
The Subterranean 2.0 Cipher Suite

Joan Daemen1, Pedro Maat Costa Massolino3, Alireza Mehrdad1, Yann Rotella2

1Radboud University NL, 3PQShield UK, 2UVSQ, LMV, Université Paris-Saclay FR

Fast Software Encryption Workshop

November 9, 2020

1/22

Subterranean [JDA 1992]: a stream/hash module

absorb here

blank
rounds

squeeze here

control

• • C•
?

state a
C
• •-

?

R
6C

•• - shift register b
•

Subhash: M → h

Substream: (K ;D) → Z

2/22

Subterranean [JDA 1992]: a stream/hash module

absorb here

blank
rounds

squeeze here

control

• • C•
?

state a
C
• •-

?

R
6C

•• - shift register b
•

Subhash: M → h

Substream: (K ;D) → Z

2/22

Subterranean [JDA 1992]: a stream/hash module

absorb here

blank
rounds

squeeze here

control

• • C•
?

state a
C
• •-

?

R
6C

•• - shift register b
•

Subhash: M → h

Substream: (K ;D) → Z

2/22

Subterranean [JDA 1992]: a stream/hash module

absorb here

blank
rounds

squeeze here

control

• • C•
?

state a
C
• •-

?

R
6C

•• - shift register b
•

Subhash: M → h

Substream: (K ;D) → Z

2/22

Subterranean [JDA 1992]: a stream/hash module

absorb here

blank
rounds

squeeze here

control

• • C•
?

state a
C
• •-

?

R
6C

•• - shift register b
•

Subhash: M → h

Substream: (K ;D) → Z

2/22

Subterranean [JDA 1992]: a stream/hash module

absorb here

blank
rounds

squeeze here

control

• • C•
?

state a
C
• •-

?

R
6C

•• - shift register b
•

Subhash: M → h

Substream: (K ;D) → Z

2/22

Subterranean’s round function R

b: 256-bit shift register with 32-bit stages

a: 257-bit state: a← R(a, b)

a0 . . . a76 a77 a78 a79 a80 a81 a82 a83 a84 a85 a86 . . . t

π

σ[b]

θ

ς

γ?⊕�
5◦
�
�� ���?⊕

?⊕

?

	◦◦
� ?⊕
	◦◦

� ?⊕
	◦◦
�

�
�� ��� b310�

⊕
64 88 100 112 124 136

PP
PP

P
HH

HH
@
@

�
�
��

��
��
��
�

���
�

a0 . . . a91 a92 a93 . . . t + 1

3/22

Subterranean’s round function R

b: 256-bit shift register with 32-bit stages

a: 257-bit state: a← R(a, b)

a0 . . . a76 a77 a78 a79 a80 a81 a82 a83 a84 a85 a86 . . . t

π

σ[b]

θ

ς

γ?⊕�
5◦
�
�� ���?⊕

?⊕

?

	◦◦
� ?⊕
	◦◦

� ?⊕
	◦◦
�

�
�� ��� b310�

⊕
64 88 100 112 124 136

PP
PP

P
HH

HH
@
@

�
�
��

��
��

��
�

���
�

a0 . . . a91 a92 a93 . . . t + 1

3/22

Could Subterranean 1992 compete in the lightweight competition 2020?

• In 1992 it was not intended as lightweight

• 257-bit CV (the state)

• compare with 128-bit CVs in MD4 and MD5

• R is hardware-oriented and unsuitable for software

• but we would go for low energy and that implies ASIC anyway

• Low energy?

• R takes 4 XOR, 1 NAND, 1 NOT per bit and is shallow

• absorbing: 32 bits per round → 32 XOR, 8 NAND, 8 NOT per bit

• squeezing: 16 bits per round → 64 XOR, 16 NAND, 16 NOT per bit

• Not bad, so let’s give it a shot!

4/22

Could Subterranean 1992 compete in the lightweight competition 2020?

• In 1992 it was not intended as lightweight

• 257-bit CV (the state)

• compare with 128-bit CVs in MD4 and MD5

• R is hardware-oriented and unsuitable for software

• but we would go for low energy and that implies ASIC anyway

• Low energy?

• R takes 4 XOR, 1 NAND, 1 NOT per bit and is shallow

• absorbing: 32 bits per round → 32 XOR, 8 NAND, 8 NOT per bit

• squeezing: 16 bits per round → 64 XOR, 16 NAND, 16 NOT per bit

• Not bad, so let’s give it a shot!

