
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. S1, pp. 31–59. DOI:10.13154/tosc.v2020.iS1.31-59

Pyjamask: Block Cipher and Authenticated
Encryption with Highly Efficient Masked

Implementation
Dahmun Goudarzi1, Jérémy Jean2, Stefan Kölbl3, Thomas Peyrin4,

Matthieu Rivain5, Yu Sasaki6 and Siang Meng Sim4

1 PQShield, Oxford, United Kingdom
Dahmun.Goudarzi@pqshield.com

2 Agence nationale de la sécurité des systèmes d’information (ANSSI), Paris, France
Jeremy.Jean@ssi.gouv.fr

3 Independent†

kste@mailbox.org

4 School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

Thomas.Peyrin@ntu.edu.sg, crypto.s.m.sim@gmail.com

5 CryptoExperts, Paris, France
Matthieu.Rivain@cryptoexperts.com

6 NTT Secure Platform Laboratories, Tokyo, Japan
Sasaki.Yu@lab.ntt.co.jp

Abstract. This paper introduces Pyjamask, a new block cipher family and authen-
ticated encryption proposal submitted to the NIST lightweight cryptography stan-
dardization process. Pyjamask targets side-channel resistance as one of its main goal.
More precisely, it strongly minimizes the number of nonlinear gates used in its internal
primitive in order to allow efficient masked implementations, especially for high-order
masking in software. Compared to other block ciphers, our proposal has thus among
the smallest number of binary AND computations per input bit at the time of writing.
Even though Pyjamask minimizes such an important criterion, it remains rather
lightweight and efficient, thanks to a general bitslice construction that enables to
computation of all nonlinear gates in parallel. For authenticated encryption, we adopt
the provably secure AEAD mode OCB which has been extensively studied and has the
benefit to offer full parallelization. Of course, other block cipher-based modes can be
considered as well if other performance profiles are to be targeted.
The paper first gives the specification of the Pyjamask block cipher and the associated
AEAD proposal. We also provide a detailed design rationale for the block cipher
which is guided by our aim of software efficiency in the presence of high-order masking.
The security of the design is analyzed against most commonly known cryptanalysis
techniques. We finally describe efficient (masked) implementations in software and
provide implementation results with aggressive performances for masking of very high
orders (up to 128). We also provide a rough estimation of the hardware performances
which remain much better than those of an AES round-based implementation.

†Author is now working at Google.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-12-10, Accepted: 2020-02-15, Published: 2020-06-22

https://doi.org/10.13154/tosc.v2020.iS1.31-59
mailto:Dahmun.Goudarzi@pqshield.com
mailto:Jeremy.Jean@ssi.gouv.fr
mailto:kste@mailbox.org
mailto:Thomas.Peyrin@ntu.edu.sg
mailto:crypto.s.m.sim@gmail.com
mailto:Matthieu.Rivain@cryptoexperts.com
mailto:Sasaki.Yu@lab.ntt.co.jp
http://creativecommons.org/licenses/by/4.0/

32 Pyjamask: Block Cipher and Authenticated Encryption

Keywords: Block Cipher · Authenticated Encryption · Fast Software Encryption ·
High-Order Masking · Lightweight Cryptography

1 Introduction
Confidentiality and authenticity of data are the two crucial security properties that one must
ensure when communicating over an insecure channel. These properties have historically
been realized separately, for example using a secure block cipher and an encryption
operating mode to provide confidentiality and using a hash function or again a block cipher
in a proper MAC algorithm to provide authenticity. However, this means that it was left to
the practitioners how to combine both tools to secure the communication channel, leading
to major security breaches [Kra01, AP13]. It became clear that a primitive providing
both security notions at the same time would be interesting, not only from a security
point of view, but also from an efficiency perspective as this would potentially provide an
opportunity for the designers to save some computations (in comparison to two independent
computations). An Authenticated Encryption (AE) scheme ensures jointly authenticity
and confidentiality of data, and this concept was generalized to Authenticated Encryption
with Associated Data (AEAD) which would allow some data to not be encrypted but only
authenticated [Rog02]. Many provable AEAD modes and even ad-hoc designs, especially
through the CAESAR competition [CAE], have been proposed since then.

Due to the increasing widespread of pervasive computing devices, another hot topic
in cryptography during this last decade was lightweight cryptography, whose goal is to
provide cryptographic primitives for constrained devices where classical algorithms might
be too costly. Many parameters can be considered to define “constrained”, from area,
latency, power, energy in hardware, to memory consumption, throughput in software.
A lot of research has been conducted in this area, leading to new lightweight operating
modes, better lightweight cryptographic bricks, improved implementation strategies, etc.
Yet, while side-channels attacks have become a critical threat for virtually all security
systems, most of the proposed lightweight designs only focus on pure performances
for unprotected implementations. This generally tends to bring poor performances for
protected implementations, which might be a necessity as lightweight devices are likely to
evolve in very adversarial environments.

A classical protection against side-channels attacks is masking. This countermeasure
basically consists in randomly splitting every sensitive intermediate variable occurring in
the computation into d shares, which are then independently processed by the masked
implementation. If masking is to be used as a countermeasure against side-channels attacks,
a designer better minimize the number of non-linear operations, as they highly impact
the performance of the masking, especially for high-order masking [GR17]. Several block
ciphers already started exploring this direction [GGNS13,GLSV15].

Our Contributions. In this article, we propose Pyjamask, a new AEAD scheme, with a
special focus on efficient side-channels protected implementation in software. Our candidate
is composed of a block cipher minimizing the use of non-linear operations and ensuring
efficient bitslice implementations, plugged into the well known and well studied OCB parallel
operating mode. Our block cipher has actually one of the smallest number of AND gates
per bit at the time of writing (except LowMC [ARS+15] or Rasta [DEG+18] which are
really not lightweight designs, or 3-WAY [DGV93] and its variant BASEKING [Dae95] which
are very weak against related-key attacks). Even though Pyjamask minimizes such an
important criterion, it remains rather lightweight and efficient, thanks to its general bitslice
construction that enables computation of all nonlinear gates in parallel. Its performance
in software for protected implementations is verified with actual measurements, making
it a very suitable candidate for many practical scenarios. For instance, assuming a fast

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 33

hardware RNG, our implementation of Pyjamask with masking order 128 runs in less
than 0.05 seconds on a Cortex-M4 processor (clocked at 168 MHz). According to our
estimations, Pyjamask is also fairly lightweight in hardware and it achieves much smaller
area than AES for a typical round-based ASIC implementation.

Outline. We first provide in Section 2 the complete description of our designs and in
Section 3 their rationale. We conducted a complete security analysis of our designs and
report it in Section 4. Finally, we discuss implementation results in Section 5.

2 Specifications
This section gives the specification of the Pyjamask block cipher family and the Pyjamask
AEAD algorithms (based on the OCB mode).

2.1 The Pyjamask Block Cipher Family
The block cipher family Pyjamask contains two algorithms: one with a 96-bit block size
called Pyjamask-96, and a second with a 128-bit block size called Pyjamask-128. The pa-
rameters of the two instances are summarized in Table 1 and detailed hereafter. Our cipher
share some similarities with existing ciphers, such as 3-WAY [DGV93], BASEKING [Dae95] or
NOEKEON [DPAR00] (for their general structure), ASCON [DEMS16] (for the different linear
layers on each slice) or even LowMC [ARS+15] (for its general AND gate minimization).

Table 1: Parameters of Pyjamask block ciphers. All the sizes are in bits.

Instance State size Rows Columns Key size Rounds
n r n/r k

Pyjamask-96 96 3 32 128 14
Pyjamask-128 128 4 32 128 14

The ciphers rely on a Substitution-Mixing structure that transforms the initial plaintext
to a ciphertext through several applications of a key-dependent round function. Each
round key is derived from the secret key through an iterated key schedule algorithm. In
the rest of this section, we first describe the data representation within the cipher. Then,
we give a detailed specification of the round function, inverse round function and key
schedule. We conclude the section with pseudocode for the encryption, decryption and key
schedule algorithms.

2.1.1 Data Representation

The plaintext is initially loaded into the internal states of the ciphers (see Figure 1) which
are viewed as a two-dimensional array of bits having r rows and 32 columns (r = 3 for
Pyjamask-96 and r = 4 for Pyjamask-128).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Figure 1: Internal state of Pyjamask-128 with r = 4 rows of 32 bits: each cell represents
a single bit.

34 Pyjamask: Block Cipher and Authenticated Encryption

The first (resp. 2nd, 3rd, 4th) group of 4 bytes of the plaintext is loaded into the first
(resp. 2nd, 3rd, 4th) row of the state in big endian format. For instance, the 16-byte
plaintext

[0x00, 0x11, 0x22, 0x33, 0x44, . . . , 0xff]

is loaded into the state as
0x00112233

0x44556677

0x8899aabb

0xccddeeff

 ,

the first row being 0x00112233 and the last row being 0xccddeeff. Within one row, the
cell of lowest index holds the most significant bit of the row while the cell of greatest index
holds the least significant bit of the row. In the above example, the first row is loaded
with 0x00112233, which means that the cell of Index 0 holds the most significant bit of
0x00 (i.e. 0), and the cell of Index 31 holds the least significant bit of 0x33 (i.e. 1).

2.1.2 Round Function

The number of rounds applied is 14 for both Pyjamask-96 and Pyjamask-128. The round
functions of the two ciphers are similar and only differ due to the extra row present in
Pyjamask-128. In detail, one round is composed of the following transformations (see
also Figure 2):

• AddRoundKey – The first n bits of the key state (defined below) is XORed to the
internal state. For Pyjamask-128, the full key state is XORed to the internal state.
For Pyjamask-96, the 3 first rows of the key state are XORed to the internal state.

• SubBytes – The same Sbox is applied to each of the 32 columns of the internal
state. For Pyjamask-96, the Sbox is S3 and for Pyjamask-128, the Sbox is S4 (see
definitions hereafter).

• MixRows – Each row Ri of the internal state, with i ∈ {0, 1, 2} for Pyjamask-96 and
i ∈ {0, 1, 2, 3} for Pyjamask-128 is seen as a column vector of 32 elements in F2
and is replaced by Mi ·Ri. The matrices Mi are 32× 32 constant circulant binary
matrices defined below.

After the last round has been applied, a final AddRoundKey operation adds a post-
whitening key to the internal state.

