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Abstract. We revisit the security of various generalized Feistel networks. Concretely,
for unbalanced, alternating, type-1, type-2, and type-3 Feistel networks built from
random functions, we substantially improve the coupling analyzes of Hoang and
Rogaway (CRYPTO 2010). For a tweakable blockcipher-based generalized Feistel
network proposed by Coron et al. (TCC 2010), we present a coupling analysis and
for the first time show that with enough rounds, it achieves 2n-bit security, and this
provides highly secure, double-length tweakable blockciphers.
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1 Introduction
1.1 Feistel Networks
Feistel networks consist of several iterative applications of a simple Feistel permutation

ΨFi(A,B) = (B,A⊕ Fi(B)) (1)

for a domain-preserving function Fi : {0, 1}n → {0, 1}n that is typically called its round
function. Such networks are not only the high level abstraction of a large number of
modern blockciphers including the Data Encryption Standard (DES) [FNS75, Smi71],
but also widely used in many other crypto systems (e.g., inverse-free authenticated
encryption [Min14]).

A popular approach to analyzing the security of Feistel networks, pioneered by Luby
and Rackoff [LR88], is to model the round function Fi as a secret random function.
This allows proving its information theoretic indistinguishability, i.e., any distinguisher
should not be able to distinguish the Feistel network from a random permutation on
2n-bit strings. With this model, Luby and Rackoff proved the security for 4-round Feistel
networks, following which a long series of work has established either better security
bounds [Pat90, Mau93, MP03, Vau03, Pat04, HR10a, Pat10] or reduced construction
complexity [SP93, Pat93, Nan10, Nan15].

1.2 Generalized Feistel Networks (GFNs)
The above classical Feistel networks could be generalized in various manners. Concretely,
replacing the domain preserving round function Fi by expanding or contracting ones
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results in unbalanced Feistel [SK96]; using expanding and contracting round functions
in an alternative manner results in alternating Feistel [AB96, Luc96]; finally, partition-
ing the inputs into more than two blocks (or branches) results in multi-line generalized
Feistel, and the (probably) most popular instances are Type-1, Type-2, and Type-3
Feistel networks [ZMI90], that differ in the relations among the branches. Compared
to classical Feistel, the improved flexibility of GFNs significantly widens their applica-
tion spectrum, ranging from ultra-lightweight blockciphers [SIH+11], full-domain secure
encryption [MRS09], and wide cryptographic permutations [GM16].

Information theoretic security of GFNs could be analyzed in a model similar to classical
Feistel, with various “birthday-bound” results showed in [NR99, MRS09, AB96, BR02,
BRRS09, Luc96, ZMI90] and “beyond-birthday-bound” results found in [HR10a, Pat10].
Most importantly to this paper, Hoang and Rogaway (henceforth "HR") [HR10a] proved
asymptotically optimal security for all the aforementioned types of GFNs via the coupling
technique. In detail, with a sufficient number of rounds, all the aforementioned GFNs are
CCA-secure up to 2n(1−ε) adversarial queries for any ε > 0. Though appearing nice, it
requires a large number of rounds to asymptotically achieve n-bit security.

1.3 Tweakable Blockcipher-based GFN
Tweakable permutation (TP) and tweakable blockciphers (TBC) were introduced by Liskov
et al. [LRW02]: the former models a family of (efficiently invertible) permutations indexed
by a parameter called the tweak, and the latter is a family of keyed TPs. With such
primitives, the round function Fi of GFN may be replaced by some other primitives such
as a TBC/TP, resulting in more possibilities.

As a concrete instance, Coron et al. [CDMS10] proposed a GFN that turns an n-bit
TP with ω-bit tweak (ω > n) into a 2n-bit TP with (ω − n)-bit tweak, i.e., it trades the
domain with the tweak space. As tweak extension is generally easier [CDMS10, MI15], this
gives rise to a domain extender for TPs/TBCs. In this paper we denote by TGFr[ω, 2n]
the r-round variant of Coron et al.’s construction. Coron et al. prove that TGFr[ω, 2n]
achieves birthday 2n/2 CCA security when r = 2, and optimal 2n CCA security when
r = 3. However, note that the size of the inputs to the underlying TP is actually larger
than 2n-bit (i.e., n-bit block plus ω-bit tweak). As recently pointed out by Lee and Lee
[LL18], the classical-sense optimal 2n security is actually the birthday-bound for such a TP.
Motivated by Lee and Lee’s 24n/3 secure TBC construction, it’s tempting to ask if similar
beyond 2n security results could be proved for TGFr[ω, 2n] with r ≥ 4 rounds.

1.4 Our Contributions
For all the GFNs mentioned before, we either improve existing coupling analyzes or present
new when non-existing. Concretely, motivated by Lampe and Seurin [LS15] and Nachef et
al.’s [NPV17], we improve the coupling analyzes of HR [HR10a, HR10b], and prove the
following results:

• For unbalanced Feistel UBFr[m,n], when n ≥ m, we prove 2q
t+1 ( 4d n

m eq+4q
2n )t security

bound at (2d nme + 2)t + 2d nme + 1 rounds. The bound is comparable to HR’s
2q
t+1 ( (3d n

m e+3)q
2n )t, while the number of rounds is almost halved from HR (4d nme+ 4)t.

When n < m, we prove 2q
t+1 ( 4dm

n eq
2n )t security bound (the same as HR’s bound) at

4t+ 2d nme+ 1 rounds which is much smaller than HR’s (2dmn e+ 4)t rounds.

• For alternating Feistel ALFr[m,n], we prove 2q
t+1 ( 6d n

m eq+3q
2n )t security bound with

(12d nme+ 2)t+ 5 rounds (compared with 2q
t+1 ( (6d n

m e+3)q
2n )t with (12d nme+ 8)t rounds

of HR). The same improvement holds for numeric alternating Feistel.
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Table 1: Summary of improved CCA bounds in this paper. The rows correspond to the
generalized Feistel networks illustrated in Fig. 1 and Fig. 2. Parameters k,m, n, ω,M,N
describe the scheme and t determines the number of rounds r.
Scheme Previous Bound #rounds Our Bound #rounds
UBFr[m,n]
n ≥ m 2q

t+1

(
(3d n

m e+3)q
2n

)t
(4d nme+ 4)t [HR10a] 2q

t+1

(
4d n

m eq+4q
2n

)t
(2d nme+ 2)t+ 2d nme+ 1

n < m 2q
t+1

(
4dm

n eq
2n

)t
(2dmn e+ 4)t [HR10a] 2q

t+1

(
4d n

m eq
2n

)t
4t+ 2d nme+ 1

ALFr[m,n] 2q
t+1

(
(6d n

m e+3)q
2n

)t
(12d nme+ 8)t [HR10a] 2q

t+1

(
6d n

m eq+3q
2n

)t
(12d nme+ 2)t+ 5

NALFr[M,N ] 2q
t+1 ( (6dlogM Ne+3)q

N )t (12dlogM Ne+ 8)t [HR10a] 2q
t+1

(
6dlogM Neq+3q

N

)t
(12dlogM Ne+ 2)t+ 5

Feistel1r[k, n] 2q
t+1

(
2k(k2−k+1)q

2n

)t
(2k2 + 2k)t [HR10b] 2q

t+1

(
2k(k−1)q

2n

)t
(k2 + k − 2)t+ 1

Feistel2r[k, n] 2q
t+1

(
2k(k−1)q

2n

)t
(2k + 2)t [HR10b] 2q

t+1

(
2k(k−1)q

2n

)t
2kt+ 1

Feistel3r[k, n] 2q
t+1

(
4(k−1)2q

2n

)t
(k + 4)t [HR10b] 2q

t+1

(
4(k−1)2q

2n

)t
(k + 2)t+ 1

TGFr[ω, 2n] q
2n 3 [CDMS10] 2 ·

(
q
t+1

(
30q
22n

)t)1/2
4t+ 2

• For multi-line GFNs Feistel1r[k, n] and Feistel2r[k, n], we prove 2q
t+1

(
2k(k−1)q

2n

)t
secu-

rity bound with (k2 + k − 2)t+ 1 rounds, and 2q
t+1

(
2k(k−1)q

2n

)t
with 2kt+ 1 rounds

resp. (compared with 2q
t+1 ( 2k(k2−k+1)q

2n )t with (2k2 + 2k)t rounds, and 2q
t+1 ( 2k(k−1)q

2n )t
with (2k + 2)t rounds of HR resp.).

• for type-3 GFN Feistel3r[k, n], we prove 2q
t+1 ( 4(k−1)2q

2n )t security bound with (k+2)t+1
rounds (compared with 2q

t+1 ( 4(k−1)2q
2n )t with (k + 4)t rounds of HR).

For the TBC-based GFN TGFr[ω, 2n], we present the first coupling analysis and prove

2 ·
(

q
t+1

(
30q
22n

)t)1/2
security bound with 4t+ 2 rounds. This for the first time establishes

beyond the birthday bound 2n for TGFr[ω, 2n]. Moreover, it also approaches 22n as the
number of rounds t increases. This gives rise to double-length blockciphers with high
security: for example, when Deoxys-BC-256 is used, 10 rounds achieve 2 4×128

3 ≈ 2170

security. While the efficiency is relatively low, the high security bounds make it suitable in
specific application.

1.4.1 Core Ideas for Improvements

Our improvements upon HR [HR10a] are due to more fine-grained analyses of the coupling
probabilities. To further illustrate, consider for example the unbalanced Feistel with
contracting round functions with domain {0, 1}n and {0, 1}m (n ≥ m). HR treated the
construction as 2dn/me+ 2 round small “chunks”, and analyzed the latter in turn. Inside
each chunk, the probability that the couple fails is at most 3dn/me`/2n. Since events in
distinct chunks are independent, the final coupling probability easily follows. However, a
close inspection shows that, in fact, dn/me+ 1 rounds (i.e., half of the size of the chunk)
are already sufficient for a coupling to succeed. It seems that HR’s use of the additional
dn/me+ 1 rounds was intended to create a strong independence between distinct chunks
and cinch a quite modular argument (as mentioned, they could focus on what happens
inside a single chunk), but we are able to have a more dedicated analysis as follows:

• First, as mentioned, we narrow each chunk. Our more fine-grained analysis shows
that events in distinct chunks remain independent even if chunks are smaller;

• Second, we add several rounds at the “beginning” of the construction, so that after
these rounds, the intermediate values of the two evaluations (that will be considered
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(a) Unbalanced Feistel UBFr[m, n] with m ≤ n
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(d) Numeric alternating Feistel NALFr[M, N ]

Figure 1: Unbalanced and alternating Feistel

during the coupling) will be somewhat random and collision-free. This is crucial for
the coupling arguments (as in the balanced case [LS15]).

As such, ultimately we are able to have a comparable bound with almost a half number of
rounds.

1.5 Other Related Works
Besides information theoretic indistinguishability, existing results on GFNs mainly con-
centrated on structural refinements, including e.g. improving the shuffle in multi-line
GFNs [SM10], refining the models to fit into the so-called Feistel-2 model [LS15, GW18],
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(d) TBC-based Feistel TGFr[ω, 2n]

Figure 2: Type-1,2,3 Feistel and TBC-base Feistel

and discussing the practical security of using substitution-permutation-style round func-
tions [BS13].

1.6 Organization
The rest of this paper is organized as follows. Section 2 gives essential notation, security
definitions and two useful mathematical lemmas. The security proofs of unbalanced Feistel
cipher are detailed in Section 3. Sections 4 and 5 summarize the improved security bounds
of alternating Feistel and multi-line Feistel (including type-1, type-2 and type-3 Feistel)
respectively, and the proofs of these results can be found in Appendix A and B respectively.
Section 6 presents the coupling analysis of TBC-based GFN. Section 7 concludes the paper.

2 Preliminaries
Notations. If X is a set, then X

$←− X denotes the operation of picking X from X
uniformly at random. The bit length of a string X is denoted by |X|. Concatenation of
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strings X and Y is written as either X‖Y or simply XY . We denote X ⊕ Y the bitwise
exclusive-or of two equal-length bit strings. For a string X, we denote by lsn(X) the last
n bits of X, msn(X) the first n bits of X for 1 ≤ n ≤ |X|. We denote by [a; b] the set of
integers i such that a ≤ i ≤ b.

