WAGE: An Authenticated Encryption with a Twist

Riham AlTawy^{*}, Guang Gong, Kalikinkar Mandal¹, and Raghvendra Rohit²

UNIVERSITY OF WATERLOO FACULTY OF ENGINEERING Department of Electrical & Computer Engineering

IACR FSE 2020

¹ Currently with University of New Brunswick, Canada

 2 Currently with University of Rennes 1, CNRS, IRISA, France

- 1. Introduction
- 2. Design of WAGE
- 3. Security Analysis and Features
- 4. Hardware Performance

- **PERMUTATION DESIGN:** We design a hardware-friendly permutation of size 259 bits based on a 37-stage Galois NLFSR over \mathbb{F}_{2^7} .

- **PERMUTATION DESIGN:** We design a hardware-friendly permutation of size 259 bits based on a 37-stage Galois NLFSR over \mathbb{F}_{2^7} .
- SECURITY ANALYSIS: We analyze the diffusion, algebraic, differential, and linear properties of the WAGE permutation and the WAGE authenticated encryption.

- **PERMUTATION DESIGN:** We design a hardware-friendly permutation of size 259 bits based on a 37-stage Galois NLFSR over \mathbb{F}_{2^7} .
- SECURITY ANALYSIS: We analyze the diffusion, algebraic, differential, and linear properties of the WAGE permutation and the WAGE authenticated encryption.
- WG-PRBG: We present the construction of WG based pseudo random bit generator with guaranteed randomness properties from WAGE.

Design of WAGE

WAGE PERMUTATION ROUND FUNCTION

- S_i^j is a 7-bit word, WGP and SB are 7-bit S-boxes, ω is a linear operation over 7-bit word, and rc_i^i are 7-bit round constants.

RATIONALE OF THE OVERALL DESIGN

- Reuse and adopt the initialization phase of the well-studied WG stream cipher for authenticated encryption

RATIONALE OF THE OVERALL DESIGN

- Reuse and adopt the initialization phase of the well-studied WG stream cipher for authenticated encryption
- Cheap hardware cost for WGP over \mathbb{F}_{2^7} than \mathbb{F}_{2^8}
- 1 WGP S-box to 5 additional S-boxes (1 WGP + 4 SB) for faster confusion
- Extra XORs for strong diffusion in addition to feedback

- Reuse and adopt the initialization phase of the well-studied WG stream cipher for authenticated encryption
- Cheap hardware cost for WGP over \mathbb{F}_{2^7} than \mathbb{F}_{2^8}
- 1 WGP S-box to 5 additional S-boxes (1 WGP + 4 SB) for faster confusion
- Extra XORs for strong diffusion in addition to feedback
- Minimal overhead for tweaking the WAGE permutation to an independent WG-PRBG

S-BOXES

- WGP S-Box: Defined over \mathbb{F}_{2^7} :

$$\mathsf{WGP}(x) = \mathsf{WGP7}(x^{13})$$

 $\mathsf{WGP7}(x) = x + (x+1)^{33} + (x+1)^{39} + (x+1)^{41} + (x+1)^{104}$

 $d=13\ {\rm chosen}$ to achieve low differential uniformity and high nonlinearity

S-BOXES

- WGP S-Box: Defined over \mathbb{F}_{2^7} :

$$\mathsf{WGP}(x) = \mathsf{WGP7}(x^{13})$$

$$\mathsf{WGP7}(x) = x + (x+1)^{33} + (x+1)^{39} + (x+1)^{41} + (x+1)^{104}$$

$$d = 13 \text{ chosen to achieve low differential uniformity and high}$$

nonlinearity

- SB S-Box: Defined in a bit-wise and iterative fashion:

$$(x_0, x_1, x_2, x_3, x_4, x_5, x_6) \leftarrow R^5(x_0, x_1, x_2, x_3, x_4, x_5, x_6)$$
$$(x_0, x_1, x_2, x_3, x_4, x_5, x_6) \leftarrow Q(x_0, x_1, x_2, x_3, x_4, x_5, x_6)$$
$$x_0 \leftarrow x_0 \oplus 1$$
$$x_2 \leftarrow x_2 \oplus 1$$

S-boxes (cont.)

A block diagram of ${\cal R}$

- Lightweight 7-bit LFSR for generating the constants

- Lightweight 7-bit LFSR for generating the constants

- **Property:** $(rc_0^i, rc_1^i) \neq (rc_0^j, rc_1^j)$ for $0 \le i, j \le 110$ and $i \ne j$. Ensures that all the rounds of WAGE are distinct and provides resistance against slide and invariant subspace attacks.

- Number of rounds: 111
- Selection based on the security analysis: diffusion, algebraic degree, differential and linear bounds
- Overall criterion: WAGE permutation is indistinguishable from a random permutation

- Diffusion: Full bit diffusion in 28+28 rounds in both forward and backward directions. 56/111 rounds are sufficient against meet-in the-middle attacks.
- Algebraic degree: WGP and SB sboxes each are of degree 6. Faster growth in algebraic degree and 111 rounds provides huge security margin against algebraic attacks.

