

Finding Bit-Based Division Property for Ciphers with Complex Linear Layers

Kai Hu¹ Qingju Wang² Meiqin Wang¹

¹School of Cyber Science and Technology, Shandong University

²SnT, University of Luxembourg

November 1, 2020

(ロ) (同) (三) (三) (三) (○) (○)

Outline

Main Result

- 2 Brackground Knowledge
 - Bit-Based Division Property and Division Trail
 - Propagation Rule
 - Propagation over the Complex Linear Layer
 - Previous Works
- 3 Our Results/Contribution
 - A New Model for A Complex Linear Layer
- 4 Applications
 - 5-Round AES Key-Dependent Distinguisher

(日) (日) (日) (日) (日) (日) (日)

- 7-Round BDP of LED-64
- BDP for MISTY1
- BDP of CLEFIA
- BDP of Camellia with FL/FL⁻¹

└- Main Result

Main Result

 A new model of the propagation of division trails over a complex linear layer used in the automatic search for the bit-based division property (BDP)

$$\begin{cases} wt(\boldsymbol{u}) = wt(\boldsymbol{v}) \\ E(i,j) \cdot v_i = \sum_{k=0}^{n-1} M(i,k) \cdot v_i \cdot u_k \cdot M_{\boldsymbol{v},\boldsymbol{u}}^{expand'}(k,j), \text{ for } 0 \leq i,j \leq n-1 \end{cases}$$

- Universal & precise
- Results for AES, LED-64, CLEFIA and Camellia

Bit-Based Division Property and Division Trail

Bit-Based Division Property and Division Trail

Conventional Bit-Based Division Property [TM,FSE 2016]

Let \mathbb{X} be a multiset and \mathbb{K} be a set and their elements are chosen from \mathbb{F}_2^n . When \mathbb{X} has the division property $\mathcal{D}_{\mathbb{K}}^n$, it fulfills the following conditions for any $\boldsymbol{u} \in \mathbb{F}_2^n$:

 $\bigoplus_{\boldsymbol{x} \in \mathbb{X}} \pi_{\boldsymbol{u}}(\boldsymbol{x}) = \begin{cases} unknown, & \text{if there exists a } \boldsymbol{k} \in \mathbb{K} \text{ s.t. } \boldsymbol{u} \succeq \boldsymbol{k} \\ 0, & \text{otherwise} \end{cases}$

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

where $\pi_{\boldsymbol{u}}(\boldsymbol{x}) = \prod_{i} x_{i}^{u_{i}}$ and $\boldsymbol{u} \succeq \boldsymbol{k}$ means $u_{i} \ge k_{i}$ for *i*.

Bit-Based Division Property and Division Trail

Bit-Based Division Property and Division Trail

Conventional Bit-Based Division Property [TM,FSE 2016]

Let \mathbb{X} be a multiset and \mathbb{K} be a set and their elements are chosen from \mathbb{F}_2^n . When \mathbb{X} has the division property $\mathcal{D}_{\mathbb{K}}^n$, it fulfills the following conditions for any $\boldsymbol{u} \in \mathbb{F}_2^n$:

 $\bigoplus_{\boldsymbol{x} \in \mathbb{X}} \pi_{\boldsymbol{u}}(\boldsymbol{x}) = \begin{cases} unknown, & \text{if there exists a } \boldsymbol{k} \in \mathbb{K} \text{ s.t. } \boldsymbol{u} \succeq \boldsymbol{k} \\ 0, & \text{otherwise} \end{cases}$

where $\pi_{\boldsymbol{u}}(\boldsymbol{x}) = \prod_{i} x_{i}^{u_{i}}$ and $\boldsymbol{u} \succeq \boldsymbol{k}$ means $u_{i} \ge k_{i}$ for *i*.

