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Subterranean [JDA 1992]: a stream/hash module
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Subterranean’s round function R

b: 256-bit shift register with 32-bit stages

a: 257-bit state: a← R(a, b)

a0 . . . a76 a77 a78 a79 a80 a81 a82 a83 a84 a85 a86 . . . t

π

σ[b]

θ

ς

γ?⊕�
5◦
�
�� ���?⊕

?⊕

?


	◦◦
� ?⊕ 
	◦◦

� ?⊕ 
	◦◦
�

�
�� ��� b310�

⊕
64 88 100 112 124 136

PP
PP

P
HH

HH
@
@

�
�
��

��
��
��
�

���
�
  

a0 . . . a91 a92 a93 . . . t + 1

3/22



Subterranean’s round function R

b: 256-bit shift register with 32-bit stages

a: 257-bit state: a← R(a, b)

a0 . . . a76 a77 a78 a79 a80 a81 a82 a83 a84 a85 a86 . . . t

π

σ[b]

θ

ς

γ?⊕�
5◦
�
�� ���?⊕

?⊕

?


	◦◦
� ?⊕ 
	◦◦

� ?⊕ 
	◦◦
�

�
�� ��� b310�

⊕
64 88 100 112 124 136

PP
PP

P
HH

HH
@
@

�
�
��

��
��

��
�

���
�
  

a0 . . . a91 a92 a93 . . . t + 1

3/22



Could Subterranean 1992 compete in the lightweight competition 2020?

• In 1992 it was not intended as lightweight

• 257-bit CV (the state)

• compare with 128-bit CVs in MD4 and MD5

• R is hardware-oriented and unsuitable for software

• but we would go for low energy and that implies ASIC anyway

• Low energy?

• R takes 4 XOR, 1 NAND, 1 NOT per bit and is shallow

• absorbing: 32 bits per round → 32 XOR, 8 NAND, 8 NOT per bit

• squeezing: 16 bits per round → 64 XOR, 16 NAND, 16 NOT per bit

• Not bad, so let’s give it a shot!
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Subterranean 2.0 is Subterranean 1992 refurbished

Three primitives

XOF: unkeyed hashing with arbitrary-length output & input strings

Deck: keyed function with arbitrary-length output & input strings

SAE: session-supporting nonce-based authentication encryption

Refactoring into two levels

• Duplex

• r = 32 in squeezing and keyed absorbing

• r = 8 per 2 rounds in unkeyed absorbing (for 112 bits of security)

• delete shift register b and just absorb in, and squeeze from a

• Mode

• 8 blank rounds between absorbing and squeezing

• except for encryption/decryption in SAE that relies on nonce uniqueness
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And now to Subterranean 2.0 and its rationale in more detail!
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Subterranean-XOF
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• |Mj |: one byte

• |Zj |: 4 bytes
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Subterranean-Deck
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• |Mj |, |Zj |, |Kj | : 4 bytes

8/22



Subterranean-SAE

0 R
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R
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R
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R8 R
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• |Kj |, |Nj |, |Aj |, |Zj |, |Pj |, |Tj |: 4 bytes
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The Subterranean 2.0 round function
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χ : si ← si + (si+1 + 1)si+2

ι : si ← si + δi

θ : si ← si + si+3 + si+8

π : si ← s12i
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Absorb and Squeeze

-
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124 = 176

G64 = {1, 176, 136, . . . , 92} ≺ Z/257Z∗

zi = s176i + s176−i

s176i = s176i + pi
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Design Rationale in a nutshell

The choice of G64:

• non-consecutive bits (State-Recovery attacks on Ketje Jr [Fuhr, Naya-Plasencia,

Rotella, ToSC 2018])

• consistent with π dispersion

The number of rounds:

• Separator: 8 blank rounds

• Unkeyed mode: 2 rounds (8 + 1 bits absorbed)

• Keyed mode: 1 round (32 + 1 bits absorbed)
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Third Party Cryptanalysis