4/22

Could Subterranean 1992 compete in the lightweight competition 2020?

• In 1992 it was not intended as lightweight

• 257-bit CV (the state)

• compare with 128-bit CVs in MD4 and MD5

• R is hardware-oriented and unsuitable for software

• but we would go for low energy and that implies ASIC anyway

• Low energy?

• R takes 4 XOR, 1 NAND, 1 NOT per bit and is shallow

• absorbing: 32 bits per round → 32 XOR, 8 NAND, 8 NOT per bit

• squeezing: 16 bits per round → 64 XOR, 16 NAND, 16 NOT per bit

• Not bad, so let’s give it a shot!

4/22

Could Subterranean 1992 compete in the lightweight competition 2020?

• In 1992 it was not intended as lightweight

• 257-bit CV (the state)

• compare with 128-bit CVs in MD4 and MD5

• R is hardware-oriented and unsuitable for software

• but we would go for low energy and that implies ASIC anyway

• Low energy?

• R takes 4 XOR, 1 NAND, 1 NOT per bit and is shallow

• absorbing: 32 bits per round → 32 XOR, 8 NAND, 8 NOT per bit

• squeezing: 16 bits per round → 64 XOR, 16 NAND, 16 NOT per bit

• Not bad, so let’s give it a shot!

4/22

Could Subterranean 1992 compete in the lightweight competition 2020?

• In 1992 it was not intended as lightweight

• 257-bit CV (the state)

• compare with 128-bit CVs in MD4 and MD5

• R is hardware-oriented and unsuitable for software

• but we would go for low energy and that implies ASIC anyway

• Low energy?

• R takes 4 XOR, 1 NAND, 1 NOT per bit and is shallow

• absorbing: 32 bits per round → 32 XOR, 8 NAND, 8 NOT per bit

• squeezing: 16 bits per round → 64 XOR, 16 NAND, 16 NOT per bit

• Not bad, so let’s give it a shot!

4/22

Could Subterranean 1992 compete in the lightweight competition 2020?

• In 1992 it was not intended as lightweight

• 257-bit CV (the state)

• compare with 128-bit CVs in MD4 and MD5

• R is hardware-oriented and unsuitable for software

• but we would go for low energy and that implies ASIC anyway

• Low energy?

• R takes 4 XOR, 1 NAND, 1 NOT per bit and is shallow

• absorbing: 32 bits per round → 32 XOR, 8 NAND, 8 NOT per bit

• squeezing: 16 bits per round → 64 XOR, 16 NAND, 16 NOT per bit

• Not bad, so let’s give it a shot!

4/22

Subterranean 2.0 is Subterranean 1992 refurbished

Three primitives

XOF: unkeyed hashing with arbitrary-length output & input strings

Deck: keyed function with arbitrary-length output & input strings

SAE: session-supporting nonce-based authentication encryption

Refactoring into two levels

• Duplex

• r = 32 in squeezing and keyed absorbing

• r = 8 per 2 rounds in unkeyed absorbing (for 112 bits of security)

• delete shift register b and just absorb in, and squeeze from a

• Mode

• 8 blank rounds between absorbing and squeezing

• except for encryption/decryption in SAE that relies on nonce uniqueness

5/22

Subterranean 2.0 is Subterranean 1992 refurbished

Three primitives

XOF: unkeyed hashing with arbitrary-length output & input strings

Deck: keyed function with arbitrary-length output & input strings

SAE: session-supporting nonce-based authentication encryption

Refactoring into two levels

• Duplex

• r = 32 in squeezing and keyed absorbing

• r = 8 per 2 rounds in unkeyed absorbing (for 112 bits of security)

• delete shift register b and just absorb in, and squeeze from a

• Mode

• 8 blank rounds between absorbing and squeezing

• except for encryption/decryption in SAE that relies on nonce uniqueness

5/22

Subterranean 2.0 is Subterranean 1992 refurbished

Three primitives

XOF: unkeyed hashing with arbitrary-length output & input strings

Deck: keyed function with arbitrary-length output & input strings

SAE: session-supporting nonce-based authentication encryption

Refactoring into two levels

• Duplex

• r = 32 in squeezing and keyed absorbing

• r = 8 per 2 rounds in unkeyed absorbing (for 112 bits of security)

