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Abstract. The bit-based division property (BDP) is the most effective technique
for finding integral characteristics of symmetric ciphers. Recently, automatic search
tools have become one of the most popular approaches to evaluating the security
of designs against many attacks. Constraint-aided automatic tools for the BDP
have been applied to many ciphers with simple linear layers like bit-permutation.
Constructing models of complex linear layers accurately and efficiently remains hard.
A straightforward method proposed by Sun et al. (called the S method), decomposes
a complex linear layer into basic operations like COPY and XOR, then models them one
by one. However, this method can easily insert invalid division trails into the solution
pool, which results in a quicker loss of the balanced property than the cipher itself
would. In order to solve this problem, Zhang and Rijmen propose the ZR method to
link every valid trail with an invertible sub-matrix of the matrix corresponding to
the linear layer, and then generate linear inequalities to represent all the invertible
sub-matrices. Unfortunately, the ZR method is only applicable to invertible binary
matrices (defined in Definition 3).
To avoid generating a huge number of inequalities for all the sub-matrices, we build
a new model that only includes that the sub-matrix corresponding to a valid trail
should be invertible. The computing scale of our model can be tackled by most of
SMT/SAT solvers, which makes our method practical. For applications, we improve
the previous BDP for LED and MISTY1. We also give the 7-round BDP results for
Camellia with F L/F L−1, which is the longest to date.
Furthermore, we remove the restriction of the ZR method that the matrix has to be
invertible, which provides more choices for future designs. Thanks to this, we also
reproduce 5-round key-dependent integral distinguishers proposed at Crypto 2016
which cannot be obtained by either the S or ZR methods.
Keywords: Complex linear layer · Non-binary matrix · Bit-based division property ·
SMT/SAT · Invertible

1 Introduction
The division property, proposed as a generalized integral property at Eurocrypt 2015 [Tod15b],
has been applied to many symmetric ciphers. It has improved many previous integral
distinguishers for block ciphers, and a remarkable application of the division property
was that, for the first time, it broke the full MISTY1 [Mat97] at Crypto 2015 [Tod15a].
Furthermore, the division property enhanced significantly the cube attacks which are
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the most powerful attacks for stream ciphers and those providing authenticated encryp-
tion properties, by eliminating the biggest limit of the classical cube attacks - that only
practical-size cubes could be chosen [TIHM17, WHT+18, HIJ+19, WHG+19].

Since its proposal, the division property has been further investigated for more applica-
tions. The original division property (word-based division property) in [Tod15b] propagates
through the successive rounds of a cipher by capturing some information resulting from the
algebraic degree of the round function. However, since it treats the round function at the
word level, by its nature some propagation information through it cannot be captured. In
order to further consider the Boolean properties of the Sboxes, Boura and Canteaut [BC16]
gave a more precise description for the division property at Crypto 2016. The bit-based
division property (BDP), which was proposed at FSE 2016 [TM16], treats the components
of the target primitive at the bit level so that more information in the structures can be
used. Compared with the word-based division property, the BDP is more likely to find
better integral characteristics.

However, it is tedious to trace the BDP by taking a commonly used programming
language such as C, because the time and memory complexities of such programs are
usually estimated as O(2n) where n is the block size. This is the exact reason why integral
distinguishers based on the BDP could only be found in [TM16] for SIMON-32 [BSS+15]
and SIMECK-32 [YZS+15] where the block size of the ciphers is limited to 32 bits. In
order to overcome this bottleneck, Xiang et al. transformed the searching for the BDP
to Mixed Integral Linear Programming (MILP) problems at Asiacrypt 2016 [XZBL16],
which had been commonly applied to search for differential and linear characteristics
[MWGP11, SHW+14, FWG+16, CLCW19]. As a result, the BDP of ciphers with the
block sizes much larger than 32 bits can be obtained efficiently, based on which improved
integral attacks for many ciphers can be achieved [SWW20, FTIM17, WGR18, SWLW18].
Since then, MILP-aided automatic search techniques have become the dominant tools
for finding the BDP. Later, some automatic search tools aided by Boolean satisfiability
problem (SAT) [Coo71] and Satisfiability Modulo Theories (SMT) [BSST09] are also built
to find the BDP [SWW17, HW19] .

Symmetric primitives need to be non-linear, and they are composed of non-linear
and linear components. It is common to base a cipher on Sboxes to facilitate the
non-linear/confusion property. Diffusion properties can typically be achieved by lin-
ear operations including simple ones such as bit-permutation (e.g. the linear layer of
PRESENT [BKL+07]) or complex ones such as an MDS matrix (e.g. the MixColumns
operation of the Advanced Encryption Standard (AES) [DR02]). The automatic search
models for the division property including the MILP model and SMT/SAT model describe
these components as constraints and call the corresponding solvers to find whether there is
a solution to the model. If the result returned by the solver shows there is no solution, then
balanced properties are satisfied. Components such as Sboxes, and basic operations COPY,
AND, and XOR have been modeled well in [XZBL16]. Thanks to these, the BDP propagations
for ciphers with a bit-permutation linear layer can be easily handled. However, the problem
of how to model the complex linear layers, e.g. the multiplication with an MDS matrix
has remained. So far two methods have been proposed to solve this problem.

S method. Any (complex) linear operation can be decomposed into a sequence of basic
operations of COPY and XOR. The core of the S method is to model these corresponding
basic operations with some auxiliary variables instead of modeling the complex linear layer
directly. As for the basic operations, they have been handled very well in [XZBL16].

The obvious advantage of the S method is that it can be applied to all those kinds of
complex linear layers. However, the crucial limitations of the S method is that it does
not consider the cancellation between terms so it will bring in some invalid division trails,
which will make the unit vectors appear in advance. In other words, the S method might
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make us miss the best integral property.
Another problem of the S method is that sometimes it cannot efficiently find the BDP

for some ciphers. For instance, in terms of the 6-round LED cipher, with 52 active bits as
the input, the S method cannot judge if a balanced property exists [SWW20] even after
24 hours. Why this is so slow is unknown, because it may depend on the internals of the
MILP solvers it calls.

ZR method. An invertible linear layer L : Fn
2 → Fn

2 can be represented as a matrix
M ∈ Fn×n

2 . In [ZR19], Zhang and Rijmen constructed a one-to-one relation between BDP
of the matrix M and the invertibility of the sub-matrices of M . Then they generated a
system of inequalities to describe the BDP through these sub-matrices and called MILP
solvers to judge the validity of the trails. Therefore, the ZR method can detect every
valid division trail accurately.

Unfortunately, the Achilles heel of the ZR method is that it can only be applied to a
so-called binary matrix (defined in Definition 3). Some simple examples for the binary
matrix are the MixColumn(s)1 matrices used in SKINNY [BJK+16] and Midori [BBI+15].
As far as we know, non-binary linear layers cannot be evaluated accurately using BDP
because in the ZR method the huge number of linear inequalities to describe all the
sub-matrices of the matrix in the linear layer will overwhelm the capacity of any MILP
solver. However, the security of some popular designs such as the AES [DR02] and ISO
standard CLEFIA [SSA+07] depends on non-binary mappings. Therefore, it is important
to build a new automatic model to efficiently describe the BDP of the non-binary linear
layers.

1.1 Our Contributions

In this paper, we construct a new model to describe the BDP which is significantly superior
to the previous ZR or the S methods. Compared with these two methods, our new model
has three advantages as follows.

Applicable to non-binary matrices of a large size. Unlike the ZR method, our approach
does not build a huge system of linear inequalities representing all the sub-matrices of the
matrix, but it enables us to judge the validity of a candidate division trail by checking the
invertibility of its corresponding sub-matrix. Therefore, the computing scale of our model
can be tackled by many constraint-based solvers, which makes our method practical.

One of our applications is to model the MDS matrices which cannot be handled by
the ZR method. In the ZR method, if one wants to model the MDS matrix of the
AES MixColumns operation, one has to generate (232 − 1) linear inequalities to represent
the BDP of it, which makes it infeasible. As a result, there is no guarantee that no
key-independent integral distinguishers for the 5-round AES exist. However, the 5-round
AES is an important primitive which has been used in many new designs [WP14]. By
taking our method, for the first time, the BDP of the AES matrix can be accurately traced
and we prove that there are indeed no 5-round key-independent distinguishers for the
AES based on the BDP. Although our result does not break the previous records for the
AES key-independent distinguisher, we answer the open question whether a longer integral
distinguisher can be found if we can accurately search for the BDP of its MDS matrix.
Our new method provides more confidence in the security of the 5-round AES and designs
based on it.

