Saturnin

A suite of lightweight symmetric algorithms for post-quantum security

Anne Canteaut¹ Sébastien Duval² Gaëtan Leurent¹ María Naya-Plasencia¹ Léo Perrin¹ Thomas Pornin³ André Schrottenloher¹

¹ Inria, France ² UCL Crypto Group, Belgium ³ NCC Group, Canada

The Block Cipher

Modes of Operation

Outline

2 The Block Cipher

3 Modes of Operation

A. Canteaut et al.

The Block Cipher

Our design goals

Goals

Strong security arguments

Quantum security

Sefficient in hardware and software

Design choices

- SPN cipher
- Wide-trail strategy (AES-like)
- 256-bit keys and blocks
- Carefully chosen modes
- Bitslice design
- Small components

Saturnin in the LWC process

- 13 second-round candidates are based on block ciphers
- Saturnin is the only block cipher with 256-bit blocks
- Saturnin is the **only proposal** (cipher + modes) claiming security against superposition queries

Saturnin is the most efficient generalization of the AES wide-trail strategy to a 256-bit block size (in terms of security and implementation).

On quantum security

- A key size of 256 bits mitigates quantum exhaustive search
- A block size of 256 bit mitigates attacks (on modes) at the quantum birthday bound ($2^{256/3} \simeq 2^{85.3}$)
 - Also simplifies the design of a hash function

We claim security against **classical and quantum attacks**. Quantum attackers can query the secret-key cipher / the modes in **superposition**.

- This is the strongest model available
- It is non-trivial
- It includes all intermediate definitions, and all use cases

On the name

The Block Cipher

Modes of Operation

- Saturnin is a famous french duck
 - Kids TV show in the 60's
- The duck is well known standard of lightness
 - Historically used as a weight standard for witches [Sir Bedevere, *Monty Python and the Holy Grail*]
- The planet Saturn is associated to the **cube** [Kepler, *Mysterium Cosmographicum*]
 - Saturnin's state is represented as a cube

The Block Cipher

The Block Cipher

Modes of Operation

The state

A cube of $4\times 4\times 4$ nibbles of 4 bits

16 registers of 16 bits

Generic nibble index: $(x, y, z) \mapsto y + 4x + 16z$

The round function

AES-inspired operations:

- S-Box layer: applies σ_0 to nibbles of even index, σ_1 to nibbles of odd index
- Nibble permutation SR: depends on the round number
- \bullet Linear MixColumns: applies a 4 \times 4 MDS mapping over \mathbb{F}_{2^4} to each column
- Inverse of SR
- Sub-key addition

The nibble permutation

Let r be the round index (starts at 0).

- $r \mod 4 = 1$: shift rows in "slices" (left)
- $r \mod 4 = 3$: shift rows in "sheets" (right)
- otherwise do nothing

The Block Cipher

Modes of Operation

As registers

In the register representation:

- S and MC are bitsliced
- $\bullet~SR_{\rm slices}$ and $SR_{\rm sheets}$ correspond to rotations in the registers

The Block Cipher

Modes of Operation

The subkey addition

Only at odd rounds.

- $r \mod 4 = 3$: XOR the master key K
- $r \mod 4 = 1$: XOR K rotated by 20 nibbles
- otherwise do nothing

Round constants

- Two 16-bit words XORed to the state (on 32 nibbles, one bit per nibble).
- Depend on the 4-bit domain separator

The Block Cipher

Modes of Operation

The Super S-Box representation

Supernibbles: columns in the cube

Let's have a look at 4 rounds:

$$\left\{ \begin{array}{ll} r = 0 & \rightarrow \ {\sf S} \ \rightarrow \ {\rm nothing} \ \rightarrow \ {\sf MC} \ \rightarrow \ {\rm nothing} \ \rightarrow \ {\rm nothing} \\ r = 1 & \rightarrow \ {\sf S} \ \rightarrow \ {\sf SR}_{\rm slices} \ \rightarrow \ {\sf MC} \ \rightarrow \ {\sf SR}_{\rm slices}^{-1} \ \rightarrow \ {\sf K}_{\rm rot} \\ \end{array} \right. \\ \left\{ \begin{array}{ll} r = 2 & \rightarrow \ {\sf S} \ \rightarrow \ {\rm nothing} \ \rightarrow \ {\sf K}_{\rm rot} \\ \end{array} \right. \\ \left\{ \begin{array}{ll} r = 2 & \rightarrow \ {\sf S} \ \rightarrow \ {\sf nothing} \ \rightarrow \ {\sf MC} \ \rightarrow \ {\sf nothing} \ \rightarrow \ {\sf n$$

The Super S-Box representation (ctd.)

