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Abstract. A theoretically reliable key-recovery attack should evaluate not only the
non-randomness for the correct key guess but also the randomness for the wrong
ones as well. The former has always been the main focus but the absence of the
latter can also cause self-contradicted results. In fact, the theoretic discussion of
wrong key guesses is overlooked in quite some existing key-recovery attacks, especially
the previous cube attack variants based on pure experiments. In this paper, we
draw links between the division property and several variants of the cube attack. In
addition to the zero-sum property, we further prove that the bias phenomenon, the
non-randomness widely utilized in dynamic cube attacks and cube testers, can also
be reflected by the division property. Based on such links, we are able to provide
several results: Firstly, we give a dynamic cube key-recovery attack on full Grain-128.
Compared with Dinur et al.’s original one, this attack is supported by a theoretical
analysis of the bias based on a more elaborate assumption. Our attack can recover 3
key bits with a complexity 297.86 and evaluated success probability 99.83%. Thus,
the overall complexity for recovering full 128 key bits is 2125. Secondly, now that
the bias phenomenon can be efficiently and elaborately evaluated, we further derive
new secure bounds for Grain-like primitives (namely Grain-128, Grain-128a, Grain-
V1, Plantlet) against both the zero-sum and bias cube testers. Our secure bounds
indicate that 256 initialization rounds are not able to guarantee Grain-128 to resist
bias-based cube testers. This is an efficient tool for newly designed stream ciphers for
determining the number of initialization rounds. Thirdly, we improve Wang et al.’s
relaxed term enumeration technique proposed in CRYPTO 2018 and extend their
results on Kreyvium and ACORN by 1 and 13 rounds (reaching 892 and 763 rounds)
with complexities 2121.19 and 2125.54 respectively. To our knowledge, our results are
the current best key-recovery attacks on these two primitives.
Keywords: Stream ciphers · Division property · Dynamic cube attack · Cube tester ·
MILP · Grain-128 · Kreyvium · ACORN

1 Introduction
At CRYPTO 2018, Fu et al. proposed a new cube attack variant, referred to as the
“IV-representation based cube attack” hereafter, and applied it to a key-recovery attack
on 855-round Trivium [FWDM18]. According to [FWDM18], with the knowledge of
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particular key bits, the adversary can make a transformation to the first keystream bit
satisfying: for the correct key guess, the transformed output bit has an algebraic degree
much lower than the original one so that zero-sum properties can be detected using cube
testers; for the wrong guess, the cube summation is a random 0/1. The degree of the
(transformed) output bit is evaluated with an innovative method called “IV-representation”.
The reliability of such a method is based purely on Fu et al.’s implementation on a huge
cluster along with what they referred to as “man-made work” [FWDM18]. But their
implementation has no theoretically reliable proof or complexity analysis. In order to verify
the correctness of their method, the authors of [FWDM18] propose a practical attack on
721-round Trivium claiming “This process can be executed in an hour in a PC... for
wrong guesses, the result is 1 with probability 1

2” as supportive material for their method.
Recently, another group of researchers gives a detailed analysis of the IV-representation

based cube attack method in [FWDM18] and has some astonishing findings [HJL+18]. The
first finding is that [FWDM18] is self-contradictive: according to actual experiments, the
721-round practical result itself is disproving their theories because, using their parameters,
the cube summations are constantly zero for both correct and incorrect key guesses1. The
second finding is that the precise evaluation of the superpoly degree for 855-round Trivium
requires a memory complexity 270, far beyond the practical reach, and further deliberate
reduction may result in wrong evaluations. Based on such findings, [HJL+18] makes a
comment on the results in [FWDM18] as “questionable”2.

The lesson we should learn is that: a theoretically reliable key-recovery result should
include 2 proofs:

Proof 1 There is detectable non-randomness when the key guess is correct.

Proof 2 Randomness is verified when the key guess is wrong.

In fact, verification of random behavior if a key guess is wrong has been neglected in
the past as well. In Dinur et al.’s dynamic cube attack on full Grain-128 [DGP+11], the
authors have exhausted the capacity of a FPGA cluster only to test the correct guess on
107 randomly chosen keys. Whereas, for wrong guesses, they were unable to provide strong
evidence for the randomness property of cube summations. They simply believe that the
success of the small-cube reduced-round simulations in [DS11] can simply transplanted to
the case of full-round attack. The result is not so positive: according to [DGP+11], even
for the 107 correct guesses, they only find 8 of them having significant bias3. It remains to
be a question whether for the 8 keys, the significant bias also exists when some of their 39
key bits are wrongly guessed. The absence of the wrong-key-guess discussion in [DGP+11]
is due to a lack of computational capacity and a theoretic method: there are 39 key bits
to be guessed and each of the 239 − 1 wrong key guesses requires to run a cube tester of
time complexity 250 + 50 · 249 ≈ 254.7.