Security Definitions. We denote by Func(n,m) the set of all functions from {0, 1}n to
{0, 1}m, and by Perm(M) the set of all permutations onM. Let P̃erm(T ,M) be the set
of all functions P̃ : T ×M → M such that for each t ∈ T , P̃ (t, ·) is a permutation on
M. A blockcipher E : K ×M→M is a family of permutations, where EK(·) = E(K, ·)
is a permutation overM. A tweakable blockcipher Ẽ : K × T ×M→M is a family of
permutations, where Ẽ(K, t, ·) is a permutation overM. We define two types of attacks
with respect to the way the adversary makes its queries to the oracles, namely non-adaptive
chosen-plaintext attack (NCPA) and (adaptive) chosen-plaintext and chosen-ciphertext
attack (CCA).

For any q, we define the NCPA security of a blockcipher E/a tweakable blockcipher Ẽ
as

Advncpa
E (q) = max

A
|Pr[K $←− K : AEK(·) = 1]− Pr[π $←− Perm(M) : Aπ(·) = 1]|,

Advñcpa
Ẽ

(q) = max
A
|Pr[K $←− K : AẼK(·,·) = 1]− Pr[π̃ $←− P̃erm(T ,M) : Aπ̃(·,·) = 1]|,

where the maximum is taken over all distinguishers A that asks at most q non-adaptively
chosen oracle queries. Similarly, we define the CCA security of E/Ẽ as

Advcca
E (q) = max

A
|Pr[K $←− K : AEK(·),E−1

K
(·) = 1]− Pr[π $←− Perm(M) : Aπ(·),π−1(·) = 1]|,

Advc̃ca
Ẽ

(q)

= max
A
|Pr[K $←− K : AẼK(·,·),Ẽ−1

K
(·,·) = 1]− Pr[π̃ $←− P̃erm(T ,M) : Aπ̃(·,·),π̃−1(·,·) = 1]|,

where the maximum is taken over all distinguishers A that asks at most q oracle queries.

Mathematical Foundations. Given a finite event space Ω, let µ and ν be two probability
distributions defined on Ω. The statistical distance (or total variation distance) between µ
and ν is defined as

‖µ− ν‖ = 1
2
∑
x∈Ω
|µ(x)− ν(x)|.

A coupling of µ and ν is a pair of random variables (X,Y ) over Ω× Ω such that X ∼ µ
and Y ∼ ν. In other words, (X,Y ) has marginal distributions µ and ν. We will use the
following fundamental result of the coupling technique. The proof of this result can be
found in [LPS12].

Lemma 1 (Coupling Lemma). Let µ and ν be two probability distributions on a finite event
space Ω. Let random variable (X,Y ) be a coupling of µ and ν. Then ‖µ− ν‖ ≤ Pr[X 6= Y ].

In some of our proofs, we will need to use the following inequality.

Lemma 2 (Maclaurin’s inequality). Given integers m ≥ t ≥ 1, and non-negative real
numbers a1, . . . , am, one has

∑
1≤`1...≤`t≤m

a`1 · · · a`t
≤
(
m
t

)
mt

(
m∑
i=1

ai

)t
.
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3 Unbalanced Feistel
Definition of the Scheme. Given a function F : {0, 1}n → {0, 1}m, define the permuta-
tion ΨF over {0, 1}m+n as ΨF (A,B) = (B,A⊕F (B)) where A and B are respectively the
first m bits and the last n bits of the input, and ⊕ is the operation of bitwise exclusive-or.
An unbalanced Feistel cipher with r rounds is specified by r round functions F1, . . . , Fr
from {0, 1}n → {0, 1}m, and will be denoted as UBFr[m,n] : K × {0, 1}m+n. It has key
space K = (Func(n,m))r and message space {0, 1}m+n, and a key (F1, . . . , Fr) ∈ K names
the permutation ΨFr ◦ · · · ◦ΨF1 on {0, 1}m+n. See Fig. 1a and Fig. 1b for illustrations.

We first prove the NCPA-security of UBFr[m,n] by the way of coupling, then lift this
to CCA-security by using a composition lemma from [MP03]. For 0 ≤ ` ≤ q − 1, we
denote µ` the distribution of the (`+ 1) outputs of the UBFr[m,n] when it receives (`+ 1)
distinct inputs (X1, . . . , X`, X`+1), and µ`+1 the distribution of the (`+ 1) outputs of the
UBFr[m,n] when it receives (X1, . . . , X`, U`+1), where U`+1 is chosen uniformly at random
from {0, 1}m+n \ {X1, . . . , X`}. By hybrid argument, we have

Advncpa
UBFr[m,n](q) ≤

q−1∑
`=0
‖µ` − µ`+1‖.

Fix a value ` ≤ q − 1, we now turn to upper bounding ‖µ` − µ`+1‖. We consider two
UBFr[m,n] ciphers in parallel. The first one takes as inputs (X1, . . . , X`, X`+1) and the
round functions are (F1, . . . , Fr), while the second one takes as inputs (X1, . . . , X`, U`+1)
and the round functions are (F ′1, . . . , F ′r). Our goal is to describe a coupling of µ` and
µ`+1, whose marginal distributions are µ` and µ`+1 respectively.

Coupling for Contracting Round Function Case. We first consider the case when the
UBFr[m,n] is instantiated with contracting round functions, i.e., m ≤ n. For 1 ≤
j ≤ ` + 1, let Aj0 and Bj0 denote respectively the first m bits and last n bits of Xj

and for 1 ≤ i ≤ r, let Aji and Bji be recursively defined by Aji = msm(Bji−1) and
Bji = lsn−m(Bji−1)‖Aji−1 ⊕ Fi(B

j
i−1). For any 1 ≤ j ≤ ` and 1 ≤ i ≤ r, we simply set

F ′i (B
j
i−1) = Fi(Bji−1). Since the first ` queries to the second Feistel are the same as to

the first Feistel, this leads to the ` first outputs of both ciphers being identical. Let C`+1
0

and D`+1
0 denote the first m bits and the last n bits of U`+1. We then explain how the

(`+ 1)-th queries are coupled. For 1 ≤ i ≤ r, let C`+1
i and D`+1

i be recursively defined by
C`+1
i = msm(D`+1

i−1 ) and D`+1
i = lsn−m(D`+1

i−1 )‖C`+1
i−1 ⊕ F ′i (D

`+1
i−1 ). Let b = dn/me. For the

first b rounds, we couple the random outputs in the processing of X`+1 and U`+1 arbitrarily.
For round i > b, we define a bad event which may happen in each Feistel cipher. We say
that colli occurs if B`+1

i is equal to Bji for some 1 ≤ j ≤ `, namely the input value to the
(i+ 1)-th round function collides with the previous input values. Similarly, we say that
coll′i occurs if D`+1

i is equal to Bji for some 1 ≤ j ≤ `. Then for i = b+ 1, . . . , r − 1, we
define F ′i+1(D`+1

i ) as follows:

• if coll′i occurs, then F ′i+1(D`+1
i ) is defined so as to ensure consistency with the earlier

query (namely, if D`+1
i = Bji for some 1 ≤ j ≤ `, then F ′i+1(D`+1

i ) = F ′i+1(Bji ));

• if coll′i does not occur while colli occur, then F ′i+1(D`+1
i ) is chosen uniformly at

random from {0, 1}m;

• if neither coll′i nor colli occurs, we then define F ′i+1(D`+1
i ) so that lsm(D`+1

i+1 ) =
lsm(B`+1

i+1 ):
F ′i+1(D`+1

i ) = Fi+1(B`+1
i )⊕A`+1

i ⊕ C`+1
i .
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It is clear that the round functions F ′ in the second Feistel cipher are uniformly random
when defined according to the first or the second rule above. When F ′i+1(D`+1

i ) is defined
via the third rule, then F ′i+1(D`+1

i ) is also uniformly random since Fi+1(B`+1
i ) is uniformly

random conditioned on that colli does not occur. Hence the distribution of the outputs
of the second Feistel cipher is exactly the same as µ`+1. If neither colli nor coll′i occurs
for b+ 1 consecutive rounds i, i+ 1, . . . , i+ b, then U`+1 and X`+1 will have the same last
m-bit outputs at rounds i+ 1, i+ 2, . . . , i+ b+ 1, and thus have identical outputs at round
i + b + 1 and so the subsequent rounds, namely the coupling will be successful. Define
COLLi = colli ∪ coll′i for any b+ 1 ≤ i ≤ r. Let Fail be the event that the coupling does
not succeed. Then

Pr[Fail] ≤ Pr[∩r−b−1
i=b+1 (∪i+bj=iCOLLj)].

We upper bound the term on the right side by the following lemma.

Lemma 3. Consider an unbalanced Feistel cipher UBFr[m,n] with m ≤ n. Let b = dn/me.
For any i ∈ [b+ 1; r] and any subset S ⊆ [b+ 1; i− 1], one has

Pr[COLLi | ∩s∈SCOLLs] ≤
4`
2n ,

where ` is the number of queries that has made to the cipher before the coupling.

Proof. We first consider the event colli, and the result for coll′i can be obtained by similar
arguments. Event colli happens if B`+1

i = Bji for some j ∈ [1; `]. This is equivalent to

Fi(B`+1
i−1 )⊕A`+1

i−1 = Fi(Bji−1)⊕Aji−1 ∧ lsn−m(B`+1
i−1 ) = lsn−m(Bji−1).

Writing it more concretely, it is equivalent to a series of equations:

Fi(B`+1
i−1 )⊕A`+1

i−1 = Fi(Bji−1)⊕Aji−1

Fi−1(B`+1
i−2 )⊕A`+1

i−2 = Fi−1(Bji−2)⊕Aji−2
...

Fi−b+2(B`+1
i−b+1)⊕A`+1

i−b+1 = Fi−b+2(Bji−b+1)⊕Aji−b+1

lsn−(b−1)m(Fi−b+1(B`+1
i−b )⊕A`+1

i−b ) = lsn−(b−1)m(Fi−b+1(Bji−b)⊕A
j
i−b). (2)

For the first equation, if B`+1
i−1 = Bji−1, then it cannot hold since otherwise it would

contradict the hypothesis that X`+1 and Xj are distinct. If B`+1
i−1 6= Bji−1, then the first

equation holds with probability at most 2−m since Fi is uniformly random.
For the second equation, we need to take the set ∩s∈SCOLLs for S ⊆ [b+ 1; i− 1] into

account. If colli−2 /∈ (∩s∈SCOLLs), then the analysis of this equation is similar to the
first one and thus holds with probability at most 2−m. If colli−2 ∈ (∩s∈SCOLLs), then
there exists some k ∈ [1; `] such that B`+1

i−2 = Bki−2. We further separate two cases here. If
k = j, then B`+1

i−2 = Bji−2 and thus the second equation cannot hold otherwise it would
contradict the hypothesis that X`+1 and Xj are two distinct queries. If k 6= j, then the
second equation is equivalent to

Fi−1(Bki−2)⊕A`+1
i−2 = Fi−1(Bji−2)⊕Aji−2.

Since we are working in the non-adaptive setting, the adversary should choose all of its
queries before receiving any responses from the Feistel cipher. Thus the analysis of this
equation is similar to that of the first equation, and this equation holds with probability at
most 2−m. It is easy to see that except for the last equation, the analysis of the following
equations is exactly the same as the second equation and thus each of them holds with
probability at most 2−m.
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For the last equation Equation (2), we also need to take the set ∩s∈SCOLLs for
S ⊆ [b+ 1; i− 1] into account. The analysis for this equation is much more complicated.
We divide two cases here with respect to the event in the (i− b+ 1)-th round.

• Case 1: colli−b /∈ (∩s∈SCOLLs). Then if B`+1
i−b 6= Bji−b, the last equation holds

with probability at most 2(b−1)m−n since Fi−b+1 is a random function. Otherwise if
B`+1
i−b = Bji−b, then the outputs of the (i− b)-th function in these two ciphers must

collide, which happens with probability at most 2−m. Hence, in this case, the chance
that the last equation holds is at most 2(b−1)m−n + 2−m ≤ 2(b−1)m−n+1.

