC_AD→ FCBC_Msg→ OFB→Wait
a > 0,m = 0 Wait→ Enc_N→ FCBC_AD→Wait
a = 0,m > 0 Wait→ Enc_N→ FCBC_Msg→ OFB→Wait
a = 0,m = 0 Wait→ Enc_N→Wait
Decryption Sequence of states
a > 0,m > 0 Wait→ OFB→ Enc_N→ FCBC_AD→ FCBC_Msg→Wait
a = 0,m > 0 Wait→ OFB→ Enc_N→ FCBC_Msg→Wait


	Introduction
	Designing Lightweight Block Cipher Based AEAD
	SUNDAE: A Lightweight AEAD
	Our Contribution
	ESTATE in Light of the NIST Lightweight Competition

	Preliminaries
	Notations
	Authenticated Encryption
	PRF, (T)PRP Security
	Patarin's H-Coefficient Technique

	Short-Tweak Tweakable Block Ciphers
	Specification of TweAES
	Specification of TweGIFT
	Efficient Security Evaluation for Elastic Tweak
	Security Analysis of TweAES
	Security Analysis of TweAES-6
	Security Analysis of TweGIFT

	ESTATE: A tBC-Based Lightweight AEAD Mode
	ESTATE AEAD Mode
	sESTATE: A Lighter Variant of ESTATE
	Design Rationale
	Recommended Instantiations

	Security of ESTATE
	Bounding AdvAERUP(A)

	Implementation
	Implementation Results of TweAES and TweGIFT
	Implementation Results of ESTATE and Benchmark with SUNDAE
	Handling the 2-Pass Mode
	Very Small Implementation of ESTATE_TweAES
	Power Consumption Results for ESTATE_TweAES
	Benchmarking ESTATE
	Component Wise Area Calculation for AES
	On Software Implementation and Benchmarking

	Hardware Architecture Modules