In this paper, we reveal that with the successful introduction of division property into
the realm of cube attacks [TIHM17a, TIHM17b, WHT+17, WHT+18], new hopes appear
for giving dynamic cube attacks having both Proof 1 and 2 even if the used cubes are very
large.
Related Works. Division property is a generalization of the integral property initially
proposed by Todo at EUROCRYPT 2015 [Tod15b]. It has a solid algebraic foundation and
theoretically provable propagation rules so as to be successfully applied to cryptanalysis
of MISTY1 and SIMON32/SIMECK32 soon afterwards [Tod15a, TM16]. With division

1The source code of [HJL+18] is at https://github.com/peterhao89/Analyze721Trivium
2In accordance with [HJL+18], the authors of [FWDM18] have agreed that their data were incorrect

[FWD+18]. They also provide parameters different from those of [FWDM18] as a refinement to their
practical result, but no further explanation has been given for the important theoretic result on 855-round
Trivium [FWD+18].

3Quoted from [DGP+11]: “by running a 50-dimensional cube tester for 107 random keys and discovering
a very strong bias in about 7.5% of these key”.

https://github.com/peterhao89/Analyze721Trivium
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property, the propagation of the integral characteristics can be represented by the operations
on a set of 0-1 vectors identifying the bit positions with the zero-sum property. At
ASIACRYPT 2016, Xiang et al. [XZBL16] draw a link between division property and the
MILP model4: an entry of the 0-1 vectors, referred to as the division property value of the
state bit hereafter, is equivalent to a binary variable in the MILP model; the propagation
rules can be described as linear constraints imposed on the variables. Thanks to Xiang et al.,
the memory consuming division property propagation has become an efficient MILP model
solving process using existing highly efficient MILP solvers like Gurobi [GRB], which largely
stimulates the application of division property to block cipher cryptanalysis for finding
better integral characteristics [SWW16, SWW17, FTIM17, WGR18, WHG+18, HW19].
It was not until CRYPTO 2017 that the division property was introduced into the realm
of cube attacks on stream ciphers [TIHM17a, TIHM17b].

Cube attack (as well as its distinguisher variant cube testers [ADMS09]), introduced by
Dinur and Shamir [DS09] in the year 2009, has become a general tool for evaluating cryp-
tographic primitives. It is usually regarded as a generalization of the chosen IV statistical
attack on stream ciphers [Saa06, FKM08, EJT07] or a combination of higher order differ-
ential cryptanalysis and AIDA [Vie07]. Same with the setting of integral attacks, the cube
attack also considers the situation when some input bits are active (cube IVs) while others
being constants (non-cube IVs), and check the non-random property in the summation of an
output bit. But the non-randomness of cube summations is not restricted to the zero-sum
property. As is proved in [DS09], the cube summation is equal to a boolean function called
the “superpoly” whose algebraic normal form (ANF) is a polynomial of key bits and non-
cube IV bits. In addition to constant 0, cube attacks and testers can also cultivate other
non-randomness of superpolies such as constantness, neutrality, linearity, bias, etc., and
have been successfully applied to all kinds of cryptographic primitives, including stream ci-
phers [TIHM17a, ADMS09, DS11, FV13, SBD+16, LYWL18, KMN10, SMB17], hash func-
tions [DMP+15, HWX+17, LBDW17] and authenticated encryption [LDW17, DLWQ17].

Among all such results, Todo et al.’s cube attack [TIHM17a] stands out as it draws a
link between the division property and the key bits involved in the superpolies. Therefore,
theoretic key recoveries can be achieved when only very few key bits are involved in the
ANF of the superpolies, resulting in improved cryptanalysis results on several primitives
namely Trivium, Acorn, Grain-128a and Kreyvium [TIHM17a, TIHM17b]. Recently
at CRYPTO 2018, Wang et al. [WHT+17, WHT+18] have further improved the division
property based cube attack by introducing the flag technique and the degree evaluation:
the former takes the effect of constant 0-1 bits into MILP models for identifying proper
non-cube IV assignments; the latter draws the highly qualified upper bounds to the
algebraic degrees of the superpolies so as to further lower the complexities.
Motivations. Among various non-randomness utilized by cube attacks and testers, the
bias phenomenon is the most popular one. There are cube testers based on bias and such
bias testers are widely used to various stream ciphers [KMN10, SMB17, LLW15]. As to
key recoveries, in addition to Dinur et al.’s dynamic cube attack [DS11], the correlation
cube attack [LYWL18] also relies on biases in cube summations. However, once the
non-randomness in Proof 1 refers to the bias phenomenon, Proof 2 corresponds to the
absence or insignificance of biases for the wrong key guesses. Again, the division property
method might be a promising tool for achieving this goal.
Our Contributions. We first draw links between the bias phenomenon and the division
property. We find that the bias of a superpoly is closely related to a particular algebraic
structure referred to as “split set”. We prove that the minimal split set can draw lower
bounds on the bias in superpolies. And we provide a heuristic algorithm with the advanced