• delete shift register b and just absorb in, and squeeze from a

• Mode

• 8 blank rounds between absorbing and squeezing

• except for encryption/decryption in SAE that relies on nonce uniqueness

5/22

Subterranean 2.0 is Subterranean 1992 refurbished

Three primitives

XOF: unkeyed hashing with arbitrary-length output & input strings

Deck: keyed function with arbitrary-length output & input strings

SAE: session-supporting nonce-based authentication encryption

Refactoring into two levels

• Duplex

• r = 32 in squeezing and keyed absorbing

• r = 8 per 2 rounds in unkeyed absorbing (for 112 bits of security)

• delete shift register b and just absorb in, and squeeze from a

• Mode

• 8 blank rounds between absorbing and squeezing

• except for encryption/decryption in SAE that relies on nonce uniqueness

5/22

Subterranean 2.0 is Subterranean 1992 refurbished

Three primitives

XOF: unkeyed hashing with arbitrary-length output & input strings

Deck: keyed function with arbitrary-length output & input strings

SAE: session-supporting nonce-based authentication encryption

Refactoring into two levels

• Duplex

• r = 32 in squeezing and keyed absorbing

• r = 8 per 2 rounds in unkeyed absorbing (for 112 bits of security)

• delete shift register b and just absorb in, and squeeze from a

• Mode

• 8 blank rounds between absorbing and squeezing

• except for encryption/decryption in SAE that relies on nonce uniqueness

5/22

Subterranean 2.0 is Subterranean 1992 refurbished

Three primitives

XOF: unkeyed hashing with arbitrary-length output & input strings

Deck: keyed function with arbitrary-length output & input strings

SAE: session-supporting nonce-based authentication encryption

Refactoring into two levels

• Duplex

• r = 32 in squeezing and keyed absorbing

• r = 8 per 2 rounds in unkeyed absorbing (for 112 bits of security)

• delete shift register b and just absorb in, and squeeze from a

• Mode

• 8 blank rounds between absorbing and squeezing

• except for encryption/decryption in SAE that relies on nonce uniqueness

5/22

Subterranean 2.0 is Subterranean 1992 refurbished

Three primitives

XOF: unkeyed hashing with arbitrary-length output & input strings

Deck: keyed function with arbitrary-length output & input strings

SAE: session-supporting nonce-based authentication encryption

Refactoring into two levels

• Duplex

• r = 32 in squeezing and keyed absorbing

• r = 8 per 2 rounds in unkeyed absorbing (for 112 bits of security)

• delete shift register b and just absorb in, and squeeze from a

• Mode

• 8 blank rounds between absorbing and squeezing

• except for encryption/decryption in SAE that relies on nonce uniqueness

5/22

Subterranean 2.0 is Subterranean 1992 refurbished

Three primitives

XOF: unkeyed hashing with arbitrary-length output & input strings

Deck: keyed function with arbitrary-length output & input strings

SAE: session-supporting nonce-based authentication encryption

Refactoring into two levels

• Duplex

• r = 32 in squeezing and keyed absorbing

• r = 8 per 2 rounds in unkeyed absorbing (for 112 bits of security)

• delete shift register b and just absorb in, and squeeze from a

• Mode

• 8 blank rounds between absorbing and squeezing

• except for encryption/decryption in SAE that relies on nonce uniqueness
5/22

And now to Subterranean 2.0 and its rationale in more detail!

6/22

Subterranean-XOF

R20

M0

R2

M1

R2

Mi

R8

Z0

R

Z1

R

Z2

R

Z7

• |Mj |: one byte

• |Zj |: 4 bytes

7/22

Subterranean-Deck

R0

K0

R

K1

R

M0

R

M1

R8

Z0

R

Z1

R

Z2

R

Zi

• |Mj |, |Zj |, |Kj | : 4 bytes

8/22

Subterranean-SAE

0 R

K0

R

N2

R8 R

A0

R

Aia Z0

R

Z1P0

R

Zi+1Pi

R8 R

T0 T1

R

T3

• |Kj |, |Nj |, |Aj |, |Zj |, |Pj |, |Tj |: 4 bytes

9/22

The Subterranean 2.0 round function

s0 . . . s76 s77 s78 s79 s80 s81 s82 s83 s84 s85 s86. . . t

π

θ

ι

χ?⊕�
5◦
�
�� ���?⊕

?⊕
?