1In the specification of SKINNY [BJK+16], the operation is called MixColumns while in the specification
of Midori [BBI+15], the operation is called MixColumn.
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Applicable to non-invertible matrices. In our model, we remove the condition from the
ZR method that only invertible matrices can be considered. We search for the 5-round
key-dependent integral distinguisher proposed by Sun et al. at Crypto 2016 [SLG+16].
Denote the matrix of the inverse operation of MixColumns in the AES by M−1

AES =
E B D 9
9 E B D
D 9 E B
B D 9 E

 . Suppose a four-byte vector x = (x0, x0, x1, x2)T is the input of the

MC−1
AES, and x0, x1 and x2 take all the possible values, i.e., x takes all the 224 values. The

four bytes of the output y = (y0, y1, y2, y3)T must have at least one byte yi taking 28 values.
It requires that the first two bytes of the input are always equal. To check this property

by using the BDP, we could prepare a shrunk matrix M shrunk ,


E ⊕B D 9
9⊕ E B D
D ⊕ 9 E B
B ⊕D 9 E

 =


5 D 9
7 B D
4 E B
6 9 E

 . Assume the input to M shrunk is x′ = (x0, x1, x2)T and x′ takes all the 224

values, then the output is just y = (y0, y1, y2, y3)T . In the BDP model for M shrunk, suppose
the input vector is u = (ff,ff,ff), i.e. the division property of the input is D24

u , then
the output vector v = (v0, v1, v2, v3) ∈ F4

28 should have at least one vi such that vi = ff.
This property cannot be checked by the ZR method, because it is infeasible to generate

a huge number of linear inequalities to present all the invertible sub-matrices. Nor can it
be detected by the S method, because the S method will insert invalid division trails that
contain vectors with all four bytes less than ff. Any such vectors result in a quicker loss
of the balanced property than the AES itself should. By using our method, this property
can be obtained. We reproduce the 5-round integral distinguisher in [SLG+16] and also
construct a similar 4-round integral distinguisher with 224 data complexity. More details
are shown in Section 5.1.

Find more accurate BDP. We follow the principle of the ZR method that for a non-
binary matrix every valid division trail is mapped to an invertible sub-matrix, and manage
to efficiently model this relation in our new model. Unlike the S method, we get rid of the
problem of inserting invalid division trails to the search models, and we are more likely to
achieve better results. Since the ZR method can find more accurate division properties
for SKINNY [BJK+16] and Midori [BBI+15] than the S method, and our method is based
on a more generalized theory than the ZR method, we can find those BDP which cannot
be found by the S method. Another example to show we have the potential to get more
accurate propagation of the BDP is the 5-round AES key-dependent integral distinguishers
which obviously cannot be found by the S method as mentioned above.

Possibly find better BDP. For a given number of rounds, our new model can find BDP
results with less time and memory, which means it has the potential to find BDP of more
rounds or with more balanced output bits. With the help of our new model, we improve
the previous BDP results for several ciphers.

Firstly, we apply the new model to LED, which is an SPN cipher with a heavy MDS
matrix as part of its linear layers. With the previous S method, we cannot obtain the
accurate BDP results. For the first time, we show that LED has a 7-round integral
distinguisher, which is the longest to date.

MISTY1 [Mat97] cipher was broken by Todo using integral attack [Tod15a] at Crypto
2015. The 6-round integral distinguisher used in [Tod15a] was found by the word-based
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division property with 63 active bits out of 64 bits, which implied that the integral attacks
required almost the whole codebook [Tod15a, BK16]. So finding integral distinguishers
with more rounds or less data is meaningful to reduce the complexity for the entire attack.
As is commonly believed, the BDP can find better integral distinguishers that have either
more rounds or more balanced output bits or that require less data complexity than the
word-based division property. However, the only result for MISTY1 found by the BDP till
now in [EKKT18] only reaches three rounds2. Thus it is valuable to check the security
of MISTY1 by the BDP. For the first time, we give a BDP result for 6-round MISTY1.
Furthermore, with 62 active bits at the input, we can get a 6-round distinguisher with 32
bits balanced3.

Moreover, we give a 10-round distinguisher for CLEFIA [SSA+07]. Although this
result does not break the previous record, we answer the open question whether longer
integral distinguishers can be found because we can search for the accurate BDP of them
for the first time. At last, we also give the longest BDP of 7-round Camellia [AIK+00]
with FL/FL−1 functions4. We list all our new BDP results obtained in Table 1.

Table 1: Division property results for LED, the AES, MISTY1, CLEFIA and Camellia.

Cipher #Round log2(Data) #Balanced Bits Time? Ref.

AES

4 120 128 – [Tod15b]
4 32 128 – [SWW20]
4 24 128 68min Subsect. 5.1
5 120 128 50min‡ Subsect. 5.1

LED

6 52 64 – [Tod15b]
6 > 52† – > 24h [SWW20]
6 52 64 15min Subsect. 5.2
7 63 64 14min Subsect. 5.2

MISTY1

6 63 39 – [Tod15a]
3 32 64 – [EKKT18]
6 63 39 137min Subsect. 5.3
6 62 32 189min Subsect. 5.3

CLEFIA* 10 127 64 – [SWW17]
10 127 64 82min Subsect. 5.4

Camellia* 6 124 64 – [Tod15b]
7 127 64 99min Subsect. 5.5

? Since we input CVC files to the STP solver, the stopping rules are updated manually. To give
the total running time, we set the sum of all the balanced bits we obtained from the manual
stop phase as 1.
‡ The running time for 5-round result is less than the 4-round one, because we use a speed-up
strategy in the 5-round model.
† With 251 data, they did not find any balanced bit; with 252 data, their model did not return
any result. So for 6-round LED, the S method needs at least 52 active bits. We also implement
the S method ourselves, and no results were obtained even after 24 hours.

* No previous BDP results.

1.2 Organization of this paper
Sect. 2 briefly recalls the automatic search problems of the BDP. In Sect. 3 we introduce
the previous S and ZR methods and point out their limitations. In Sect. 4, we generalize
Zhang and Rijmen’s theory by removing the conditions and propose a new method which
can be applied to complex linear layers. Next, we show some applications of our new

2Only 232 data are used there, and no results with more data are reported.
3Since the 32 balanced bits are located in the right branch of MISTY1, this new distinguisher is worse

than the one in [Tod15a] for key-recovery attacks.
4An 8-round integral distinguisher for Camellia without the F L/F L−1 function was reported [SLR+15].
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method in Sect. 5. We give some suggestions in choosing automatic tools when evaluating
ciphers against the BDP based integral attacks in Sect. 6.

2 Preliminaries
2.1 Notations
Throughout this paper, we use blackened italic lowercase letters to represent n-bit vectors,
e.g. u ∈ Fn

2 . The i-th element of u is expressed as ui (u0 is the msb) and the Hamming
weight wt(u) is calculated as wt(u) =

∑n−1
i=0 ui. For any u and v, we define u � v if ui > vi

for any i. The inner product of two n-bit vectors u and v is defined as u ·v =
⊕n−1

i=0 ui ·vi.

Bit product function πu(·) : Fn
2 → F2 is defined as πu(x) =

∏n−1
i=0 x

ui
i .

For a matrix M = (mi,j)n×n, we use the notation M(i, j) to represent the element of
M located at the i-th row and j-th column. M(i, ∗) stands for the i-th row and M(∗, j)
stands for the j-th column of M . Given two vectors u and v, we use Mu,v to represent a
sub-matrix of M , s.t.

Mv,u = (M(i, j))wt(v)×wt(u), vi = 1, uj = 1.

For a matrix M ∈ Fs×s
2m , we can always transform it to M ′ ∈ Fms×ms

2 where M and M ′
are equivalent except that they are defined over different linear spaces. Throughout this
paper, we call M ′ the primitive matrix of M as in [SWW20].

2.2 (Bit-Based) Division Property and Automatic Search Models
At Eurocrypt 2015, the division property [Tod15b] was proposed as a generalization of the
integral property. The division property was originally defined at the word level and it
traced information resulting from the algebraic degree of the round function which cannot
be captured by the classical integral attack. With the help of the division property, better
integral distinguishers for many cryptographic primitives have been detected.

The bit-based division property [TM16] was proposed to investigate the division
property at the bit level. As a result, more rounds of integral characteristics have been
found with this new technique. For example, the integral distinguishers of SIMON32 have
been improved from 10 to 14 rounds5. We give the definition of the BDP as follows.

Definition 1 (Bit-Based Division Property [TM16]). Let X be a multiset whose
elements belong to Fn

2 . Let K be a set whose elements are n-bit bit vectors. When the
multiset X has the division property Dn

K, it fulfills the following conditions for any u ∈ Fn
2 :

⊕
x∈X

πu(x) =
{
unknown, if there exists a k ∈ K s.t. u � k

0, otherwise
.