4Short for Mixed Integer Linear Programming [MWGP11]. A mathematic model widely used in
various cryptanalysis methods such as differential [SHW+14b, SHW+14a], linear [SHW+14a], impossible
differential [CJF+16, ST17], zero-correlation linear [CJF+16] characteristics etc.
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Table 1: Summarize all available attacks on full Grain-128

Method Time / Data Complexity Success Prob. Reference
Dynamic Cube 293.71/254.71 7.5% [DGP+11]

Dynamic Cube 2125/294.86 99.83% Section 6
Fast Correlation 2114.4/2112.8 99% [TIM+18]

division property using the flag technique and the degree evaluation method in [WHT+18],
which can find split sets approximating the minimal one.

Secondly, we propose a new MILP modeling method for describing the division property
propagations when the nullification strategies [DGP+11] are used. Our MILP models not
only describe the zero-sum (or bias) phenomenon for the correct key guess but analyze the
randomness in the wrong guesses as well. The theoretic cryptanalysis results using this
new modeling method are equipped with both Proof 1 and Proof 2.

Based on such new techniques, we are able to give some new results:

1. We give a new dynamic cube attack on Grain-128 with theoretical analysis of the
success probability basing on a more elaborate assumption than the randomness
assumption used in Dinur et al..’s attack [DGP+11]. Our method only nullifies 1
intermediate state bit and only requires to guess 3 key bits, fewer than Dinur et
al.’s 13 and 39 respectively. Furthermore, our cube testers have provable zero-sum
properties for correct key guesses, much more reliable than the bias tester. Most
importantly, the division property derived split set equips our attack with evidence
to Proof 2 and a theoretical analysis of its success probability basing on a corollary
derived from an elaborate assumption and the concept of the minimal split set. Our
attack recovers 3 key bits with a complexity 297.86 and a theoretically estimated
success probability 99.83%. The remaining 125 key bits are to be exhaustively
searched, so the overall complexity of our attack is 2125. The success probability
of our attack is overwhelmingly higher than that of Dinur et al.’s in [DGP+11],
promising a better complexity on the average. In comparison with Todo et al.’s fast
correlation attack in [TIM+18], the only theoretically reliable result on full Grain-128,
our 294.86 data complexity is lower than theirs’ 2112.8. The comparison among the 3
attacks is in Table 15.

2. Similar to Liu’s drawing secure bounds for Trivium-like ciphers against the zero-
sum cube tester [Liu17], we draw improved secure bounds for Grain-like stream
ciphers (namely Grain-128 [HJMM06], Grain-128a [ÅHJM11], Grain-V1 [HJM07]
and Plantlet [MAM16]) against both zero-sum and bias cube testers. We find that
for Grain-128, 254 rounds are enough for resisting zero-sum cube tester but, to resist
bias testers, the initialization round number should increase to 265. On the contrary,
the bounds for the other 3 primitives are 190, 82 and 138 respectively, far below their
initialization round numbers. This indicates that our method can also be used as a
useful tool in the design process of stream ciphers for identifying proper initialization
round numbers.

3. We improve the current best key-recovery attack on Kreyvium [CCF+16] and Acorn
[Wu16] by 1 and 13 rounds with complexities 2121.19 and 2125.54 respectively. The
method of this attack is the same as that of [WHT+18] but our new MILP modeling
technique enables us to cultivate more information from the superpoly in order to
lower the complexities even further. As can be seen in Table 2, our results are the
current best cube attacks on these two primitives.

5Note that there is another result given by Fu et al. in [FWC+17] which is using the same degree eval-
uation method with [FWDM18]. According to [HJL+18] and [FWD+18], such a method is “questionable”
so we exclude it from Table 1.
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Table 2: Cube Attacks on Kreyvium and Acorn

Target Full Rounds Attacked Rounds Cube size Complexity Reference

Kreyvium 1152
872 85 2124 [TIHM17a, TIHM17b]
891 113 2120.73 [WHT+17, WHT+18]

892 115 2121.19 Section 8

Acorn 1792
503 5 practical [SBD+16]
704 64 2122 [TIHM17a, TIHM17b]
750 101 2120.92 [WHT+17, WHT+18]
763 116 2125.54 Section 8

Since all our results are affected by the accuracy of the division property, we check the
feasibility of all our results with the current most accurate division property method in
[YT19], proving that the problems reported in [YT19] do not occur in our results.