� �◦
� ?⊕ � �◦

� ?⊕ � �◦
�

�
�� ���⊕

64 88 100 112 124 136

PP
PPP

HH
H

@@ ����
�
��

���
���

s0 . . . s91 s92 s93. . . t + 1

χ : si ← si + (si+1 + 1)si+2

ι : si ← si + δi

θ : si ← si + si+3 + si+8

π : si ← s12i

10/22

Absorb and Squeeze

-

s0 . . . s76 s77 s78 s79 s80 s81 s82 s83 s84 s85 s86. . . t

π

θ

ι

χ?⊕�
5◦
�
�� ���?⊕

?⊕
?

� �◦
� ?⊕ � �◦

� ?⊕ � �◦
�

�
�� ���⊕

64 88 100 112 124 136

PP
PPP

HH
H

@@ ����
�
��

���
���

s0 . . . s91 s92 s93. . . t + 1

124 = 176

G64 = {1, 176, 136, . . . , 92} ≺ Z/257Z∗

zi = s176i + s176−i

s176i = s176i + pi

11/22

Design Rationale in a nutshell

The choice of G64:

• non-consecutive bits (State-Recovery attacks on Ketje Jr [Fuhr, Naya-Plasencia,

Rotella, ToSC 2018])

• consistent with π dispersion

The number of rounds:

• Separator: 8 blank rounds

• Unkeyed mode: 2 rounds (8 + 1 bits absorbed)

• Keyed mode: 1 round (32 + 1 bits absorbed)

12/22

Design Rationale in a nutshell

The choice of G64:

• non-consecutive bits (State-Recovery attacks on Ketje Jr [Fuhr, Naya-Plasencia,

Rotella, ToSC 2018])

• consistent with π dispersion

The number of rounds:

• Separator: 8 blank rounds

• Unkeyed mode: 2 rounds (8 + 1 bits absorbed)

• Keyed mode: 1 round (32 + 1 bits absorbed)

12/22

Third Party Cryptanalysis

Fukang Liu, Takanori Isobe and Willi Meier, Cube-Based Cryptanalysis of

Subterranean-SAE, ToSC 2020

• key recovery from Subterranean-SAE in nonce-misuse scenario

• reduced-round scenario: 4 blank rounds out of 8

Ling Song, Yi Tu, Danping Shi and Lei Hu, Security Analysis of Subterranean 2.0,

eprint 2020, report 1133

• size-reduced versions

• no observable biases

• nonce-misuse scenario

More work is welcome

13/22

Third Party Cryptanalysis

Fukang Liu, Takanori Isobe and Willi Meier, Cube-Based Cryptanalysis of

Subterranean-SAE, ToSC 2020

• key recovery from Subterranean-SAE in nonce-misuse scenario

• reduced-round scenario: 4 blank rounds out of 8

Ling Song, Yi Tu, Danping Shi and Lei Hu, Security Analysis of Subterranean 2.0,

eprint 2020, report 1133

• size-reduced versions

• no observable biases

• nonce-misuse scenario

More work is welcome

13/22

Third Party Cryptanalysis

Fukang Liu, Takanori Isobe and Willi Meier, Cube-Based Cryptanalysis of

Subterranean-SAE, ToSC 2020

• key recovery from Subterranean-SAE in nonce-misuse scenario

• reduced-round scenario: 4 blank rounds out of 8

Ling Song, Yi Tu, Danping Shi and Lei Hu, Security Analysis of Subterranean 2.0,

eprint 2020, report 1133

• size-reduced versions

• no observable biases

• nonce-misuse scenario

More work is welcome

13/22

Difference propagation

m0 R r c0

m1 R r c1

∆0 ∆r

• Security: max DP(∆0 → ∆r)

It is hard to determine

• max DP(∆0 → ∆r) ≈ maxQr DP(Qr)

• Qr is a differential trail

• ∆0 → b1 → b2 → · · · → br−1 → ∆r

• Trail weight: w(Q) = − log2(DP)

14/22

Difference propagation

m0 R r c0

m1 R r c1

∆0 ∆r

• Security: max DP(∆0 → ∆r)

It is hard to determine

• max DP(∆0 → ∆r) ≈ maxQr DP(Qr)

• Qr is a differential trail

• ∆0 → b1 → b2 → · · · → br−1 → ∆r

• Trail weight: w(Q) = − log2(DP)

14/22

Difference propagation

. . .m0 R R RR c0

. . .m1 R R R c1

∆0 b1 b2 br−1 ∆r

• Security: max DP(∆0 → ∆r)