Sboxes. The 3-bit Sbox used in Pyjamask-96 is given by the following lookup table:

S3 = [1, 3, 6, 5, 2, 4, 7, 0],

and the 4-bit Sbox used in Pyjamask-128 is described by the following lookup table:

S4 = [0x2, 0xd, 0x3, 0x9, 0x7, 0xb, 0xa, 0x6, 0xe, 0x0, 0xf, 0x4, 0x8, 0x5, 0x1, 0xc].

In both cases, the MSB of the inputs and outputs of the Sboxes are located in the top
row of the internal state depicted on Figure 2.

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 35

Input State

AddRoundKey: Subkey Addition

S4 S4

SubBytes: Sbox Layer

M0

M1

M2

M3

MixRows: Diffusion Layer

Output State

Figure 2: Round function of Pyjamask-128.

Matrices. The binary circulant matrices used in the MixRows operation are given below:

M0 = cir ([1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0]) ,
M1 = cir ([0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1]) ,
M2 = cir ([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1]) ,
M3 = cir ([0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1]) .

Note that M0, M1 and M2 are used in both Pyjamask-96 and Pyjamask-128, but M3 is
only used in Pyjamask-128.

2.1.3 Inverse Round Function

As the decryption functionality of some mode of operation requires the inverse block
cipher, we also give a description of the inverse round function. It is defined similarly to
the forward round function but applies the inverse of the elementary transformations in
reversed order. Namely, if performs 14 times the following operations:

• invMixRows – Each row Ri of the internal state, with i ∈ {0, 1, 2} for Pyjamask-96
and i ∈ {0, 1, 2, 3} for Pyjamask-128 is seen as a column vector of 32 elements in F2
and is replaced by M−1

i ·Ri.

• invSubBytes – The inverse Sbox (either S−1
3 or S−1

4) is applied to all 32 columns of
the internal state.

• invAddRoundKey – The first n bits of the key state is XORed to the internal state.

Again, after the last inverse round, a last subkey is XORed to the internal state.

36 Pyjamask: Block Cipher and Authenticated Encryption

2.1.4 Key Schedule

The two ciphers Pyjamask-96 and Pyjamask-128 share the same key schedule: the only
difference is the size of the subkeys extracted from key state that are injected into the
internal state during the AddRoundKey operations.

In both ciphers, the secret key consists of 128 bits. It is initially loaded into the 128-bit
key state in the same ordering as the internal state (Figure 1). Then, the 128-bit key state
undergoes three elementary transformations (see Figure 3):

• MixColumns – Each 4-bit column Ci of the key state is seen as a vector of four
element over F2 and is replaced by M · Ci, where the matrix M is defined by:

M =

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .

• MixAndRotateRows – The first row R0 of the key state is seen as vector of 32 elements
over F2 and is replaced by Mk ·R0, where the matrix Mk is defined by:

MK = cir ([1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0]) .

The second row R1, third row R2, and fourth row R3 are left-rotated by 8, 15,
18 positions. Namely they are replaced by R1 ≪ 8, R2 ≪ 15, and R3 ≪ 18
respectively.

• AddConstant – In the final step, a 32-bit round constant is defined and separated in
four bytes which are bitwise added to various parts of the rows of the key state. The
last four bits of the constant encode a counter equal to the round number between 0
and 13, and the remaining 28 bits are fixed to a constant represented on Figure 3
using the hexadecimal value 0x243f6a8:

CONSTANT = [0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0].

Then, the most significant byte (MSB) of this constant is XORed to the MSB of the
fourth row R3, the second MSB of this constant is XORed to the MSB of the third
row R2, the third MSB of this constant is XORed to the MSB of the second row R1,
and eventually the LSB of this constant is XORed to the LSB of the first row R0.

2.1.5 Pseudo-code

We give hereafter some high-level pseudo-code for the encryption, decryption and key
schedule algorithms. The Load primitive loads a 4r-byte input (plaintext or ciphertext)
into an r-row state as described above, with r ∈ {3, 4}. The Unload primitive consists in
the inverse operation. The KeySchedule algorithm takes a 16-byte key (denoted key) and
produces a table of 15 round keys (denoted roundkey[0 : 14]), each round key being made
of r rows of the key state. The AddRoundKey, SubBytes and MixRows primitives are the
round transformations as defined above. The inverse of the two latter transformations are
further denoted InvSubBytes and InvMixRows.

The Pyjamask-96 and Pyjamask-128 encryption of plaintext under key proceeds as
follows (Algorithm 1):

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 37

Key State

M M

Column Diffusion

MK

≪ 8

≪ 15

≪ 18

Row Diffusion

0x24

0x3f

0x6a

0x8 CTR ∈ {0, . . . ,13}

Constant Addition

Key State

Figure 3: Key schedule of Pyjamask-96 and Pyjamask-128.

Algorithm 1 Encryption
1: state← Load(plaintext)
2: roundkey[0 : 14]← KeySchedule(key)
3: for i = 0 to 13 do
4: state← AddRoundKey(state, roundkey[i])
5: state← SubBytes(state)
6: state← MixRows(state)
7: end for
8: state← AddRoundKey(state, roundkey[14])
9: ciphertext← Unload(state)

10: return ciphertext

Algorithm 2 Decryption
1: state← Load(ciphertext)
2: roundkey[0 : 14]← KeySchedule(key)
3: state← AddRoundKey(state, roundkey[14])
4: for i = 13 downto 0 do
5: state← InvMixRows(state)
6: state← InvSubBytes(state)
7: state← AddRoundKey(state, roundkey[i])
8: end for
9: plaintext← Unload(state)

10: return plaintext

The Pyjamask-96 and Pyjamask-128 decryption of ciphertext under key proceeds
as follows (Algorithm 2):

38 Pyjamask: Block Cipher and Authenticated Encryption

In the following pseudo-code (Algorithm 3), we denote by MixColumns, MixAndRotateRows
and AddConstant the key schedule transformations as defined above.

Algorithm 3 Key schedule
1: keystate← Load(key)
2: roundkey[0]← keystate
3: for i = 1 to 14 do
4: keystate← MixColumns(keystate)
5: keystate← MixAndRotateRows(keystate)
6: keystate← AddConstant(keystate, i)
7: roundkey[i]← keystate[0 : n− 1]
8: end for
9: return roundkey[0 : 14]

2.2 The Pyjamask AEAD Algorithms
We further specify two authenticated encryption with associated data (AEAD) algorithms
in the Pyjamask family. These algorithms are composed of an encryption part and a
verification/decryption part.

The encryption part E takes as input a variable-length plaintext M (with |M | = m), a
variable-length associated data A (with |A| = a), a fixed-length public message number N
and a k-bit key K. It outputs a m-bit ciphertext C and a τ -bit tag, denoted tag (with
τ ∈ [0, . . . , n]), i.e. (C, tag) = EK(N,A,M). The verification/decryption part D takes as
input a variable-length ciphertext C (with |C| = m), a τ -bit authentication tag tag (with
τ ∈ [0, . . . , n]), a variable-length associated data A (with a = |A|), a fixed-length public
message number N and a k-bit key K. It outputs either an error string ⊥ to inform that
the verification failed, or an m-bit string M = DK(N,A,C, tag) when the tag is valid.

The two AEAD members of Pyjamask are summarized in Table 2.

Table 2: AEAD members of Pyjamask (all the values are given in bits).

Member Name Mode Block Cipher n k |N | τ

Pyjamask-128-AEAD † OCB Pyjamask-128 128 128 96 128
Pyjamask-96-AEAD OCB Pyjamask-96 96 128 64 96

†: Primary member.

OCB Mode. The original OCB [KR14] mode has been designed for 128-bit block ciphers
and can hence be used as is for Pyjamask-128. To handle our 96-bit block cipher described
above, we have made some slight modifications which are described in Subsection 3.5.

Security Claims. We consider the nonce-respecting authenticated encryption with asso-
ciated data model for the adversary: nonce values in encryption queries may be chosen
by the adversary but they must be distinct. We do not claim security under the case of
nonce-misuse or release of unverified plaintext (RUP). He queries for nonce/associated
data/message tuples (N,A,M) to the encryption oracle and obtains the corresponding
ciphertext/tag (C, T). When interacting with the decryption oracle, he can use any nonce
value, even repeating. However, he queries for nonce/associated data/ciphertext/tag tuples
(N,A,C, T) to the decryption oracle, but only obtains the corresponding message M if
the tag T is valid for that query.

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 39

Our security claims are summarized in Table 3. The variables in the table denote the
bit security of our designs in terms of calls to the internal primitive, the small constant
factors are neglected in these tables. We do not claim security beyond these suggested
numbers. A more detailed analysis can be found in the OCB [KR14] document.

Table 3: Security claims of Pyjamask under the assumption that nonces never repeat.
The values are given in bits.

Member Name Privacy Authentication Key Recovery

Pyjamask-128-AEAD 64 64 128
Pyjamask-96-AEAD 48 48 128

3 Design Rationale
Pyjamask aims to provide symmetric (authenticated) encryption enjoying fast software
implementations with high levels of security against side-channel attacks. To achieve this
goal, Pyjamask has been designed to be as lightweight as possible in the presence of high-
order masking in software, while still enjoying unmasked and/or hardware implementations
with satisfying performances.

3.1 Main Design Criteria
When masking is applied to protect a cryptographic implementation against side-channel
attacks, each variable in the computation is split into d shares. These shares are randomized
to wipe out the side-channel information leakage while they are bound to the original
variable through a completeness relation. Under some realistic assumptions, the number
of shares d, or alternatively the masking order d − 1, has indeed been argued to be a
sound security parameter for the masked implementation [CJRR99,PR13,DDF14]. In
standard masking schemes, the evaluation of a nonlinear operation has a complexity O(d2)
while for a linear operation the complexity is of O(d), where the linearity is meant with
respect to the sharing operation (which is usually the XOR operation). When a masking
of high order d is involved, most of the computation is hence dedicated to the masked
nonlinear operations while the linear layers are virtually free. Several works have recently
shown the primacy of bitslicing to obtain the best performances for high-order masked
implementations [GLSV15,GR16,GR17,JS17,JSV17,GJRS18]. In such implementations,
the nonlinear layers are performed through `-bitwise AND operations (`-AND), where ` is
the size of the underlying architecture (typically, ` equals 32, or 64 bits). The obtained
performances are then highly correlated to the number of `-AND operations in the original
computation.