All our results, no matter theoretic deductions using MILP-aided division property or
practical verifications, are equipped with C++ source codes in the supplementary materials
for double-check6.
Organization. Section 2 provides a brief description of the division property and the
dynamic cube attack method in [DGP+11]. Section 3 formalizes the Proof 1 and 2 used in
our dynamic cube attack. Section 4 gives a theoretical explanation to the bias phenomenon
and introduce the concept of a minimal split set. It also presents the general idea of our
split-set-based bias evaluation technique. Section 5 illustrates the division property based
MILP model construction process for dynamic cube attacks, and shows how such new
techniques can be used to find highly qualified split sets and cubes. Section 6 introduces
the main procedure of our dynamic cube attack on full 256-round Grain-128. Section
7 discusses rationalities as well as limitations of our new techniques and compare our
dynamic cube attack with Dinur et al.’s in detail. It also points out some promising
directions for improvements. In Section 8, our theories are additionally applied for drawing
secure bounds of Grain-like ciphers against bias testers, and improved cube attacks on
Kreyvium and Acorn. Finally, we conclude the paper in Section 9.

2 Preliminaries
We first introduce the common notations frequently used in this paper:

• The small letters n and m are positive integers. The ith bit of a positive integer
n is denoted as n[i]. The boolean field is denoted as F2. Its n-dimensional vector
space is Fn2 . We commonly use small letters to represent a single element and capital
letters for sets. For a set S, we denote its size as |S|. We denote the complexity
and success probability of an attack as Comp and PS respectively. The integer set
{i, . . . , n− 1} is presented as [i, n) for short. For the subset J ⊆ [0, n), we denote its
complementary set as J̄ . Let x0, . . . , xn−1 be n variables, then, for a set J ⊆ [0, n),
the corresponding set of variables is xJ := {xj : j ∈ J}.

• An n-dimensional vector is denoted as ~x = (x0, . . . , xn−1). Its ith entry (i =
0, . . . , n− 1) is referred to as ~x[i] = xi. Furthermore, for a set J ⊆ [0, n), we define
the corresponding vector ~kJ ∈ Fn2 s.t. ~kJ [j] = 1 for j ∈ J and ~kJ [j] = 0 for j ∈ J̄ . For
two n-dimensional boolean vectors ~x = (x0, . . . , xn−1) and ~k = (k0, . . . , kn−1) ∈ Fn2 ,
there is an operation ~x

~k =
∏n−1
i=0 x

ki
i . For example, let x[0,n) in ~x be n boolean

variables, then any polynomial p on the ring F2[x[0,n)] can be represented as

p(~x) =
∑
~k∈Fn2

a~k~x
~k, where a~k ∈ F2. (1)

6https://github.com/peterhao89/Grain128DynamicCubeAttack.git

https://github.com/peterhao89/Grain128DynamicCubeAttack.git


368 Links between Division Property and Other Cube Attack Variants

Furthermore, we denote ~ei ∈ Fn2 for i ∈ [0, n) as the n unit vectors (~ei[i] = 1 and
~ei[j] = 0 for j 6= i) while ~1 and ~0 are vectors with all entries being 1 and 0 respectively.
Two vectors ~u,~k ∈ Fn2 have relation ~u � ~k if ~u[i] ≥ ~k[i] for all i ∈ [0, n).

• The algebraic degree of a polynomial p is represented as deg(p). Specifically, if p is
constant 0 or 1, we have deg(0) = −1 and deg(1) = 0.

• ‖ is the concatenation such as ~x‖a = (x0, . . . , xn−1, a). + in a boolean polynomial
refers to the XOR operation on bits. ∧ is the bitwise AND of two n-dimensional
binary vestors: ~x, ~y ∈ Fn2 , ~x ∧ ~y = (x0 · y0, . . . , x1 · y1)

• An MILP model is denoted as M. It contains boolean variables M.var and con-
straints imposed on themM.con. It can also have an objective function, denoted
as M.obj, maximizing (or minimizing) a linear expression. It can be solved by
callingM.optimize() and it returns either 0 or 1. IfM.optimize() = 0, the model
is infeasible; otherwise, the model has feasible solutions and we get a proper assign-
ment to all variables in M.var satisfying all constraints in M.con. For example,
M.var = {x0, x1, x2} andM.con may contain equality or inequalities imposed on
them as:

M.con :
{
x0 + x1 + x2 ≥ 2
x0 + x1 = x2.

We can also define its objective function asM.obj = max{x1 + x2}. We solve the
model and find M.optimize() = 1 along with a proper assignment x0 = 0, x1 =
1, x2 = 1.