The round functions of many cryptographic primitives are often composed of basic
bitwise operations like COPY, XOR and AND, combined with an Sbox layer followed by a
linear layer. When these operations are applied to the elements in X, transformations of
the division property should also be made following the propagation rules for COPY, XOR
and AND which have been proved in [TM16, XZBL16]6.

510-round integral distinguishers are currently the best results obtained by the word-based division
property [Tod15b]. 14-round integral distinguishers are the best results known by far. Previously to
the proposal of the BDP, they can only be obtained by the experimental method [WLV+14], thus those
14-round distinguisher were probabilistic distinguishers.

6The focus of this paper is the linear layers of ciphers, we refer to [XZBL16] for the propagation rule
for the Sboxes.
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Rule 1 (COPY). ([TM16]) Let the COPY operation create y = (y0, y1) ∈ F2×F2 from x ∈ F2
as y0 = x and y1 = x. Assume the input multiset has the division property D1

k, then the
corresponding output multiset has the division property D2

(i,k−i) where 0 ≤ i ≤ k.

Since we consider the BPD, the input multiset division property D1
k must have 0 ≤ k ≤ 1.

If k = 0, the output multiset has the division property D1
(0,0); otherwise, the output multiset

has the division property D2
(0,1)(1,0). We denote the division property propagation of the

COPY operation as x COPY−−−→ (y0, y1).

Rule 2 (XOR). ([TM16]) Let the XOR operation create the output y = x0 ⊕ x1 ∈ F2 from
the input x = (x0, x1) ∈ F2 × F2, where 0 ≤ k0, k1 ≤ 1. Assume the input multiset has the
division property D2

(k0,k1), then the corresponding output multiset has the division property
D1

k0+k1
, where 0 ≤ i ≤ k.

For the BDP k = (k0, k1) must satisfy 0 ≤ k0, k1 ≤ 1. If k0 = k1 = 0, i.e., the input
division property is D2

(0,0), then the output division property is D1
0. If the input division

property is D2
(1,0) or D2

(0,1), then the output division property is D1
1. Moreover, y takes a

value in F2, thus 0 ≤ k0 + k1 ≤ 1 must hold, i.e., if (k0, k1) = (1, 1), the division property
propagation will abort. We denote the division property propagation of XOR operation as
(x0, x1) XOR−−→ y.

When evaluating the BDP of a cipher, the attackers only need to determine the division
property of the chosen plaintexts, denoted by D1n

K0
. Then, after r-round encryption, the

division property of the output ciphertexts, denoted by D1n

Kr
, can be deduced according to

the round function and the propagation rules. More specifically, the attackers determine
an index set I = {i0, i1, . . . , i|I|−1} ⊂ {0, 1, . . . , n − 1} of the bit indices of the plaintext
and prepare 2|I| chosen plaintexts where the variables indexed by I take all possible values.
The division property of such chosen plaintexts is D1n

k , where ki = 1 if i ∈ I and ki = 0
otherwise. Then, the propagation of the division property from D1n

k is evaluated as

{k} def= K0 → K1 → · · · → Kr,

where DKi is the BDP after the i-th round propagation. If the division property Kr does
not contain a unit vector ei, then the i-th bit of the r-round ciphertexts is balanced.

2.2.1 Propagation of BDP in Automatic Search Model.

Finding the propagation of BDP is tedious because the size of Ki increases rapidly. At
Asiacrypt 2016, Xiang et al. showed that the propagation can be efficiently evaluated by
using MILP [XZBL16]. Firstly, they introduced the division trail as follows.

Definition 2 (Division Trail [XZBL16]). Consider the propagation of the division property
{k} def= K0 → K1 → K2 → · · · → Kr. Moreover, for any vector k?

i+1 ∈ Ki+1, there must
exist a vector k?

i ∈ Ki such that i?
i can propagate to k?

i+1 by the propagation rule of the
BDP for the current operation. Furthermore, for (k0,k1, . . . ,kr) ∈ (K0 ×K1 × · · · ×Kr)
if ki can propagate to ki+1 for all i ∈ {0, 1, . . . , r − 1}, we call (k0 → k1 → · · · → kr) an
r-round division trail.

Thanks to the introduction of the division trail, the propagation of set Ki was trans-
formed into the propagation of the division trails. Let Ek be the target r-round iterated
cipher. Then, if there is no division trail 0 Ek−−→ kr = ei, we know that there is no unit
vector ei in Kr, i.e., the i-th bit is balanced. So once all the unit vectors appear in Kr+1,
there will be no balanced bits at the end of the (r + 1)-th round of Ek, and the maximum
number of rounds that integral distinguisher based on BDP can cover is r rounds.
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With the help of division trail, finding the BDP is transformed into a problem of finding
a division trail ended at a unit vector. To find the division trail, we need to construct
the search model by describing all operations of Ek by propagation models and adding
the initial and stopping rules to the plaintext and ciphertext, respectively. For plaintext,
we assign 1 to those active plaintext bits and 0 to the constant bits. For the ciphertext,
we first let the sum of all bits be 1 and solve the model. If the result returned by the
solver is that the model is infeasible, then no division trail can lead to a unit vector and all
the ciphertext bits are balanced. If the result is feasible, there is at least one unit vector.
Check the solution of the feasible model and find out the unit vector, then we could know
which bit is imbalanced. Next, let the sum of remaining bits be 1 and get back to solve the
updated model. Repeat the steps until we find all the possible unit vectors. A common
framework of automatic search for BDP is given in Appendix A.

3 Two of Previous Methods Modeling Linear Layers
For ciphers with a bit-permutation linear layer like PRESENT, RECTANGLE, etc, after
the nonlinear layer, there is no cost for the BDP. This paper focuses on ciphers having
a non-bit-permutation in their linear layer, for instance, SKINNY, Midori and the AES,
which have been considered by the S method [SWW20] and the ZR method [ZR19].

3.1 S Method
The idea of the S method [SWW20] is to represent a matrix M ∈ Fs×s

2m at the the bit level.
Given the irreducible polynomial of the field F2m where the multiplications operate, the rep-
resentation of the matrix over F2 is unique, which we call the primitive matrix of M and is
denoted byM ′ = (mi,j)n×n where mi,j ∈ F2 and n = m×s. In order to describe the multi-
plication with the primitive matrix, auxiliary binary variables ti,j (0 ≤ i, j ≤ n−1) are intro-
duced to represent XOR and COPY operations derived from multiplying with it. Then the Mix-
Columns operation y = M ′x, where x = (x0, x1, . . . , xn−1)T and y = (y0, y1, . . . , yn−1)T ,
can be modeled as xj

COPY−−−→ (t0,j , t1,j , . . . , t(n−1),j) and (ti,0, ti,1, . . . , ti,(n−1))
XOR−−→ yi.

However, the S method brings in some invalid trails to K. We give Example 1 in
Appendix B as an illustration to show the problem. From this example, we know that the
S method cannot handle the cancellation phenomenon between terms, so it will introduce
some invalid trails generating a unit vector that breaks the balanced property of the output
bits.

Furthermore, the S method is not efficient for some ciphers, it takes too much time
and memory to evaluate the BDP. For example, it cannot give the BDP results for 6 or
more rounds for LED cipher because the memory requirements exceed the limit of most
computers. We will give more details in Subsect. 5.2.

3.2 ZR Method
Zhang and Rijmen [ZR19] proposed the ZR method to convert the verification of a division
trail through a linear layer into checking whether the corresponding sub-matrix is invertible
or not. In other words, for a linear layer, every candidate division trail is one-to-one
mapped to a sub-matrix of its corresponding matrix. As a result, the ZR method can
solve the term cancellation problem. We recall their main result in Theorem 1.

Theorem 1 ([ZR19]). Let M be the n× n primitive matrix of an invertible linear trans-
formation and u,v ∈ Fn

2 . Then u
M−→ v is one of the valid division trails of the linear

transform M if and only if Mv,u is invertible.
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Now we re-consider Example 1 in Appendix B by the ZR method, to see if it can
handle the cancellation influence which the S method cannot. Since the candidate division
trail is u = (1, 1, 0) M−→ v = (1, 1, 0), according to the definition of Mv,u, we know that

Mv,u =
[
1 1
1 1

]
.

From Theorem 1, the validity of the division trail (1, 1, 0) M−→ (1, 1, 0) can be determined by
the invertibility of the matrix Mv,u. Apparently, this matrix is not invertible. Therefore,
u

M−→ v is not a valid division trail. The cancellation problem for this simple example
resulted from the S method can be solved by the ZR method.