• Case 2: colli−b ∈ (∩s∈SCOLLs). Then there exists some k ∈ [1; `] such that B`+1
i−b =

Bki−b. We further divide two sub-cases here depending on whether k equals to j or
not.

– Case 2.1: k 6= j. Then the last equation is equivalent to

lsn−(b−1)m(Fi−b+1(Bki−b)⊕A`+1
i−b ) = lsn−(b−1)m(Fi−b+1(Bji−b)⊕A

j
i−b).

If Bki−b 6= Bji−b, then this equation holds with probability at most 2(b−1)m−n

since Fi−b+1 is a random function. If Bki−b = Bji−b, then we must have

Fi−b(Bki−b−1)⊕Aki−b−1 = Fi−b(Bji−b−1)⊕Aji−b−1,

which happens with probability at most 2−m. Hence, in this case, the chance
that the last equation holds is at most 2(b−1)m−n + 2−m ≤ 2(b−1)m−n+1.

– Case 2.2: k = j, namely B`+1
i−b = Bji−b, which implies that

Fi−b(B`+1
i−b−1)⊕A`+1

i−b−1 = Fi−b(Bji−b−1)⊕Aji−b−1

∧ lsn−m(B`+1
i−b−1) = lsn−m(Bji−b−1),

and thereafter

Fi−b(B`+1
i−b−1) ⊕ A`+1

i−b−1 = Fi−b(Bj
i−b−1) ⊕ Aj

i−b−1

Fi−b−1(B`+1
i−b−2) ⊕ A`+1

i−b−2 = Fi−b−1(Bj
i−b−2) ⊕ Aj

i−b−2

...
Fi−2b+2(B`+1

i−2b+1) ⊕ A`+1
i−2b+1 = Fi−2b+2(Bj

i−2b+1) ⊕ Aj
i−2b+1

lsn−(b−1)m(Fi−2b+1(B`+1
i−2b) ⊕ A`+1

i−2b) = lsn−(b−1)m(Fi−2b+1(Bj
i−2b) ⊕ Aj

i−2b).(3)

On the other hand, in this case Equation (2) is equivalent to

lsn−(b−1)m(A`+1
i−b ) = lsn−(b−1)m(Aji−b). (4)

Note that 0 < n− (b− 1)m ≤ m and 2n− 2(b− 1)m ≤ n (if 2n− 2(b− 1)m > n,
then bm ≥ n > 2(b − 1)m, and we can obtain b < 2 which contradicts the
assumption that n > m). If n− (b− 1)m ≤ m/2, then combining Equations (3)
and (4) gives

ls2n−2(b−1)m(Fi−2b+1(B`+1
i−2b)⊕A

`+1
i−2b) = ls2n−2(b−1)m(Fi−2b+1(Bji−2b)⊕A

j
i−2b).

If m/2 < n− (b− 1)m ≤ m, then combining Equations (3) and (4) gives

Fi−2b+1(B`+1
i−2b)⊕A

`+1
i−2b = Fi−2b+1(Bji−2b)⊕A

j
i−2b, and

ls2n−(2b−1)m(Fi−2b(B`+1
i−2b−1)⊕A`+1

i−2b−1)

= ls2n−(2b−1)m(Fi−2b(Bji−2b−1)⊕Aji−2b−1).

We then consider the probability that Equation (4) holds.
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∗ Case 2.2.1: n − (b − 1)m = m/2. Then combining Equation (3) and
Equation (4) we exactly have

Fi−2b+1(B`+1
i−2b)⊕A

`+1
i−2b = Fi−2b+1(Bji−2b)⊕A

j
i−2b,

which occurs with probability at most 2(b−1)m−n regardless of whether
colli−2b belongs to (∩s∈SCOLLs) or not.

∗ Case 2.2.2: n− (b− 1)m = m. Then Equation (4) is equivalent to

Fi−2b(B`+1
i−2b−1)⊕A`+1

i−2b−1 = Fi−2b(Bji−2b−1)⊕Aji−2b−1,

which occurs with probability at most 2(b−1)m−n regardless of whether
colli−2b−1 belongs to (∩s∈SCOLLs) or not.

∗ Case 2.2.3: i− 2b < b+ 1. Then we can rely on the randomness of the first
b rounds, we discuss further two sub-cases here:
· Case 2.2.3.1: n − (b − 1)m ≤ m/2. Then if B`+1

i−2b 6= Bji−2b, then
Equation (4) holds with probability 2(b−1)m−n since Fi−2b+1 is a random
function. If B`+1

i−2b = Bji−2b, we must have

Fi−2b(B`+1
i−2b−1)⊕A`+1

i−2b−1 = Fi−2b(Bji−2b−1)⊕Aji−2b−1,

which holds with probability at most 2−m. Hence in this sub-case,
by the union bound, Equation (4) holds with probability at most
2(b−1)m−n + 2−m ≤ 2(b−1)m−n+1.
· Case 2.2.3.2: m/2 < n− (b− 1)m ≤ m. From the similar argument as
above case, Equation (4) holds with probability at most 2(b−1)m−n+1.

∗ Case 2.2.4: If none of the above three cases occur, we recursively repeat
the above arguments until that one of the above three cases happens since
eventually we will arrive at the first b rounds and reply on the randomness
of them.

Hence, the probability that Equation (4) holds is at most 2(b−1)m−n+1. Multiplying the
probabilities from the first equation to the last equation, we finally obtain that for some
j ∈ [1; `],

Pr[B`+1
i = Bji ] ≤

2
2n .

By the union bound and summing over j ∈ [1; `], the probability that colli happens is at
most 2`/2n. Similarly the probability that coll′i happens is at most 2`/2n, and thus the
event COLLi holds with probability at most 4`/2n.

This allows us to bound the probability that the coupling fails and thus the NCPA-
security of UBFr[m,n]. Recall that b = dn/me.

Lemma 4. Let UBFr[m,n] be an unbalanced Feistel cipher with r rounds, where r =
b+ (b+ 1)t+ 1 and m ≤ n. Then

Advncpa
UBFr[m,n](q) ≤

q

t+ 1

(
4bq + 4q

2n

)t
.
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Proof. Using Lemma 1, for any ` ≤ q − 1, one has

‖µ` − µ`+1‖ ≤ Pr[Fail]
≤ Pr[∩r−b−1

i=b+1 (∪i+bj=iCOLLj)]
≤ Pr[∩ti=1(∪bi+i+bj=bi+iCOLLj)]

=
t∏
i=1

Pr[∪bi+i+bj=bi+iCOLLj | ∩i−1
k=1(∪bk+k+b

j=bk+kCOLLj)]

≤
(

4b`+ 4`
2n

)t
,

where the third inequality comes from the fact that Pr[A ∩ B ∩ C] ≤ Pr[A ∩ B] for any
three events A,B,C, namely we simply reduce the number of intersection sets which would
only enlarge the probability, and the last inequality is due to Lemma 3 and the union
bound. Hence, by hybrid argument, we have

Advncpa
E (q) ≤

q−1∑
`=0
‖µ` − µ`+1‖

≤
q−1∑
`=0

(
4b`+ 4`

2n

)t
≤

(
4b+ 4

2n

)t ∫ q

0
xtdx

= q

t+ 1

(
4bq + 4q

2n

)t
,

which concludes the proof.

In order to prove the CCA-security of unbalanced Feistel cipher, we follow the classical
strategy to compose two NCPA-secure ciphers, which is justified by the following lemma
by Maurer, Pietrzak, and Renner [MPR07, Corollary 5].

Lemma 5 (Composition Lemma). If F and G are two independent blockciphers with the
same domain, then for any q, one has

Advcca
G−1◦H(q) ≤ Advncpa

G (q) + Advncpa
H (q).

Theorem 1. Let UBFr[m,n] be an unbalanced Feistel cipher with r rounds where r =
2dn/me+ 2(dn/me+ 1)t+ 1 and m ≤ n, then one has

Advcca
UBFr[m,n](q) ≤

2q
t+ 1

(4d nmeq + 4q
2n

)t
.

Proof. Let Rev denote the operation on {0, 1}m+n where Rev(A,B) = (B,A), and |A| = m
and |B| = n. Following a similar strategy in [MP03], we can rewrite a r-round unbalanced
Feisel scheme as Rev ◦G−1 ◦ F where F and G are (r + 1)/2-round Feistel schemes. This
can be achieved by replacing the middle round function with the xor of two independent
round functions. It can be seen that such replacement does not change the distribution of
the outputs of the scheme. Then from Lemma 4 and Lemma 5, we obtain the CCA-security
bound of UBFr[m,n].
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Coupling for Expanding Round Function Case. We then consider the case when m > n.
See Fig.1b for an illustration. Note that we define b = dm/ne here. The proof is the same
as before, except that Lemma 3 is replaced by the following one.
Lemma 6. Consider an unbalanced Feistel cipher UBFr[m,n] with m > n. Let b = dm/ne.
For any i ∈ [b+ 1; r] and any subset S ⊆ [b+ 1; i− 1], one has

Pr[COLLi | ∩s∈SCOLLs] ≤
2`b
2n ,

where ` is the number of queries that have been made to the cipher before the coupling.
Proof. Recall that COLLi = colli ∪ coll′i. We first consider the event colli, and the result
for coll′i can be obtained by similar arguments. Event colli happens if B`+1

i = Bji for some
j ∈ [1; `]. This is equivalent to

lsn(Fi(B`+1
i−1 )⊕A`+1

i−1) = lsn(Fi(Bji−1)⊕Aji−1).

This happens with probability at most 2−n if B`+1
i−1 and Bji−1 differs, because Fi is uniformly

random. If B`+1
i−1 = Bji−1, then A

`+1
i−1 and Aji−1 must have the same last n bits. In other

words, the (i − 1)-th round outputs of these two queries must share the last 2n bits.
Repeating this reasoning leads us to examine the case that for every k < b, the (i− k)-th
round outputs of the two queries must have the same last (k + 1)n bits. When this chain
of arguments stops at round i− b+ 1, the outputs at such round must agree at the last bn
bits, which occurs with probability at most 2−n by further recursive arguments. Hence by
the union bound, the probability of B`+1

i = Bji is at most b/2n. Summing over j ∈ [1; `],
the probability of colli is at most `b/2n. Similarly, the probability of coll′i is at most `b/2n.
Thus by the union bound, the event COLLi holds with probability at most 2`b/2n.

By the above lemma, we can obtain the NCPA-security of UBFr[m,n] with expanding
round functions.
Lemma 7. Let UBFr[m,n] be an unbalanced Feistel cipher with r rounds, where r =
b+ 2t+ 1 and m > n. Then

Advncpa
UBFr[m,n](q) ≤

q

t+ 1

(
4bq
2n

)t
.

Proof. Using Lemma 1 and Lemma 6, for any ` ≤ q − 1, one has

‖µ` − µ`+1‖ ≤ Pr[Fail]
≤ Pr[∩r−2

i=b+1(COLLi ∪ COLLi+1)]
≤ Pr[∩ti=1(COLLb+2i−1 ∪ COLLb+2i)]

≤
(

4`b
2n

)t
.

Hence by hybrid argument, we have

Advncpa
UBFr[m,n](q) ≤

q−1∑
`=0
‖µ` − µ`+1‖

≤
q−1∑
`=0

(
4`b
2n

)t
≤

(
4b
2n

)t ∫ q

0
xtdx

= q

t+ 1

(
4bq
2n

)t
,
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which concludes the proof.

Following the similar procedure in the case of m ≤ n, we obtain the CCA-security of
UBFr[m,n] with expanding round functions.

Theorem 2. Let UBFr[m,n] be an unbalanced Feistel cipher with r rounds where r =
2dn/me+ 4t+ 1 and m > n, then one has

Advcca
UBFr[m,n](q) ≤

2q
t+ 1

(4d nmeq
2n

)t
.