Division Trail [XZBL, ASIACRYPT 2016]

Assume the initial division property of a cipher be $\mathbb{K}_0 \stackrel{\text{def}}{=} \mathcal{D}_{\mathbb{K}_0}$, and the division property after the *i*-th round is $\mathbb{K}_i \stackrel{\text{def}}{=} \mathcal{D}_{\mathbb{K}_i}$. We have a trail of *r* rounds of division property propagations

$$\{k\} \stackrel{\mathsf{def}}{=} \mathbb{K}_0 \to \mathbb{K}_1 \to \mathbb{K}_2 \to \cdots \to \mathbb{K}_r.$$

For $(\mathbf{k}_0, \mathbf{k}_1, \dots, \mathbf{k}_r) \in (\mathbb{K}_0 \times \mathbb{K}_1 \times \dots \times \mathbb{K}_r)$, if \mathbf{k}_i can propagate to \mathbf{k}_{i+1} for all $i \in \{0, 1, \dots, r-1\}$, we call $(\mathbf{k}_0 \to \mathbf{k}_1 \to \dots \to \mathbf{k}_r)$ an *r*-round division trail.

Propagation Rule

Trace the Propagation of Division Trails

MILP/SAT-Aided Method [XZBL, ASIACRYPT 2016]

Create an MILP/SAT model *M* according to the propagation rules of division property and let the solutions be valid division trails like

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\mathbf{k}_0 \rightarrow \mathbf{k}_1 \rightarrow \mathbf{k}_2 \cdots \rightarrow \mathbf{k}_{r-1} \rightarrow \mathbf{k}_r.$

If $\mathbf{k}_0 \rightarrow \cdots \rightarrow \mathbf{e}_j$ is infeasible, the *j*-th bit is zero-sum.

Propagation Rule

Trace the Propagation of Division Trails

MILP/SAT-Aided Method [XZBL, ASIACRYPT 2016]

Create an MILP/SAT model *M* according to the propagation rules of division property and let the solutions be valid division trails like

 $\mathbf{k}_0 \rightarrow \mathbf{k}_1 \rightarrow \mathbf{k}_2 \cdots \rightarrow \mathbf{k}_{r-1} \rightarrow \mathbf{k}_r.$

If $\mathbf{k}_0 \rightarrow \cdots \rightarrow \mathbf{e}_j$ is infeasible, the *j*-th bit is zero-sum.

Propagation Rules

- For a vectorial Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ sending x to y, $u \to v$ is a valid division trail for f iff there exists $u' \succeq u$ satisfying that $\pi_{u'}(x)$ is a monomial of $\pi_v(y)$.
- The propagation rules for XOR, COPY, AND, SBOX have been well modeled.
- The complex linear layer has not been modeled perfectly.

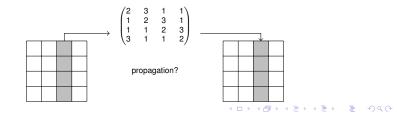
BDP for Linear Layers

- Brackground Knowledge
 - Propagation over the Complex Linear Layer

Motivation

Why We Focus on the Complex Linear Layer?

- Many important ciphers take a complex linear layer as the diffusion layer e.g., AES, CLEFIA take MDS matrices
- BDP is currently the most effective method to find integral distinguishers
- No perfect method to evaluate the security of the ciphers with complex linear layers against BDP



Previous Works

Previous Works

S Method: Universal & Imprecise [SWW, IET]

Basic idea: represent the matrix-multiplication by COPY and XOR

For
$$\mathbf{X} = (X_0, X_1, \dots, X_{n-1}) \xrightarrow{M} \mathbf{Y} = (Y_0, Y_1, \dots, Y_{n-1}),$$

 $X_j \xrightarrow{COPY} (t_{0,j}, t_{1,j}, \dots, t_{n-1,j}), (t_{i,0}, t_{i,1}, \dots, t_{i,n-1}) \xrightarrow{XOR} Y_n$

Advantage: any linear layer can be modeled

Disadvantage: some balanced bits could be missed

ZR Method: Precise & Restricted [ZR, IET]

- Basic idea: a valid trail iff the corresponding sub-matrix is invertible
- Advantage: trace each valid trial precisely
- Disadvantage: applicable to binary matrices, e.g. $M_{SKINNY} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$

Contribution of This Paper.

