

The SUBTERRANEAN 2.0 Cipher Suite

Joan Daemen¹, Pedro Maat Costa Massolino³, Alireza Mehrdad¹, Yann Rotella² ¹Radboud University NL, ³PQShield UK, ²UVSQ, LMV, Université Paris-Saclay FR

Fast Software Encryption Workshop November 9, 2020

Subhash:	M	\rightarrow	h
Substream:	(K; D)	\rightarrow	Ζ

Subhash:	M	\rightarrow	h
Substream:	(K; D)	\rightarrow	Ζ

b: 256-bit shift register with 32-bit stages

$\operatorname{Subterranean}\xspace's$ round function $\operatorname{R}\xspace$

b: 256-bit shift register with 32-bit stages a: 257-bit state: $a \leftarrow R(a, b)$

- In 1992 it was not intended as *lightweight*
 - 257-bit CV (the state)
 - compare with 128-bit CVs in MD4 and MD5

- In 1992 it was not intended as *lightweight*
 - 257-bit CV (the state)
 - compare with 128-bit CVs in MD4 and MD5
- $\bullet\ R$ is hardware-oriented and unsuitable for software

- In 1992 it was not intended as *lightweight*
 - 257-bit CV (the state)
 - compare with 128-bit CVs in MD4 and MD5
- $\bullet\ R$ is hardware-oriented and unsuitable for software
 - but we would go for *low energy* and that implies ASIC anyway

- In 1992 it was not intended as *lightweight*
 - 257-bit CV (the state)
 - compare with 128-bit CVs in MD4 and MD5
- $\bullet~\mathbf{R}$ is hardware-oriented and unsuitable for software
 - but we would go for *low energy* and that implies ASIC anyway
- Low energy?
 - R takes 4 XOR, 1 NAND, 1 NOT per bit and is *shallow*
 - absorbing: 32 bits per round \rightarrow 32 XOR, 8 NAND, 8 NOT per bit
 - squeezing: 16 bits per round \rightarrow 64 XOR, 16 NAND, 16 NOT per bit

- In 1992 it was not intended as *lightweight*
 - 257-bit CV (the state)
 - compare with 128-bit CVs in MD4 and MD5
- $\bullet~\mathbf{R}$ is hardware-oriented and unsuitable for software
 - but we would go for *low energy* and that implies ASIC anyway
- Low energy?
 - R takes 4 XOR, 1 NAND, 1 NOT per bit and is *shallow*
 - absorbing: 32 bits per round \rightarrow 32 XOR, 8 NAND, 8 NOT per bit
 - squeezing: 16 bits per round \rightarrow 64 XOR, 16 NAND, 16 NOT per bit
- Not bad, so let's give it a shot!

XOF: unkeyed hashing with arbitrary-length output & input strings **Deck:** keyed function with arbitrary-length output & input strings **SAE:** session-supporting nonce-based authentication encryption

XOF: unkeyed hashing with arbitrary-length output & input stringsDeck: keyed function with arbitrary-length output & input stringsSAE: session-supporting nonce-based authentication encryption

XOF: unkeyed hashing with arbitrary-length output & input stringsDeck: keyed function with arbitrary-length output & input stringsSAE: session-supporting nonce-based authentication encryption

Refactoring into two levels

• Duplex

• Mode

XOF: unkeyed hashing with arbitrary-length output & input stringsDeck: keyed function with arbitrary-length output & input stringsSAE: session-supporting nonce-based authentication encryption

Refactoring into two levels

- Duplex
 - r = 32 in squeezing and keyed absorbing

Mode

XOF: unkeyed hashing with arbitrary-length output & input stringsDeck: keyed function with arbitrary-length output & input stringsSAE: session-supporting nonce-based authentication encryption

- Duplex
 - r = 32 in squeezing and keyed absorbing
 - r = 8 per 2 rounds in unkeyed absorbing (for 112 bits of security)
- Mode

XOF: unkeyed hashing with arbitrary-length output & input stringsDeck: keyed function with arbitrary-length output & input stringsSAE: session-supporting nonce-based authentication encryption

- Duplex
 - r = 32 in squeezing and keyed absorbing
 - r = 8 per 2 rounds in unkeyed absorbing (for 112 bits of security)
 - delete shift register *b* and just absorb in, and squeeze from *a*
- Mode

XOF: unkeyed hashing with arbitrary-length output & input stringsDeck: keyed function with arbitrary-length output & input stringsSAE: session-supporting nonce-based authentication encryption