Unbalanced Numeric Feistel. It’s tempting to ask if the above improvements can be
transited to numeric variants of unbalanced GFNs. However, we didn’t suceed due to the
high complexity of analyzing internal collision probabilities. As such, we leave this for
future work.

4 Alternating Feistel
Definition of the Scheme. An alternating Feistel cipher with r rounds (denoted by
ALFr[m,n]) is specified by r round functions F1, . . . , Fr where Fi is from {0, 1}n to {0, 1}m
if i is odd, and Fi is from {0, 1}m to {0, 1}n if i is even. We assume r is even for simplicity.
It then has key space K = (Func(n,m)×Func(m,n))r/2 and message space {0, 1}n+m. See
Fig. 1c for an illustration. For the numeric variant of the alternating Feistel, we define it
from numeric round functions. Given integers M and N , let � be an operation for which
(ZM ,�) is the group of integers modulo M and (ZN ,�) is the group of integers modulo
N . Then a numeric alternating Feistel cipher with r rounds (denoted by NALFr[M,N ]) is
specified by r numeric round functions F1, . . . , Fr where Fi is from ZN to ZM if i is odd,
and Fi is from ZM to ZN if i is even. See Fig. 1d for an illustration. We consider the
case that the alternating Feistel cipher starts with a contracting round function (m ≤ n or
M ≤ N), because a security bound with respect to this implies the same security bound
with respect to the one starting with an expanding round function after one additional
round.

Security of Alternating Feistel. We show the improved security bounds for both the
alternating Feistel cipher and numeric alternating Feistel cipher by the way of a more
fine-grained coupling argument, and obtain the following two theorems.

Theorem 3. Let ALFr[m,n] be an alternating Feistel cipher with r rounds where r =
(12d nme+ 2)t+ 5 and m ≤ n, then one has

Advcca
ALFr[m,n](q) ≤

2q
t+ 1

(6d nmeq + 3q
2n

)t
.

Theorem 4. Let NALFr[M,N ] be a numeric alternating Feistel cipher with r rounds
where r = (12dlogM Ne+ 2)t+ 5 and M ≤ N , then one has

Advcca
NALFr[M,N ](q) ≤

2q
t+ 1

(
6dlogM Neq + 3q

N

)t
.

We briefly discuss the reasons behind these better bounds. In the NCPA-security proof
of the alternating Feistel cipher, we use 6d nme + 4 rounds to do the first coupling trial,
which is the same as Hoang and Rogaway’s method [HR10a], but in each of the following
coupling trials, by using a stronger collision lemma, we are allowed to use only 6d nme+ 1
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rounds and thus reduce three rounds in each trial. On the other hand, in the proof from
NCPA-security to CCA-security, we decompose the middle round function by the xor of
two independent round functions and hence reduce one more round for the whole scheme.
We obtain the improved bound of numeric alternating Feistel by using the similar method.
The proofs of these two theorems can be found in Appendix A.

5 Multi-line GFNs
In this section, we will first give the definition of type-1, type-2 and type-3 Feistel cipher
respectively, and then show the improved security bounds.

5.1 Definition of Type-1, Type-2, and Type-3 Feistel
• Type-1 Feistel. Given k ≥ 2 and n ≥ 1, let function F : {0, 1}n → {0, 1}n define
a permutation ΦF over {0, 1}kn by the way of ΦF (A[1], . . . , A[k]) = (F (A[1]) ⊕
A[2], A[3], . . . , A[k], A[1]), where |A[i]| = n. A type-1 Feistel cipher with r rounds
is specified by the r-fold composition of ΦF permutations, and will be denoted as
Feistel1r[k, n] : K × {0, 1}kn → {0, 1}kn. It has the key space K = (Func(n, n))r and
the message space {0, 1}kn. See Fig. 2a for an illustration.

• Type-2 Feistel. Given even k ≥ 2 and n ≥ 1, and fi : {0, 1}n → {0, 1}n for
every i ≤ k/2, let F = (f1, . . . , fk/2) define a permutation ΦF over {0, 1}kn by
ΦF (A[1], . . . , A[k]) = (f1(A[1])⊕A[2], A[3], f2(A[3])⊕A[4], A[5], . . . , fk/2(A[k−1])⊕
A[k], A[1]), where |A[i]| = n. A type-2 Feistel cipher with r rounds is obtained by
the r-fold composition of ΦF permutations, and will be denoted as Feistel2r[k, n] :
K × {0, 1}kn → {0, 1}kn. It has the key space K = (Func(n, n))rk/2 and the message
space {0, 1}kn. See Fig. 2b for an illustration.

• Type-3 Feistel. Fix k ≥ 2 and n ≥ 1, consider fi : {0, 1}n → {0, 1}n for every
i ≤ k−1. Let F = (f1, . . . , fk−1) define a permutation ΦF over {0, 1}kn by the way of
ΦF (A[1], . . . , A[k]) = (f1(A[1])⊕A[2], f2(A[2])⊕A[3], . . . , fk−1(A[k−1])⊕A[k], A[1]),
where |A[i]| = n. A type-3 Feistel cipher with r rounds is obtained by the r-
fold composition of ΦF permutations, and will be denoted as Feistel3r[k, n] : K ×
{0, 1}kn → {0, 1}kn. It has the key space K = (Func(n, n))(k−1)r and the message
space {0, 1}kn. See Fig. 2c for an illustration.

5.2 Security of Type-1, Type-2, and Type-3 Feistel
From a more careful analysis of coupling argument, we improve previous security bounds
of type-1, type-2, and type-3 Feistel respectively, and obtain the following three theorems.
Theorem 5. Let Feistel1r[k, n] be a type-1 Feistel cipher with r rounds, where r =
(k2 + k − 2)t+ 1. Then

Advcca
Feistel1r[k,n](q) ≤

2q
t+ 1

(
2k(k − 1)q

2n

)t
.

Theorem 6. Let Feistel2r[k, n] be a type-2 Feistel cipher with r rounds where r = 2kt+ 1.
Then

Advcca
Feistel2r[k,n](q) ≤

2q
t+ 1

(
2k(k − 1)q

2n

)t
.

Theorem 7. Let Feistel3r[k, n] be a type-3 Feistel cipher with r rounds where r = (k+2)t+1.
Then

Advcca
Feistel5r[k,n](q) ≤

2q
t+ 1

(
4(k − 1)2q

2n

)t
.
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We use the similar idea to improve Hoang and Rogaway’s bounds for these three
multi-line Feistels. Taking type-1 Feistel as an example, in the proof of NCPA-security of
type-1 Feistel, we use 2k − 1 rounds in the first coupling trial, but in each of the following
trials, by proving a stronger collision lemma, we are able to use only 2k − 2 rounds and
thus reduce one round in each trial. We also decompose the middle round function as the
xor of two independent round functions and reduce one more round for the whole scheme.
The proofs for these three theorems can be found in Appendix B.

6 Tweakable Blockcipher-based GFN
Definition of the Scheme. Given a tweakable permutation P̃ : {0, 1}ω × {0, 1}n →
{0, 1}n, i.e., P̃ ∈ P̃erm(T ,M), define another tweakable permutation Φ̃

P̃
: {0, 1}ω−n ×

{0, 1}2n → {0, 1}2n by Φ̃
P̃

(W,A‖B) = (W,B‖P̃ (W‖B,A)) where |A| = |B| = n and
|W | = ω − n. A tweakable permutation-based generalized Feistel network with r rounds is
specified by r tweakable permutations P̃1, . . . , P̃r ∈ P̃erm(T ,M), and will be denoted by
TGFr[ω, 2n]. It has key space K = (P̃erm(T ,M))r and message space {0, 1}2n, and a key
(P̃1, . . . , P̃r) names the tweakable permutation Φ̃

P̃r
◦ · · · ◦ Φ̃

P̃1
on {0, 1}ω−n ×{0, 1}2n. See

Fig. 2d for an illustration.
We first establish the NCPA-security of TGFr[ω, 2n] by the way of coupling. Assume

that the number of distinct tweak values involved in the q queries is d, and each tweak
Wi corresponds to qi queries (thus

∑d
i=1 qi = q). As such, we reorder the q non-adaptive

queries according to their tweaks, i.e.,

(W1, X1,1), . . . , (W1, X1,q1),
(W2, X2,1), . . . , (W2, X2,q2),

...
(Wd, Xd,1), . . . , (Wd, Xd,qd

).

For each 1 ≤ s ≤ d and 1 ≤ ` ≤ qs − 1, we denote by µs,` the distribution of the (`+ 1 +∑s−1
i=1 qi) outputs of the TGFr[ω, 2n] when it receives inputs ((W1, X1,1), . . . , (Ws, Xs,`),

(Ws, Xs,`+1)), and µs,`+1 the distribution of the (`+1+
∑s−1
i=1 qi) outputs of the TGFr[ω, 2n]

when it receives inputs ((W1, X1,1), . . . , (Ws, Xs,`), (Ws, Us,`+1)) where Us,`+1 is chosen
uniformly at random from {0, 1}2n \ {Xs,1, . . . , Xs,`}. Note that each distinct tweak gives
rise to a different (apparently independent) family of permutations. Also it is apparent
that ‖µs−1,qs

− µs,1‖ = 0 for any 1 ≤ s ≤ d, namely the statistical distance between
two consecutive distributions with different tweaks is zero. Hence we can just consider
distributions among queries with the same tweak. Fix s and `. We now proceed to describe
a coupling of µs,` and µs,`+1.

The Coupling. For 1 ≤ j ≤ ` + 1, let Ajs,0 and Bjs,0 denote respectively the left half
and right half of Xs,j and for 1 ≤ i ≤ r, let Ajs,i and Bjs,i be recursively defined by
Ajs,i = Bjs,i−1 and Bjs,i = P̃i(Ws‖Bjs,i−1, A

j
s,i−1). For any 1 ≤ j ≤ ` and 1 ≤ i ≤ r, we

simply set P̃ ′i (Ws‖Bjs,i−1, A
j
s,i−1) = P̃i(Ws‖Bjs,i−1, A

j
s,i−1). Since the first ` queries to the

second Feistel are the same as to the first Feistel, this results in identical first ` outputs from
both networks. Let C`+1

s,0 and D`+1
s,0 denote the left half and right half of Us,`+1 respectively.

We then explain how the (`+ 1)-th queries are coupled. For 1 ≤ i ≤ r, let C`+1
s,i and D`+1

s,i

be recursively defined by C`+1
s,i = D`+1

s,i−1 and Dj
s,i = P̃ ′i (Ws‖Dj

s,i−1, C
j
s,i−1). We couple the

random outputs in the processing X`+1 and U`+1 arbitrarily for the first round. For i ≥ 1,
we define two bad events as follows which may happen in each TGFr[ω, 2n]:
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• colli: there exists some j ≤ ` such that D`+1
s,i = Bjs,i ∧B

`+1
s,i+1 = Bjs,i+1;

• coll′i: there exists some j ≤ ` such that B`+1
s,i = Bjs,i ∧D

`+1
s,i+1 = Bjs,i+1.

We justify the intuition behind these two bad events in turn. Denote by Set(Bjs,i) the set
of previous outputs of P̃i+1 under the tweak Ws||Bjs,i. If the first bad event happens, then
we cannot assign the value B`+1

s,i+1 to D`+1
s,i+1 because D`+1

s,i+1 is uniformly distributed in the
set {0, 1}n \Set(Bjs,i) and cannot be assigned with the value in Set(Bjs,i). If the second bad
event occurs, then we cannot assign the value B`+1

s,i+1 to D`+1
s,i+1 because B`+1

s,i+1 is uniformly
distributed in the set {0, 1}n \ Set(Bjs,i) and cannot have the value in Set(Bjs,i).