Contribution 1: A Universal & Precise Model

Precisely applicable to non-binary matrices

model the MDS matrix: prove 5-round AES has no BDP

Precisely applicable to non-invertible matrices

reproduce the key-dependent dist. of 5-round AES

Contribution 2: New & Better BDP

- 7-round integral distinguisher for LED, the longest
- 6-round BDP for Misty & new 6-round BDP for Misty with 62 active bits
- 10-round BDP for CLEFIA
- 7-round BDP for Camellia

A New Model for A Complex Linear Layer

Overview of Our New Model

A If not stated explicitly, we always assume wt(u) = wt(v).

Proposition

For a primitive matrix $M \in \mathbb{F}_2^{n \times n}$, a division trail (u, v) is valid iff (u, v) meets the following constraints

$$\mathsf{E}(i,j)\cdot \mathsf{v}_i - \sum_{k=0}^{n-1} \mathsf{M}(i,k)\cdot \mathsf{v}_i\cdot u_k\cdot \mathsf{M}_{\mathsf{v},u}^{\mathsf{expand}'}(k,j) = 0, \text{ for } 0 \leqslant i,j \leqslant n-1,$$

where *E* is a $n \times n$ identity matrix and $M_{v,u}^{expand'} \in \mathbb{F}_2^{n \times n}$ is an auxiliary matrix with n^2 elements.

To model $M \in F_2^{n \times n}$, we need totally n^2 4-degree constraints with n^2 auxiliary variables denoting $M_{n \times n}^{expand'}$

¹ $M' \in \mathbb{F}_2^{m \times m \times m}$ is the primitive matrix of $M \in \mathbb{F}_{2m}^{s \times s}$ if M' and M is equivalent except they are defined over different linear spaces.

A New Model for A Complex Linear Layer

Starting Point of the New Model

Theorem (Zhang & Rijmen)

Let *M* be the $n \times n$ primitive matrix of an invertible linear transformation and $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{F}_2^n$. Then $\boldsymbol{u} \xrightarrow{M} \boldsymbol{v}$ is one of the valid division trails of the linear transform *M* iff $M_{\boldsymbol{v},\boldsymbol{u}}^2$ is invertible.

Example. We check whether $\boldsymbol{u} = (0, 1, 1, 0) \rightarrow \boldsymbol{v} = (0, 1, 1, 0)$ is valid.

$$\begin{bmatrix} 0 & 0 & 1 & 1 \\ -1 & -1 & -1 & -1 \\ 0 & 0 & -1 & -1 \\ -1 & -1 & -1 & -1 & -2i, 2 & -2i, 3 \\ -1 & -1 & -1 & -2i, 2 & -2i, 3 \\ -1 & -1 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -1 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 3 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 2 & -2i, 3 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 3 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 3 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 3 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 3 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 2 \\ -2i, 2 & -2i, 2 & -2i, 2 & -2i, 2 \\ -2i, 2 & -2i, 2 &$$

BDP for Linear Layers

- Our Results/Contribution
 - A New Model for A Complex Linear Layer

Basic Idea

Common Knowledge

 $M_{\mathbf{v},\mathbf{u}}$ is invertible $\iff M_{\mathbf{v},\mathbf{u}}M_{\mathbf{v},\mathbf{u}}^{-1} = E_{wt(\mathbf{v}) \times wt(\mathbf{v})}^{3}$ has solutions.

Challenge

- The exact u, v and their hamming weights are not known in advance
- The exact size of M_{v,u} is not known
- When declaring the variables, the size is always required by the SAT/MILP tools

 ${}^{3}E_{wt(\mathbf{v})\times wt(\mathbf{v})}$ is a $wt(\mathbf{v})\times wt(\mathbf{v})$ identity matrix, if not ambiguous, denoted by *E*.