Fukang Liu, Takanori Isobe and Willi Meier, Cube-Based Cryptanalysis of

Subterranean-SAE, ToSC 2020

• key recovery from Subterranean-SAE in nonce-misuse scenario

• reduced-round scenario: 4 blank rounds out of 8

Ling Song, Yi Tu, Danping Shi and Lei Hu, Security Analysis of Subterranean 2.0,

eprint 2020, report 1133

• size-reduced versions

• no observable biases

• nonce-misuse scenario

More work is welcome
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Difference propagation

m0 R r c0

m1 R r c1

∆0 ∆r

• Security: max DP(∆0 → ∆r )

It is hard to determine

• max DP(∆0 → ∆r ) ≈ maxQr DP(Qr )

• Qr is a differential trail

• ∆0 → b1 → b2 → · · · → br−1 → ∆r

• Trail weight: w(Q) = − log2(DP)
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Differential trail core

. . .R R R∆0
b1 b2 br−1

∆r

. . .χ λ χ λ χ λ∆0 ∆r

b1 b2 br−1a1 a2 ar

w(Qr ) = w(∆0 → a1) +
r−1∑
i=1

w(bi → ai+1)

= minw−1(a1) +
r−1∑
i=1

w(bi )
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Lower bound on the weight of differential trail cores

# rounds: 1 2 3 4 5 6 7 8

lower bound: ? ? ? ? ? ? ? ?

• We generated all 3-round trails cores up to weight 39

The same method as introduced in [Mella, Daemen, Van Assche, ToSC 2016]

weight 25 28 29 30 32 33 34 35 36 37 38 39

# trail cores ( mod rotation) 1 1 2 3 2 1 5 6 4 9 12 17

• 3-round trail core with the lowest weight

state weight # active bits active bit positions

a1 2 1 {0}
b1 6 3 {0, 64, 85}
b2 17 9 {0, 64, 85, 91, 155, 157, 176, 221, 242}

16/22



Lower bound on the weight of differential trail cores

# rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 ? ? ? ? ? ?

• We generated all 3-round trails cores up to weight 39

The same method as introduced in [Mella, Daemen, Van Assche, ToSC 2016]

weight 25 28 29 30 32 33 34 35 36 37 38 39

# trail cores ( mod rotation) 1 1 2 3 2 1 5 6 4 9 12 17

• 3-round trail core with the lowest weight

state weight # active bits active bit positions

a1 2 1 {0}
b1 6 3 {0, 64, 85}
b2 17 9 {0, 64, 85, 91, 155, 157, 176, 221, 242}

16/22



Lower bound on the weight of differential trail cores

# rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 ? ? ? ? ? ?

• We generated all 3-round trails cores up to weight 39

The same method as introduced in [Mella, Daemen, Van Assche, ToSC 2016]

weight 25 28 29 30 32 33 34 35 36 37 38 39

# trail cores ( mod rotation) 1 1 2 3 2 1 5 6 4 9 12 17

• 3-round trail core with the lowest weight

state weight # active bits active bit positions

a1 2 1 {0}
b1 6 3 {0, 64, 85}
b2 17 9 {0, 64, 85, 91, 155, 157, 176, 221, 242}

16/22



Lower bound on the weight of differential trail cores

# rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 25 ? ? ? ? ?

• We generated all 3-round trails cores up to weight 39

The same method as introduced in [Mella, Daemen, Van Assche, ToSC 2016]

weight 25 28 29 30 32 33 34 35 36 37 38 39

# trail cores ( mod rotation) 1 1 2 3 2 1 5 6 4 9 12 17

• 3-round trail core with the lowest weight

state weight # active bits active bit positions

a1 2 1 {0}
b1 6 3 {0, 64, 85}
b2 17 9 {0, 64, 85, 91, 155, 157, 176, 221, 242}

16/22



Lower bound on the weight of differential trail cores

# rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 25 ? ? ? ? ?

• We generated all 3-round trails cores up to weight 39

The same method as introduced in [Mella, Daemen, Van Assche, ToSC 2016]

weight 25 28 29 30 32 33 34 35 36 37 38 39

# trail cores ( mod rotation) 1 1 2 3 2 1 5 6 4 9 12 17

• 3-round trail core with the lowest weight

state weight # active bits active bit positions

a1 2 1 {0}
b1 6 3 {0, 64, 85}
b2 17 9 {0, 64, 85, 91, 155, 157, 176, 221, 242}

16/22



Lower bound for 4-round differential trail cores

• We searched the space of all 4-round trail cores up to weight 48

• there are no trail cores with weight 48 or less

• we did find 4-round trail core with weight 58

• so 49 ≤ minw(Q4) ≤ 58

• The 4-round trail core with weight 58:

state weight # active bits active bit positions

a1 12 9 {0, 5, 8, 10, 12, 15, 16, 18, 21}
b1 7 5 {65, 66, 85, 86, 87}
b2 11 6 {7, 28, 134, 198, 200, 219}
b3 28 15 {16, 18, 22, 39, 54, 86, 88, 107, 118,