For i = 1, . . . , r − 1, we define P̃ ′i+1(Ws‖D`+1
s,i , C

`+1
s,i ) as follows:

• if either colli or coll′i happens, then P̃ ′i+1(Ws‖D`+1
s,i , C

`+1
s,i ) is defined so as to ensure

consistency with earlier queries;

• if neither of the two events happens, then we define the tweakable permutation
as P̃ ′i+1(Ws‖D`+1

s,i , C
`+1
s,i ) = P̃i+1(Ws‖B`+1

s,i , A
`+1
s,i ), so that D`+1

s,i+1 = B`+1
s,i+1 and

therewith D`+1
s,i+2 = B`+1

s,i+2 without any inconsistency: If B`+1
s,i+1 = Bjs,i+1 for some

1 ≤ j ≤ `, i.e. B`+1
s,i+1 has appeared before, then both B`+1

s,i+2 and D`+1
s,i+2 are

distributed uniformly at random in the set {0, 1}n \ Set(Bjs,i+1) where Set(Bjs,i+1)
denotes the set of previous outputs of P̃i+2 under the tweak Ws||Bjs,i+1. On the
other hand, if B`+1

s,i+1 6= Bjs,i+1 for any 1 ≤ j ≤ `, i.e. B`+1
s,i+1 is fresh, then both

B`+1
s,i+2 and D`+1

s,i+2 are distributed uniformly at random in the set {0, 1}n. So we can
assign the value B`+1

s,i+2 to D`+1
s,i+2 whenever D`+1

s,i+1 = B`+1
s,i+1.

One can check that the round functions P̃ ′ in the second TGFr[ω, 2n] are tweakable random
permutations. This is clear when P̃ ′i+1(Ws‖D`+1

s,i , C
`+1
s,i ) is defined according to the first

rule. When P̃ ′i+1(Ws‖D`+1
s,i , C

`+1
s,i ) is defined according to the second rule, since none

of colli and coll′i happens, both P̃ ′i+1(Ws‖D`+1
s,i , C

`+1
s,i ) and P̃ ′i+2(Ws‖D`+1

s,i+1, C
`+1
s,i+1) are

uniformly random and comparable with previous queries.
To bound the probability of above two bad events, we further define four events for

i ≥ 2 as follows:

• E1i: Ws‖D`+1
s,i−1 appears at least c times in previous queries, namely the number of

indices j ∈ {1, . . . , `} such that Bjs,i−1 = D`+1
s,i−1 is ≥ c;

• E2i: Ws‖B`+1
s,i appears at least c times in previous queries, namely the number of

indices j ∈ {1, . . . , `} such that Bjs,i = B`+1
s,i is ≥ c;

• E3i: Ws‖B`+1
s,i−1 appears at least c times in previous queries, namely the number of

indices j ∈ {1, . . . , `} such that Bjs,i−1 = B`+1
s,i−1 is ≥ c;

• E4i: Ws‖D`+1
s,i appears at least c times in previous queries, namely the number of

indices j ∈ {1, . . . , `} such that Bjs,i = D`+1
s,i is ≥ c.

Note that c is a threshold here and will be determined at the end of our analysis. We
analyze the event E1i first. If the event E1i occurs, then there must exist a sequence of
indices j1, j2, . . . , jc ∈ {1, . . . , `} such that

Bj1
s,i−1 = Bj2

s,i−1 = . . . = Bjc

s,i−1 = D`+1
s,i−1.
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Note that if Bj1
s,i−2 = Bj2

s,i−2, then we cannot have Bj1
s,i−1 = Bj2

s,i−1 since otherwise
this would contradict the assumption that Xs,j1 and Xs,j2 are two distinct queries.
On the other hand, if Bj1

s,i−2 6= Bj2
s,i−2 6= . . . 6= Bjc

s,i−2 6= D`+1
s,i−2, then the equa-

tion Bj1
s,i−1 = Bj2

s,i−1 = . . . = Bjc

s,i−1 = D`+1
s,i−1 holds with probability at most 1/2nc

since P̃i−1(Ws‖Bj1
s,i−2, ·), P̃i−1(Ws‖Bj2

s,i−2, ·),. . ., P̃i−1(Ws‖Bjc

s,i−2), P̃i−1(Ws‖D`+1
s,i−2) are

c + 1 independent permutations. Suppose there are a (a ≤ 2n) distinct values in
{B1

s,i−2, . . . , B
`
s,i−2} and each distinct value corresponds to `i queries (thus

∑a
i=1 `i = `).

Then the probability of E1i can be bounded by

Pr[E1i] ≤

∑
1≤i1≤···≤ic≤a

`i1`i2 · · · `ic

2nc

≤

(
a
c

)
·
(∑a

j=1 lj

)c
ac · 2nc (5)

≤ ac · `c

c! · ac · 2nc

≤ ec · `c

cc · 2nc (6)

where (5) comes from Maclaurin’s inequality (Lemma 2) and (6) comes from Stirling’s
approximation c! ≥ ( ce )c. Following the similar argument as above, we can obtain

Pr[E2i] ≤
ec · `c

cc · 2nc , Pr[E3i] ≤
ec · `c

cc · 2nc , Pr[E4i] ≤
ec · `c

cc · 2nc .

We then proceed to analyze bad events colli and coll′i. If neither E1i nor E2i happens,
then D`+1

s,i is uniformly distributed in a set of size at least 2n − c and so does B`+1
s,i+1. For

convenience, we denote by E12i = E1i ∨ E2i and obviously Pr[E12i] ≤ Pr[E1i] + Pr[E2i] =
2ec·`c

cc·2nc by the union bound. Thus for the bad event colli, we have

Pr[colli] = Pr[colli ∧ E12i] + Pr[colli ∧ E12i]
= Pr[colli | E12i] · Pr[E12i] + Pr[colli | E12i] · Pr[E12i]
≤ Pr[E12i] + Pr[colli | E12i]

≤ 2ec · `c

cc · 2nc + `

(2n − c)2 .

Similarly, denote by E34i = E3i ∨ E4i, for the second bad event coll′i, we have

Pr[coll′i] = Pr[coll′i ∧ E34i] + Pr[coll′i ∧ E34i]
= Pr[coll′i | E34i] · Pr[E34i] + Pr[coll′i | E34i] · Pr[E34i]
≤ Pr[E34i] + Pr[coll′i | E34i]

≤ 2ec · `c

cc · 2nc + `

(2n − c)2 .

Choosing c = 2n−1, we can obtain

Pr[colli ∪ coll′i] ≤ 4 ·
(

e`

22n−1

)c
+ 2`

(2n − 2n−1)2

≤ 8e`
22n + 8`

22n ≤
30`
22n . (7)

For 1 ≤ i ≤ r − 2, let COLLi = colli ∨ coll′i. If COLLi does not happen, then by above
coupling method, these two ciphers would have identical outputs at (i+ 2)-th round, i.e.,
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the coupling succeeds. Otherwise we consider next two rounds. According to the previous
analysis, the upper bound probability of COLLi is unrelated to previous i − 2 rounds,
namely unrelated to COLLi−2,COLLi−4, . . . ,COLL1. Let Fails denote the event that we
fail to couple these two tweakable ciphers with respect to the tweak Ws. We bound the
NCPA-security of TGFr[ω, 2n] by the following lemma.

Lemma 8. Let TGFr[ω, 2n] be a tweakable blockcipher-based generalized Feistel with r
rounds, where r = 2t+ 1. Then one has

Advncpa
TGFr[ω,2n](q) ≤

q

t+ 1

(
30q
22n

)t
.

Proof. Using Lemma 1 and Equation (7), for any s ≤ d and ` ≤ qd − 1, one has

‖µs,` − µs,`+1‖
≤ Pr[Fails]

≤ Pr[∩
r−1

2
i=1 COLL2i−1]

≤ Pr[COLL1] · Pr[COLL3 | COLL1] · · · · · Pr[COLL2t−1 | COLL1 ∩ . . . ∩ COLL2t−3]

≤
(

30`
22n

)t
,

where the last inequality comes from the fact that the upper bound probability of COLL2i−1
is unrelated to COLL2j−1 for 1 ≤ j ≤ i− 1. By hybrid argument, we have

Advncpa
TGFr[ω,2n](q) ≤

d∑
s=1

qd−1∑
`=0
‖µs,` − µs,`+1‖

≤
d∑
s=1

qd−1∑
`=0

(
30`
22n

)t

≤
d∑
s=1

qs
t+ 1

(
30qs
22n

)t
≤ q

t+ 1

(
30q
22n

)t
,

which concludes the proof.

Since we are now working on tweakable blockciphers, we cannot use Lemma 5 to
obtain the CCA-security of TGFr[ω, 2n]. Instead, we use another composition lemma for
tweakable blockciphers to obtain the CCA-security. The proof of this lemma can be found
in [LS14].

Lemma 9. Let Ẽ1 and Ẽ2 be two tweakable blockciphers with the same set of tweaks and
the same message space, satisfying:

Advñcpa
Ẽ1

(q) ≤ β1 and Advñcpa
Ẽ2

(q) ≤ β2.

Then
Advc̃ca

Ẽ−1
2 ◦Ẽ1

(q) ≤ 2(
√
β1 +

√
β2).

Theorem 8. Let TGFr[ω, 2n] be a tweakable blockcipher-based Feistel with r rounds where
r = 4t+ 2. Then

Advc̃ca
TGFr[ω,2n](q) ≤ 2 ·

(
q

t+ 1

(
30q
22n

)t)1/2
.
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Proof. Since the internal construction of TGFr[ω, 2n] is different from those of previous
Feistel ciphers, we cannot use the same strategy as in the proof of Theorem 1 by replacing
the middle round function of a (2r′ − 1)-round Feistel with the xor of two independent
functions. However, we can see a 2r′-round TGFr[ω, 2n] as the cascade of and r′-round
TGFr[ω, 2n] and the inverse of the inverse of an independent r′-round TGFr[ω, 2n] where
r′ = 2t+1. Note that the NCPA-security of the inverse version of TGFr[ω, 2n] is exactly the
same as the NCPA-security of TGFr[ω, 2n]. The result then follows directly by combining
Lemma 9 and Lemma 8.

NCPA Tightness at 3 Rounds. To complete this section, we demonstrate a NCPA attack
against 2-round TGFr[ω, 2n] with 2n/2 complexity. This shows that Lemma 8 is tight when
t = 1, i.e., with 3 rounds. The adversary choose q queries (W,A1

0‖B), . . . , (W,Aq0‖B), i.e.,
the right halves of these plaintexts are same while the left halves are distinct, and ask these
queries to 2-round TGFr[ω, 2n]. The q left halves of the corresponding ciphertexts would
be distinct since P̃1 is a permutation for a fixed tweak W‖B. However, in the ideal world,
when the adversary interacting with an 2n-bit random tweakable permutation, the chance
that there exists a pair of ciphertexts having the same left half among these outputs is
about q2/2n. Hence the distinguishing advantage is ≈ 1 when q ≈ 2n/2.

7 Conclusion
We present (refined) coupling arguments for various generalized Feistel networks: for
unbalanced, alternating, type-1, type-2, and type-3 Feistel networks, we substantially
improved existing bounds; for a tweakable blockcipher-based domain extension scheme of
Coron et al., we present the first 2n-bits security proof.

Unsurprisingly, coupling only reaches 2n-bits (or n-bits) security with a large number
of rounds. It’s unclear if the recently introduced promising χ2 method [DHT17] could
yield this result for any of the GFNs at a relatively small number of rounds r, and we
leave this as an open question.
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A Proof for Alternating Feistel
We generalize the operator � in NALFr[M,N ] to any two group operators in ZM and ZN ,
and regard ALFr[m,n] as a special case. We now prove the NCPA-security of NALFr[M,N ].
We shall use a similar strategy as in the case of UBFr[m,n]. Fix an integer ` ≤ q − 1.
We denote µ` the distribution of the (`+ 1) outputs of the NALFr[M,N ] when it receives
inputs (X1, . . . , X`, X`+1), and µ`+1 the distribution of (`+1) outputs of the NALFr[M,N ]
when it receives inputs (X1, . . . , X`, U`+1), where U`+1 is chosen uniformly at random
from ZMN \ {X1, . . . , X`}. Our goal is to describe a coupling of µ` and µ`+1.