DIFFERENTIAL AND LINEAR BOUNDS

- WGP S-box: $\mathsf{DP}=2^{-4.4}$ and $\mathsf{LSC}=2^{-5.08}$
- SB S-box: $\mathsf{DP}=2^{-4}$ and $\mathsf{LSC}=2^{-5.35}$

DIFFERENTIAL AND LINEAR BOUNDS

- WGP S-box: $\mathsf{DP}=2^{-4.4}$ and $\mathsf{LSC}=2^{-5.08}$
- SB S-box: $\mathsf{DP} = 2^{-4}$ and $\mathsf{LSC} = 2^{-5.35}$
- **Case I:** No constraints on the positions of input and output differences
- Case II: Input and output differences are restricted to only rate positions

Table: Upper bounds of MEDCP and MELCSC values of WAGE in $\log_2(\cdot)$ scale

	Rounds	Minimum	MEDCP	MELSC				
		# active sboxes	$log_2(\cdot)$					
Case I	74	59	$-59 \times 4 = -236$	$-59 \times 5.08 \approx -299.7$				
Case II	74	72	$-72\times4=-288$	$-72\times5.08\approx-365.7$				

WAGE Authenticated Encryption and WG-PRBG

- Supports 128-bit key, 128-bit nonce and 128-bit tag
- Operates in sponge-duplex mode with stronger keyed initialization and finalization phases

- Supports 128-bit key, 128-bit nonce and 128-bit tag
- Operates in sponge-duplex mode with stronger keyed initialization and finalization phases

Initialization

- Supports 128-bit key, 128-bit nonce and 128-bit tag
- Operates in sponge-duplex mode with stronger keyed initialization and finalization phases

- Supports 128-bit key, 128-bit nonce and 128-bit tag
- Operates in sponge-duplex mode with stronger keyed initialization and finalization phases

Initialization

Processing associated data

- Supports 128-bit key, 128-bit nonce and 128-bit tag
- Operates in sponge-duplex mode with stronger keyed initialization and finalization phases

- Confidentiality, Integrity and Authenticity in nonce-respecting setting: 128 bits
- Data limit per key: 2^{64} bits
- Strong security guarantees in related-key setting because of absorbing key blocks via rate

- SPONGE-PRBG: Start with an intial seed and output 64 bits after each call of WAGE permutation. Number of rounds to generate 64 bits is 111.
- WG-PRBG: Null some components of WAGE round function (construction in next slide) and use WG stream cipher over \mathbb{F}_{2^7} to generate random bits. Number of rounds in initialization phase is 74. Then, each output bit is generated in 1 clock cycle.

- SPONGE-PRBG: Start with an intial seed and output 64 bits after each call of WAGE permutation. Number of rounds to generate 64 bits is 111.
- WG-PRBG: Null some components of WAGE round function (construction in next slide) and use WG stream cipher over \mathbb{F}_{2^7} to generate random bits. Number of rounds in initialization phase is 74. Then, each output bit is generated in 1 clock cycle.

Advantages:

- Low power and energy consumption
- Low latency
- Efficient source for generating random nonces for authenticated encryption

WG-PRBG FROM WAGE ROUND FUNCTION

HARDWARE PERFORMANCE

- Comparison of the different ASIC implementation results of WAGE with other NIST LWC round 2 candidates. Tput, A, F, and E denote throughput, area, maximum frequency, and energy, respectively.

	ST Micro 65 nm				ST Micro 90 nm			IBM 130 nm				
Algorithm [‡] ‡	A	F	Tput	Е	A	F	Tput	E	A	F	Tput	Е
	[GE]	[MHz]	[Mbit/s]	[nJ]	[GE]	[MHz]	[Mbit/s]	[nJ]	[GE]	[MHz]	[Mbit/s]	[nJ]
WAGE ^o	2900	907	517	20.0	2540	940	535	39.2	2960	153	87.21	30.4
SKINNY-AEAD	-	-	-	-	7179	422	53	-	7456	267	34	-
ASCON	-	-	-	-	2570	672	14	5,706 µJ/B	-	-	-	-
GIFT-COFB	-	-	-	-	3927	10	22.3 †	2.69 †	-	-	-	-
Grain-128AEAD	3638.5	1120	560	-	-	-	-	-	-	-	-	-
Isap-A-128a	-	-	-	-	≤12780	≥ 169	2.9 bpc	-	-	-	-	-
SPIX‡	2611	100 kHz	81.8 Kbps	-	-	-	-	-	2742	100 kHz	81.8 Kbps	-
SpoC-64 [‡]	2329	100 kHz	58.3 Kbps	-	-	-	-	-	2389	100 kHz	58.3 Kbps	-
SUNDAE-GIFT	-	-	-	-	3494	10	15.9 ††	4.2 [†]	-	-	-	-
TinyJAMBU-128	-	-	-	-	1352*	-	24.6	-	-	-	-	-

^{‡‡} Implementations numbers from round 2 submissions.

 $^{\diamond}$ Entire cipher including encryption, decryption and control logic

[†] For 16 B and 32 B of associated data and plaintext, respectively

[‡] Encryption circuit only. $\dagger \dagger \#$ cycles = 242, \star only 112 bit security

- Fair comparison is hard at this stage.

- We have proposed WAGE, a sponge-based authenticated encryption algorithm, tailored for resource-constrained environments.
- Simple underlying permutation based on Galois NLFSR, two sboxes: WGP and SB, a primitive feedback polynomial, and partial word-wise XORs.
- Offers good security guarantees and hardware efficiency.
- Easily tweakable to WG-PRBG.

Thank you!

Full paper available at: https://tosc.iacr.org/index.php/ToSC/article/view/8620 https://eprint.iacr.org/2020/435

For any questions, comments or suggestions, please email us.

Special thanks to TikZ for Cryptographers for the diagrams.