139, 152, 173, 188, 211, 252}
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state weight # active bits active bit positions

a1 12 9 {0, 5, 8, 10, 12, 15, 16, 18, 21}
b1 7 5 {65, 66, 85, 86, 87}
b2 11 6 {7, 28, 134, 198, 200, 219}
b3 28 15 {16, 18, 22, 39, 54, 86, 88, 107, 118,

139, 152, 173, 188, 211, 252}

17/22



Lower bounds on differential trails

# rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 25 [49, 58] ? ? ? ?

• An 8-round trail Q8 can be divided into two 4-round trails Q4 | Q ′4
• If w(Q8) ≤ (2× 48) + 1 = 97 then w(Q4) ≤ 48 or w(Q ′4) ≤ 48

• Different methods to find the lower bound on the weight of other trails
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Lower bounds on differential trails

# rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 25 [49, 58] ? ? ? ≥ 98

• An 8-round trail Q8 can be divided into two 4-round trails Q4 | Q ′4
• If w(Q8) ≤ (2× 48) + 1 = 97 then w(Q4) ≤ 48 or w(Q ′4) ≤ 48
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Lower bounds on differential trails

# rounds: 1 2 3 4 5 6 7 8

lower bound: 2 8 25 [49, 58] ≥ 54 ≥ 65 ≥ 70 ≥ 98

• An 8-round trail Q8 can be divided into two 4-round trails Q4 | Q ′4
• If w(Q8) ≤ (2× 48) + 1 = 97 then w(Q4) ≤ 48 or w(Q ′4) ≤ 48

• Different methods to find the lower bound on the weight of other trails
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Hardware LWC architecture

• Streaming based architecture - high throughput

• Separate buffers for public and secret data in (PDI/SDI)

• Flow controlled by main state machine
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FPGA Results

Mohajerani et al. “FPGA Benchmarking of Round 2 Candidates in the NIST

Lightweight Cryptography Standardization Process: Methodology, Metrics, Tools, and

Results”. https://eprint.iacr.org/2020/1207

• 1st AEAD throughput for messages of 64 bytes or more in Artix 7

• 6th Hash throughput for long messages in Artix 7

AEAD Throughput LUT

Subterranean 2.0 6 Gbps 915

Xoodyak 3 Gbps 2040

Hash Throughput LUT

Gimli 1.9 Gbps 1900

Xoodyak 1.8 Gbps 2040

Saturnin 1.6 Gbps 2414

DryGascon 1.5 Gbps 2074

Ascon 987 Mbps 1723

Subterranean 2.0 744 Mbps 915
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ASIC Results

Khairallah et al. “Preliminary Hardware Benchmarking of a Group of Round 2 NIST

Lightweight AEAD Candidates”.

https://github.com/mustafam001/lwc-aead-rtl

• AEAD for ASIC cells TSMC TSBN 65nm 9-track

• 1st in Throughput and Energy

• Results for 64 bytes messages:

AEAD Throughput Area (GE) Energy (pJ) Clock period (ns)

Subterranean 2.0 17 Gbps 7050 16 0.47

Romulus 8 Gbps 14218 44 0.88

Xoodyak 12 Gbps 17898 51 0.50
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Conclusion

Subterranean 2.0 in a nutshell:

• Target security strength

• 128 bits for keyed modes: Deck and SAE

• 112 bits for unkeyed mode: XOF

• Safety margin is comfortable, per our analysis and two 3rd-party papers

• more 3rd party cryptanalysis is welcome!

• Lightweight

• total storage in SAE and XOF: 257-bit state and some 32-bit I/O buffers

• # operations per absorbed/squeezed bit very low

• especially non-linear operations → suitable for masking

• confirmed by benchmarks

Thanks for your attention!
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