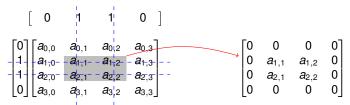
A New Model for A Complex Linear Layer

Compute the Expanded Matrix of Mv,u

Definition (Expanded Matrix)

Given a primitive matrix $M \in \mathbb{F}_2^{n \times n}$ and one of its sub-matrix $M_{v,u}$, the expanded matrix $M_{v,u}^{\text{expand}} \in \mathbb{F}_2^{n \times n}$ of $M_{v,u}$ is defined as

$$M_{\mathbf{v},\mathbf{u}}^{\text{expand}}(i,j) = \begin{cases} M(i,j), & \text{if } v_i = 1 \text{ and } u_j = 1, \\ 0, & \text{otherwise.} \end{cases}$$



The size of $M_{\nu,u}^{\text{expand}}$ is fixed \Rightarrow use ARRAY (index, value) to declare it

A New Model for A Complex Linear Layer

Check the Invertibility of $M_{v,u}$

Sonstrain $M_{v,u}^{\text{expand}}$ & Ensure $M_{v,u}$ is invertible

Theorem

Let *M* be a matrix in $\mathbb{F}_2^{n \times n}$. $M_{\mathbf{v}, \mathbf{u}}$ is invertible iff $M_{\mathbf{v}, \mathbf{u}}^{\text{expand}} M_{\mathbf{v}, \mathbf{u}}^{\text{expand}'} = E_{\mathbf{v}}$ has solutions, where $E_{\mathbf{v}} \in \mathbb{F}_2^{n \times n}$ is defined as follows,

$$E_{\mathbf{v}}(i,j) = \left\{ egin{array}{ll} 1, & \textit{if } i = j \textit{ and } v_i = 1 \ 0, & \textit{else} \end{array}
ight.$$

Proof.

w.l.o.g assume $M_{v,u}$ is located in the top-left corner of M (also $M_{v,u}^{expand}$).

$$\begin{bmatrix} M_{\mathbf{v},\mathbf{u}} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} X_{0,0} & X_{0,1} \\ \hline X_{1,0} & X_{1,1} \end{bmatrix} = \begin{bmatrix} E & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} \end{bmatrix} \Leftrightarrow \begin{cases} M_{\mathbf{v},\mathbf{u}} \cdot X_{0,0} = E \\ M_{\mathbf{v},\mathbf{u}} \cdot X_{0,1} = \mathbf{0} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A New Model for A Complex Linear Layer

The Compact Algorithm

Observation

 $M_{v,u}^{\text{expand}}$ can be generated by the following formula,

$$M_{\mathbf{v},\mathbf{u}}^{\text{expand}}(i,j) = M(i,j) \cdot v_i \cdot u_j.$$

Observation

The matrix E_v can be generated by the following formula,

$$E_{\mathbf{v}}(i,j) = E(i,j) \cdot \mathbf{v}_i.$$

Where E is the $wt(\mathbf{v}) \times wt(\mathbf{v})$ identity matrix.

Put Things Together

$$E(i,j) \cdot v_i = \sum_{k=0}^{n-1} M(i,k) \cdot v_i \cdot u_k \cdot M_{v,u}^{expand'}(k,j), \text{ for } 0 \leq i,j \leq n-1.$$

A New Model for A Complex Linear Layer

Remove Invertible Condition of Theorem in [ZR, IET]

P It was stated in [ZR, IET] that *M* should be invertible

Theorem

Let *M* be the $p \times q$ primitive matrix of a linear transformation. For $\mathbf{u} \in \mathbb{F}_2^q$ and $\mathbf{v} \in \mathbb{F}_2^p$, $\mathbf{u} \xrightarrow{M} \mathbf{v}$ is a valid division trail of the linear layer *M* if and only if $M_{\mathbf{v},\mathbf{u}}$ is invertible.

☆ *M* can be non-square let alone non-invertible

Proof.

In [ZR, IET], the invertibility of *M* is only used to prove wt(u) = wt(v). Discussion case-by-case.

- wt(u) > wt(v) is impossible because *M* is a linear mapping.
- If wt(u) < wt(v), v is redundant.