Pyjamask has been designed to enjoy such fast bitslice implementations in the presence
of high-order masking. Specifically, we have favored

• a minimal number of 32-AND operations for efficient implementation on 32-bit plat-
forms,

• a parallelization degree to address 64-bit platforms and/or processor with vector
instructions,

• a design with reasonable performances for unmasked and/or hardware implementa-
tions,

• a design that relies on the well-studied Substitution-Mixing structure involving an
Sbox layer, a linear diffusion layer, and a bitwise key addition.

40 Pyjamask: Block Cipher and Authenticated Encryption

To fulfill the above criteria, we have opted for a design based on the following choices:

• The nonlinear layer is composed of 32 parallel applications of a small Sbox, either a
3-bit or a 4-bit Sbox, which yield two instances of the cipher with either a 96-bit
state (Pyjamask-96) or a 128-bit state (Pyjamask-128). For each instance, the Sbox
has the minimal cost in terms of AND gates for a non-linear s-box, i.e., m AND
gates for the m-bit Sbox, m ∈ {3, 4}. This makes a nonlinear layer that can be
evaluated with m 32-AND operations in total.

• The 4-bit Sbox enjoys a possible parallelization of the AND gates, namely it can be
evaluated with two pairs of parallel AND gates. As a result, the nonlinear layer of
Pyjamask-128 can be evaluated with two 64-AND operations in total, which makes it
further well suited for 64-bit architectures (or processors with vector instructions).

• Since linear parts are virtually free in the masking world, the linear layer of the
Pyjamask block cipher has been conceived to provide high diffusion by means of
dense 32× 32 binary matrices. Different matrices are used for the different 32-bit
rows in order to avoid too much alignment. On the other hand, we chose to use
circulant matrices to obtain acceptable performances for unmasked and/or hardware
implementations.

• The key-schedule of the cipher has been designed to only involve linear operations
for an optimal performances in the presence of masking.

We further describe these design choices in the rest of this section.

3.2 Choice of the Sboxes
For concise discussion, we express the lookup table of Sboxes using a sequence of hexadeci-
mal without spacing or comma. For instance, S3 = 13652470 and S4 = 2d397ba6e0f4851c.

Our Sboxes selection criteria are as follows:

(C1) To obtain optimal differential and linear properties with as few non-linear gates as
possible.

(C2) Avoid cycles in the differential and (resp. linear) transitions with both input and
output difference (resp. mask) of Hamming weight one.

(C3) If such cycles cannot be avoided, select one with the longest cycles.

The first criterion (C1) is self-explanatory. Note that the best known 3- and 4-
bit Sboxes have maximum differential probability (m.d.p.) 2−2 and maximum linear
approximation (m.l.a) 2−2. To construct the Sboxes used in Pyjamask that reach those
bounds, we use simple operations as the building blocks: namely, (a, b, c) 7→ (b, c⊕(a∧b), a)
for the 3-bit Sbox and (a, b, c, d) 7→ (b, c, d⊕ (a ∧ b), a) for the 4-bit Sbox. The choice of
these elementary operations is inspired by PICCOLO (2011) and SKINNY (2016), while the
construction in the same philosophy appeared several times, e.g., RadioGatún [BDPA06]
(2006) and Xoodoo [DHAK18] (2018). By simply iterating these operations three times for
the 3-bit Sbox (resp. four times for the 4-bit Sbox), we obtain Sboxes S′3 = 01254736 and
(resp. S′4 = 012745e98badfc36) with optimal differential and linear properties.

The criteria (C2) and (C3) focus on the sub-tables of the differential distribution
table (DDT) and the linear approximation table (LAT) where the input and output values
have Hamming weight exactly one. Indeed, if there is a 1-cycle (or fixed point) in the
sub-table, it implies that active bits in that particular row of the internal state can stay in
that row without propagating to other rows. To avoid this undesirable property, we apply
some linear transformations Lin

3 and Lout
3 (resp. Lin

4 and Lout
4) before and after the Sbox

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 41

S′3 (resp. S′4) to obtain linearly equivalent optimal Sboxes but without short cycle (resp.
without any cycle) in the differential transitions with both input and output difference of
Hamming weight one, same goes for the linear aspects of the Sboxes.

Lin
3 =

1 1 0
0 1 1
0 0 1

 , Lout
3 =

0 1 0
1 1 0
1 0 1

 ,

Lin
4 =

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 , Lout
4 =

1 0 0 0
1 1 0 0
0 0 0 1
0 1 1 0

 .
Last but not least, we introduce some offset value to both Sboxes to remove fixed

points, the offset is denoted by A3(x) = x ⊕ 0x1 and A4(x) = x ⊕ 0x2. In the end, the
Sboxes that we use in Pyjamask are defined as:

S3 = A3 ◦ Lout
3 ◦ S′3 ◦ Lin

3 ,

S4 = A4 ◦ Lout
4 ◦ S′4 ◦ Lin

4 .

In the end, we arrive at our Sboxes S3 and S4, The DDT and LAT of S3 are presented
in Table 4 and Table 4, where we highlighted the entries that have both input and output
differences/masks having Hamming weight one. Similarly, we give the DDT and LAT of
S4 in Table 5 and Table 6. In all these four tables, rows (resp. columns) represent input
(resp. output) differences or masks.

Table 4: DDT and LAT of S3.

DDT 0 1 2 3 4 5 6 7

0 8 -
1 . . 2 2 . . 2 2
2 2 2 2 2
3 . . 2 2 2 2 . -
4 . 2 . 2 . 2 . 2
5 . 2 2 . . 2 2 -
6 . 2 . 2 2 . 2 -
7 . 2 2 . 2 . . 2

LAT 0 1 2 3 4 5 6 7

0 4
1 . . −2 −2 . . 2 −2
2 2 −2 −2 −2
3 . . 2 −2 2 2 . .
4 . −2 . −2 . −2 . 2
5 . 2 2 . . −2 2 .
6 . −2 . 2 2 . 2 .
7 . −2 2 . −2 . . −2

Table 5: DDT of S4.
DDT 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 -
1 2 2 4 4 2 2
2 . 4 . . 4 4 . . . 4 . -
3 . 4 . . 4 2 2 . . 2 2
4 4 4 . 2 2 2 2
5 . . . 4 . 4 . . 2 2 2 2 . . . -
6 . 2 2 . 2 . . 2 2 . . 2 2 . . 2
7 . 2 2 . 2 . . 2 2 . 2 . 2 . 2 -
8 2 2 4 4 2 2
9 . . 4 4 . . 4 4 -
a . . 2 2 . . 2 2 . 4 . . . 4 . -
b . . 2 2 . . 2 2 . . 2 2 . . 2 2
c . . 4 . . 4 . . 2 2 2 2 . . . -
d 4 . 4 2 2 2 2
e . 2 . 2 2 . 2 . 2 . . 2 2 . . 2
f . 2 . 2 2 . 2 . 2 . 2 . 2 . 2 -

42 Pyjamask: Block Cipher and Authenticated Encryption

Table 6: LAT of S4.
LAT 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 8
1 . . −4 . 2 2 2 −2 . −4 . . 2 −2 −2 −2
2 4 . 4 4 . −4
3 . 4 . . −2 −2 2 −2 . . −4 . −2 2 −2 −2
4 4 . 4 4 . −4 .
5 . . −4 . −2 −2 −2 2 . . . −4 2 2 −2 2
6 . 4 . −4 4 . 4 .
7 . . . −4 2 −2 −2 −2 . . 4 . −2 2 −2 −2
8 . −2 −4 −2 2 . −2 . . 2 −4 2 −2 . 2 .
9 . 2 . 2 . 2 −4 −2 4 −2 . 2 . 2 . 2
a . −2 . 2 −2 . −2 −4 . 2 . −2 2 . 2 −4
b . −2 . −2 . 2 4 −2 4 2 . −2 . 2 . 2
c . −2 4 −2 2 . −2 . . −2 −4 −2 2 . −2 .
d . 2 . 2 4 −2 . 2 4 2 . −2 . −2 . −2
e . 2 . −2 −2 4 −2 . . 2 . −2 −2 −4 −2 .
f . 2 . 2 4 2 . −2 −4 2 . −2 . 2 . 2

3.3 Choice of the Diffusion Matrices
To choose the diffusion matrices, we have run a probabilistic search in a particular subspace
fitting the constraints of the ciphers, and simply picked five matrices that ranked best in
terms of implementation sizes.

To elaborate on the actual subspace, we first recall the constraints imposed by the
design (refer to Subsection 2.1). The matrices have to be defined over F2 and must be
of dimension 32. In terms of security, we would like them to achieve the best possible
branch number [Dae95]. Looking at the best known linear codes of these dimensions,
one knows that the best theoretically achievable minimum distance is 16 [Gra07,Bro98].
However, one does not know any linear code that reaches that bound: the best achievable
one has minimum distance 12. Consequently, in the choice of the diffusion matrices for
the Pyjamask block cipher, we looked for 32× 32 binary diffusion matrices with branch
number 12.

To compare two binary matrices having the targeted branch number, we use an
implementation-related metric that counts the number of bitwise XORs required to
evaluate the matrix multiplication as done in a recent series of academic papers, e.g.,
[KLSW17,JPST17,DL18]. More specifically, for each candidate matrix, we have run Paar1
algorithm [Paa97], which returns the number of 2-input XOR gates required to implement
the evaluation. This measure allows to rank the various matrices and eventually pick the
ones that reach branch number 12 and a low number of XOR in the implementation at
the same time.

Finally, to restrict the search space, rather than randomly picking 32 × 32 binary
matrices, we have chosen to rely on circulant matrices, which can be defined by a single
32-element vector over F2. To reach branch number 12, this vector necessarily has to
have a least 11 nonzero coefficients. As a result, we randomly picked circulant matrices
defined by a vector having exactly 11 nonzero elements, checked that their branch numbers
was 12, and ranked them accordingly to Paar1’s algorithm. We then picked five matrices
in the best candidates. Note that this does not ensure that the matrices are optimally
lightweight.

3.4 Choice of the Key Schedule
In the key schedule, to differentiate every steps, we chose to inject a round counter to 4 bits
of the first row of state. Additionally, to break potential symmetries, it is customary for
symmetric ciphers to embed round constant within the key schedule. In Pyjamask, we have
decided to derive a 28-bit constant from the hexadecimal encoding of the fractional part

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 43

of π = 3.243f 6a88 85a3, which therefore yields 0x243f6a8. The same choice has been
followed by the designers of MIDORI [BBI+15]. We determined to separate this 7-nibble
constant and 1-nibble counter to 2 nibbles each and to added each of them for each row.
This is to provide better security against the invariant cryptanalysis which will be explained
in the security analysis section.