In [ZR19], Zhang and Rijmen tried to use a set of inequalities, denoted by L, to describe
all the invertible sub-matrices for the linear layer M . They claimed that their technique
can be applied to ciphers with so-called “binary linear layers”. We redefine it as follows.

Definition 3 (Binary Matrix). Suppose for a matrix M = (mi,j)s×s ∈ Fs×s
2m , we represent

the element mi,j in M as a polynomial in the extension field F2m ' F[x]/(f), where f is
the irreducible polynomial over F2 with degree m, then we call M a binary matrix if all
such polynomials in M can only be 0 or 1. Otherwise, M is called a non-binary matrix.

The matrix which is used in the MixColumns of SKINNY falls into this category while
the matrix for the MixColumns operation of the AES is a non-binary matrix, because

MSKINNY =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 , MAES =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 .
Given such a binary matrixM = (mi,j) ∈ Fs×s

2m , and denote n = m×s, we can representM
in its primitive form as M ′ = (m′i,j)n×n. According to Theorem 1, one needs to determine
all its l-order invertible sub-matrices for 1 6 l 6 n and to describe them with a set of linear
inequalities as proposed by [ZR19]. In order to describe all the invertible sub-matrices of
M ′, one first divides M ′’s row indices into the following m cosets

S0 = {0, m, . . . , (s− 1)m },
S1 = {1, m+ 1, . . . , (s− 1)m+ 1 },

...
...

...
Sm−1 = {m− 1, 2m− 1, . . . , sm− 1 }.

In each coset, there are s elements. Since the rows in different cosets have no common
nonzero entries in the same column, which is the key feature of a binary matrix, one
can take into account the XOR operation of rows in each coset separately. Assume u =
(u0, u1, . . . , un−1) M ′−−→ v = (v0, v1, . . . , vn−1), then for t (1 6 t < s) coordinates vi’s
with indices in the same coset, without loss of generality we take the i-th coset Si =
{i, i + m, . . . , i + (s − 1)m} as an example, we construct inequalities to describe the
corresponding t-th order invertible sub-matrix asit−1⊕

j=i0

M ′(j, ∗)

 · u− it−1∑
j=i0

vj > −(t− 1) (1)

where i0, i1, . . . , it−1 ∈ Si. For t = s, we could simply use equations

is∑
j=i0

uj =
is∑

j=i0

vj . (2)
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For each coset like Si, we have
(

s
t

)
inequalities and equations, where 1 6 t 6 s. There

are m such cosets in total, so the total number of inequalities to represent the binary linear
layer is

#L = m

s∑
i=1

(
s

i

)
= m× (2s − 1). (3)

All solutions to each of these inequalities cover a large class of invertible sub-matrices.
Thus, all the inequalities covering all the l-th order for 1 ≤ l ≤ n sub-matrices of M ′ are
sufficient to describe all the invertible sub-matrices of the linear layer matrix M ′. We refer
the readers to [ZR19] for more details about the construction of L.

For some binary linear layers such as the linear matrices of the block cipher SKINNY
and Midori, m and s in Equation (3) is usually small, so #L is not very big. For
example, in order to describe the matrix of SKINNY with 64-bit block size, they only need
4× (24 − 1) = 60 inequalities7.

Limitations of the ZR method. However, for non-binary matrices, if we consider them
in the similar way of using cosets, the key feature for the binary matrices stated above
that the rows in different cosets have no common nonzero entries in the same column does
not hold. Then when we need to check the invertibility of all the l-th order sub-matrices,
where 1 ≤ l ≤ n, we have

(
n
l

)
inequalities to mark all the l-th order invertible matrices8.

Finally, the number of inequalities #L should be computed in formula

#L =
n∑

l=1

(
n

l

)
= 2n − 1.

It appears that #L becomes too large when n is big, where n = m× s. For example, when
considering MAES , we have m = 8 and s = 4, so the total number of inequalities used to
describe all its valid division trails will be 28×4 − 1 = 232 − 1. First of all, it is extremely
hard to generate such a huge number of equations. Secondly, such a large number of
equations is usually not supported by any MILP solvers. As a result, the ZR method is
not applicable to many of the ciphers that have non-binary matrices as part of their linear
layers.

4 Our Model for General Linear Layers
Since many symmetric primitives base the security on the non-linear components (usually
Sboxes) and complex linear layers, and the BDP propagation for the Sboxes has been well
modeled [XZBL16, BC16, SWW17], it is important to find a method that can accurately
and efficiently describe the BDP propagation for non-binary linear layers. However, as
discussed in Sect. 3, the S method cannot always accurately model the BDP of a matrix,
meanwhile the ZR method is practically infeasible for non-binary matrices with a large
size. In this section, we propose a new method that can trace the BDP propagation
accurately and efficiently for any type of matrices.

Main Idea. Suppose that u and v are the input and output vectors of the linear layer M .
From the ZR method, if and only if u

M−→ v is valid, then Mv,u is invertible. Therefore,
given the constraints that Mv,u should be invertible, all the (u,v) satisfying them are
valid. Here we first outline these constraints in Proposition 1 in order to give a high-level
overview of our new model. The reason for setting them will be discussed in Subsect. 4.1.

7In fact there are some redundant inequalities within L in [ZR19], however, they will not affect the
total number of sub-matrices.

8The ZR method can take only one inequality to describe all the invertible sub-matrices embedded in
certain i (1 ≤ i ≤ n) rows.
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Proposition 1. For a primitive matrix M ∈ Fn×n
2 , a division trail (u,v)9 is valid if

and only if (u,v) meets the following constraints

E(i, j) · vi −
n−1∑
k=0

M(i, k) · vi · uk ·M expand′
v,u (k, j) = 0, for 0 6 i, j 6 n− 1,

where E is a n × n identity matrix and M expand′
v,u ∈ Fn×n

2 is an auxiliary matrix with n2

elements.

According to Proposition 1, for M ∈ Fn×n
2 we need to generate totally n2 (for all

0 6 i, j 6 n − 1) 4-degree constraints with n2 auxiliary variables representing M expand′
n×n .

Note the constraints in Proposition 1 are all fourth degree. As the name implies, MILP
focuses on the linear programming. As far as we know, although some popular MILP
solvers such as Gurobi can handle the quadratic constraints, higher degree constraints are
far beyond their capability. Thus, the constraints in Proposition 1 can only be processed
by SAT/SMT solvers. The proof of Proposition 1 is given in Subsect. 4.1.

4.1 Derive Constraints for Invertible Sub-Matrices
Determining whether Mv,u is invertible or not is equivalent to determining whether
Mv,uM

−1
v,u = Ewt(v)×wt(v) has a solution, where Ewt(v)×wt(v) is a wt(v)× wt(v) identity

matrix (we no longer mark the size if it is not ambiguous). Note u and v are only used
to indicate the sub-matrix and the specific values of them are not required. Then, we
construct the constraints that Mv,u is invertible by two steps introduced as follows.

4.1.1 Step 1: Compute the Expanded Matrix of Mv,u

The essential difference between our method and the ZR method is that we do not need
to know all the sub-matrices of M . Instead, Mv,u varies dynamically according to the
current candidates of the division trails, thus Mv,u has a variable size. In many languages,
however, the size is commonly required explicitly when declaring a new variable. To
overcome this obstacle, we define the expanded matrix M expand

v,u for Mv,u.

Definition 4 (Expanded Matrix). Given a primitive matrix M ∈ Fn×n
2 and one of its

sub-matrix Mv,u, the expanded matrix M expand
v,u ∈ Fn×n

2 of Mv,u is defined as

M expand
v,u (i, j) =

{
Mv,u(i, j), if vi = 1 and uj = 1,
0, otherwise.

M expand
v,u has the same size with M which can be known in advance. At the same time, it

contains all the information about Mv,u.
Now we can declare M and M expand

v,u (in the input language of the STP solver) as an
ARRAY variable, and denote it as ARRAY(index, value)10. The first parameter index is
the concatenation of the row and column indices (i, j), and the second parameter value is
M(i, j) or M expand

v,u (i, j).

4.1.2 Step 2: Check the Invertibility of Mv,u

In Step 1, M expand
v,u is defined with a fixed size and it covers Mv,u. It is possible to add

constraints on M expand
v,u to ensure that Mv,u should be invertible. This can be guaranteed

by the following theorem.
9We assume wt(u) = wt(v) for simplicity.

10We give a specific example of how it is used in Appendix C.
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Theorem 2. Let M be a matrix in Fn×n
2 . Then a sub-matrix Mv,u is invertible if and

only if there exists a matrix M expand′
v,u satisfying M expand

v,u M expand′
v,u = Ev, where Ev ∈ Fn×n

2
is defined as follows,

Ev(i, j) =
{

1, if i = j and vi = 1
0, else .