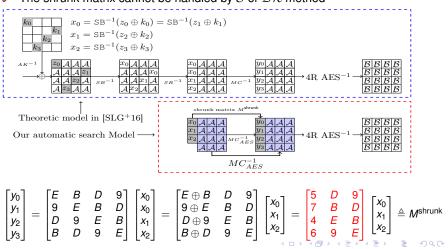
BDP for Linear Layers

- Applications

5-Round AES Key-Dependent Distinguisher

Reproduce the Key-Dependent Integral Distinguisher

The pare a shrunk matrix to satisfy the input condition P The shrunk matrix cannot be handled by S or \mathcal{ZR} method

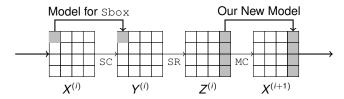


- Applications

-7-Round BDP of LED-64

The Longest BDP of LED-64

Round function of LED:



New and the longest BDP:

$$\begin{bmatrix} \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{C} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{C} \\ \mathcal{C} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{bmatrix} \xrightarrow{\mathbf{6R}} \begin{bmatrix} \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \\ \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \\ \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \end{bmatrix}, \begin{bmatrix} \mathcal{A} & \text{aaac} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{bmatrix} \xrightarrow{\mathbf{7R}} \begin{bmatrix} \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \\ \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \\ \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \end{bmatrix}$$

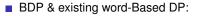
◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

BDP for Linear Layers

Applications

BDP for MISTY1

BDP of MISTY1

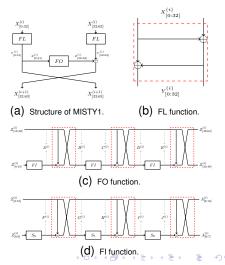


Caaa	\mathcal{A}	\mathcal{A}	\mathcal{A}	ΓB		?	?
$ \mathcal{A} $	\mathcal{A}	\mathcal{A}	\mathcal{A}	$\xrightarrow{6R}$? B B	?	?	?
$ \mathcal{A} $	\mathcal{A}	\mathcal{A}	\mathcal{A}	$\Rightarrow _{\mathcal{B}}$	B	\mathcal{B}	\mathcal{B}
$ \mathcal{A} $	\mathcal{A}	\mathcal{A}	$ \mathcal{A} $	B	\mathcal{B}	\mathcal{B}	\mathcal{B}

New 6-r BDP with 62 active bits:

$$\begin{bmatrix} ccaa & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{bmatrix} \xrightarrow{\mathbf{6R}} \begin{bmatrix} ? & ? & ? & ? & ? \\ ? & ? & ? & ? & ? \\ \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \\ \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \\ \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \end{bmatrix}$$

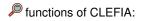
Functions of MISTY1:

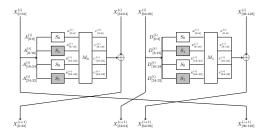


- Applications

BDP of CLEFIA

BDP of CLEFIA





BDP & word-based DP:

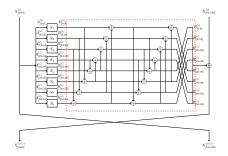
$$\begin{bmatrix} caaaaaaa & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{bmatrix} \xrightarrow{10R} \begin{bmatrix} ? & ? & ? & ? \\ \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \\ ? & ? & ? & ? \\ \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \end{bmatrix}.$$

- Applications

 \square BDP of Camellia with FL/FL^{-1}

BDP of Camellia

functions of CLEFIA:



^D new and the longest BDP (with FL/FL^{-1} located after the first round):

$$\begin{bmatrix} caaaaaaa & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\ \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \end{bmatrix} \xrightarrow{\mathbf{7R}} \begin{bmatrix} ? & ? & ? & ? \\ ? & ? & ? & ? \\ \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \\ \mathcal{B} & \mathcal{B} & \mathcal{B} & \mathcal{B} \end{bmatrix}.$$

ъ

Summary

Summary

Main results:

- A new and effective SAT model to describe the division property propagation over a complex linear layer, which can be used in MDS and any other kinds of matrix.
- Remove the invertible condition from ZR method, making it universal even for non-square matrices.
- Reproduce or find new integral distinguishers for many important ciphers.

Suggestion:

- Binary matrix: ours & *ZR* method
- Non-binary matrix with size $n \le 64$: ours
- Non-binary matrix with size n ≥ 64: S method

Summary

Thanks for your attention!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