The rotation constants in the key schedule have been chosen to maximize diffusion and
to be as close as possible from a multiple of 8. Indeed, as remarked in [BSS+17], on a
typical 8-bit micro-controller a rotation by 8k + 2 is twice as expensive as a rotation by
8k + 1, a rotation by 8k + 3 three times as expensive, etc.

3.5 Parameters for the 96-bit Version of the OCB Mode
Irreducible Polynomial. The irreducible polynomial of degree 96 has been chosen for its
low weight, as listed in [Ser98]. In addition, we note x = 2 is a primitive element.

Stretch-then-shift Hash Function. In [KR11], the empirical result shows that the hash
function H : {0, 1}128 × [0..63]→ {0, 1}128 defined by

H(K,x) = (Stretch� x)[1..128],

where Stretch = K‖(K ⊕ (K � c)) is strongly XOR-universal for c = 8. This implies
two properties, HK(x) is uniformly distributed in {0, 1}n (universal-1), and for all x 6= x′,
HK(x)⊕HK(x′) is uniformly distributed in {0, 1}n (XOR-universal).

We did a similar analysis as described in [KR11] for our 96-bit hash function H96 :
{0, 1}96 × [0..63]→ {0, 1}96 defined by

H96(K,x) = (Stretch� x)[1..96],

where Stretch = K‖(K⊕(K � c)). We have found several candidates c ∈ {2, 6, 7, 9, 10, 14, . . . }
to construct a 96-bit strongly XOR-universal hash function. Notice that for n = 96, c = 8
does not result in a strongly XOR-universal hash function.

We chose c = 9 to be as close as possible from a multiple of 8 for it is minimally better
on some platforms (8-bit micro-controllers, when one can only shift by 1, therefore any
multiple of 8± 1 would be preferred [BSS+17].

4 Security Analysis
We present in this section a preliminary analysis of the block ciphers introduced in Pyjamask.
While we try to give convincing security arguments and cover the most commonly known
cryptanalysis techniques, we are aware we do not cover all possible attack vectors but
believe this is sufficient for a design document.

4.1 Differential Analysis
We give in Table 9 lower bounds on the number of active Sboxes for up to four rounds of
Pyjamask-96 and Pyjamask-128. To derive those bounds, we have used a SAT approach
based on the CryptoSMT framework proposed by Kölbl in [Ste]. We have added both
variants of Pyjamask to the tool which allows us to search for the optimal differential
characteristics taking into account the exact transitions of the difference through the Sbox.
We note that due to the high number of variables present in the SAT models, reaching
more than four rounds requires long computations which we could not afford. Nonetheless,
the bounds obtained provide a strong indication that no high probability characteristic
exist for both variants of Pyjamask.

44 Pyjamask: Block Cipher and Authenticated Encryption

In Table 9, we give the bounds on the best differential characteristics possible in terms
of the number of active Sboxes. In order to explore the possibility of characteristics with a
low number of active Sboxes for more rounds we use the optimal 2-round characteristic
and extend it in both directions. Note that the extension in both directions finds the best
possible trail, but this does not imply that there is no better trail for 6 rounds exist.

We emphasize that the computations to derive bounds for higher number of rounds by
using a general-purpose tool such as SAT are computationally intensive: covering three
rounds is still within practical range, but four rounds involve long optimization periods.
We may communicate on updated figures in the future.

Searching for Efficient Differential Characteristics

Regarding Pyjamask-96, it is still possible to find a highly efficient differential characteristic
owing to the differential behaviors of the 3-bit Sbox S3. At a high level, we first introduce
a method to compress the 96-bit state to a 32-bit state, which we call MiniPyjamask-96,
and then find efficient characteristics by exhaustively trying all differential propagations
for MiniPyjamask-96.

As indicated by the DDT in Table 4, S3 allows the iteration of the differential propaga-
tions from 1-bit difference to 1-bit difference, namely, the difference 0x1 is propagated to
the difference 0x2 with probability 2−2, the difference 0x2 is propagated to the difference
0x4 with probability 2−2, and the difference 0x4 is propagated to the difference 0x1 with
probability 2−2. Given this property, we set that all active Sboxes in Round i (resp. i+ 1
and i + 2) have the input difference 0x1 (resp. 0x2 and 0x4) and produce the output
difference 0x2 (resp. 0x4 and 0x1). Hence in any round, only one of three rows are active
and the other two rows are inactive. This allows us to focus only on the active row to
analyze the differential propagation through MixRows. Note that the MSB (resp. LSB) of
the Sbox is the top (resp. bottom) row of the state. Therefore,

• After the difference becomes 0x1, M2 is applied.

• After the difference becomes 0x2, M1 is applied.

• After the difference becomes 0x4, M0 is applied.

We are now ready to define MiniPyjamask-96. It takes a 32-bit value as input and the
round function is a linear function M2, M1, and M0. The order of the linear functions is

• M2, M1, and M0 when the input difference of all active Sboxes in Round 1 is 0x1.

• M1, M0, and M2 when the input difference of all active Sboxes in Round 1 is 0x2.

• M0, M2, and M1 when the input difference of all active Sboxes in Round 1 is 0x4.

In the end, MiniPyjamask-96 is a 32-bit linear code and the most efficient differential
characteristic can be found by searching for the propagation with the lowest Hamming
weight. Because the input size is only 32 bits, exhaustive search is feasible. As a result, we
found a 5-round propagation with weight 43, which is shown below.

00a04e67 (wt11) M1−→ a900010a (wt7) M0−→ 2040b886 (wt9) M2−→

04010c62 (wt7) M1−→ 0a3a0841 (wt9) M0−→ d22a6797

This corresponds to the differential characteristic with probability 2−2×43 = 2−86 of
Pyjamask-96. To be precise, the corresponding differential characteristic for Pyjamask-96
is given in Table 7.

We also confirmed that there is no differential propagation for 6 rounds in this strategy
whose probability is higher than 2−96 (the weight for MiniPyjamask-96 is less than 48).

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 45

Table 7: Differential characteristic for 5-round Pyjamask-96.
Round Input to Sbox Layer Input to Linear Layer Active

0 00000000 00a04e67 00000000 00a04e67 00000000 00000000 11
1 a900010a 00000000 00000000 00000000 00000000 a900010a 9
2 00000000 00000000 2040b886 00000000 2040b886 00000000 7
3 00000000 04010c62 00000000 04010c62 00000000 00000000 9
4 0a3a0841 00000000 00000000 00000000 00000000 0a3a0841 7
5 00000000 00000000 d22a6797

Regarding Pyjamask-128, the 4-bit Sbox S4 does not allow the iteration of the propa-
gation from 1-bit difference to 1-bit difference, which prevents the application of a similar
strategy. The best characteristic we found for Pyjamask-128 is shown in Table 8.

Table 8: Differential characteristic for 6-round Pyjamask-128.
Round Input to Sbox Layer Input to Linear Layer Active

0 281a088b200200020000200000080001 08100888280a088b081808092012200a 11
1 1b8983b0175328ad345a10f629c9b369 00000000031b2a090cd88bb03b99b3ff 26
2 0000000000000001180040c9000040c8 000000000000000000000000180040c9 7
3 0000000000000000000000000114a000 0114a000011480000114200000000000 5
4 e6e2431674f49dd216e2eb1900000000 c684f6152430b9cec4b29804b6c6eac3 27
5 041000c802100180060000c8061000c8 061001c800100180061001c804100148 7
6 7d31d40c9f26e70a5b4dcd134fa24e25

Table 9: Lower bounds on the number of active Sboxes in Pyjamask for one up to four
rounds.

Cipher 1 2 3 4

Pyjamask-96 1 12 19 ∈ {27, . . . , 30}
Pyjamask-128 1 12 ∈ {18, 19} ≥ 24

4.2 Linear Cryptanalysis
In order to evaluate the security against linear cryptanalysis, we use another approach
based on graph search [HV18]. We implemented Pyjamask-96 and Pyjamask-128 in order
to search for linear (and differential) trails with the cryptagraph tool provided in the
paper. One advantage of this approach is that it allows us to find many trails contributing
to the probability of a linear hull (or differential), although we expect this effect to be
small due to the weak alignment in the design of Pyjamask.

Finding trails takes a few minutes for 3 rounds (parameters –patterns 1000 –anchors
22 for linear, –patterns 5000 –anchors 21 for differential). For more rounds we could
not find any trails due to the computational and memory complexity increasing signifi-
cantly. The results of our search are summarized in Table 10. Nevertheless, this shows
that Pyjamask does not have any high probability trails and is resistant against linear
cryptanalysis.

4.3 Algebraic Analysis
In order to estimate the security of Pyjamask against algebraic attacks we first compute a
bound on the maximum algebraic degree (see Table 11) for different number of rounds
according to the degree estimate given in [BCC11].

A first third-party cryptanalysis paper analyzed Pyjamask-96 in the context of higher-
order differential distinguishers [DRS20]. First, the authors corrected the bounds for the

46 Pyjamask: Block Cipher and Authenticated Encryption

Table 10: Highest linear and differential probability of any r-round differential character-
istic found with the graph search tool for Pyjamask-96 and Pyjamask-128.

Cipher r = 1 r = 2 r = 3

Pyjamask-96 (linear) 2−2 2−24 2−44

Pyjamask-96 (diff) 2−2 2−24 2−44

Pyjamask-128 (linear) 2−2 2−24 2−44

Pyjamask-128 (diff) 2−2 2−24 2−46

Table 11: Bound on the algebraic degree of Pyjamask from 1 to 14 rounds.
Cipher 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pyjamask-96 2 4 8 16 32 64 80 88 92 94 95 95 95 95
Pyjamask-128 3 9 27 81 112 122 126 127 127 127 127 127 127 127

algebraic degrees of the round-reduced variant of Pyjamask-128: we report their values
in Table 11 and thank them for spotting this. In the same paper, the authors investigate
the resistance of the smallest internal primitive used in Pyjamask, namely Pyjamask-96,
against higher-order differential cryptanalysis. They show that, due to the small algebraic
degree of the nonlinear component, it is possible to mount a full-codebook attack that
recovers the 128-bit key of Pyjamask-96 in about 2115 calls to the cipher (with all the
296 encrypted blocks). Moreover, they show that for 13 rounds and 12 rounds, variants
of the attack require respectively 299 and 296 calls to the primitive. Finally, the authors
investigate the impact of their analysis on the actual AEAD primitive Pyjamask: due
to the data limitation imposed by the mode of operations, the attack can reach up to
6 rounds (with 241 blocks of data and a time complexity of 286 cipher calls).