The Coupling. To avoid the bound falling short with min(M,N) which has been pointed
out in [HR10a], we use the same expanding round functions at each even round for these
two ciphers, and show how to couple them at odd round. For 1 ≤ j ≤ `+ 1, let Aj0 and
Bj0 denote respectively the ZM part and ZN of Xj and for 1 ≤ i ≤ r, let Aji and Bji
recursively be defined as Aji = Fi(Bji−1)�Aji−1 and Bji = Bji−1 when i is odd, and defined
as Aji = Aji−1 and Bji = Fi(Aji−1) � Bji−1 when i is even. For any 1 ≤ j ≤ ` and odd
i ∈ {1, 3, . . . , r − 1}, we simply set F ′i (B

j
i−1) = Fi(Bji−1). Since the first ` queries to the

second cipher are the same as to the first one, this leads to the first ` outputs of both
ciphers being identical. Let C`+1

0 and D`+1
0 denote the ZM part and ZN of U`+1. We then

explain how the (`+ 1)-th queries are coupled. For the first two rounds, we couple the
random outputs in the processing of X`+1 and U`+1 arbitrarily. For i ∈ {2, 4, . . . , r − 2},
we define a bad event which may occur in each Feistel cipher. We say that colli occurs if
B`+1
i is equal to Bji for some 1 ≤ j ≤ `, namely the input value to the (i+ 1)-th round

function at the (` + 1)-th query collides with the input value for some previous query
Xj . Similarly, we say that coll′i occurs if D`+1

i is equal to Bji for some 1 ≤ j ≤ `. Define
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COLLi = colli∪ coll′i for any i ∈ {2, 4, . . . , r}. Let b = 3dlogM Ne. For i ∈ {2, 4, . . . , r−2b},
let BCOLLi be the event such that at least one of COLLi,COLLi+2, . . . ,COLLi+2b happens.
Then

Pr[BCOLLi] ≤ Pr[COLLi ∪ . . . ∪ COLLi+2b]. (8)

We first upper bound the probability of the event BCOLLi, and then show how to efficiently
couple conditioned on BCOLLi.

Lemma 10. Consider a numeric alternating Feistel cipher NALFr[M,N ] with even r
rounds. For any i ∈ {2, 4, . . . , r} and any subset S ⊆ {2, 4, . . . , i− 2}, one has

Pr[COLLi | ∩s∈SCOLLs] ≤
2`
N
,

where ` is the number of queries that has made to the cipher before the coupling.

Proof. Event colli happens if B`+1
i = Bji for some j ∈ [1; `]. This is equivalent to

Fi(A`+1
i−1) �B`+1

i−1 = Fi(Aji−1) �Bji−1.

If A`+1
i−1 6= Aji−1, then this happens with probability at most 1

N since Fi is uniformly random
and independent of ∩s∈SCOLLs. If A`+1

i−1 = Aji−1, then necessarily B`+1
i 6= Bji otherwise

this would contradict the hypothesis that X`+1 and Xj are distinct queries. Summing over
j ∈ [1; `], the probability of colli is at most `

N . By similar reasoning, we can obtain the
probability of coll′i happens is at most `

N . The result then follows by the union bound.

For X`+1 and i ∈ {2, 4, . . . , r−2b}, let Gi = (Fi+2, Fi+4, . . . , Fi+2b) be a sequence of ex-
panding round functions at rounds i+2, i+4, . . . , i+2b, let Ci be a random vector denoting a
sequence of ZM parts at rounds i+1, i+3, . . . , i+2b−1, i.e., Ci = (A`+1

i+1 , A
`+1
i+3 , . . . , A

`+1
i+2b−1).

Let Gi(Ci) denote Fi+2(A`+1
i+1) � Fi+4(A`+1

i+3) � · · · � Fi+2b(A`+1
i+2b−1). Denote by xi the

output of X`+1 at i-th round, and if yi is the output of X`+1 at (i+ c)-th round, then it is
easy to obtain

yi (mod N) = (xi (mod N)) �Gi(Ci).

by induction on c. Denote C∗i = (C`+1
i+1 , C

`+1
i+3 , . . . , C

`+1
i+2b−1) and Gi(C∗i ) = Fi+2(C`+1

i+1 ) �
Fi+4(C`+1

i+3 ) � · · ·� Fi+2b(C`+1
i+2b−1) similarly for U`+1. We shall use the following lemma

by Hoang and Rogaway [HR10a, Lemma 23].

Lemma 11. For an integer a > 0, let G $←− Funca(ZM ,ZN ). Then for any z, z∗ ∈ ZN ,
there exist a random permutation ϕ on ZaM , which is deterministic if given G, such that
for any independent C

$←− ZaM , the probability of z � G(C) 6= z∗ � G(ϕ(C)) is at most√
N/Ma.

We will extend the coupling strategy in [HR10a, Appendix B] to reduce the total number
of rounds in the coupling procedure. Fix some even integer i ∈ {2, 4, . . . , r − 2b− 2}. We
let C∗i = ϕi(Ci) and C`+1

i+2b+1 = A`+1
i+2b+1 whenever BCOLLi does not occur and where ϕi

is the permutation given by Lemma 11, otherwise we couple it arbitrarily. We show this
coupling strategy is sound since when BCOLLi failed, Ci is a tuple of n-bit uniformly
random values and so does C∗i = ϕi(Ci), and A`+1

i+2b+1 is a n-bit uniformly random string
and so does C`+1

i+2b+1.
Hence conditioned on BCOLLi and from Lemma 11, the chance that X`+1 and U`+1

disagree on their outputs at round i+ 2b+ 2 is at most 1
N . From Lemma 11 and by the

union bound, the probability that BCOLLi occurs is at most 2(b+ 1)`/N conditioned on
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∩s∈SCOLLs for any subset S ⊆ {2, 4, . . . , i− 2}. Denote by Faili the event that we fail to
couple these two ciphers at round i+ 2b+ 2, then we have

Pr[Faili] ≤
2(b+ 1)`

N
+ 1
N
.

Let Fail denote the event that we fail to couple these two Feistel ciphers at the end.
We then bound the NCPA-security of NALFr[M,N ].

Lemma 12. Let NALFr[M,N ] be a numeric alternating Feistel cipher with r rounds,
where r = 2 + (2b+ 1)t+ 1 and M ≤ N . Then

Advncpa
NALFr[M,N ](q) ≤

q

t+ 1

(
2bq + 3q

N

)t
.

Proof. Using Lemma 1 and from the above coupling analysis, for any ` ≤ q − 1, one has

‖µ` − µ`+1‖ ≤ Pr[Fail]
≤ Pr[∩t−1

i=0Fail2+(2b+1)i]

≤
t−1∏
i=0

Pr[Fail2+(2b+1)i]

≤
(

2b`+ 2`
N

+ 1
N

)t
,

where the last inequality is due to Lemma 10. Hence, by hybrid argument, we have

Advncpa
NALFr[M,N ](q) ≤

q−1∑
`=0
‖µ` − µ`+1‖

≤
q−1∑
`=0

(
2b`+ 2`
N

+ 1
N

)t
≤

(
2b+ 3
N

)t ∫ q

0
xtdx

= q

t+ 1

(
2bq + 3q

N

)t
,

which concludes the proof.

Following the similar arguments as in the case of unbalanced Feistel cipers, we obtain
the CCA-security of NALFr[M,N ] and subsequently the CCA-security of ALFr[m,n].

B Proof for Multi-line Feistels

B.1 Type-1 Feistel
We now prove the NCPA-security of Feistel1r[k, n]. Fix an integer ` ≤ q − 1. We denote
µ` the distribution of the (` + 1) outputs of the Feistel1r[k, n] when it receives inputs
(X1, . . . , X`, X`+1), and µ`+1 the distribution of the (`+ 1) outputs of the Feistel1r[k, n]
when it receives (X1, . . . , X`, U`+1) where U`+1 is chosen uniformly at random from
{0, 1}kn \ {X1, . . . , X`}. Our goal is to describe a coupling of µ` and µ`+1.
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The Coupling. For 1 ≤ i ≤ `+ 1 and 1 ≤ j ≤ k, let Ai0[j] denote the j-th n bits of Xi

and for 1 ≤ s ≤ r, let Ais[1], . . . , Ais[k] be recursively defined as Ais[1] = Fs(Ais−1[1]) ⊕
Ais−1[2], Ais[2] = Ais−1[3], . . . , Ais[k − 1] = Ais−1[k], Ais[k] = Ais−1[1]. For any 1 ≤ i ≤ ` and
1 ≤ s ≤ r, we simply let F ′i (Ais[1]) = Fi(Ais[1]). Since the first ` queries to the second Feistel
are the same as those to the first one, this leads to the ` first outputs of both ciphers being
identical. For 1 ≤ j ≤ k, let B`+1

0 [j] denote the j-th n bits of U`+1 and for 1 ≤ s ≤ r, let
B`+1
s [1], . . . , B`+1

s [k] be recursively defined as B`+1
s [1] = F ′s(B`+1

s−1[1])⊕B`+1
s−1[2], B`+1

s [2] =
B`+1
s−1[3], . . . , B`+1

s [k− 1] = B`+1
s−1[k], B`+1

s [k] = B`+1
s−1[1]. We then explain how the (`+ 1)-th

queries are coupled. For the first k − 2 rounds, we couple the random outputs in the
processing of X`+1 and U`+1 arbitrarily. For round i ≥ k − 1, we define a bad event which
may happen in each Feistel cipher. We say that colli occurs if A`+1

i [1] is equal to Aji [1] for
some 1 ≤ j ≤ `. Similarly, we say that coll′i occurs if B`+1

i [1] collides with Aji [1] for some
1 ≤ j ≤ `. Then for i = 0, 1, . . . , r − 1, we define F ′i+1(B`+1

i [1]) as follows:

• if coll′i occurs, then F ′i (B`+1
i ) is defined so as to ensure consistency with the earlier

queries;

• if coll′i does not occur while colli occurs, then F ′i+1(B`+1
i ) is chosen uniformly at

random from {0, 1}n;

• if neither colli nor coll′i occurs, then we define F ′i+1(B`+1
i [1]) so that B`+1

i+1 [1] =
A`+1
i+1 [1]:

F ′i+1(B`+1
i [1]) = Fi+1(A`+1

i [1])⊕A`+1
i [2]⊕B`+1

i [2].

If neither colli nor coll′i occurs for k consecutive rounds i, . . . , i + k − 1 then X`+1 and
U`+1 will have the same first n bits output at rounds i + 1, . . . , i + k, and thus have
identical outputs at round i+ k and so any subsequent rounds, namely the coupling will
be successful. Denote COLLi = colli ∪ coll′i for any k − 1 ≤ i ≤ r. Let Fail be the event
that the coupling does not succeed. Then

Pr[Fail] ≤ Pr[∩r−ki=k−1(∪j=i+k−1
j=i COLLj)].

We upper bound the term on the right hand side by the following lemma.

Lemma 13. In the blockcipher Feistel1r[k, n], for any i ∈ [k − 1; r] and any subset
S ⊆ [k − 1; i− k + 1], one has

Pr[COLLi | ∩s∈SCOLLs] ≤
2(k − 1)`

2n ,

where ` is the number of queries that has made to the cipher before the coupling.

Proof. We first consider the event colli. Event colli occurs if A`+1
i [1] = Aji [1] for some

j ∈ [1; `]. This is equivalent to

Fi(A`+1
i−1 [1])⊕A`+1

i−1 [2] = Fi(Aji−1[1])⊕Aji−1[2].

If A`+1
i−1 [1] and Aji−1[1] differs, then this equation occurs with probability at most 2−n,

because Fi is uniformly random and independent of ∩s∈SCOLLs. If A`+1
i−1 [1] = Aji−1[1], this

implies A`+1
i−1 [2] = Aji−1[2]. Repeating this argument leads us to examine the outputs at

round i− 2 should agree at the first 3n bits, and then the outputs at round i− 3 should
agree at the first 4n bits, and so on. Finally when this argument arrive at round i− k + 1,
the outputs at this round must be identical which contradicts the hypothesis that X`+1
and Xj are two distinct queries. Hence by the union bound and summing over j ∈ [1; `],
the event colli holds with probability at most (k − 1)`/2n.
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This allows us to upper bound the probability that the coupling fails and thus the
NCPA-security of Feistel1r[k, n].