Proof. Mv,u is invertible if and only ifMv,u has an inverse matrix. Without loss of general-
ity, we assume Mv,u is located in the top-left corner of M (and M expand

v,u ). Correspondingly,
Ev is a matrix as follows,

Ev =
[
E 0
0 0

]
From the condition of Theorem 2, we know that M expand

v,u M expand
v,u

′ = Ev has solutions. By
partitioning matrix M expand

v,u , M expand
v,u

′ and Ev, we can get the following equation[
Mv,u 0

0 0

]
·
[
X0,0 X0,1
X1,0 X1,1

]
=
[
E 0
0 0

]
(4)

Equivalently, we obtain the following non-trivial equations{
Mv,u ·X0,0 = E

Mv,u ·X0,1 = 0
. (5)

Since the second equation of Equation (5) always has a trivial solution X0,1 = 0, then
whether Equation (4) has solutions can totally be decided by the first equation of Equa-
tion (5). In other words, if Equation (4) has solutions, then Mv,uX0,0 = E has solutions;
otherwise, Mv,uX0,0 = E has no solution.

Finally, if and only if Equation (4) has solutions, Mv,u is invertible. X0,0 is just the
inverse matrix of Mv,u.

Through Theorem 2, we can check the invertibility of Mv,u by checking whether
Mexpand

v,u Mexpand′

v,u = Ev has solutions. The size ofM , M expand
v,u and Ev are fixed and known

in advance, which enable us to define and model constraints on them in an automatic
search tool.

4.1.3 The Compact Automatic Search Algorithm for M

In this subsection, we show how to condense the theory in previous subsection into a
compact algorithm. Firstly, we introduce two useful observations that help to generate the
matrices M expand

v,u and Ev.

Observation 1. According to Definition 4, M expand
v,u can be generated by the following

formula,
M expand

v,u (i, j) = M(i, j) · vi · uj .

Observation 2. The matrix Ev in Theorem 2 can be generated by the following formula,

Ev(i, j) = E(i, j) · vi.

Where E is the wt(v)× wt(v) identity matrix.

Now we can construct our new model in a system of compact constraints. Firstly, we
let the hamming weight of v and u be equal.

n−1∑
i=0

vi =
n−1∑
i=0

ui.
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Secondly, we allocate n× n auxiliary variables which represent the matrix M expand′
v,u . Then

M expand
v,u M expand

v,u
′ = Ev can be written as the following n2 constraints,

E(i, j) · vi =
n−1∑
k=0

M(i, k) · vi · uk ·M expand′
v,u (k, j), for 0 6 i, j 6 n− 1.

Algorithm 1 shows how to construct the constraints for a linear layer M with (u,v) as its
input and output variables.

Algorithm 1: Generate constraints for automatic search model of M
Input: Model variables: u, v,M∈ Fn×n

2 and an identity matrix E
Output: A set C containing all the constraints for M
Allocate C = ∅;
// ARRAY(2n, 1) means the array is indexed by 2n bits and the value is 1

bit

Allocate ARRAY(2n, 1) variableMexpand′
v,u ; . Auxiliary variables

C ←
∑n−1

i=0 (ui)−
∑n−1

i=0 (vi) = 0; . Constraints for wt(u) = wt(v)
// Constraints for M expand

v,u M expand
v,u

′ = Ev

for i = 0; i < n; i = i+ 1; do
for j = 0; j < n; j = j + 1; do

C ← E(i, j) · vi −
∑n−1

k=0M(i, k) · vi · uk · Mexpand′
v,u (k, j) = 0;

return C;

Improvement of Our New Method Compared to the ZR Method. Both ZR
method and ours can determine valid division trails accurately. However, the ZR method
needs to compute all the invertible sub-matrices for a given linear layer M . For an n× n
M , it has as many as Πn

i=1
(

n
i

)2 sub-matrices. It is impossible to check all of them and
model the invertible ones by automatic search tools if M has no particular structure, e.g.,
binary.

In terms of our new method, checking the invertibility ofMv,u is transformed to finding
if M expand

v,u M expand
v,u

′ = Ev has solutions. Since the size of M expand
v,u and Ev are known in

advance, it enables us to model them by an automatic search tool.

4.2 Removing the Invertible Condition from Theorem 1 of ZR Method
In [ZR19], it is believed that only invertible matrices can be handled by ZR method.
However, for complement, we show this condition can be removed from Theorem 1, i.e.,
no matter if M is invertible or not, wt(u) = wt(v) is always satisfied as long as u → v
is valid. Without the invertible condition, we introduce a more general Theorem 3 than
Theorem 1.

Theorem 3. Let M be the p× q primitive matrix of a linear transformation. For u ∈ Fq
2

and v ∈ Fp
2, u

M−→ v is a valid division trail of the linear layer M if and only if Mv,u is
invertible.

Proof. Recall the proof of Theorem 1 in [ZR19], the condition that M is invertible is only
used to prove wt(u) = wt(v) if u

M−→ v is valid. Therefore, to prove our Theorem 3, we
only need to prove that although M is not invertible, wt(u) = wt(v) is still satisfied if
u

M−→ v is valid. The remaining proof is the same as that of Theorem 1 in [ZR19].
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Suppose x ∈ Fq
2 and y ∈ Fp

2 are the input and output values of the linear layer M ,
respectively. Therefore, we get MxT = yT , i.e.,

M(0, 0)x0 ⊕M(0, 1)x1 ⊕ · · · ⊕M(0, q − 1)xq−1 = y0

M(1, 0)x0 ⊕M(1, 1)x1 ⊕ · · · ⊕M(1, q − 1)xq−1 = y1

· · ·
M(p− 1, 0)x0 ⊕M(p− 1, 1)x1 ⊕ · · · ⊕M(p− 1, q − 1)xq−1 = yp−1

(6)

When we need to verify if a trail u
M−→ v is valid or not, we check the parity πv(y). Note

that each equation in (6) is of degree one. We will prove Theorem 3 in two cases.

1. If wt(u) > wt(v), the degree of the polynomial πv(y) will be smaller than πu(x)
since the degree of multiplying wt(v) polynomials in Equation (6) reaches at most
wt(v). As a result, πv(y) cannot contain any term of πu(x) or πu′(x),u′ � u.
Therefore u

M−→ v cannot be valid.

2. If wt(u) < wt(v), we prove that we can always find a v′ satisfying v � v′ and
u

M−→ v′ is also a valid division trail. Since u
M−→ v is valid, πv(y) must contain a

term πu(x) or πu′(x) (u′ � u). Then we discuss it in two cases.

(a) If πv(y) contains only πu(x) but not πu′(x), then multiplying wt(v) polynomials
in Equation (6) can only get a term of order wt(u). It means some yi’s do not
contribute to πu(x). After removing these yi’s from the parity πv(y) by setting
the corresponding exponent vi to 0, the newly obtained vector v′ also leads to
a valid trail u

M−→ v′.
(b) If πv(y) contains a term πu′(x), where u′ � u and πu′(x) = x

u′0
0 x

u′1
1 · · ·x

u′p−1
p−1 .

For each xu′i
i , only one yi contributes to it. Compare u′ and u, then remove those

yi’s that contribute to xu′i
i from the parity πv(y) where i ∈ {i, u′i = 1, ui = 0}

by setting the corresponding vi = 0, we could get a v′ which makes u
M−→ v′ a

valid trail.

Repeat the removing steps, we finally get a v′ satisfying wt(u) = wt(v′) and u
M−→ v′

is a valid trail. Since v � v′, u
M−→ v is a redundant division trail, we can ignore it

and only track u
M−→ v′ in our following search model.

Finally, if (u,v) is a valid division trail, wt(u) = wt(v) must be satisfied.

Note when M is not square (of course it is not invertible), for example, M ∈ Fp×q
2 and

p 6= q, our new method is still applicable. We introduce M expand′
v,u as an auxiliary matrix

defined in Fq×p
2 , so pq auxiliary variables are needed. The number of constraints is p2.

Although non-invertible linear layers are rare in practice to date, Theorem 3 helps
to enhance the theory in [ZR19] by making it complete. Then evaluating the security of
any non-binary matrix against integral attacks becomes practical, which might give more
freedom for new designs in the future. An application of Theorem 3 will be introduced in
Subsect. 5.1. For the first time, we are able to verify the 5-round key-dependent integral
distinguishers given by Sun et al. in [SLG+16].