4.4 Resistance against Invariant Subspace Cryptanalysis
Invariant subspace cryptanalysis is a weak-key attack. The attacker chooses the plaintext
and the key values so that the state value only takes a subspace of all the possible values.
By observing that the ciphertext is included in the subspace, the attacker can distinguish
the cipher. The simplest solution to prevent invariant subspace cryptanalysis is to avoid
simple key schedule and the round constant so that the state value can escape from the
subspace. Indeed, Pyjamask computes several linear computations during the key schedule,
which makes the invariant subspace cryptanalysis difficult. The purpose of this section is
to discuss that the adoption of the different row-wise linear computations give significant
impact on the security against the invariant subspace cryptanalysis for Pyjamask.

General Description. Let Q1, Q2, Q3 and Q4 be the subspace of state values before
AddRoundKey, before SubBytes, after SubBytes and after MixRows, respectively. The
subspace is usually defined as some affine space. In particular, we are interested in
subspaces of dimension 1 because they are the smallest non-trivial subspaces and require
the least amount of chosen plaintext to launch the attack. We denote such an affine space
by <A>⊕ V , where <A> is a linear space spanned by a vector A, i.e. {0, A}, and V is
a constant vector. Hence, Qi := <Ai>⊕ Vi. Q1 is mapped to Q2 only by the round key
addition, thus A1 = A2 must hold, moreover the round key must be in <A1>⊕ V1 ⊕ V2,
which is a weak-key class for this attack. Attacker’s task is to detect such subspaces for a
given specification of the SubBytes, MixRows, and AddRoundKey.

Structural Analysis. We suppose that it is possible to find a weak key and constant.
Then the possibility of the attack only depends on the SubBytes and the MixRows. Here

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 47

we discuss that if the matrices multiplied in MixRows are identical for all rows, it is difficult
to prevent the attack. Indeed, Pyjamask allows an attack if the matrix is the same for all
rows. From a different viewpoint, Pyjamask avoids the invariant subspace cryptanalysis
by adopting different matrcies in the MixRows even by assuming the ideal control of the
round key and the constant.

We explain the case of Pyjamask-96. Suppose that the S-box output value is in the
subspace <A3> ⊕ V3. Note that any set of two values {u1, u2} can be described as the
form of <A3>⊕ V3. Indeed, {u1, u2} = {0, u1 ⊕ u2} ⊕ u1, hence <u1 ⊕ u2>⊕ u1. (It can
also be described as <u1 ⊕ u2>⊕ u2. In this analysis, the choice of the constant does not
have a big impact.) Suppose that the output value is in this subspace for all the S-boxes.
The 96-bit state can be described as (<A3> ⊕ V3)32. We then consider how this state
is transformed by the MixRows, i.e. we analyze the structure of MixRows(<A3>⊕ V3)32.
Due to the linearity, we divide it into two terms: MixRows((<A3>)32)⊕ MixRows((V3)32).
(V3)32 is a constant. Let v2

3v
1
3v

0
3 be the bit representation of V3. Then, (V3)32 looks asv0

3v
0
3v

0
3v

0
3v

0
3v

0
3v

0
3v

0
3v

0
3 · · · v0

3
v1

3v
1
3v

1
3v

1
3v

1
3v

1
3v

1
3v

1
3v

1
3 · · · v1

3
v2

3v
2
3v

2
3v

2
3v

2
3v

2
3v

2
3v

2
3v

2
3 · · · v2

3

 .

During MixRows, we multiply the matrices Mi to row i, in which Mi is a 32× 32 circulant
matrices of the binary vector whose Hamming weight is an odd number. It is easy to see that
the multiplication in each row does not change the value, thus MixRows((V3)32) = (V3)32,
or the constant term is invariant for MixRows. Regarding the linear space, let a2a1a0 be
the bitwise representation of the base vector A. We consider that each S-box output is
uniformly distributed in (<A3>⊕ V3)32. Then, (<A3>)32 looks as follows.s0s0s0s0s0s0s0s0s0 · · · s0

s1s1s1s1s1s1s1s1s1 · · · s1

s2s2s2s2s2s2s2s2s2 · · · s2

 ,

where si = 0 when ai = 0 and si is uniformly distributed in {0, 1} when ai = 1. (We have
an abuse of the notation. Each si is chosen independently when ai = 1.) We now consider
the matrix multiplication. For the rows with si = 0, the result of the multiplication is 0,
thus the row is invariant. For the rows with si uniformly distributed in {0, 1}, the row
covers all possible 232 values. Because the multiplication by Mi is bijective, the output
space covers all possible 232 values. Hence the row is invariant. Therefore, when only 1
bit of a2a1a0 is 1, the subspace (<A3>⊕ V3)32 is invariant for the MixRows of Pyjamask.
When more than 1 bits of a2a1a0 are 1, we need to consider the behaviors of multiple rows.
As long as Mi is identical in all rows, the subspace is invariant. However if Mi is different
for each i like Pyjamask, linear subspaces will be different and the attack would not work.

Example. Let us define Q3 := {2, 4}, which is <6>⊕ 2, hence a2a1a0 = 110
and v2v1v0 = 010. The 96-bit state value before the MixRows looks as000000000 · · · 0

110100010 · · · 1
001011101 · · · 0

 .

We separate the linear space and the constant vector, and apply the MixRows;

MixRows

000000000 · · · 0
001011101 · · · 0
001011101 · · · 0

⊕ MixRows

000000000 · · · 0
111111111 · · · 1
000000000 · · · 0

 .

48 Pyjamask: Block Cipher and Authenticated Encryption

The value after the MixRows is 000000000 · · · 0
l0l1l2l3l4l5l6l7l8l9 · · · l31
l0l1l2l3l4l5l6l7l8l9 · · · l31

⊕
000000000 · · · 0

111111111 · · · 1
000000000 · · · 0

 .

li and li are dependent on the matrices. If the same matrix is used in all the
rows, li = li holds hence the subspace <6>⊕2 is invariant. If different matrices
are used, the column value does no longer stay in <6>.
It is easy to see that if the weight of a2a1a0 is 1, namely A3 is either 1, 2 or 4,
the subspace is invariant even with different choices of Mi.

In order to construct the invariant subspace for the whole cipher, the property of the S-
box that maps <A>⊕V to <A′>⊕V ′ needs to be found. Moreover, to be iterative for each
round, we further need the condition A = A′. The S-box applications to two values, from
{u1, u2} to {S(u1), S(u2)}, is a mapping from <u1⊕u2>⊕u1 to <S(u1)⊕S(u2)>⊕S(u1).
The exhaustive list of such a propagation is given in Table 12.

Table 12: Output subspace of S3 for the input <A>⊕ V .
A\V 0 1 2 3 4 5 6 7

1 <2>⊕ 1 <2>⊕ 1 <3>⊕ 5 <3>⊕ 5 <6>⊕ 2 <6>⊕ 2 <7>⊕ 0 <7>⊕ 0
2 <7>⊕ 1 <6>⊕ 3 <7>⊕ 1 <6>⊕ 3 <5>⊕ 2 <4>⊕ 0 <5>⊕ 2 <4>⊕ 0
3 <4>⊕ 1 <5>⊕ 3 <5>⊕ 3 <4>⊕ 1 <2>⊕ 0 <3>⊕ 4 <3>⊕ 4 <2>⊕ 0
4 <3>⊕ 1 <7>⊕ 3 <1>⊕ 6 <5>⊕ 0 <3>⊕ 1 <7>⊕ 3 <1>⊕ 6 <5>⊕ 0
5 <5>⊕ 1 <1>⊕ 2 <6>⊕ 0 <2>⊕ 5 <1>⊕ 2 <5>⊕ 1 <2>⊕ 5 <6>⊕ 0
6 <6>⊕ 1 <3>⊕ 0 <4>⊕ 2 <1>⊕ 4 <4>⊕ 2 <1>⊕ 4 <6>⊕ 1 <3>⊕ 0
7 <1>⊕ 0 <4>⊕ 3 <2>⊕ 4 <7>⊕ 2 <7>⊕ 2 <2>⊕ 4 <4>⊕ 3 <1>⊕ 0

From Table 12, there are 6 patterns satisfying A = A′.

<3>⊕ 5→ <3>⊕ 4, <3>⊕ 6→ <3>⊕ 4, <5>⊕ 0→ <5>⊕ 1,

<5>⊕ 5→ <5>⊕ 1, <7>⊕ 3→ <7>⊕ 2, <7>⊕ 4→ <7>⊕ 2.

Recall that when the Hamming weight of A = A′ is 1, then the subspace is invariant
even with different matrices for each row during MixRows. As shown above, the Hamming
weight of A is more than 1 for all the 6 patterns. Hence, the use of different matrices
during MixRows helps to resist the invariant subspace cryptanalysis under the full control
of the round key and the constant by the attacker.

Note that the actual round key and the constant is not controlled by the attacker. In
fact, the key schedule of Pyjamask seems hard to control. By applying the same argument,
Pyjamask-128 also resists the invariant subspace cryptanalysis.

5 Implementation
This section focuses on the implementation aspects of Pyjamask. We describe efficient
implementations in software based on a bitslice strategy and in the presence of masking.
We also provide implementation results on a Cortex-M4 processor and compare the masking
performance of Pyjamask to AES-128. We finally give some estimations of the performances
in hardware which show that, although optimized for (masked) software implementation,
Pyjamask is still fairly lightweight in hardware.

5.1 Bitslice Implementation
Bitslice is an general implementation strategy initially imagined for 3-WAY [DGV93], and
later used for DES and named bitslice by Biham in [Bih97]. It consists in performing several

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 49

parallel evaluations of a Boolean circuit in software where the logic gates are replaced
by instructions working on registers of several bits. More precisely, each software bitwise
instruction corresponds to the simultaneous execution of ` Boolean logical gates, where ` is
the register size on the target architecture. This strategy was originally applied to compute
` parallel evaluations of a full block cipher when several blocks must be processed and
when parallelism is possible [Bih97]. It can also be applied to speed-up the encryption of a
single block with parallel evaluations of the Sboxes [GLSV15]. For standard block ciphers
made of SBoxes and linear operations, this implies that the only nonlinear operations in
the parallel Sbox processing (and hence in the full cipher) are bitwise AND (or, NAND,
OR, NOR) instructions between `-bit registers which is particularly well suited for the
efficient application of high-order masking [GR17].