2.1 The Theoretic Basis of Cube Related Cryptanalysis Methods
Consider a stream cipher with n secret key bits ~x = (x0, . . . , xn−1) and m public initial-
ization vector (IV) bits ~v = (v1, . . . , vm−1). Then, the first output keystream bit can be
regarded as a polynomial of x[0,n) and v[0,m) referred to as f(~x,~v). For set I ⊆ [0,m) and
the corresponding vector ~kI ∈ Fm2 , the algebraic normal form (ANF) of f(~x,~v) ∈ F2[~x,~v]
can be uniquely decomposed as

f(~x,~v) = p(~x,~v) · ~v~kI + q(~x,~v), (2)

where the monomials of q(~x,~v) miss at least one variable from vI while p(~x,~v) is the so-
called superpoly [DS09] and is on the polynomial ring F2[x[0,n), vĪ ]. Following [WHT+18],
we refer the indices in I as “cube indices”, the variables in vI as cube IV and those of vĪ
as non-cube IV. Since the superpoly p in (2) is only related to key bits and non-cube IVs,
according to (1), we can represent the ANF of p as

p(~x,~v) =
∑

~k∈Fn2

a~k~x
~k, where a~k ∈ F2[vĪ ].

Arbitrary binary vector ~IV ∈ Fm2 corresponds to a specific assignment to non-cube IVs.
With I and ~IV , we can define a structure called “cube”, denoted as CI( ~IV ), consisting of
2|I| vectors from Fm2 :

CI( ~IV ) := {~v ∈ Fm
2 : ~v[i] = 0/1, i ∈ I

∧
~v[s] = ~IV [s], s /∈ I}. (3)

As is proved in [DS09], the ANF of the superpoly p corresponding to the non-cube IV
assignment ~IV can be computed by summing the output bit over the cube CI( ~IV ) as:

p ~IV (~x) := p(~x, ~IV ) =
⊕

~v∈CI ( ~IV )

f(~x,~v). (4)
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Since CI is defined according to I, we may also refer I as the “cube” without causing
ambiguities and the size |I|, is referred to as the “dimension” of the cube.

All cube related cryptanalysis methods are utilizing the non-random properties of the
superpoly p ~IV in (4) (for some ~IV ). The cube attacks on Keccak [DMP+15, HWX+17,
LBDW17, DLWQ17] and Ascon [LDW17] are utilizing the zero-sum property (p ~IV (~x) ≡ 0)
The original cube attack in [DS09] can recover secret key bits when p ~IV (~x) is linear
(deg(p ~IV ) = 1). Todo et al.’s division property based method in [TIHM17a, TIHM17b]
determines a small set J ⊆ [0, n) s.t. p ~IV (~x) ∈ F2[xJ ]. It precomputes the whole truth
table of p ~IV and key bits can only be recovered when p ~IV is non-constant. So it requires
deg(p ~IV ) ≥ 1 and |J |+ |I| < n. Wang et al.’s improved version [WHT+18] imposes the
flag technique for identifying proper ~IV and the degree evaluation technique for upper
bounding the algebraic degree of p ~IV as deg(p ~IV ) ≤ d for some d ≥ 0. They relax Todo et
al.’s |J |+ |I| < n restriction to

2|I| ×
(
|J |
≤ d

)
≤ 2n, where

(
|J |
≤ d

)
:=

d∑
t=0

(
|J |
t

)
. (5)

The dynamic cube attacks [DGP+11, DS11] as well as the cube testers in [ADH+09] on
Grain-128 utilize a quite different property called “bias”: for random ~x ∈ Fn2 and particular
~IV (usually ~IV = ~0 [DS11]), the values of p ~IV (~x) have a bias ε > 0 towards 0:

Pr[p ~IV (~x) = 0] = 2−1 + ε, 0 ≤ ε ≤ 2−1. (6)

When ε is big enough, it can be used for either distinguishing the correct key guesses
from the wrong ones [DGP+11, DS11] or distinguishing the Grain-128 keystreams from
truly random bitstreams [ADH+09]. We’ll briefly introduce the procedures of Dinur et
al.’s dynamic cube attack in Section 2.5.

2.2 Bit-Based Division Property and its MILP Representation
The division property based cube attacks in [TIHM17a, WHT+18] use the bit-based
division property first introduced in [TM16]. Its definition is as the following Definition 1:

Definition 1 (Bit-Based Division Property [TM16]). Let X be a multiset whose elements
take a value of Fn2 . Let K be a set whose elements take an n-dimensional bit vector. When
the multiset X has the division property K, it fulfils the following conditions:

⊕
~x∈X

~x~u =
{

unknown, if there exists ~k ∈ K s.t. ~u � ~k,
0, otherwise.