5 Applications of Our New Method
In this section, we show applications of our new method to some block ciphers including
LED, the AES, MISTY1, CLEFIA and Camellia. As mentioned in Sect. 4, we should choose
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SAT/SMT solvers to handle our new model, thus we take SAT/SMT tool Cryptominisat11

(version 5.6.5) and STP 12(version 2.1.2) to conduct our experiments. A brief introduction
is given in Appendix C to explain how to model the components of ciphers based on STP.
All the experiments for our applications are conducted on a work station with Intel(R)
Xeon(R) CPU E5-2620 0 @2.00GHz, 128GB memory, 64bit Ubuntu 16.04.4 LTS. The source
codes are available in https://gitee.com/hukaisdu/BDP_for_ComplexLinear.git.

Notations for integral property. We introduce the notations that we are going to use
to present the results of our applications. Let Λ be a collection of state vectors X =
(x0, . . . , x2n−1) where xi ∈ F2m .

• A: if all xi in Λ are distinct, X is called active
• B: if the sum of all xi in Λ can be predicted, X is called balanced
• C: if the values of xi in Λ are equal, X is called passive/constant
• ?: if the sum of all xi in Λ cannot be predicted, X is called unknown

When considering them at the bit level - i.e. let xi ∈ F2 (m = 1), we use lower case letters
instead of uppercase letters, that is a represents an active bit, b a balance one, c a constant
bit and ? an unknown bit. For example, “aaac” for a nibble means that only the least
significant bit is constant, all the others are active. Similarly, “???b” means that only the
least significant bit is balanced, while the rest are unknown.

In the remaining of this paper, we arrange the input and output state of our distinguisher
in a 4× 4 matrix for the AES and LED. For Feistel ciphers such as MISTY1, CLEFIA and
Camellia, the states are also arranged in a matrix in the row-major order. For example, if
we write the 64-bit state of MISTY1 state into an n×m matrix, then the m bits in the
first row are the leftmost m bits of MISTY1 state. Details are given in Figure 3, 4 and 5
in Appendix D.

5.1 Applications to the AES
The AES is the most widely used block cipher. It follows a construction known as the
substitution-permutation network (SPN). The AES has a fixed block size of 128 bits, a
key size of 128, 192 or 256 bits, and a number of 10, 12 or 14 rounds respectively. The
128-bit state is arranged in a 4× 4 grid where each byte represents an element from F28

with an underlying polynomial for field multiplication. Initially there is a whitening key
addition (AddRoundKey) to the state. Then each internal round of the AES is composed
of four operations: SubBytes (SB), ShiftRows (SR), MixColumns (MC) and AddRoundKey
(AK). In the final round of each variant of the AES, the MC is missing.

Key-independent integral distinguishers cover 3 or 4 rounds of the AES. Any integral
property that surpasses 4 rounds is interesting because it brings more insights to the
security of the AES. In [SLG+16] and [HCGW18], two integral variants are introduced for
5 rounds of the AES, but they both depend on the value of one key byte and are therefore
called key-dependent integral distinguishers. So far, no 5-round key-independent integral
distinguishers have been reported. The 5-round key-dependent distinguisher in [SLG+16]
exploited the structure of the MDS matrix, which falls exactly into the research scope of
our new technique, in particular of the generalized Theorem 3.

At Crypto 2016, Sun et al. [SLG+16] introduced the first 5-round integral distinguisher,
based on the fact that MAES has two equal elements “1” in each column. Assume
x = (x0, x0, x2, x3)T is the input to M−1

AES, where xi takes all possible 28 values, and

11https://www.msoos.org/cryptominisat4/
12https://stp.github.io

https://gitee.com/hukaisdu/BDP_for_ComplexLinear.git
https://www.msoos.org/cryptominisat4/
https://stp.github.io
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y = (y0, y1, y2, y3)T is the output. Then x = MAES × y can be represented as
x0
x0
x1
x2

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2



y0
y1
y2
y3

 ,
which implies x0 = 2y0⊕3y1⊕y2⊕y3 = y0⊕2y1⊕3y2⊕y3. Then we have 3y0⊕y1⊕2y2 = 0,
i.e., y0, y1 and y2 are linearly dependent and the dimension of (y0, y1, y2) is at most 2.
Since the dimension of the input x is 3, we conclude that y3 is independent of (y0, y1, y2),
i.e., the number of possible values for y3 is 28 and the number of all possible values for
(y0, y1, y2) is 216. In other words, after the inverse of the MC, y3 must be an active byte,
i.e., A.

Note M−1
AES does not have two equal values in one column, so the integral distinguishers

are only valid for the AES inverse. To verify the property of MAES by our method, we
first re-write the inverse operation of the AES as
y0
y1
y2
y3

 =


E B D 9
9 E B D
D 9 E B
B D 9 E



x0
x0
x1
x2

 =


E ⊕B D 9
9⊕ E B D
D ⊕ 9 E B
B ⊕D 9 E


x0
x1
x2

 =


5 D 9
7 B D
4 E B
6 9 E


x0
x1
x2

 ,M shrunk

x0
x1
x2

 ,
where x0, x1 and x2 are all active bytes. Note in the first round, we apply the shrunk
matrix M shrunk to the 3 bytes in the first column and apply the matrix of the inverse of
the MC to the remaining 3 columns (see the bottom part of Figure 1).

4-round key-dependent integral distinguishers. As a result, with these 3 active bytes,
we construct the plaintexts to the first round of the AES inverse, then by appending 3
rounds of the AES inverse we could build a 4-round integral distinguisher. For constructing
this distinguisher, in total we need 23×8 = 224 chosen plaintexts, and all the output bits
are balanced. By our method in Sect. 4, we obtain a 4-round integral distinguisher after
around 68 minutes.
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Figure 1: The top part is the first round of the integral distinguisher in [SLG+16]
appended by the 4 rounds AES−1. The bottom part is the beginning of our new search
model appended by the 4 rounds AES−1. The operations in an AES−1 round are AK−1 →
SB−1 → SR−1 → MC−1.
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5-round key-dependent integral distinguishers with simplified constraints for MC. Sim-
ilarly, with 3 active bytes in one column and 12 active bytes in the other 3 columns,
i.e., 2(3+12)×8 = 2120 chosen plaintexts we should be able to construct a 5-round integral
distinguisher by appending 4 rounds of the AES inverse. To check if there exists such
a 5-round integral distinguisher with 120 active bits, the automatic solver might take a
very long time before it gives a result. To speed up the process of checking the existence
of the 5-round distinguishers, we simplify the propagation rules for the MC in the last
four rounds, by only asserting a constraint to the matrix that the hamming weight of the
input variable is always equal to the one of the output variable. In fact, compared to the
constraints set to the last 3 round in the 4-round distinguishers, these constraints are much
loose, which means more solutions/trails will be derived by the solver from this simplified
model. Therefore, for the 5 rounds AES inverse, if there is no solution to this simplified
model (i.e. a balanced property is satisfied), there will also be no solution to the original
model. Finally, our method shows that the BDP model of the 5-round AES inverse has
no solution after about 50 minutes, thus we obtain the 5-round key-dependent integral
distinguishers13.

Since M shrunk is an non-binary matrix of size 32 × 24 at the bit level, as is pointed
out in Sect. 3.2, the ZR method cannot process it because of the huge computations for
generating linear inequalities. What’s more, the S method inserts invalid division trails
after this specific shrunk matrix, which will result in the failure to find the two types
of integral distinguishers obtained by our method. Actually, we also implemented the S
method, and the result shows that S method can guarantee the number of all possible
values for (y0, y1, y2, y3) after the shrunk matrix M shrunk is 224, but cannot guarantee that
y3 takes all possible 28 values. In other words, this property of the AES MDS matrix
cannot be made use of by the S method to find the 5-round key-dependent distinguishers
in [SLG+16]. Therefore only our model can capture the BDP propagation feature through
the shrunk matrix M shrunk accurately and efficiently. We hope our method provides a
useful tool for exploring security analysis in the AES and AES-like designs.

More discussions about the security of the AES against integral attacks. As is well-
known, the AES has 4-round key-independent integral distinguishers with 232 chosen
plaintexts [DKR97, KW02] while it is still an open problem for 5 rounds. However, the
5-round AES is an important primitive which has been used in many new designs [WP14],
thus it is important to answer this public question.

It is commonly believed that the BDP is the most powerful tool for searching for integral
distinguishers. Unfortunately, no accurate BDP results targeting the key-independent
integral are known for the 5-round AES. The reason is that, as we discussed above, neither
the S or ZR method is suitable to trace the accurate BDP of the AES MDS matrix. By
taking our method, for the first time the BDP for the AES matrix can be accurately
traced. We experimentally prove that the 5-round AES has no key-independent integral
distinguishers. Although it does not break the records, we answer the open question that
5-round AES has no key-independent integral property. Our new method provides more
confidence for the security of the 5-round AES and designs based on it.