Lemma 14. Let Feistel1r[k, n] be a type-1 Feistel cipher with r rounds, where r = 2t(k −
1) + 1. Then

Advncpa
Feistel1r[k,n](q) ≤

q

t+ 1

(
2k(k − 1)q

2n

)t
Proof. Using Lemma 1 and Lemma 13, for any ` ≤ q − 1, one has

‖µ` − µ`+1‖ ≤ Pr[Fail]
≤ Pr[∩r−ki=k−1(∪i+k−1

j=i COLLj)]

≤ Pr[∩ti=1(∪2i(k−1)
j=(2i−1)(k−1)COLLj)]

≤
(

2k(k − 1)`
2n

)t
.

Hence by hybrid argument, we have

Advncpa
Feistel1r[k,n](q) ≤

q−1∑
`=0
‖µ` − µ`+1‖

≤
q−1∑
`=0

(
2k(k − 1)`

2n

)t
≤

(
2k(k − 1)

2n

)t ∫ q

0
xtdx

≤ q

t+ 1

(
2k(k − 1)q

2n

)t
as claimed.

As pointed out in [HR10b], type-1 Feisel is not symmetric, and the inverse of type-1
Feistel has worse NCPA-security than its forward version. So we need another lemma rather
than directly applying Lemma 13 to prove the NCPA-security of its inverse. We follow a
similar strategy as in [HR10b], but bound the collision probability in a different way. We
define another cipher called type-4 Feistel. Let F : {0, 1}n → {0, 1}n define a permutation
ΦF over {0, 1}kn by way of ΦF (A[1], . . . , A[k]) = (A[k], A[1], A[2]⊕F (A[1]), A[3], . . . , A[k−
1]), where |A[i]| = n. A type-4 Feistel cipher with r rounds is specified by the r-fold
composition of ΦF permutations, and will be denoted as Feistel4r[k, n] : K × {0, 1}kn →
{0, 1}kn. It has key space K = (Func(n, n))r and message space {0, 1}kn.

Let Feistel1r[k, n]−1 be the inverse of type-1 Feistel, we can see there exists a relation
between Feistel1r[k, n]−1 and Feistel4r[k, n]. Let Rot denote the right rotational shift by n
bits. Then Rot−1 ◦Feistel1r[k, n]−1 ◦Rot is a Feistel4r[k, n]. It is clear Rot does not change
the distinguishing advantage since it is a public operation. So it is suffices to bound the
NCPA-security of Feistel4r[k, n].

With the same notations as in the NCPA-security proof of Feistel1r[k, n], we say colli
occurs if A`+1

i [1] is equal to Aji [1] for some 1 ≤ j ≤ `, and say coll′i occurs if B`+1
i [1] collides

with Aji [1] for some 1 ≤ j ≤ `. Denote COLLi = colli ∪ coll′i for any (k− 1)2 ≤ i ≤ r. Then
the NCPA-security proof for Feistel4r[k, n] is similar to that of Feistel1r[k, n], but Lemma
13 is replaced by the following result.
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Lemma 15. In the blockcipher Feistel4r[k, n], for any i ∈ [(k − 1)2; r] and any subset
S ⊆ [(k − 1)2; i− (k − 1)2], one has

Pr[COLLi | ∩s∈SCOLLs] ≤
2(k − 1)`

2n ,

where ` is the number of queries that has made to the cipher before the coupling.

Proof. We consider the event colli first. The reasoning is similar for the probability that
coll′i happens. Event colli occurs if A`+1

i [1] = Aji [1] for some j ∈ [1; `]. This is equivalent to

Fi−k+2(A`+1
i−k+1[1])⊕A`+1

i−k+1[2] = Fi−k+2(Aji−k+1[1])⊕Aji−k+1[2].

If A`+1
i−k+1[1] 6= Aji−k+1, then the prior equation holds with probability at most 2−n since

Fi−k+2 is uniformly random and independent of ∩s∈SCOLLs. If A`+1
i−k+1[1] = Aji−k+1[1],

this implies that A`+1
i−k+1[2] = Aji−k+1[2]. Repeating this argument lead us to examine the

outputs at round i− 2(k − 1) should agree at the first 2n bits, and the outputs at round
i− 3(k − 1) should agree at the first 3n bits, and so on. Eventually when this argument
arrive at round i− (k− 1)2, the outputs must be identical which contradicts the hypothesis
that X`+1 and Xj are two distinct queries. Hence by the union bound and summing over
j ∈ [1; `], the event colli holds with probability at most (k − 1)`/2n.

By similar proof as that of Lemma 14, we can obtain the NCPA-security of Feistel4r[k, n].

Lemma 16. Let Feistel4r[k, n] be a type-4 Feistel cipher with r rounds, where r = (k2 −
k)t+ 1. Then

Advncpa
Feistel4r[k,n](q) ≤

q

t+ 1

(
2k(k − 1)q

2n

)t
.

From Lemma 5 and combining Lemma 14 and Lemma 16, we can get the CCA-security
bound of Feistel1r[k, n].

B.2 Type-2 Feistel
We now prove the NCPA-security of Feistel2r[k, n]. We shall use a similar strategy as in the
proof of Theorem 1. We consider two Feistel2r[k, n] in parallel. The round functions of the
first Feistel2r[k, n] are denoted as (F1, . . . , Fr), where Fi = (fi,1, . . . , fi,k/2) for 1 ≤ i ≤ r,
while the round functions of the second one are (F ′1, . . . , F ′r), where F ′i = (f ′i,1, . . . , f ′i,k/2) for
1 ≤ i ≤ r. Fix an integer ` ≤ q−1. We denote µ` the distribution of the (`+1) outputs of the
Feistel2r[k, n] when fed with inputs (X1, . . . , X`, X`+1), and denote µ`+1 the distribution
of the (`+ 1) outputs of the Feistel2r[k, n] when fed with inputs (X1, . . . , X`, U`+1), where
U`+1 is chosen uniformly at random from the set {0, 1}kn \ {X1, . . . , X`}. We then show a
coupling of µ` and µ`+1.

The Coupling. For 1 ≤ i ≤ `+ 1 and 1 ≤ j ≤ k, let Ai0[j] denote the j-th n bits of Xi

and for 1 ≤ s ≤ r, let Ais[1], . . . , Ais[k] be recursively defined as Ais[1] = fs,1(Ais−1[1]) ⊕
Ais−1[2], Ais[2] = Ais−1[3], . . . , Ais[k−1] = fs,k/2(Ais−1[k−1])⊕Ais−1[k], Ais[k] = Ais−1[1]. For
any 1 ≤ i ≤ `, 1 ≤ s ≤ r, we simply define f ′s,1(Ais−1[1]) = fs,1(Ais−1[1]), . . . , f ′s,k/2(Ais−1[k−
1]) = fs,k/2(Ais−1[k − 1]). Because the first ` queries to these two ciphers are the
same, this turns the ` first outputs of both ciphers to be identical. For 1 ≤ j ≤ k,
let B`+1

0 [j] be the j-th n bits of U`+1 and for 1 ≤ s ≤ r, let B`+1
s [1], . . . , B`+1

s [k]
be defined as B`+1

s [1] = f ′s,1(B`+1
s−1[1]) ⊕ B`+1

s−1[2], B`+1
s [2] = B`+1

s−1[3], . . . , B`+1
s [k − 1] =

f ′s,k/2(B`+1
s−1[k − 1]) ⊕ B`+1

s−1[k], B`+1
s [k] = B`+1

s−1[1]. We then describe how the (` + 1)-th
queries are coupled. For the first k − 1 rounds, we couple the random outputs in the
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processing of X`+1 and U`+1 arbitrarily. For round i > k − 1, we define a bad event that
may occurs in each cipher. We say colli occurs if there exists some s ≤ k/2 such that
A`+1
i [2s − 1] = Aji [2s − 1] for some 1 ≤ j ≤ `, that is, the input value to the (i + 1)-th

round function fi+1,s collides with the previous input values. Similarly, we say that coll′i
occurs if B`+1

i [2s− 1] collides with Aji [2s− 1] for some 1 ≤ j ≤ ` and 1 ≤ s ≤ k/2. Then
for i = 0, . . . , r − 1 and 1 ≤ s ≤ k/2, we define f ′i+1,s(B`+1

i [2s− 1]) as follows:

• if coll′i occurs, then f ′i+1,s(B`+1
i [2s− 1]) is defined so as to ensure consistency with

the previous query;

• if coll′i does not occur while colli occurs, then f ′i+1,s(B`+1
i [2s−1]) is chosen uniformly

at random from {0, 1}n for 1 ≤ s ≤ k/2;

• if neither colli nor coll′i occurs, then we will define f ′i+1,s(B`+1
i [2s − 1]) so that

B`+1
i+1 [2s− 1] = A`+1

i+1 [2s− 1] for 1 ≤ s ≤ k/2:

f ′i+1,s(B`+1
i [2s− 1]) = fi+1,s(A`+1

i [2s− 1])⊕B`+1
i [2s]⊕A`+1

i [2s] for 1 ≤ s ≤ k/2.

If neither colli nor coll′i occurs for two consecutive rounds i, i+ 1 then X`+1 and U`+1 will
have identical outputs at round i+ 2 then so are their outputs at any subsequent rounds,
namely the coupling succeeds. Denote COLLi = colli ∪ coll′i for any k − 1 ≤ i ≤ r. Let Fail
denote the event that the coupling does not succeed. Then

Pr[Fail] ≤ Pr[∩r−2
i=k−1(∪i+1

j=iCOLLj)].

We bound the probability of failure of coupling by the following lemma.

Lemma 17. In the blockcipher Feistel2r[k, n], for any i ∈ [k − 1; r] and any subset
S ⊆ [k − 1, i− k + 1], one has

Pr[COLLi | ∩s∈SCOLLs] ≤
k(k − 1)`

2n ,

where ` is the number of queries that has made to the cipher before the coupling.

Proof. We begin to analyze the event colli. The proof for coll′i is similar. We will show
that the chance two queries have the same input to fi+1,s is at most (k − 1)/2n for any
1 ≤ s ≤ k/2. Hence by the union bound and summing over j ∈ [1; `], the chance that colli
happens is as most k(k − 1)`/2n+1.

Suppose that X`+1 and Xj have the same input to fi+1,s, i.e., A`+1
i [2s−1] = Aji [2s−1].

This implies that fi,s(A`+1
i−1 [2s−1])⊕A`+1

i−1 [2s] = fi,s(Aji−1[2s−1])⊕Aji−1[2s]. If A`+1
i−1 [2s−

1] 6= Aji−1[2s− 1], then the prior equation occurs with probability at most 2−n since fi,s
is uniformly random and independent of ∩s∈SCOLLs. If A`+1

i−1 [2s − 1] and Aji−1[2s − 1]
equal, then A`+1

i−1 [2s] = Aji−1[2s] must hold. Repeating this argument leads us to examine
at round i − c for c < k, it should hold that A`+1

i−c [2s − 1] = Aji−c[2s − 1], A`+1
i−c [2s] =

Aji−c[2s], . . . , A
`+1
i−c [(2s − 1 + c) mod k] = Aji−c[(2s − 1 + c) mod k]. Finally when this

argument arrive at round i− k+ 1, then the outputs of these two queries must be identical
which is a contradiction. Hence by the union bound, the chance that X`+1 and Xj have
the same input to fi+1,s is at most (k − 1)/2n.

We then use the above lemma to bound the probability of coupling fails and therewith
the NCPA-security of Feistel2r[k, n].

Lemma 18. Let Feistel2r[k, n] be a type-2 Feistel cipher with r rounds, where r = kt+ 1.
Then

Advncpa
Feistel2r[k,n](q) ≤

q

t+ 1

(
2k(k − 1)q

2n

)t
.
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Proof. From Lemma 1 and Lemma 17, for any ` ≤ q − 1, one has

‖µ` − µ`+1‖ ≤ Pr[Fail]
≤ Pr[∩r−2

i=k−1(∪i+1
j=iCOLLj)]

≤ Pr[∩ti=1(∪ikj=ik−1COLLj)]

≤
(

2k(k − 1)`
2n

)t
.