According to Definition 1, the division property of multiset X ⊆ Fn2 is grasped by the
set K ⊆ Fn2 . For a input multiset X with division property K, when the basic bitwise
operations COPY, XOR, AND are applied to all the elements in X and acquire X ′,
the division property of X ′, denoted by K ′, can be deduced following the propagation
rules copy, xor, and proved in [Tod15b, TM16]. Specifically, let I ⊆ [0, n) be the set
containing all the indices of active IV bits; the 2|I| initial states compose a set X0 with
division property K0 = {~kI}. Since the round functions of all cryptographic primitives
can be represented as the combinations of the three basic operations, the division property
propagation for an R-round encryption can be evaluated as

{~kI} = K0 → K1 → · · · → KR. (7)

If ~ei /∈ KR for some i ∈ [0, n), we know the ith bit of the ciphertext has zero-sum
property; otherwise, the summation of the ith bit is unknown. But the sizes of Kr (r ∈ [R)
expand exponentially to O(2n) consuming huge memory resources [TM16]. So Xiang et al.
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proposed the MILP modeling method and solved the memory crisis [XZBL16]. They first
transform the set operations in (7) into a vector propagation, referred to as the “division
trail”, as follows:

Definition 2 (Division Trail [XZBL16]). Consider the division propagation in (7), for any
vector ~ki+1 ∈ Ki+1 (i ∈ [0, R−1)), there must exist a vector ~ki ∈ Ki s.t. ~ki can propagate
to ~ki+1 by the propagation rules of the division property. For (~k0, . . . ,~kR) ∈ (K0×· · ·×KR),
if ~ki can propagate to ~ki+1 for all i ∈ [R− 1), we call ~k0 → · · · → ~kr an R-round division
trail.

Xiang et al. also prove that all division trails can be covered by a MILP modelM:
all entries in ~ki (i ∈ [R)) are binary variables inM.var; the propagation rules copy, xor,
and are equivalent to linear constraints in M.con; to check whether ~ej /∈ KR, we need
to impose constraintsM.con← ~ej = ~kR and callM.optimize(): if it returns 1, we know
~ej ∈ KR, the summation of the jth bit is unknown; otherwise, ~ej /∈ KR and the jth bit
has zero-sum property. The model solving completely relies on the highly efficient MILP
solver like Gurobi [GRB]. Some simplifications have been made to the MILP descriptions
of copy, xor, and [SWW16, TIHM17a] in order to reduce the workload of the solvers.

2.3 The Division Property Based Cube Attacks
In the context of cube attacks, the following structure of a stream cipher is assumed. The
n-bit key ~x and m-bit IV ~v are first used to initialize a large register ~s0 of length l > m+n
containing key, IV and constant 0/1 bits as ~s0 = ~k‖~v‖~c. Then, the stream cipher starts an
R-round initialization phase and acquires ~s1, . . . , ~sR by iteratively calling the updating
function ~si+1 = Upd(~si) (i ∈ [0, R)). Finally, an output bit zR is generated from ~sR by
calling the output function zR = Output(~sR).

Therefore, the division property values for describing cube attacks on stream ciphers
should make modifications accordingly [TIHM17a, WHT+18]. For cube index set I, the
division property values for ~x and ~v should first be decided as ~kx‖~kv ∈M.varn+m. More
specifically, ~kv = ~kI for cube I. After that, the division property for ~s0 is decided as
~k0 according to ~kx,~kv as ~k0. For constant state bits in ~s0, the division values are set
to 0 (M.con ← ~k0[j] = 0 if ~s0[j] is set to constant 0 or 1). The following R updating
and output function calls will result in division values ~k1, . . . ,~kR ∈ M.varl, o ∈ M.var
corresponding to the division property values of ~s0, . . . , ~sR and z respectively.

The critical division trail for division property based cube attack is ~kx‖~kv → ~kR‖o
(equivalent to the ~k0 → o expressions in [TIHM17a, WHT+18]). Todo et al. [TIHM17a]
proved Proposition 1 and Wang et al. [WHT+18] gave a generalization as Proposition 2.

Proposition 1. ([TIHM17a]) For j ∈ [0, n), if ~ej‖~kI → ~0‖1 does NOT exist, for arbitrary
~IV ∈ Fm2 , the corresponding superpoly p ~IV does NOT involve xj. On the contrary, if
~ej‖~kI → ~0‖1 exists, there might be a ~IV ∈ Fm2 s.t. xj involved in the superpoly p ~IV .

Proposition 2. ([WHT+18]) For W ∈ [0, n), if ~kW ‖~kI → ~0‖1 does NOT exist, for
arbitrary ~IV ∈ Fm2 , the corresponding superpoly p ~IV does NOT involve the monomial ~x~kW .
If ~kW ‖~kI → ~0‖1 exists, there might be an ~IV ∈ Fm2 s.t. the monomial ~x~kW is involved in
the superpoly p ~IV .