- Duplex
 - r = 32 in squeezing and keyed absorbing
 - r = 8 per 2 rounds in unkeyed absorbing (for 112 bits of security)
 - delete shift register b and just absorb in, and squeeze from a
- Mode
 - 8 blank rounds between absorbing and squeezing

XOF: unkeyed hashing with arbitrary-length output & input stringsDeck: keyed function with arbitrary-length output & input stringsSAE: session-supporting nonce-based authentication encryption

- Duplex
 - r = 32 in squeezing and keyed absorbing
 - r = 8 per 2 rounds in unkeyed absorbing (for 112 bits of security)
 - delete shift register *b* and just absorb in, and squeeze from *a*
- Mode
 - 8 blank rounds between absorbing and squeezing
 - \bullet except for encryption/decryption in SAE that relies on nonce uniqueness

SUBTERRANEAN-XOF

- $|M_j|$: one byte
- $|Z_j|$: 4 bytes

${\small Subterranean-Deck}$

• $|M_j|, |Z_j|, |K_j|$: 4 bytes

• $|K_j|$, $|N_j|$, $|A_j|$, $|Z_j|$, $|P_j|$, $|T_j|$: 4 bytes

The SUBTERRANEAN 2.0 round function

Absorb and Squeeze

The choice of \mathcal{G}_{64} :

- non-consecutive bits (State-Recovery attacks on Ketje Jr [Fuhr, Naya-Plasencia, Rotella, ToSC 2018])
- consistent with π dispersion

The choice of \mathcal{G}_{64} :

- non-consecutive bits (State-Recovery attacks on Ketje Jr [Fuhr, Naya-Plasencia, Rotella, ToSC 2018])
- consistent with π dispersion

The number of rounds:

- Separator: 8 blank rounds
- Unkeyed mode: 2 rounds (8 + 1 bits absorbed)
- Keyed mode: 1 round (32 + 1 bits absorbed)

Third Party Cryptanalysis

Fukang Liu, Takanori Isobe and Willi Meier, Cube-Based Cryptanalysis of ${\rm SUBTERRANEAN}$ -SAE, ToSC 2020

- \bullet key recovery from $\operatorname{Subterranean-SAE}$ in nonce-misuse scenario
- reduced-round scenario: 4 blank rounds out of 8

Third Party Cryptanalysis

Fukang Liu, Takanori Isobe and Willi Meier, Cube-Based Cryptanalysis of SUBTERRANEAN-SAE, ToSC 2020

- \bullet key recovery from $\operatorname{Subterranean-SAE}$ in nonce-misuse scenario
- reduced-round scenario: 4 blank rounds out of 8

Ling Song, Yi Tu, Danping Shi and Lei Hu, Security Analysis of SUBTERRANEAN 2.0, eprint 2020, report 1133

- size-reduced versions
- no observable biases
- nonce-misuse scenario

Third Party Cryptanalysis

Fukang Liu, Takanori Isobe and Willi Meier, Cube-Based Cryptanalysis of SUBTERRANEAN-SAE, ToSC 2020

- \bullet key recovery from $\operatorname{Subterranean-SAE}$ in nonce-misuse scenario
- reduced-round scenario: 4 blank rounds out of 8

Ling Song, Yi Tu, Danping Shi and Lei Hu, Security Analysis of SUBTERRANEAN 2.0, eprint 2020, report 1133

- size-reduced versions
- no observable biases
- nonce-misuse scenario

More work is welcome

13/22

Difference propagation

• Security: $\max \mathsf{DP}(\Delta_0 \to \Delta_r)$

Difference propagation

• Security: $\max \mathsf{DP}(\Delta_0 \to \Delta_r)$ It is hard to determine

Difference propagation

- Security: $\max \mathsf{DP}(\Delta_0 \to \Delta_r)$ It is hard to determine
- max $\mathsf{DP}(\Delta_0 \to \Delta_r) \approx \mathsf{max}_{Q_r} \mathsf{DP}(Q_r)$
 - Q_r is a differential trail
 - $\Delta_0 \rightarrow b_1 \rightarrow b_2 \rightarrow \cdots \rightarrow b_{r-1} \rightarrow \Delta_r$

Difference propagation

- Security: $\max \mathsf{DP}(\Delta_0 \to \Delta_r)$ It is hard to determine
- $\max \mathsf{DP}(\Delta_0 \to \Delta_r) \approx \max_{Q_r} \mathsf{DP}(Q_r)$
 - Q_r is a differential trail
 - $\Delta_0 \rightarrow b_1 \rightarrow b_2 \rightarrow \cdots \rightarrow b_{r-1} \rightarrow \Delta_r$
- Trail weight: $w(Q) = -\log_2(DP)$

$$w(Q_r)=w(\Delta_0
ightarrow a_1)+\sum_{i=1}^{r-1}w(b_i
ightarrow a_{i+1})$$

$$w(Q_r) = w(\Delta_0 \to a_1) + \sum_{i=1}^{r-1} w(b_i \to a_{i+1}) = \min w^{-1}(a_1) + \sum_{i=1}^{r-1} w(b_i)$$