4 rounds of Saturnin apply:

- A Super S-Box
- A linear transformation on the Super-columns
- A rotated key addition
- A Super S-Box
- The same linear transformation on the Super-rows
- A key addition

	//	\square	
l			

The Super S-Box representation (ctd.)

2 rounds of Saturnin (a Super-round) \iff a single round of an AES on 16-bit nibbles, with a transposition (*i.e.* the block cipher Square).

- We use 10 Super-rounds for standard Saturnin
- We recommend 16 Super-rounds for related-key security (Faturnin)
- Our best key-recovery targets 7.5 Super-rounds

The Block Cipher

Security overview

- Extensive analysis of the AES is transferable to Saturnin
- 125 active S-Boxes for 8 rounds
- 4-bit S-Box has optimal properties
 - $\delta = 4$ $\mathcal{L} = 8$ degree 3

• Super S-Box has good properties thanks to the MDS layer:

- $\delta = 80$ $\mathcal{L} = 3072$ degree 9
- Bounds on 8-rounds trails

• Differential:
$$p \le 2^{-241.9}$$
 • Linear: $p \le 2^{-220.7}$

Modes of operation

I	n	It	r	0	d	u	С	t	i	0	r	1
00000												

The Block Cipher

Overview

The submission includes three modes of operation:

- Saturnin-CTR-Cascade for AEAD
- Saturnin-Short for small AE (< 128 bits)
- Saturnin-Hash for hashing

We use separate round constants for domain separation.

Known quantum security proofs:

- Encrypt then MAC
- CTR mode for encryption
- Cascade MAC

[Soukharev, Jao & Seshadri, PQCrypto 2016] [Anand, Targhi, Tabia, Unruh, PQCrypto 2016]

[Song & Yun, Crypto '17]

• Quantum indifferentiability of Merkle-Damgård

[Zhandry, Crypto '19]

Saturnin-Short: for small messages

- A single block m of < 128 bits
- (Actually it can be defined for 128 bits by reducing the nonce size)

The Block Cipher

Modes of Operation

Saturnin-CTR-Cascade: the main proposal

A. Canteaut et al.

Saturnin 21/25

The Block Cipher

Modes of Operation

Saturnin-Hash: hash function proposal

We use a Merkle-Damgård construction with the MMO mode, and 16 Super-rounds.

- Classical birthday bound at $2^{256/2} = 2^{128}$
- Quantum birthday bound at $2^{256/3} = 2^{85.3}$
- Quantum collision algorithms are memory-intensive: we make a stronger (conjectural) security claim that depends on the adversary's quantum memory

Performance considerations

Hardware

Block cipher gate count: **118.5 gpb**

- AES-256: 283.5
- Skinny-256: 156

Software

Saturnin-Cascade on an ARM Cortex M4: 144 cpb constant-time

- AES-GCM: 143 cpb [Adomnicai & Peyrin, 2020]
- Saturnin-Hash performs fairly well on Rhys Weatherley's microcontroller benchmarks*
- Saturnin-Short is very competitive for short messages

^{*}https://rweather.github.io/lightweight-crypto/index.html

The Faturnin Challenge

We need to know more about the **related-key security** of the 16 Super-round version

- The key-schedule is simpler than the AES
- Classical reduced-round attacks?
- How about quantum attacks?

Saturnin-QCB

The **QCB** mode is a quantum-secure **rate-one** mode similar to Θ CB, based on a tweakable block cipher. We propose to use:

 $K, T, M \mapsto \mathsf{Faturnin}_{K \oplus T}(M)$

Bhaumik, Bonnetain, Chailloux, Leurent, Naya-Plasencia, Seurin, S., QCB: Efficient quantum-secure authenticated encryption

A. Canteaut et al.	Saturnin	24/25	
--------------------	----------	-------	--

Conclusion

Post-quantum and lightweight

- We choose a block cipher of 256 bits (the only one in the LWC process)
- We choose well-known modes with quantum security guarantees
- Saturnin also offers a very high classical security

Further work

Although Faturnin (16 super rounds) is not used in the primary proposal, we need to know more about its **related-key security**.

Challenge opens soon!

Thank you!

A. Canteaut et al.

Saturnin