It is hard to determine

• max DP(∆0 → ∆r) ≈ maxQr DP(Qr)

• Qr is a differential trail

• ∆0 → b1 → b2 → · · · → br−1 → ∆r

• Trail weight: w(Q) = − log2(DP)

14/22

Difference propagation

. . .m0 R R RR c0

. . .m1 R R R c1

∆0 b1 b2 br−1 ∆r

• Security: max DP(∆0 → ∆r)

It is hard to determine

• max DP(∆0 → ∆r) ≈ maxQr DP(Qr)

• Qr is a differential trail

• ∆0 → b1 → b2 → · · · → br−1 → ∆r

• Trail weight: w(Q) = − log2(DP)

14/22

Differential trail core

. . .R R R∆0
b1 b2 br−1

∆r

. . .χ λ χ λ χ λ∆0 ∆r

b1 b2 br−1a1 a2 ar

w(Qr) = w(∆0 → a1) +
r−1∑
i=1

w(bi → ai+1)

= minw−1(a1) +
r−1∑
i=1

w(bi)

15/22

Differential trail core

. . .R R R∆0
b1 b2 br−1

∆r

. . .χ λ χ λ χ λ∆0 ∆r

b1 b2 br−1

a1 a2 ar

w(Qr) = w(∆0 → a1) +
r−1∑
i=1

w(bi → ai+1)

= minw−1(a1) +
r−1∑
i=1

w(bi)

15/22

Differential trail core

. . .R R R∆0
b1 b2 br−1

∆r

. . .χ λ χ λ χ λ∆0 ∆r

b1 b2 br−1a1 a2 ar

w(Qr) = w(∆0 → a1) +
r−1∑
i=1

w(bi → ai+1)

= minw−1(a1) +
r−1∑
i=1

w(bi)

15/22

Differential trail core

. . .R R R∆0
b1 b2 br−1

∆r

. . .χ λ χ λ χ λ∆0 ∆r

b1 b2 br−1a1 a2 ar

w(Qr) = w(∆0 → a1) +
r−1∑
i=1

w(bi → ai+1)

= minw−1(a1) +
r−1∑
i=1

w(bi)

15/22

Differential trail core

. . .R R R∆0
b1 b2 br−1

∆r

. . .χ λ χ λ χ λ∆0 ∆r

b1 b2 br−1a1 a2 ar

w(Qr) = w(∆0 → a1) +
r−1∑
i=1

w(bi → ai+1) = minw−1(a1) +
r−1∑
i=1

w(bi)

15/22

Lower bound on the weight of differential trail cores

rounds: 1 2 3 4 5 6 7 8

lower bound: ? ? ? ? ? ? ? ?

• We generated all 3-round trails cores up to weight 39

The same method as introduced in [Mella, Daemen, Van Assche, ToSC 2016]

weight 25 28 29 30 32 33 34 35 36 37 38 39

trail cores (mod rotation) 1 1 2 3 2 1 5 6 4 9 12 17

• 3-round trail core with the lowest weight

state weight # active bits active bit positions

a1 2 1 {0}
b1 6 3 {0, 64, 85}
b2 17 9 {0, 64, 85, 91, 155, 157, 176, 221, 242}

16/22

Lower bound on the weight of differential trail cores

rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 ? ? ? ? ? ?

• We generated all 3-round trails cores up to weight 39

The same method as introduced in [Mella, Daemen, Van Assche, ToSC 2016]

weight 25 28 29 30 32 33 34 35 36 37 38 39

trail cores (mod rotation) 1 1 2 3 2 1 5 6 4 9 12 17

• 3-round trail core with the lowest weight

state weight # active bits active bit positions

a1 2 1 {0}
b1 6 3 {0, 64, 85}
b2 17 9 {0, 64, 85, 91, 155, 157, 176, 221, 242}

16/22

Lower bound on the weight of differential trail cores

rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 ? ? ? ? ? ?

• We generated all 3-round trails cores up to weight 39

The same method as introduced in [Mella, Daemen, Van Assche, ToSC 2016]

weight 25 28 29 30 32 33 34 35 36 37 38 39

trail cores (mod rotation) 1 1 2 3 2 1 5 6 4 9 12 17

• 3-round trail core with the lowest weight

state weight # active bits active bit positions

a1 2 1 {0}
b1 6 3 {0, 64, 85}
b2 17 9 {0, 64, 85, 91, 155, 157, 176, 221, 242}

16/22

Lower bound on the weight of differential trail cores

rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 25 ? ? ? ? ?