5.2 Applications to LED
LED [GPPR11] is a 64-bit block cipher that can handle key sizes from 64 bits up to 128
bits. Since our distinguisher works for both key sizes, we generally denote them as LED in
this paper. Similar to the AES, four operations are applied to each round: AddConstant
(AC), SubCell (SC), ShiftRows (SR) and MixColumnsSerial (MC). Four of these internal

13We can set loose constraints to the last 3 rounds in the 4-round distinguishers similarly, and the
processing can be sped up.
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rounds are called one step, and are followed by a AddRoundKey (AK) operation. Since AC
and AK in our automatic search model do not influence the BDP, we do not consider them
here. We set 64-bit variables X(i), Y (i) and Z(i) to represent the variable before SC, SR
and MC in the i-th round respectively. We add constraints to bits of X(i) and Y (i) using
the model for Sbox (Model 3 in Appendix C) and to bits of Z(i) and X(i+1) using our new
model for the linear layer. Finally, we get the entire automatic search model for LED.

In [SWW20], the S method found that for 6-round LED, 51 active bits would not lead
to integral distinguishers. However, they cannot obtain the results for 6 rounds of LED
with 52 active bits because of the huge memory and time requirements. Therefore, if there
exist a BDP result for 6-round LED with 52 active bits is still a public question. By using
our method, after about 15 minutes we find an integral distinguisher for 6-round LED
with 52 active bits. The 6-round BDP we found is given below

A A A A
A A C A
A A A C
C A A A

 6R=⇒


B B B B
B B B B
B B B B
B B B B

 .
Further more, by choosing a proper initial BDP, we can even extend the distinguisher by
one more round, i.e, we find 7-round integral distinguishers for the first time. The integral
distinguisher with 127 active bits in the plaintexts and full balanced bits in the ciphertexts,
is given as below 

A aaac A A
A A A A
A A A A
A A A A

 7R=⇒


B B B B
B B B B
B B B B
B B B B

 .
5.3 Applications to MISTY1
MISTY1 [Mat97] operates on 64-bit blocks and requires a 128-bit key. It iterates an
8-round Feistel structure built on a 32-bit round function FO, which is itself a 3-round
Feistel construction called the MISTY structure having a 16-bit non-linear function FI.
FI consists of a similar 3-round unbalanced MISTY structure with a 7-bit and two 9-bit
Sboxes called S7 and S9. An additional component, two 32-bit functions FL are inserted
to both 32-bit halves before FO function every two rounds of the cipher. The FL function
is a simple transformation. Secret key material is mixed with message in both FO and
FI function. Since it does not affect our distinguishers, we do not include details about
it here. The structure of MISTY1, FO, FL and FI functions are shown in Figure 3 in
Appendix D.

MISTY1 cipher was broken by Todo [Tod15a] using integral attacks at Crypto 2015.
The 6-round integral distinguisher used in [Tod15a] was found by the word-based division
property with 63 active bits. However, the integral attack requires almost the whole
codebook [Tod15a, BK16]. Finding integral distinguishers with more rounds or less data
are meaningful to reduce the complexity for the entire attack. As is commonly believed,
the BDP can find better integral distinguishers than word-based DP, which have either
more rounds, or more balanced bits or less data complexity. However, the only result
found by the BDP in [EKKT18] can reach maximal three rounds of MISTY1. Thus it is
valuable to check the security of MISTY1 by the BDP.

As can be seen, MISTY1 does not have a classical complex linear layer such as the
MC operation of AES or LED, but it consists of COPY, XOR and Sbox only. To apply our
methods to MISTY1, operations in every red dash line rectangle in Figure 3 (b)(c)(d) in
Appendix D are regarded as a matrices, then we can describe them in a similar way to the
MC of the AES or LED. X(i) is used to represent the input to the i-th round of MISTY1
and Y (i) stands for the output of FL. Variables used to describe the division trails such
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as A(i) ∼ J (i) are shown in Figure 3 in Appendix D. As a result, our new model is quite
efficient and can find much longer BDP than 3 rounds. With 63 active bits where the most
significant bit is set as constant, we find the same 6-round integral distinguishers as the
one in [Tod15a] and prove that no BDP results having more rounds or more balanced bits
exist with the same data14. With 62 active bits where the two most significant bits are set
as constant, the results show that the 32 bits in the right branch are balanced.

The new integral characteristic with 262 chosen plaintexts is shown as follows
ccaa A A A
A A A A
A A A A
A A A A

 6R=⇒


? ? ? ?
? ? ? ?
B B B B
B B B B

 .
5.4 Applications to CLEFIA
ISO standard cipher CLEFIA [SSA+07] is a 128-bit block cipher supporting a key length
of 128, 192, and 256 bits. The corresponding rounds are 18, 22 and 26 for 128, 192 and
256 key bits, respectively. The round function follows a 4-branch Type-2 general Feistel
structure. Two parallel F functions are used in every round and each F function consists
of four Sboxes and one MDS matrix (Figure 4 in Appendix D). The MDS matrix in the
left branch is called M0 while the one on the right branch is called M1.

For our automatic search model, as shown in Figure 4 in Appendix D, we use 128-bit
variables X(i) to represent the input to the i-th round, and 64-bit variables A(i), B(i)

and C(i) to represent the input to the four Sboxes, input to M0, output of M0 in the left
branch of the i-th round, respectively; at the same time, D(i), E(i) and F (i) stands for
the input to four Sboxes, input to M1, output of M1 on the right branch of i-th round,
respectively. Matrices M0 and M1 are described with our new model.

From our experiments, a 10-round BDP is obtained, which is the same as the one
by word-based division property [SWW17]. Although no new integral distinguishers are
found, it is still meaningful to re-evaluate the security of CLEFIA against the BDP since
the BDP has more potential to find stronger integral distinguishers. This is the first time
that one can evaluate the BDP for CLEFIA. The 10-round BDP is give as

caaaaaaa A A A
A A A A
A A A A
A A A A

 10R==⇒


? ? ? ?
B B B B
? ? ? ?
B B B B

 .
5.5 Applications to Camellia
Camellia is a 128-bit block cipher designed by Aoki et al. in 2000 [AIK+00]. It is a
Feistel-like construction where two key-dependent layers FL and FL−1 are applied every
6 rounds to each branch. There exist three different versions of the cipher, which are
Camellia-128, -196 and -256, depending on the key size used. The number of rounds is 18
for the 128-bit version and 24 for the other two versions. Our distinguisher works on all
the three versions of Camellia, so we simply denote them as Camellia. The round function
of Camellia is a permutation and takes a layer of eight 8-bit Sboxes and a word-level linear
layer. The structure of one round Camellia is given in Figure 5 in Appendix D.

In [Tod15b], the word-based division property found 6-round integral distinguishers
but no results of the BDP are available until now. We construct the BDP search model
for 7-round Camellia with a FL/FL−1 layer using our technique. The seven rounds of

14A more accurate BDP such as bit-based division property using three subsets may find better integral
distinguishers, and is our future work.
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Camellia include one layer of FL/FL−1 located after the first six rounds (6 rounds →
FL/FL−1 → 1 round). For the FL/FL−1 functions, we treat them as we do for the FL
functions in MISTY1 (Figure 3(b) in Appendix D), i.e. we regard them as the pure linear
mapping, which can be represented in the bit matrices. The position of the diffusion layer
is included in the red dash line rectangle in Figure 5. The result is shown as follows,


caaaaaaa A A A
A A A A
A A A A
A A A A

 7R=⇒


? ? ? ?
? ? ? ?
B B B B
B B B B

 .
Since the linear layer in the round function of Camellia is actually a binary linear mapping
(Definition 3), the ZR method would find the same result as ours.

6 Conclusions and Discussions

In this paper, we provide an improvement on the existing automatic tools searching for the
BDP of complex linear layers. We remove restriction for the ZR method that it applies
only to the invertible binary linear layers. Furthermore, the weakness that the S method
may ignore some balanced property for ciphers with a complex linear layer has also been
overcome by our method. With our new method, more accurate BDP for many block
ciphers with a general linear layer such as LED, the AES, MISTY1 can be obtained within
reasonable time, which was not possible by the previous methods.

Although our method has many advantages over the previous ones, it also has some
limitations. For a primitive matrix of size n × n, the number of our constraints is n2,
while for the S method it is only 2n, which means for ciphers with larger linear layer
such as LowMC [ARS+15], the number of constraints in our new model increases much
faster than the S method. As a result, our method does not fit ciphers with over large
(n� 32) matrices. Also note that the constraints we construct in this paper are fourth
degree constraints (Proposition 1) which makes our model limited to SAT solvers. Other
constraint-based solvers like MILP also play a very important role in searching BDP-based
integrals, however MILP solvers can only process linear constraints (Gurobi can handle
quadratic constraints). How to implement our model using MILP solvers or similar ones,
will be a future work.