Based on Proposition 1, they let j traverse [0, n) and decide a key index set J ⊆ [0, n)
s.t. the superpoly p ~IV of I can only be a function of key bits xJ [TIHM17a]. They prove
that for proper ~IV making p ~IV 6≡ 0, the whole truth table can be constructed offline with
complexity 2|I|+|J| with which 1 key bit can be recovered online with a cube summation
and a table lookup. Proposition 2 enables the adversaries to draw upper bound for the
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algebraic degree of p ~IV : they can find an integer d ≥ 0 s.t. deg(p ~IV ) ≤ d. With such
an upper bound d, the complexity decreases from 2|I|+|J| to no more than 2|I| ·

(|J|
≤d
)
(5).

For t = 1, . . . , d, Proposition 2 also enables to find a set J t ⊆ [0, n)t corresponding to
all t-degree monomial terms possibly appearing in p~IV (Note: J1 = J as is explained
in [WHT+18]). Considering that the determining J t is too time consuming for Gurobi,
Wang et al. also proposed a relaxed version that determines a relaxed set J̃ t ⊆ [0, n) s.t.
J t ⊆

(
J̃ t
)t ⊆ [0, n)t and the complexities of some key-recovery attacks can be further

reduced to (8) according to [WHT+18]:

Comp = max

{
2|I| · (1 +

d∑
t=1

(
|J̃t|
t

)
), 2|I| + 2|J| · (1 +

d∑
t=1

(
|J̃t|
t

)
)

}
. (8)

Note that in [WHT+18],J̃ t ⊇ J̃ t+1 for t = 1, . . . , d− 1: indicating that key bits involved
in nonlinear parts should always be assumed to appear in the linear parts. We remove
such restriction in Section 8.2 and acquire improved key-recovery results.

Besides degree evaluation and term enumeration, Wang et al. also find that some
division trails are impossible when specific constant 0/1 bits are involved. So they
introduce the “flag technique” for finding proper ~IV ’s [WHT+17, WHT+18]. According
to [WHT+18], the division property of arbitrary bit s has 2 parameters s.val and s.F :

• s.val ∈M.var is the division property value as before so it is permanently binary
variables taking values either 0 or 1.

• s.F ∈ {0c, 1c, δ} is the “flag” value where 0c, 1c, δ specifies whether the state bit
is constant 0, constant 1 or variable (active IV, unknown key bits, cube IV’s or
non-cube IV bits with arbitrary value are all corresponding to flag value δ).

The flag value helps to track the constant bits and control the division property propagations.
Corresponding to the bitwise EQUAL, XOR and AND operations, the flag values 0c, 1c, δ
has =, ⊕ and × operations. The = operation is naturally 1c = 1c, 0c = 0c and δ = δ. The
⊕ and × operations follow the rules:

1c ⊕ 1c = 0c

0c ⊕ x = x⊕ 0c = x

δ ⊕ x = x⊕ δ = δ

and


1c × x = x× 1c = x

0c × x = x× 0c = 0c

δ × δ = δ

, (9)

for arbitrary x ∈ {1c, 0c, δ}. We refer to such a structure s with both division property
value and flag value as “DP structure” hereafter and its propagation rules corresponding
to the COPY, XOR and AND operations have become copyf, xorf, andf described as
Proposition 3, 4 and 5 respectively. With the DP structure and its propagation rules,
the degree evaluation (DegEval), term enumeration (TermEnum) and its relaxed version
(RTermEnum) are uniformly described in the framework in Algorithm 1 where we add an
additional parameter “etc.”, because additional parameters are required for such models to
describe the dynamic cube attacks in [DGP+11] as well as our new methods. It is also
noticeable that when, DegEval returns 0, it only proves that the superpoly is a constant
(either 0 or 1). This is a constant-sum property and can also serve as a cube tester
[ADMS09]. If DegEval returns −1, we can fully convince that the cube has a zero-sum
property (a special case of the constant-sum property) because its superpoly is constant
0 according to Definition 1. Such a denotation of constant 0 is in accordance with the
definition of deg(·) at the beginning of Section 2. As distinguishers, both the constant-sum
and zero-sum can be used for identifying the correct key guesses. But, since all the cubes
used in our dynamic attacks have the zero-sum property (DegEval returns -1) for the
correct key guess, we only use the term zero-sum hereafter. The specific effectiveness
of utilizing 0, rather than 1, biasing property has already been noticed by Dinur et al..
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They have pointed out in [DS11, DGP+11] that Grain-128 superpolies are usually sparse
polynomials: for randomly chosen keys, the values of Grain-128 superpolies are more likely
to 0.