• We generated all 3-round trails cores up to weight 39

The same method as introduced in [Mella, Daemen, Van Assche, ToSC 2016]

weight 25 28 29 30 32 33 34 35 36 37 38 39

trail cores (mod rotation) 1 1 2 3 2 1 5 6 4 9 12 17

• 3-round trail core with the lowest weight

state weight # active bits active bit positions

a1 2 1 {0}
b1 6 3 {0, 64, 85}
b2 17 9 {0, 64, 85, 91, 155, 157, 176, 221, 242}

16/22

Lower bound on the weight of differential trail cores

rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 25 ? ? ? ? ?

• We generated all 3-round trails cores up to weight 39

The same method as introduced in [Mella, Daemen, Van Assche, ToSC 2016]

weight 25 28 29 30 32 33 34 35 36 37 38 39

trail cores (mod rotation) 1 1 2 3 2 1 5 6 4 9 12 17

• 3-round trail core with the lowest weight

state weight # active bits active bit positions

a1 2 1 {0}
b1 6 3 {0, 64, 85}
b2 17 9 {0, 64, 85, 91, 155, 157, 176, 221, 242}

16/22

Lower bound for 4-round differential trail cores

• We searched the space of all 4-round trail cores up to weight 48

• there are no trail cores with weight 48 or less

• we did find 4-round trail core with weight 58

• so 49 ≤ minw(Q4) ≤ 58

• The 4-round trail core with weight 58:

state weight # active bits active bit positions

a1 12 9 {0, 5, 8, 10, 12, 15, 16, 18, 21}
b1 7 5 {65, 66, 85, 86, 87}
b2 11 6 {7, 28, 134, 198, 200, 219}
b3 28 15 {16, 18, 22, 39, 54, 86, 88, 107, 118,

139, 152, 173, 188, 211, 252}

17/22

Lower bound for 4-round differential trail cores

• We searched the space of all 4-round trail cores up to weight 48

• there are no trail cores with weight 48 or less

• we did find 4-round trail core with weight 58

• so 49 ≤ minw(Q4) ≤ 58

• The 4-round trail core with weight 58:

state weight # active bits active bit positions

a1 12 9 {0, 5, 8, 10, 12, 15, 16, 18, 21}
b1 7 5 {65, 66, 85, 86, 87}
b2 11 6 {7, 28, 134, 198, 200, 219}
b3 28 15 {16, 18, 22, 39, 54, 86, 88, 107, 118,

139, 152, 173, 188, 211, 252}

17/22

Lower bound for 4-round differential trail cores

• We searched the space of all 4-round trail cores up to weight 48

• there are no trail cores with weight 48 or less

• we did find 4-round trail core with weight 58

• so 49 ≤ minw(Q4) ≤ 58

• The 4-round trail core with weight 58:

state weight # active bits active bit positions

a1 12 9 {0, 5, 8, 10, 12, 15, 16, 18, 21}
b1 7 5 {65, 66, 85, 86, 87}
b2 11 6 {7, 28, 134, 198, 200, 219}
b3 28 15 {16, 18, 22, 39, 54, 86, 88, 107, 118,

139, 152, 173, 188, 211, 252}

17/22

Lower bound for 4-round differential trail cores

• We searched the space of all 4-round trail cores up to weight 48

• there are no trail cores with weight 48 or less

• we did find 4-round trail core with weight 58

• so 49 ≤ minw(Q4) ≤ 58

• The 4-round trail core with weight 58:

state weight # active bits active bit positions

a1 12 9 {0, 5, 8, 10, 12, 15, 16, 18, 21}
b1 7 5 {65, 66, 85, 86, 87}
b2 11 6 {7, 28, 134, 198, 200, 219}
b3 28 15 {16, 18, 22, 39, 54, 86, 88, 107, 118,

139, 152, 173, 188, 211, 252}

17/22

Lower bound for 4-round differential trail cores

• We searched the space of all 4-round trail cores up to weight 48

• there are no trail cores with weight 48 or less

• we did find 4-round trail core with weight 58

• so 49 ≤ minw(Q4) ≤ 58

• The 4-round trail core with weight 58:

state weight # active bits active bit positions

a1 12 9 {0, 5, 8, 10, 12, 15, 16, 18, 21}
b1 7 5 {65, 66, 85, 86, 87}
b2 11 6 {7, 28, 134, 198, 200, 219}
b3 28 15 {16, 18, 22, 39, 54, 86, 88, 107, 118,

139, 152, 173, 188, 211, 252}

17/22

Lower bounds on differential trails

rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 25 [49, 58] ? ? ? ?