Similarly to 3-WAY [DGV93], BASEKING [Dae95] or NOEKEON [DPAR00] and LS-designs [GLSV15],
Pyjamask is especially tailored for bitslice implementation with a parallel computation of
the Sboxes on architectures of size ` = 32. In a bitslice implementation of Pyjamask, each
row of the state is stored in a 32-bit register (three registers for Pyjamask-96 and four
registers for Pyjamask-128). The key state is equally stored row-wise, which makes the
key addition very simple (3 or 4 32-XOR).

The Sboxes enjoy simple Boolean representations, which makes their bitslice implemen-
tation very efficient. Let Ri denotes the ith row register, with i ∈ {0, 1, 2} for Pyjamask-96
and i ∈ {0, 1, 2, 3} for Pyjamask-128. Let ⊕ and ∧ respectively denote the 32-XOR and
32-AND instructions. The Sbox layer can be implemented as follows:

SubBytes (Pyjamask-96):
1: R0 ← R0 ⊕R1
2: R1 ← R1 ⊕R2
3: R2 ← R2 ⊕ (R0 ∧R1)
4: R0 ← R0 ⊕ (R1 ∧R2)
5: R1 ← R1 ⊕ (R0 ∧R2)
6: R2 ← R2 ⊕R0
7: R0 ← R0 ⊕R1
8: R2 ← not(R2)
9: swap(R0, R1)

SubBytes (Pyjamask-128):
1: R0 ← R0 ⊕R3
2: R3 ← R3 ⊕ (R0 ∧R1)
3: R0 ← R0 ⊕ (R1 ∧R2)
4: R1 ← R1 ⊕ (R2 ∧R3)
5: R2 ← R2 ⊕ (R0 ∧R3)
6: R2 ← R2 ⊕R1
7: R1 ← R1 ⊕R0
8: R3 ← not(R3)
9: swap(R2, R3)

The binary matrix multiplication can be efficiently implemented thanks to the circulant
property of the matrix. Let R denote an input row register, let M denote a circulant
binary matrix and let C denote the leftmost column of M . By the circulant property, the
product M ·R satisfies

M ·R =
(
R[0] · (C ≫ 0)

)
⊕
(
R[1] · (C ≫ 1)

)
⊕ · · · ⊕

(
R[31] · (C ≫ 31)

)
where ≫ denotes the right rotation operator and R[i] denotes the ith (leftmost) bit of R.
In the above equation, R[i] · (C ≫ i) stands for the scalar product of the 32-bit vector
(C ≫ i) by the bit R[i]. The binary matrix multiplication can hence be implemented in
32 steps which

• extract the ith bit of R and spread it to 32 bits to get a mask msk:

msk =
{
0x00000000 if R[i] = 0
0xffffffff if R[i] = 1

• update an accumulator acc:

acc = acc⊕ (msk ∧ (C ≫ i)) .

50 Pyjamask: Block Cipher and Authenticated Encryption

In C, the computation of msk can be done as msk = 0 − R[i]. In ARM v7, it comes for
free thanks to the arithmetic shift right (ASR), which can be applied to an instruction
operand. A slightly faster implementation could be obtained by the use of look-up tables.
We purposely avoided such an implementation strategy for the sake of security against
cache timing attacks.

5.2 Masked Implementation

In the following, we assume that a source of randomness is available to the masked
implementation, such as a physical true random number generator. When queried, the
source of randomness output fresh random bits, i.e., unpredictable random bits which are
statistically independent of the previously generated bits.

In a masked implementation of Pyjamask, the state is split into d shares state[0], . . . ,
state[d− 1]. This number of shares d is called the masking order of the implementation
in the following. All along the computation, the shares are processed in such a way that
the following relation is always satisfied:

state[0]⊕ state[1]⊕ · · · ⊕ state[d− 1] = state .

At the beginning of the computation, d− 1 of the shares are filled with fresh randomness
and the last one is computed according to the above equation. The same applies to the
key state, which yields shared round keys roundkey[i][j], where i ∈ [0, 14] is the round
index and j ∈ [0, d− 1] is the share index.

The linear operations are applied share-wisely. Namely, the MixRows operation is
performed as

for j = 0 to d− 1 do: state[j]← MixRows(state[j]) .

The AddRoundKey operation (for the ith round key) is performed as

for j = 0 to d− 1 do: state[j]← AddRoundKey(state[j], roundkey[i][j]) .

Being fully linear, the key schedule can also be applied share-wisely. Let us denote key[0],
. . . , key[d− 1], the shares of the secret key. The key schedule is initially performed as

for j = 0 to d− 1 do: roundkey[0 : 14][j]← KeySchedule(key[j]) .

Note that in order to keep the consistency, the constant addition is applied in the key
schedule for a single share, let’s say for i = 0, and it is skipped for the other shares.

The Sbox layer is computed according to the circuits described above where each
32-XOR operation is replaced by d share-wise 32-XOR operations and where the 32-AND
are performed using a secure masked multiplication scheme. Specifically, we use an ISW
multiply and accumulate (MACC), which computes the following operation

C ← C ⊕ (A ∧B) , (1)

on the shares of A, B and C. From the input shares (A1, . . . , Ad), (B1, . . . , Bd), and
(C1, . . . , Cd). The ISW MACC operation is simply obtained from the standard ISW AND
operation [ISW03] in which the output shares Ci are not initialized to 0 but seen as a
third input. Specifically, the ISW MACC proceeds as follows:

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 51

ISW MACC:
1: for i = 1 to d do
2: Ci ← Ci ⊕ (Ai ∧Bi)
3: for j = i+ 1 to d do
4: R← $
5: Ci ← Ci ⊕R
6: Cj ← Cj ⊕ ((Ai ∧Bj)⊕R)
7: Cj ← Cj ⊕ (Aj ∧Bi)
8: end for
9: end for

In the above pseudocode, R ← $ denotes the sampling of a random 32-bit value,
through a (physical true, or pseudo) random number generator. It can be checked that
the output shares satisfy⊕d

j=1
C

(out)
j =

⊕d

j=1
C

(in)
j ⊕

(⊕d

j=1
Aj

)
∧
(⊕d

j=1
Bj

)
= C ⊕ (A ∧B) .

For high-order masking, where d is up to several dozens, the ISW MACC is the most
time-consuming operation of the masked implementation of Pyjamask since it requires
O(d2) elementary operations against O(d) for the linear parts. This is hence the operation
to be primarily optimized. In practice, an implementation of the ISW MACC is composed
of logical instructions as well as memory accesses to read and write the input shares and
the intermediate results. While the number of logical operations {⊕,∧} and the number of
RNG invocations are fully determined by the masking order d, an efficient implementation
should try to optimize the memory accesses and the loop management.

Cortex-M4 implementations. Our benchmark implementations target ARM (v7) ar-
chitectures and have been benchmarked on a Cortex-M4 processor. The binary matrix
multiplication and ISW MACC routines have been written and optimized at the assembly
level. Using the implementation strategy described above, we get a binary matrix multipli-
cation with a total of 32× 3 CPU instructions. For the ISW MACC, we have developed
two variants. In the basic setting (variant v1) the shares Ai, Bi, Ci are kept in CPU
registers during the whole iteration i. The shares Aj , Bj , Cj are read (from memory) and
the share Cj is written (in memory) at each iteration j. Three pointers are used for the
three sharings. Given the loop indexes and the RNG address, this ISW MACC routine
makes full usage of the CPU registers. In the speed-optimized setting (variant v2) the
iteration of the main loop are processed by pairs (i, i+ 1). The shares Ai, Bi, Ci, Ai+1,
Bi+1, Ci+1 are kept in CPU registers during the whole pair of iterations (i, i+ 1). This is
made possible by only keeping the address of the state and by hardcoding the mapping
between the indexes of the state rows and the operands A, B and C. We hence need one
instance of the ISW MACC per MACC instruction in the Sbox (i.e. 3 for Pyjamask-96
and 4 for Pyjamask-128). This variant (v2) is hence faster but slightly heavier in code
size.

Source Code. The software source code of Pyjamask block cipher is available at:

https://github.com/pyjamask-cipher

5.3 Implementation Results
Our implementation have been benchmarked on an STM32F4 Discovery board. This
board embeds an ARM Cortex-M4 processor, which can be clocked up to 168 MHz, and
multiple peripherals among which a hardware Random Number Generator (RNG). The

https://github.com/pyjamask-cipher

52 Pyjamask: Block Cipher and Authenticated Encryption

RNG comprises a hardware status register indicating when a new 32-bit word of fresh
randomness is available, which occurs every 65 clock cycles (duration of the entropy pooling
phase). When fresh randomness is available, it can be accessed through a load instruction
in a single clock cycle. We have benchmarked our implementation with the two following
RNG modes.

– Pooling mode: The RNG routine checks the availability of fresh randomness before
reading the RNG output register. This takes a few clock cycles for testing, possibly
waiting up to 65 clock cycles (depending on the last read), plus a few clock cycles
for reading and managing the routine call. This mode is typically what one should
do on the considered STM32F4 board.

– Fast mode: The RNG routine simply reads the RNG output register (without
wondering whether fresh randomness is ready). This mode simulates a context in
which the target architecture has a fast hardware RNG with a pooling phase taking
a small number of clock cycles (so that fresh randomness is always ready when the
RNG is read).

Table 13 summarizes the obtained performances for the two implementation variants
(v1 / v2), the two RNG modes (pooling / fast), and for a masking order d scaling from
4 to 128. These results have been obtained using the -Ofast compilation option (which
optimizes the timings). In all the scenarios, the performances of encryption and decryption
are similar. We observe in particular that for a masking order d = 128 our implementations
of Pyjamask-96 and Pyjamask-128 run in 6.3 and 8.1 megacycles in fast RNG mode,
which makes 38 and 48.5 milliseconds assuming a 168 MHz clock. In pooling RNG mode
this increases to 28.5 and 37.9 megacycles (which makes 170 and 225.5 milliseconds with a
168 MHz clock).