# rounds:	1	2	3	4	5	6	7	8
lower bound:	?	?	?	?	?	?	?	?

# rounds:	1	2	3	4	5	6	7	8
lower bound:	2	8	?	?	?	?	?	?

# rounds:	1	2	3	4	5	6	7	8
lower bound:	2	8	?	?	?	?	?	?

We generated all 3-round trails cores up to weight 39
 The same method as introduced in [Mella, Daemen, Van Assche, ToSC 2016]

# rounds:	1	2	3	4	5	6	7	8
lower bound:	2	8	25	?	?	?	?	?

We generated all 3-round trails cores up to weight 39
 The same method as introduced in [Mella, Daemen, Van Assche, ToSC 2016]

weight	25	28	29	30	32	33	34	35	36	37	38	39
# trail cores (mod <i>rotation</i>)	1	1	2	3	2	1	5	6	4	9	12	17

# rounds:	1	2	3	4	5	6	7	8
lower bound:	2	8	25	?	?	?	?	?

We generated all 3-round trails cores up to weight 39
 The same method as introduced in [Mella, Daemen, Van Assche, ToSC 2016]

weight	25	28	29	30	32	33	34	35	36	37	38	39
# trail cores (mod <i>rotation</i>)	1	1	2	3	2	1	5	6	4	9	12	17

• 3-round trail core with the lowest weight

state	weight	# active bits	active bit positions
a_1	2	1	{0}
b_1	6	3	{0,64,85}
<i>b</i> ₂	17	9	$\{0, 64, 85, 91, 155, 157, 176, 221, 242\}$

• We searched the space of all 4-round trail cores up to weight 48

- We searched the space of all 4-round trail cores up to weight 48
 - there are no trail cores with weight 48 or less

- We searched the space of all 4-round trail cores up to weight 48
 - there are no trail cores with weight 48 or less
 - we did find 4-round trail core with weight 58

- We searched the space of all 4-round trail cores up to weight 48
 - there are no trail cores with weight 48 or less
 - we did find 4-round trail core with weight 58
 - so $49 \le \min w(Q_4) \le 58$

- We searched the space of all 4-round trail cores up to weight 48
 - there are no trail cores with weight 48 or less
 - we did find 4-round trail core with weight 58
 - so $49 \le \min w(Q_4) \le 58$
- The 4-round trail core with weight 58:

state	weight	<pre># active bits</pre>	active bit positions
a_1	12	9	$\{0, 5, 8, 10, 12, 15, 16, 18, 21\}$
b_1	7	5	$\{65, 66, 85, 86, 87\}$
b_2	11	6	$\{7, 28, 134, 198, 200, 219\}$
b_3	28	15	$\{16, 18, 22, 39, 54, 86, 88, 107, 118,$
			$139, 152, 173, 188, 211, 252\}$

Lower bounds on differential trails

# rounds:	1	2	3	4	5	6	7	8
lower bound:	2	8	25	[49, 58]	?	?	?	?

# rounds:	1	2	3	4	5	6	7	8
lower bound:	2	8	25	[49, 58]	?	?	?	?

• An 8-round trail Q_8 can be divided into two 4-round trails $Q_4 \mid Q'_4$

# rounds:	1	2	3	4	5	6	7	8
lower bound:	2	8	25	[49, 58]	?	?	?	?

- An 8-round trail Q_8 can be divided into two 4-round trails $Q_4 \mid Q'_4$
- If $w(Q_8) \le (2 \times 48) + 1 = 97$ then $w(Q_4) \le 48$ or $w(Q'_4) \le 48$

# rounds:	1	2	3	4	5	6	7	8
lower bound:	2	8	25	[49, 58]	?	?	?	\geq 98

- An 8-round trail Q_8 can be divided into two 4-round trails $Q_4 \mid Q'_4$
- If $w(Q_8) \le (2 \times 48) + 1 = 97$ then $w(Q_4) \le 48$ or $w(Q'_4) \le 48$