• An 8-round trail Q8 can be divided into two 4-round trails Q4 | Q ′4
• If w(Q8) ≤ (2× 48) + 1 = 97 then w(Q4) ≤ 48 or w(Q ′4) ≤ 48

• Different methods to find the lower bound on the weight of other trails

18/22

Lower bounds on differential trails

rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 25 [49, 58] ? ? ? ?

• An 8-round trail Q8 can be divided into two 4-round trails Q4 | Q ′4

• If w(Q8) ≤ (2× 48) + 1 = 97 then w(Q4) ≤ 48 or w(Q ′4) ≤ 48

• Different methods to find the lower bound on the weight of other trails

18/22

Lower bounds on differential trails

rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 25 [49, 58] ? ? ? ?

• An 8-round trail Q8 can be divided into two 4-round trails Q4 | Q ′4
• If w(Q8) ≤ (2× 48) + 1 = 97 then w(Q4) ≤ 48 or w(Q ′4) ≤ 48

• Different methods to find the lower bound on the weight of other trails

18/22

Lower bounds on differential trails

rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 25 [49, 58] ? ? ? ≥ 98

• An 8-round trail Q8 can be divided into two 4-round trails Q4 | Q ′4
• If w(Q8) ≤ (2× 48) + 1 = 97 then w(Q4) ≤ 48 or w(Q ′4) ≤ 48

• Different methods to find the lower bound on the weight of other trails

18/22

Lower bounds on differential trails

rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 25 [49, 58] ≥ 54 ≥ 65 ≥ 70 ≥ 98

• An 8-round trail Q8 can be divided into two 4-round trails Q4 | Q ′4
• If w(Q8) ≤ (2× 48) + 1 = 97 then w(Q4) ≤ 48 or w(Q ′4) ≤ 48

• Different methods to find the lower bound on the weight of other trails

18/22

Hardware LWC architecture

• Streaming based architecture - high throughput

• Separate buffers for public and secret data in (PDI/SDI)

• Flow controlled by main state machine

19/22

FPGA Results

Mohajerani et al. “FPGA Benchmarking of Round 2 Candidates in the NIST

Lightweight Cryptography Standardization Process: Methodology, Metrics, Tools, and

Results”. https://eprint.iacr.org/2020/1207

• 1st AEAD throughput for messages of 64 bytes or more in Artix 7

• 6th Hash throughput for long messages in Artix 7

AEAD Throughput LUT

Subterranean 2.0 6 Gbps 915

Xoodyak 3 Gbps 2040

Hash Throughput LUT

Gimli 1.9 Gbps 1900

Xoodyak 1.8 Gbps 2040

Saturnin 1.6 Gbps 2414

DryGascon 1.5 Gbps 2074

Ascon 987 Mbps 1723

Subterranean 2.0 744 Mbps 915

20/22

https://eprint.iacr.org/2020/1207

ASIC Results

Khairallah et al. “Preliminary Hardware Benchmarking of a Group of Round 2 NIST

Lightweight AEAD Candidates”.

https://github.com/mustafam001/lwc-aead-rtl

• AEAD for ASIC cells TSMC TSBN 65nm 9-track

• 1st in Throughput and Energy

• Results for 64 bytes messages:

AEAD Throughput Area (GE) Energy (pJ) Clock period (ns)

Subterranean 2.0 17 Gbps 7050 16 0.47

Romulus 8 Gbps 14218 44 0.88

Xoodyak 12 Gbps 17898 51 0.50

21/22

https://github.com/mustafam001/lwc-aead-rtl

Conclusion

Subterranean 2.0 in a nutshell:

• Target security strength

• 128 bits for keyed modes: Deck and SAE

• 112 bits for unkeyed mode: XOF

• Safety margin is comfortable, per our analysis and two 3rd-party papers

• more 3rd party cryptanalysis is welcome!

• Lightweight

• total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers

• # operations per absorbed/squeezed bit very low

• especially non-linear operations → suitable for masking

• confirmed by benchmarks

Thanks for your attention!