We note that the code size slightly increases with the masking order up to d = 16 and
then drops by a factor 2. This is presumably due to the fact that the compiler unrolls the
loops in the C code up to a certain number of iterations.

5.4 Comparison
Implementation Results. Up to our knowledge, only a few papers in the literature
provide implementation results for masking of high orders (e.g., d > 4). In [WVGX15],
Wang et al. describe an efficient implementation of AES in ARM NEON (typically on
a Cortex-A8 processor) for a masking order up to d = 8. Their implementation takes
advantage of the NEON 128-bit vector instructions, which makes it hard to compare to
our implementations.

In [GR17], Goudarzi and Rivain presents several low-level optimization of various
masking schemes on ARM v7 architectures. In particular, they benchmark efficient
bitslice implementations of AES and PRESENT for a masking order up to d = 11. We have
benchmarked their bitslice AES implementation on the STM32F4 board. The results are
given in Table 14 and compared to our implementations of Pyjamask-128. We note that
the AES implementation of [GR17] takes an expanded masked key as input and does not
perform the AES key schedule. We see that compared to this optimized implementation,
our implementation of Pyjamask-128 (v2) is between 3 and 4 times faster at high orders.

Finally, Journault and Standaert report efficient masked bitslice implementations of
AES and Fantomas in [JS17] at the order d = 32. They give performance results for a
Cortex-M4 processor embedded on a SAM4C-EK evaluation board. On this board the
pooling phase of the RNG takes 80 clock cycles, which is slightly slower than on the
STM32F4 board but the results are still comparable. Their AES implementation runs in
9.7 megacycles and their Fantomas implementation in 4.1 megacycles. In comparison, our

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 53

Table 13: Performance benchmark on ARM Cortex-M4.

Variant TRNG d = 4 d = 8 d = 16 d = 32 d = 64 d = 128

Timings (kilocycles)

v1 pooling 59 178 606 2213 8173 30772
Pyjamask-96 v1 fast 41 95 249 736 2419 8253

v2 pooling 55 165 556 2018 7397 28518
v2 fast 38 86 215 604 1898 6341

v1 pooling 74 230 792 2918 10807 40890
Pyjamask-128 v1 fast 51 119 316 948 3145 10858

v2 pooling 69 213 726 2657 9785 37901
v2 fast 47 106 267 758 2398 8102

RAM (kilobytes)

Pyjamask-96 v1/v2 - 1.2 2.2 4.1 8.2 16.2 32.3

Pyjamask-128 v1/v2 - 1.2 2.2 4.2 8.3 16.6 32.9

Code size (bytes)

Pyjamask-96 v1 - 3712 5296 5320 2892 2896 2920
v2 - 5340 6922 6952 4524 4528 4552

Pyjamask-128 v1 - 4070 5776 5686 3158 3198 3198
v2 - 5696 7418 7306 4778 4818 4818

Pj-96 + Pj-128 v1 - 6652 9940 9872 4920 4964 4988
v2 - 8232 11516 11452 6504 6548 6572

Table 14: Performance comparison on ARM Cortex-M4.

Variant TRNG d = 4 d = 8 d = 16 d = 32 d = 64 d = 128

Timings (kilocycles)

AES-128 [GR17] - pooling 153 547 2072 8073 30572 121430
- fast 86 237 746 2592 9597 36882

v1 pooling 74 230 792 2918 10807 40890
Pyjamask-128 v1 fast 51 119 316 948 3145 10858

v2 pooling 69 213 726 2657 9785 37901
v2 fast 47 106 267 758 2398 8102

RAM (kilobytes)

AES-128 [GR17] - - 2.4 4.8 9.6 19.2 38.4 76.8

Pyjamask-128 v1/v2 - 1.2 2.2 4.2 8.3 16.6 32.9

Code size (bytes)

AES-128 [GR17] - - 7532 7532 7532 7532 7532 7532

Pyjamask-128 v1 - 4070 5776 5686 3158 3198 3198
v2 - 5696 7418 7306 4778 4818 4818

implementations of Pyjamask-128 at order d = 32 run in 2.9 megacycles (v1) and 2.6
megacycles (v2) in pooling RNG mode.

High-Level Comparison. We provide hereafter a more general comparison of the Pyjamask
design to the state of the art. As explained in Section 3, the prime efficiency parameter for
a masked bitslice implementation at high orders on a `-bit architecture is the number `-AND.
We therefore report in Table 15 the counts of 32-AND and 64-AND for several 96-bit and

54 Pyjamask: Block Cipher and Authenticated Encryption

128-bit ciphers. For Pyjamask-96, the Sbox is composed of 3 multiplications. This implies
that we can compute the full Sbox layer with three 32-AND. For Pyjamask-128, the Sbox is
composed of 4 multiplications that can be computed as 2 pairs of parallel multiplications.
This implies that we can compute the full Sbox layer with four 32-AND or with two 64-AND.
For completeness we also report the total count of Boolean AND operations. Note that we
ignore the AND operations in the key schedule.

First bitslice oriented block ciphers, such as 96-bit 3-WAY [DGV93] or its 192-bit variant
BASEKING [Dae95], already provided a very small number of AND gates count. In fact,
our proposal Pyjamask-96 is very similar to 3-WAY and its three 32-bit word general
structure. We note however that due to the absence of an actual key schedule, 3-WAY is
very vulnerable to related-key cryptanalysis: it was shown [KSW97] that it could be broken
with only a single related key query and about 222 chosen plaintexts. This attack also
applies to BASEKING. In the case of Pyjamask, we decided to avoid or at least complicate
such practical attacks by using a relatively simple key schedule, with little impact on
performances. While the question on the relevance in practice of related-key attacks
remains open, such related-key differential paths could have devastating effects if the
cipher were to be used in some block-cipher based compression function. We believe this
robustness for a very small performance cost is a good trade-off.

Table 15: Comparison of the bitwise multiplicative complexity of several ciphers.

key size # rounds # AND # 32-AND # 64-AND

96-bit block ciphers

SIMON-96/96 [BSS+17] 96 52 4992 104∗ 52∗

SIMON-96/144 [BSS+17] 144 54 5184 108∗ 54∗

3-WAY [DGV93] 96 11 1056 33 33∗

Pyjamask-96 128 14 1344 42 42∗

128-bit block ciphers

LowMC-128 (m = 3) [ARS+15] 128 88 792 88∗ 88∗

AES-128 [GR17] 128 10 5120 160 100∗

SIMON-128/128 [BSS+17] 128 68 4352 136 68
NOEKEON [DPAR00] 128 16 2048 64 32
Robin [GLSV15] 128 16 3072 96 96∗

Fantomas [GLSV15] 128 12 2304 72 72∗

Mysterion-128 [JSV17] 128 12 1536 48 24
Pyjamask-128 128 14 1792 56 28
∗ Does not achieve full parallelization (i.e. some registers are not full with data).

5.5 Hardware Implementation
We provide hereafter some estimation for an encryption-only round-based implementations
of Pyjamask-128 on ASIC using UMC 180 technology.

In order to minimize the number of rounds needed and thus the amount of non-linear
operations, Pyjamask uses an important amount of binary XOR operations. As XOR
gates are not so cheap (2.67 GE1 on UMC 180 for example using MAOI1 gates, compared
with 1 GE of a NAND gate), this will have a negative impact on the area of ASIC
implementations.

Memory Size. For an internal state of 128 bits and a 128-bit key, 256 bits need to stored,
which amounts to about 256 · 4.67 = 1195 GE.

1A Gate Equivalent (GE) is the area of the smallest 2-input NAND gate in the cell library under
consideration

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 55

Sbox. In Pyjamask-128, there are 32 Sboxes of 4 bits, and each can be implemented with
4 AND gates and 7 XOR/XNOR gates. This amounts to about 32× (4 · 1.33 + 7 · 2.67) =
768 GE.

Binary Matrices. The cipher relies on five matrices of dimension 32 over F2: four to
update the internal state, and one for the key update. Using Paar’s algorithm [Paa97], we
have evaluated that the matrices M0, M1, M2, M3 and MK can be implemented using
175, 144, 199, 144 and 200 XOR gates respectively (maybe less if better implementations
are found using more advanced algorithms). This amounts to (175 + 144 + 199 + 144 +
200) · 2.67 = 2302 GE for encryption only. Since our operating mode requires inverse
operation of the matrices for the decryption process, we evaluated again with Paar’s
algorithm that the matrices M0, M1, M2, M3 and MK can be implemented using 344,
345, 346, 347 and 345 XOR gates respectively with their inverses. This amounts to
(344 + 345 + 346 + 347 + 345) · 2.67 = 4611 GE for encryption and decryption.

Column Diffusion of Key Schedule. The key scheduling operation also relies on 32
binary matrices of dimension 4, and each can be implemented with only 6 XORs. This
amounts to about 32× (6 · 2.67) = 512 GE.

Key Addition. To XOR the subkey into the state, 128 XOR gates with two inputs are
requires. This amounts to about 128× 2.67 = 342 GE.

Constant Addition. The XOR of round constant is negligible, only a dozen 1 bits have
to be XORed.

Control Logic. Extra logic to control the execution flow is hard to predict, but for
lightweight ciphers it usually contributes to a small percentage of the total area. Moreover,
Pyjamask has a very regular structure that should reduce the significance of that part
in the whole implementation size. Therefore, we will not count the control logic in our
estimation.

In total, we estimate that a Pyjamask-128 round-based implementation (encryption
only) should require about 5200 GE (and 14 cycles), which remains much better than an
AES round-based implementation [SMTM01]. With both encryption and decryption one
would require about 7500 GE. We emphasize that this is only a very rough estimation.

A possible better trade-off than this basic round-based implementation would be to rely
on the circulant structure on the diffusion matrices and to compute them in a circulant way:
this would allow a important reduction of the implementation size at the expense of using
more cycles. We note that other performance improvements could probably be considered:
for instance, better implementations of the matrices (requiring less XOR gates), use of
more complex gates such as XOR3 that compute the XOR of three values (one XOR3 gate
is generally cheaper than two XOR2 gates), etc.

Acknowledgements
The authors would like to thank the anonymous referees for their very valuable and
constructive comments. We are especially gratefull to Joan Daemen for his thorough
reviews and comments. We are also grateful to Quan Quan Tan for providing an easy-to-use
implementation of Paar’s algorithm. This work was partially supported by the French
FUI-AAP25 VeriSiCC project.