# rounds:	1	2	3	4	5	6	7	8
lower bound:	2	8	25	[49, 58]	\geq 54	≥ 65	\geq 70	\geq 98

- An 8-round trail Q_8 can be divided into two 4-round trails $Q_4 \mid Q'_4$
- If $w(Q_8) \le (2 \times 48) + 1 = 97$ then $w(Q_4) \le 48$ or $w(Q'_4) \le 48$
- Different methods to find the lower bound on the weight of other trails

Hardware LWC architecture

- Streaming based architecture high throughput
- Separate buffers for public and secret data in (PDI/SDI)
- Flow controlled by main state machine

Mohajerani et al. "FPGA Benchmarking of Round 2 Candidates in the NIST Lightweight Cryptography Standardization Process: Methodology, Metrics, Tools, and Results". https://eprint.iacr.org/2020/1207

- 1st AEAD throughput for messages of 64 bytes or more in Artix 7
- 6th Hash throughput for long messages in Artix 7

			Hash	Throughput	LUT
			Gimli	1.9 Gbps	1900
AEAD	Throughput	LUT	Xoodyak	1.8 Gbps	2040
Subterranean 2.0	6 Gbps	915	Saturnin	1.6 Gbps	2414
Xoodyak	3 Gbps	2040	DryGascon	1.5 Gbps	2074
			Ascon	987 Mbps	1723
			Subterranean 2.0	744 Mbps	915

Khairallah et al. "Preliminary Hardware Benchmarking of a Group of Round 2 NIST Lightweight AEAD Candidates".

https://github.com/mustafam001/lwc-aead-rtl

- AEAD for ASIC cells TSMC TSBN 65nm 9-track
- 1st in Throughput and Energy
- Results for 64 bytes messages:

AEAD	Throughput	Area (GE)	Energy (pJ)	Clock period (ns)
Subterranean 2.0	17 Gbps	7050	16	0.47
Romulus	8 Gbps	14218	44	0.88
Xoodyak	12 Gbps	17898	51	0.50

- Target security strength
 - 128 bits for keyed modes: Deck and SAE
 - 112 bits for unkeyed mode: XOF

- Target security strength
 - 128 bits for keyed modes: Deck and SAE
 - 112 bits for unkeyed mode: XOF
- Safety margin is comfortable, per our analysis and two 3rd-party papers

- Target security strength
 - 128 bits for keyed modes: Deck and SAE
 - 112 bits for unkeyed mode: XOF
- Safety margin is comfortable, per our analysis and two 3rd-party papers
 - more 3rd party cryptanalysis is welcome!

- Target security strength
 - 128 bits for keyed modes: Deck and SAE
 - 112 bits for unkeyed mode: XOF
- Safety margin is comfortable, per our analysis and two 3rd-party papers
 - more 3rd party cryptanalysis is welcome!
- Lightweight

- Target security strength
 - 128 bits for keyed modes: Deck and SAE
 - 112 bits for unkeyed mode: XOF
- Safety margin is comfortable, per our analysis and two 3rd-party papers
 - more 3rd party cryptanalysis is welcome!
- Lightweight
 - total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers

- Target security strength
 - 128 bits for keyed modes: Deck and SAE
 - 112 bits for unkeyed mode: XOF
- Safety margin is comfortable, per our analysis and two 3rd-party papers
 - more 3rd party cryptanalysis is welcome!
- Lightweight
 - total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers
 - # operations per absorbed/squeezed bit very low

- Target security strength
 - 128 bits for keyed modes: Deck and SAE
 - 112 bits for unkeyed mode: XOF
- Safety margin is comfortable, per our analysis and two 3rd-party papers
 - more 3rd party cryptanalysis is welcome!
- Lightweight
 - total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers
 - # operations per absorbed/squeezed bit very low
 - especially non-linear operations \rightarrow suitable for masking

- Target security strength
 - 128 bits for keyed modes: Deck and SAE
 - 112 bits for unkeyed mode: XOF
- Safety margin is comfortable, per our analysis and two 3rd-party papers
 - more 3rd party cryptanalysis is welcome!
- Lightweight
 - total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers
 - # operations per absorbed/squeezed bit very low
 - especially non-linear operations \rightarrow suitable for masking
 - confirmed by benchmarks

SUBTERRANEAN 2.0 in a nutshell:

- Target security strength
 - 128 bits for keyed modes: Deck and SAE
 - 112 bits for unkeyed mode: XOF
- Safety margin is comfortable, per our analysis and two 3rd-party papers
 - more 3rd party cryptanalysis is welcome!
- Lightweight
 - total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers
 - # operations per absorbed/squeezed bit very low
 - especially non-linear operations \rightarrow suitable for masking
 - confirmed by benchmarks

Thanks for your attention!

22/22