Now we would like to give some suggestions to the designers who need to evaluate
their designs against the BDP-based integral attacks. If their design takes a binary matrix
as one component of linear layer, the priority is to consider the ZR method and our
method. Suppose it is defined in Fs×s

2m . We know by the ZR method, at most m× (2s − 1)
inequalities are introduced to describe its BDP, so if s is in a reasonable range, we can
get an accurate BDP quickly enough. If the cipher takes a large (e.g., n = m× s� 32)
non-binary matrix as a linear layer, the number of constraints that our new method needs
to include in the model will increase sharply. On the other hand, though the results
returned by the S method may not be accurate, i.e., some balanced bits of the output
could be ignored by the S method, it may still give us feedback on some useful BDP.
Therefore, in these circumstances, we recommend the S method for these ciphers if it can
return us a BDP result within an acceptable time. For other linear layers, i.e., non-binary
matrices or non-invertible matrices with a moderate size (e.g., n 6 64), our new method
becomes the optimal choice, since it can find the accurate BDP results with a competitive
efficiency.
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A The Framework of Automatic Search for the BDP
The framework of automatic search for the BDP is shown in Algorithm 2.

B An Example of Binary Matrices: the S Method Cannot
Find its Accurate BDP

We give an example of the binary matrices that the S method cannot trace its BDP
accurately.
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Algorithm 2: The framework of automatic search for the BDP of ER
k [XZBL16]

Input: I represents the index set of the active bits in the plaintext
Output: S represents the index set of the balanced bits in the ciphertext
// C is the constraint set for the model. ar

i is the division
property variable at the i-th bit of the r-th round.

Allocate C = ∅;
for each operation f of ER

k do
C ← constraints for f ;

for i = 0; i < n; i = i+ 1 do
if i ∈ I then

C ← a0
i = 1;

else
C ← a0

i = 0;

C ←
∑n−1

i=0 a
R
i = 1;

// evaluate the BDP based on the constraints
Allocate S = {0, 1, . . . , n− 1};
Try to find solutions for the constraints in C;
while There is a solution do

Find i s.t. aR
i = 1 in the solution;

S = S
remove−−−−−→ i;

C ← aR
i = 0;

Update the model and resolve;
return S;

Example 1. Suppose the linear layer is a matrix

M =

1 1 0
1 1 0
0 0 1

 .
Assume the input and output of M are x = (x0, x1, x2)T and y = (y0, y1, y2)T respectively,
then we have y = Mx. We transform the representation of this multiplication to a vectorial
Boolean form as 

y0 = x0 ⊕ x1

y1 = x0 ⊕ x1

y2 = x2

.

Note that x0 appears in the first and second equations, so according to the propagation
rule of COPY 1, we need to apply COPY operation to x0. We introduce two binary variables
t0 and t1 to represent its output, i.e.,

x0
COPY−−−→ (t0, t1).

Similarly, (t2, t3) are introduced to represent the COPY of x1, i.e.,

x1
COPY−−−→ (t2, t3).

x2 only appears once in yi’s, thus COPY does not apply to it. Then we model XOR operations
with the help of binary variables ti’s as

(t0, t2) XOR−−→ y0, (t1, t3) XOR−−→ y1, x2 = y2.



C.1 A Brief Tutorial of STP Solver 421

If we consider a candidate division trail u = (1, 1, 0) M−→ v = (1, 1, 0), then a set of
assignments of ti satisfy the following constraints{

(t0, t1) = (1, 0)
(t2, t3) = (0, 1)

.

Then from the S method, we know u
M−→ v should be a valid division trail. Yet πv(y) =

x0 ⊕ x0x1 ⊕ x0x1 ⊕ x1, thus both of the x0x1 terms cancel each other. Therefore πv(y)
does not contain term x0x1. From the definition of bit-based division property, it means
(1, 1, 0) M−→ (1, 1, 0) is invalid.

C Automatic Search Based on SMT/SAT Tools
In computer science, a Boolean satisfiability problem (SAT) [Coo71] is the problem of
determining if there exists an interpretation that satisfies a given Boolean formula, i.e., it
asks whether the variables involved in a given Boolean formula can be consistently replaced
by True or False. If this is the case, the formula is called satisfiable, otherwise unsatisfiable.
In some applications, we also consider arithmetic operations, for instance, the arithmetic
sum of Boolean variables, which leads to the satisfiability modulo theory (SMT) problem.
In an SMT [BSST09] problem, some functions and predicate symbols have additional
interpretations for the decision formula, which makes it become a much richer language
than SAT. Solving SAT and SMT problems, there are many public available solvers. In this
paper, we translate our problem that determining a division trail of a non-binary matrix
is valid to an SMT problem, and deploy the STP [GD07] and Cryptominisat5 [SNC09] as
our solvers.

SMT has certain similarity with the 0-1 integer programming problem or mixed integer
linear programming (MILP), while the underlying ideas of solving them differ significantly.
For the MILP, linear programming solvers first regard the problem as a general linear
programming problem in real numbers, then by branch-and-cut strategy, they carefully
rule out the illegal branches and then limit the solution to 0-1 integers. SMT solvers
try to translate the problem to SAT, then solve it in a binary field. Due to the different
methodologies of solvers, their performances depend heavily on the background and the
structure of the underlying problem.

C.1 A Brief Tutorial of STP Solver
STP takes CVC language [BT07] as one of its input language and it focuses on the bit
vectors. There are two main variable types in STP.

• BITVECTOR(n): declare a bit vector variable of length n;

• BITVECTOR(n) OF BITVECTOR(m): declare an array with n-bit index and the value
of each element is an m-bit vector, and we denote it as ARRAY (n,m) in this paper.

ARRAY is the key component of models for differential or division property. It can be used
to model an Sbox or its differential distribution table (DDT). In our model for the linear
layer, it is used in modeling a matrix. STP supports almost all the word-wise and bit-wise
functions between vectors and arithmetic operations. We focus on bit-wise operations
such as AND, XOR or NOT and arithmetic operations such as PLUS in our models. STP
also allows condition statements IF-ELSE-THEN. With these operations, we can model any
constraints in order to trace the propagations of the division trails. We refer the readers
to https://stp.github.io for more details about the operations.

https://stp.github.io
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C.2 Models of Operations with SMT/SAT
Since we use the STP solver to search for the BDP, we introduce the SMT/SAT models
describing components such as Copy, XOR and Sbox.

Model 1 (COPY [SWW17] ). Denote (a) COPY−−→ (b0, b1) as a division trail of COPY operation,
then the following logical equations are sufficient to describe its bit-based division property
propagation 

b̄0 ∨ b̄1 = 1
a ∨ b0 ∨ b̄1 = 1
a ∨ b̄0 ∨ b1 = 1
ā ∨ b0 ∨ b1 = 1

.

Model 2 (XOR [SWW17]). Denote (a0, a1) XOR−−→ (b) as a division trail of XOR function,
then the following logical equations are sufficient to describe its bit-based division property
propagation 

ā0 ∨ ā1 = 1
a0 ∨ a1 ∨ b̄ = 1
a0 ∨ ā1 ∨ b = 1
ā0 ∨ a1 ∨ b = 1

.

In this paper, we introduce a new method to describe the bit-based division property
propagation of an Sbox. To make it more concrete, we take the division trail table of the
PRESENT Sbox [BKL+07], shown in Table 2, as an example.

Table 2: Division Trail Table for the PRESENT Sbox

Input Output
(0,0,0,0) (0,0,0,0)
· · · · · ·

(0,1,1,1) (0,0,1,0), (1,0,0,0)
· · · · · ·

Model 3 (Sbox). Denote (a) Sbox−−→ (b) as a division trail of the PRESENT Sbox. Firstly,
we declare an ARRAY(4,4)15 variable representing this Sbox. In the STP language, it is

Sbox: ARRAY BITVECTOR(4) OF BITVECTOR(4);

Then we initialize the Sbox by the following

ASSERT Sbox[0000] = 0000;

· · ·
ASSERT Sbox[0111] = 0010 OR Sbox[0111] = 1000;

· · ·

Finally, we construct the constraints for (a) Sbox−−→ (b) as

ASSERT Sbox[a] = b;

15ARRARY(4,4) means an array indexed by 4-bit variables and the value of this array is 4-bits variable.
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D Figures in Section 5
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Figure 5: The diffusion layer in the round function of Camellia
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