56 Pyjamask: Block Cipher and Authenticated Encryption

References
[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking

the TLS and DTLS record protocols. In 2013 IEEE Symposium on Security
and Privacy, pages 526–540, Berkeley, CA, USA, May 19–22, 2013. IEEE
Computer Society Press.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part I,
volume 9056 of Lecture Notes in Computer Science, pages 430–454, Sofia,
Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors, Ad-
vances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume
9453 of Lecture Notes in Computer Science, pages 411–436. Springer, 2015.

[BCC11] Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-order
differential properties of keccak and Luffa. In FSE, volume 6733 of Lecture
Notes in Computer Science, pages 252–269. Springer, 2011.

[BDPA06] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Ra-
dioGatún, a belt-and-mill hash function. IACR Cryptology ePrint Archive,
2006:369, 2006.

[Bih97] Eli Biham. A fast new DES implementation in software. In Eli Biham,
editor, Fast Software Encryption – FSE’97, volume 1267 of Lecture Notes in
Computer Science, pages 260–272, Haifa, Israel, January 20–22, 1997. Springer,
Heidelberg, Germany.

[Bro98] Andries E. Brouwer. Bounds on the size of linear codes. In Vera S. Pless
and W.Cary Huffman, editors, Handbook of Coding Theory, chapter 4, pages
295–461. Elsevier, Amsterdam, 1998.

[BSS+17] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. Notes on the design and analysis of SIMON
and SPECK. Cryptology ePrint Archive, Report 2017/560, 2017. https:
//eprint.iacr.org/2017/560.

[CAE] Caesar: Competition for authenticated encryption: Security, applicability, and
robustness. https://competitions.cr.yp.to/caesar.html.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, 1999.

[Dae95] Joan Daemen. Cipher and hash function design strategies based on linear and
differential cryptanalysis. PhD thesis, 1995.

https://eprint.iacr.org/2017/560
https://eprint.iacr.org/2017/560
https://competitions.cr.yp.to/caesar.html

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 57

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 -
33rd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
volume 8441 of Lecture Notes in Computer Science, pages 423–440. Springer,
2014.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand,
Gregor Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta:
A cipher with low ANDdepth and few ANDs per bit. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part I, volume 10991 of Lecture Notes in Computer Science, pages 662–692,
Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Submission to the CAESAR competition: http://competitions.
cr.yp.to/round3/asconv12.pdf, 2016.

[DGV93] Joan Daemen, René Govaerts, and Joos Vandewalle. A New Approach to
Block Cipher Design. In Ross J. Anderson, editor, Fast Software Encryp-
tion, Cambridge Security Workshop, Cambridge, UK, December 9-11, 1993,
Proceedings, volume 809 of Lecture Notes in Computer Science, pages 18–32.
Springer, 1993.

[DHAK18] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The
design of Xoodoo and Xoofff. IACR Trans. Symmetric Cryptol., 2018(4):1–38,
2018.

[DL18] Sébastien Duval and Gaëtan Leurent. Mds matrices with lightweight circuits.
IACR Transactions on Symmetric Cryptology, 2018(2):48–78, Jun. 2018.

[DPAR00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen.
Nessie Proposal: the Block Cipher Noekeon. Nessie submission, 2000. http:
//gro.noekeon.org/.

[DRS20] Christoph Dobraunig, Yann Rotella, and Yanne Schoone. Algebraic and
higher-order differential cryptanalysis of pyjamask-96. IACR Transactions on
Symmetric Cryptology, 2020(1), 2020.

[GGNS13] Benoît Gérard, Vincent Grosso, María Naya-Plasencia, and François-Xavier
Standaert. Block ciphers that are easier to mask: How far can we go? In
Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware
and Embedded Systems – CHES 2013, volume 8086 of Lecture Notes in Com-
puter Science, pages 383–399, Santa Barbara, CA, USA, August 20–23, 2013.
Springer, Heidelberg, Germany.

[GJRS18] Dahmun Goudarzi, Anthony Journault, Matthieu Rivain, and François-Xavier
Standaert. Secure multiplication for bitslice higher-order masking: Optimisa-
tion and comparison. In Junfeng Fan and Benedikt Gierlichs, editors, COSADE
2018: 9th International Workshop on Constructive Side-Channel Analysis and
Secure Design, volume 10815 of Lecture Notes in Computer Science, pages
3–22, Singapore, April 23–24, 2018. Springer, Heidelberg, Germany.

[GLSV15] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici.
LS-designs: Bitslice encryption for efficient masked software implementations.

http://competitions.cr.yp.to/round3/asconv12.pdf
http://competitions.cr.yp.to/round3/asconv12.pdf
http://gro.noekeon.org/
http://gro.noekeon.org/

58 Pyjamask: Block Cipher and Authenticated Encryption

In Carlos Cid and Christian Rechberger, editors, Fast Software Encryption –
FSE 2014, volume 8540 of Lecture Notes in Computer Science, pages 18–37,
London, UK, March 3–5, 2015. Springer, Heidelberg, Germany.

[GR16] Dahmun Goudarzi and Matthieu Rivain. On the multiplicative complexity of
Boolean functions and bitsliced higher-order masking. In Benedikt Gierlichs
and Axel Y. Poschmann, editors, Cryptographic Hardware and Embedded
Systems – CHES 2016, volume 9813 of Lecture Notes in Computer Science,
pages 457–478, Santa Barbara, CA, USA, August 17–19, 2016. Springer,
Heidelberg, Germany.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking
be in software? In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology – EUROCRYPT 2017, Part I, volume 10210 of Lecture
Notes in Computer Science, pages 567–597, Paris, France, April 30 – May 4,
2017. Springer, Heidelberg, Germany.

[Gra07] Markus Grassl. Bounds on the minimum distance of linear codes and quantum
codes. Online available at http://www.codetables.de, 2007. Accessed on
2019-02-19.

[HV18] Mathias Hall-Andersen and Philip S. Vejre. Generating graphs packed with
paths estimation of linear approximations and differentials. IACR Trans.
Symmetric Cryptol., 2018(3):265–289, 2018.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, Advances in Cryptology
– CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages
463–481, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg,
Germany.

[JPST17] Jérémy Jean, Thomas Peyrin, Siang Sim, and Jade Tourteaux. Optimiz-
ing implementations of lightweight building blocks. IACR Transactions on
Symmetric Cryptology, 2017(4):130–168, Dec. 2017.

[JS17] Anthony Journault and François-Xavier Standaert. Very high order masking:
Efficient implementation and security evaluation. In Wieland Fischer and
Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems –
CHES 2017, volume 10529 of Lecture Notes in Computer Science, pages 623–
643, Taipei, Taiwan, September 25–28, 2017. Springer, Heidelberg, Germany.

[JSV17] Anthony Journault, François-Xavier Standaert, and Kerem Varici. Improving
the security and efficiency of block ciphers based on ls-designs. Des. Codes
Cryptography, 82(1-2):495–509, 2017.

[KLSW17] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer. Shorter
linear straight-line programs for mds matrices. IACR Transactions on Sym-
metric Cryptology, 2017(4):188–211, Dec. 2017.

[KR11] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In Fast Software Encryption - 18th International Workshop,
FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected Papers,
pages 306–327, 2011.

[KR14] Ted Krovetz and Phillip Rogaway. The OCB authenticated-encryption algo-
rithm. RFC, 7253:1–19, 2014.

http://www.codetables.de

D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim 59

[Kra01] Hugo Krawczyk. The order of encryption and authentication for protecting
communications (or: How secure is SSL?). In Joe Kilian, editor, Advances in
Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Sci-
ence, pages 310–331, Santa Barbara, CA, USA, August 19–23, 2001. Springer,
Heidelberg, Germany.

[KSW97] John Kelsey, Bruce Schneier, and David A. Wagner. Related-key cryptanal-
ysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In
Yongfei Han, Tatsuaki Okamoto, and Sihan Qing, editors, Information and
Communication Security, First International Conference, ICICS’97, Beijing,
China, November 11-14, 1997, Proceedings, volume 1334 of Lecture Notes in
Computer Science, pages 233–246. Springer, 1997.

[Paa97] Christof Paar. Optimized arithmetic for Reed-Solomon encoders. In Pro-
ceedings of IEEE International Symposium on Information Theory, page 250.
IEEE, 1997.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes in
Computer Science, pages 142–159, Athens, Greece, May 26–30, 2013. Springer,
Heidelberg, Germany.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijay-
alakshmi Atluri, editor, ACM CCS 2002: 9th Conference on Computer and
Communications Security, pages 98–107, Washington, DC, USA, November 18–
22, 2002. ACM Press.

[Ser98] Gadiel Seroussi. Table of low-weight binary irreducible polynomials. In HP
Labs Technical Reports, pages 98–135, 1998.

[SMTM01] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A Compact
Rijndael Hardware Architecture with S-Box Optimization. In Colin Boyd,
editor, Advances in Cryptology - ASIACRYPT 2001, 7th International Confer-
ence on the Theory and Application of Cryptology and Information Security,
Gold Coast, Australia, December 9-13, 2001, Proceedings, volume 2248 of
Lecture Notes in Computer Science, pages 239–254. Springer, 2001.

[Ste] Stefan Kölbl. CryptoSMT: An easy to use tool for cryptanalysis of symmetric
primitives. https://github.com/kste/cryptosmt.

[WVGX15] Junwei Wang, Praveen Kumar Vadnala, Johann Großschädl, and Qiuliang
Xu. Higher-order masking in practice: A vector implementation of masked
AES for ARM NEON. In Kaisa Nyberg, editor, Topics in Cryptology – CT-
RSA 2015, volume 9048 of Lecture Notes in Computer Science, pages 181–198,
San Francisco, CA, USA, April 20–24, 2015. Springer, Heidelberg, Germany.

https://github.com/kste/cryptosmt

	Introduction
	Specifications
	The Pyjamask Block Cipher Family
	The Pyjamask AEAD Algorithms

	Design Rationale
	Main Design Criteria
	Choice of the Sboxes
	Choice of the Diffusion Matrices
	Choice of the Key Schedule
	Parameters for the 96-bit Version of the OCB Mode

	Security Analysis
	Differential Analysis
	Linear Cryptanalysis
	Algebraic Analysis
	Resistance against Invariant Subspace Cryptanalysis

	Implementation
	Bitslice Implementation
	Masked Implementation
	Implementation Results
	Comparison
	Hardware Implementation