22/22

Conclusion

Subterranean 2.0 in a nutshell:

• Target security strength

• 128 bits for keyed modes: Deck and SAE

• 112 bits for unkeyed mode: XOF

• Safety margin is comfortable, per our analysis and two 3rd-party papers

• more 3rd party cryptanalysis is welcome!

• Lightweight

• total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers

• # operations per absorbed/squeezed bit very low

• especially non-linear operations → suitable for masking

• confirmed by benchmarks

Thanks for your attention!

22/22

Conclusion

Subterranean 2.0 in a nutshell:

• Target security strength

• 128 bits for keyed modes: Deck and SAE

• 112 bits for unkeyed mode: XOF

• Safety margin is comfortable, per our analysis and two 3rd-party papers

• more 3rd party cryptanalysis is welcome!

• Lightweight

• total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers

• # operations per absorbed/squeezed bit very low

• especially non-linear operations → suitable for masking

• confirmed by benchmarks

Thanks for your attention!

22/22

Conclusion

Subterranean 2.0 in a nutshell:

• Target security strength

• 128 bits for keyed modes: Deck and SAE

• 112 bits for unkeyed mode: XOF

• Safety margin is comfortable, per our analysis and two 3rd-party papers

• more 3rd party cryptanalysis is welcome!

• Lightweight

• total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers

• # operations per absorbed/squeezed bit very low

• especially non-linear operations → suitable for masking

• confirmed by benchmarks

Thanks for your attention!

22/22

Conclusion

Subterranean 2.0 in a nutshell:

• Target security strength

• 128 bits for keyed modes: Deck and SAE

• 112 bits for unkeyed mode: XOF

• Safety margin is comfortable, per our analysis and two 3rd-party papers

• more 3rd party cryptanalysis is welcome!

• Lightweight

• total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers

• # operations per absorbed/squeezed bit very low

• especially non-linear operations → suitable for masking

• confirmed by benchmarks

Thanks for your attention!

22/22

Conclusion

Subterranean 2.0 in a nutshell:

• Target security strength

• 128 bits for keyed modes: Deck and SAE

• 112 bits for unkeyed mode: XOF

• Safety margin is comfortable, per our analysis and two 3rd-party papers

• more 3rd party cryptanalysis is welcome!

• Lightweight

• total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers

• # operations per absorbed/squeezed bit very low

• especially non-linear operations → suitable for masking

• confirmed by benchmarks

Thanks for your attention!

22/22

Conclusion

Subterranean 2.0 in a nutshell:

• Target security strength

• 128 bits for keyed modes: Deck and SAE

• 112 bits for unkeyed mode: XOF

• Safety margin is comfortable, per our analysis and two 3rd-party papers

• more 3rd party cryptanalysis is welcome!

• Lightweight

• total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers

• # operations per absorbed/squeezed bit very low

• especially non-linear operations → suitable for masking

• confirmed by benchmarks

Thanks for your attention!

22/22

Conclusion

Subterranean 2.0 in a nutshell:

• Target security strength

• 128 bits for keyed modes: Deck and SAE

• 112 bits for unkeyed mode: XOF

• Safety margin is comfortable, per our analysis and two 3rd-party papers

• more 3rd party cryptanalysis is welcome!

• Lightweight

• total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers

• # operations per absorbed/squeezed bit very low

• especially non-linear operations → suitable for masking

• confirmed by benchmarks

Thanks for your attention!

22/22

Conclusion

Subterranean 2.0 in a nutshell:

• Target security strength

• 128 bits for keyed modes: Deck and SAE

• 112 bits for unkeyed mode: XOF

• Safety margin is comfortable, per our analysis and two 3rd-party papers

• more 3rd party cryptanalysis is welcome!

• Lightweight

• total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers

• # operations per absorbed/squeezed bit very low

• especially non-linear operations → suitable for masking

• confirmed by benchmarks

Thanks for your attention!

22/22

Conclusion

Subterranean 2.0 in a nutshell:

• Target security strength

• 128 bits for keyed modes: Deck and SAE

• 112 bits for unkeyed mode: XOF

• Safety margin is comfortable, per our analysis and two 3rd-party papers

• more 3rd party cryptanalysis is welcome!

• Lightweight

• total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers

• # operations per absorbed/squeezed bit very low

• especially non-linear operations → suitable for masking

• confirmed by benchmarks

Thanks for your attention!

22/22