By hybrid argument, we can get

Advncpa
Feistel2r[k,n](q) ≤

q−1∑
`=0
‖µ` − µ`+1‖

≤
q−1∑
`=0

(
2k(k − 1)`

2n

)t
≤

(
2k(k − 1)

2n

)t ∫ q

0
xtdx

≤ q

t+ 1

(
2k(k − 1)q

2n

)t
as claimed.

Using the similar arguments as in the proof of Theorem 1, we can obtain the CCA-
security of Feistel2r[k, n] by composing two NCPA-secure ciphers.

B.3 Type-3 Feistel
We now prove the NCPA-security of Feistel3r[k, n]. We use the similar notations as those
in type-2 case. For i ≥ k − 1, we say colli occurs if there exists some s ≤ k − 1 such that
A`+1
i [s] = Aji [s] for some 1 ≤ j ≤ `. Similarly, we say that coll′i occurs if B`+1

i [s] collides
with Aji [s] for some 1 ≤ j ≤ ` and 1 ≤ s ≤ k − 1. Define COLLi = colli ∪ coll′i for any
k−1 ≤ i ≤ r. The proof of Feistel3r[k, n] is similar to that of type-2 Feistel, except Lemma
17 is replaced by the following one.

Lemma 19. In the blockcipher Feistel3r[k, n], for any i ∈ [k − 1; r] and any subset
S ⊆ [k, i− k + 1], one has

Pr[COLLi | ∩s∈SCOLLs] ≤
2(k − 1)2`

2n ,

where ` is the number of queries that has made to the cipher before the coupling.

Proof. We first analyze the event colli and the proof for coll′i is similar. We will show taht
the probability that two queries have the same input to fi+1,s is at most (k − 1)/2n for
any 1 ≤ s ≤ k − 1. Hence by the union bound and summing over j ∈ [1; `], the chance
that colli happens is at most (k − 1)2`/2n.

Fix s ≤ k− 1. Suppose that X`+1 and Xj have the same input to fi+1,s, i.e. A`+1
i [s] =

Aji [s]. This is equivalent to fi,s(A`+1
i−1 [s]) ⊕ A`+1

i−1 [s + 1] = fi,s(Aji−1[s]) ⊕ Aji−1[s + 1]. If
A`+1
i−1 [s] 6= Aji−1[s], then the prior equation holds with probability at most 2−n since fi,s

is uniformly random and independent of ∩s∈SCOLLs. If A`+1
i−1 [s] and Aji−1 equal, then

A`+1
i−1 [s + 1] = Aji−1[s + 1] must hold. Repeating this argument leads us to examine

at round i − c for every c < k, it should hold that A`+1
i−c [s] = Aji−c[s], A

`+1
i−c [s + 1] =
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Aji−c[s+1], . . . , A`+1
i−c [(s+c) mod k] = Aji−c[(s+c) mod k]. Eventually when this argument

arrive at round i− k + 1, the outputs of these two queries at this round must be equal
which contradicts the hypothesis that X`+1 and Xj are two distinct queries. Hence by
the union bound the chance that X`+1 and Xj have the same input to fi+1,s is at most
(k − 1)/2n.

We proceed to prove the NCPA-security of the inverse of Feistel3r[k, n], denoted by
Feistel3r[k, n]−1. Using Lemma 5 then yields the result. We follow a similar strategy as in
[HR10b], but bound the collision probability in a different way. Given fi : {0, 1}n → {0, 1}n
for every i ≤ k − 1, let F = (f1, . . . , fk−1) define a permutation ΦF over {0, 1}kn by
ΦF (A1[1], . . . , A1[k]) = (A2[1], . . . , A2[k]), where |A1[i]| = n, A2[2] = A1[1], and A2[j] =
fj−2(A2[j − 1])⊕A1[j − 1] for any 3 ≤ j ≤ k, and A2[1] = fk−1(A2[k])⊕A1[k]. A type-5
Feistel cipher with r rounds is obtained by the r-fold composition of ΦF permutations,
and will be denoted as Feistel5r[k, n] : K × {0, 1}kn → {0, 1}kn. It has key space K =
(Func(n, n))(k−1)n and message space {0, 1}kn. We can see there exists a relation between
Feistel3r[k, n]−1 and Feistel5r[k, n] : Rot−1 ◦ Feistel3r[k, n] ◦ Rot is a Feistel5r[k, n] where
Rot denotes the right rotational shift by n bits. Since Rot is a public operation, it suffices
to bound the NCPA-security of Feistel5r[k, n].

We use the similar notations as in type-2 case. We say colli occurs if there exists some
1 ≤ j ≤ ` such that A`+1

i [1] = Aji [1], namely the first block of outputs at round i collides
with some previous block. Similarly we define the event coll′i that B`+1

i [1] = Aji for some
1 ≤ j ≤ `, and let COLLi = colli ∪ coll′i. For the first round, we couple the internal outputs
in processing of X`+1 and U`+1 arbitrarily. For 2 ≤ i ≤ r and 1 ≤ s ≤ k − 1, we define
f ′i,s(B`+1

i [s+ 1]) as follows:

• if B`+1
i [s+ 1] has appeared in the set {A1

i [s+ 1], . . . , A`i [s+ 1]} (namely B`+1
i [s+ 1]

is not fresh), then f ′i,s(B`+1
i [s+ 1]) is defined according to previous queries;

• if A`+1
i [s+ 1] has appeared in the set {A1

i [s+ 1], . . . , A`i [s+ 1]} (namely A`+1
i [s+ 1] is

not fresh) while B`+1
i does not, then f ′i,s(B`+1

i [s+ 1]) is chosen uniformly at random
from {0, 1}n;

• neither A`+1
i [s+ 1] nor B`+1

i [s+ 1] has appeared in the set {A1
i [s+ 1], . . . , A`i [s+ 1]},

then f ′i,s(B`+1
i [s+ 1]) is defined so that B`+1

i [s+ 2 mod k] = A`+1
i [s+ 2 mod k]:

f ′i,s(B`+1
i [s+ 1]) = fi,s(A`+1

i [s+ 1])⊕A`+1
i−1 [s+ 1]⊕B`+1

i−1 [s+ 1].

To bound the probability that this coupling method fails, we first prove the following
lemma.

Lemma 20. In the blockcipher Feistel5r[k, n], for any i ∈ [1; r] and any subset S ⊆ [1, i−1],
one has

Pr[COLLi | ∩s∈SCOLLs] ≤
2(k − 1)`

2n ,

where ` is the number of queries that has made to the cipher before the coupling.

Proof. We first consider the event colli. The event colli says that A`+1
i [1] = Aji [1], namely

fi,k−1(A`+1
i [k])⊕A`+1

i−1 [k] = fi,k−1(Aji [k])⊕Aji−1[k].

Since X`+1 6= Xj , there must exist some 1 ≤ c ≤ k such that A`+1
i−1 [c] 6= Aji−1[c]. If

A`+1
i−1 [c] = Aji−1[c] for 1 ≤ c ≤ k − 1 and A`+1

i−1 [k] 6= Aji−1[k], then apparently the above
equation cannot hold. So there must exist some 1 ≤ c ≤ k− 1 such that A`+1

i−1 [c] 6= Aji−1[c].
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We will prove the above equation holds with probability at most (k − 1)/2n by induction
on k. For k = 2, the equation

fi,1(A`+1
i [2])⊕A`+1

i−1 [2] = fi,1(Aji [2])⊕Aji−1[2]

is equivalent to
fi,1(A`+1

i−1 [1])⊕A`+1
i−1 [2] = fi,1(Aji−1[1])⊕Aji−1[2]

which holds with probability at most 1/2n since there exist some 1 ≤ c ≤ 2 such that
A`+1
i−1 [c] 6= Aji−1[c]. Suppose the assumption holds for k = x− 1, we will prove that it is

also true when k = x. For k = x, the equation is

fi,x−1(A`+1
i [x])⊕A`+1

i−1 [x] = fi,x−1(Aji [x])⊕Aji−1[x].

Since the assumption is ture when k = x− 1, namely the equation

A`+1
i [x] = Aji [x]

holds with probability at most (x− 2)/2n. Thus for k = x, the targeted equation holds
with probability at most

x− 2
2n + 1

2n = x− 1
2n ,

since conditioned on A`+1
i [x] 6= Aji [x], the equation holds with probability 1/2n regardless

of the conditioned set ∩s∈SCOLLs. Hence the event colli holds with probability at most
(k − 1)/2n. The analysis for the event coll′i is similar and by the union bound, the event
COLLi holds with probability at most 2(k − 1)/2n.

We now bound the probability that the coupling fails and thus the NCPA-security of
type-5 Feistel. If at rounds i and i+ 1, for any 1 ≤ s ≤ k − 1, A`+1

i [s+ 1] and B`+1
i [s+ 1]

are both fresh, namely both never appeared in the set {A1
i [s + 1], . . . , A`i [s + 1]}, and

A`+1
i+1 [s+ 1] and B`+1

i+1 [s+ 1] are also both fresh, namely both never appeared in the set
{A1

i+1[s+ 1], . . . , A`i+1[s+ 1]}, then according to above coupling rules, X`+1 and U`+1 will
share the same output at round i + 1 and thus any subsequent rounds. For 2 ≤ i ≤ r
and 1 ≤ s ≤ k − 1, denote by BAD1i,s the event that A`+1

i [s+ 1] is not fresh. Note that
BAD1i,1 is exactly the event colli. Then we have

Pr[BAD1i,1 ∨ BAD1i,2 ∨ . . . ∨ BAD1i,k−1]

≤
k−1∑
s=1

Pr[BAD1i,s | BAD1i,1 ∧ . . . ∧ BAD1i,s−1]

≤ Pr[BAD1i,1] + (k − 2)`
2n

≤ (k − 1)`
2n + (k − 2)`

2n ,

where the third inequality is due to Lemma 20, and the second inequality is because
conditioned on BAD1i,s−1, fi,s(A`+1

i [s]) is uniformly distributed in the set {0, 1}n and
thus the probability that A`+1

i [s+ 1] = fi,s(A`+1
i [s])⊕A`+1

i−1 [s] is not fresh is at most `/2n.
Similarly for 2 ≤ i ≤ r and 1 ≤ s ≤ k− 1, we denote by BAD2i,s the event that B`+1

i [s+ 1]
is not fresh. For any i ≥ 2, by coupling these two ciphers at rounds i and i + 1, the
probability that X`+1 and U`+1 do not share the same outputs at round i+ 1 is at most

4((k − 1)`
2n + (k − 2)`

2n ) = (8k − 12)`
2n .
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Denote by Faili the event that we fail to couple these two ciphers at round i for i ≥ 3, so
thus we have

Pr[Faili] ≤
(8k − 12)`

2n
according to above analysis. Denote by Fail the probability that we fail to couple these
two ciphers at the end. Then following a similar procedure in the proof of type-1 Feistel,
we can obtain the NCPA-security result of type-5 Feistel, and thus the CCA-security of
type-3 Feistel.

Lemma 21. Let Feistel5r[k, n] be a type-5 Feistel cipher with r rounds, where r = 2t+ 1.
Then

Advncpa
Feistel5r[k,n](q) ≤

q

t+ 1

(
(8k − 12)q

2n

)t
Proof. From Lemma 1 and above analysis, for any ` ≤ q − 1, one has

‖µ` − µ`+1‖ ≤ Pr[Fail]
≤ Pr[∩ri=3Faili]
≤ Pr[∩ti=1Fail2i+1]

≤
(

(8k − 12)`
2n

)t
.

By hybrid argument, we can get

Advncpa
Feistel5r[k,n](q) ≤

q−1∑
`=0
‖µ` − µ`+1‖

≤
q−1∑
`=0

(
(8k − 12)`

2n

)t
≤

(
(8k − 12)

2n

)t ∫ q

0
xtdx

≤ q

t+ 1

(
(8k − 12)q

2n

)t
as claimed.
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