Proposition 3 (MILPModel for COPY with Flag [WHT+18]). Let a.val→ (b1.val, . . . , bm.val)
be a division trail of COPY. The DP structure propagation rule copyf is:{

M.con← a.val = b1.val + · · ·+ bm.val

a.F = b1.F = . . . = bm.F

We denote this process as (M, b1, . . . , bm)← copyf(M, a,m).

Proposition 4 (MILP Model for XOR with Flag [WHT+18]). Let (a1.val, . . . , am.val)
→ b.val be a division trail of XOR. Its DP structure propagation rule xorf is:{

M.con← a1.val + · · ·+ am.val = b.val

b.F = a1.F ⊕ a2.F ⊕ · · · ⊕ am.F

We denote this process as (M, b)← xorf(M, a1, . . . , am).

Proposition 5 (MILP Model for AND with Flag [WHT+18]). Let (a1.val, . . . , am.val)
→ b.val be a division trail of AND. Its DP structure propagation rule andf is:

M.con← b.val ≥ ai.val for all i ∈ {1, 2, . . . ,m}
b.F = a1.F × a2.F × · · · am.F

M.con← b.val = 0 if b.F = 0c

We denote this process as (M, b)← andf(M, a1, . . . , am).

Algorithm 1 The general framework for DegEval, TermEnum and RTermEnum in [WHT+17]
where RTermEnum can be acquired from TermEnum by replacing the blue parts with the
corresponding comments.
1: procedure DegEval(I ⊆ [0,m), ~IV ∈ Fm2 , round R, etc.)
2: Declare an empty MILP modelM.
3: Declare ~kx, ~kv as the DP structures for key and IV bits and assign their division property values and

flag values according to I, ~IV etc. Denote the procedure as (~kx, ~kv)← IniDP(M, I, ~IV ,R, etc.).
4: Add constraintM.con←

∑
i∈[0,n)

xi.val ≥ 0.

5: Set objective ofM asM.obj = max
∑

i∈[0,n)
xi.val.

6: With ~kx, ~kv etc., update the modelM according to R Upd calls and 1 Output call describing the division
trail ~k0 → · · · → ~kR‖o. Denote the procedure as (M, ~k0, . . . , ~kR, o)← ModelConstruct(~kx, ~kv, R, etc.).

7: If 1 =M.optimize(), set the degree d =M.obj; otherwise, set d = −1, indicating a constant 0 superpoly
and the zero-sum property.

8: Return d.
9: end procedure
1: procedure TermEnum(I ⊆ [0,m), ~IV ∈ Fm2 , round R, targeted term degree t, etc.) . RTermEnum.
2: Declare an empty MILP modelM.
3: Declare a set Jt = φ ⊆ [0, n)t. . J̃t = φ ⊆ [0, n).
4: Declare ~kx, ~kv as the division properties of key and IV bits and assign their division property values and

flag values according to I, ~IV etc.
5: Add constraintM.con←

∑
i∈[0,n)

xi.val = t.

6: Call (M, ~k0, . . . , ~kR, o)← ModelConstruct(~kx, ~kv, R, etc.).
7: while M.optimize() = 1 do
8: Identify 0 ≤ i1 ≤ . . . ≤ it ≤ n− 1 s.t. xij .val = 1 for j = 1, . . . , t.
9: Update Jt ← Jt ∪ {(i1, . . . , it)}. . J̃t ← J̃t ∪ {i1, . . . , it}.
10: AddM.con←

∑t

j=1
xij .val ≤ t− 1. .M.con←

∑
i/∈J̃t

xi.val ≥ 1.
11: end while
12: Return Jt. . J̃t.
13: end procedure
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2.4 The Accuracy of the Division Property based Cube Attacks
The division property can prove the zero-sum property of cubes theoretically. When division
trails show the superpoly non-constant, it is a function of key bits with high probability.
But such a probability is not 100% in some cases even with the flag technique [WHT+18].
The reason is obvious: the division property itself cannot handle the effect of monomial
cancellation (such as x1x2 + x1x2 = 0). The theoretic remedy has already been proposed
in [TM16] referred to as the bit-based division property with three subsets (BDPTS). But
the implementation is far beyond practical reach since it requires to enumerate almost all
division trails.

The issue of accuracy is discussed extensively recently [WHG+18, YT19, WHG+19,
HW19]. Various compromises are given and the general frameworks for R-round stream
ciphers can all be summarized as follows:

0
~k−→ R⇒ 0 accurate−−−−−→ Rm

~k−→ R. (10)

The whole cipher is split into 2 stages: the 0→ Rm stage is accurately evaluated either
using BDPS [WHG+18] or precise ANF deductions [YT19]. Then, all division trails in
Rm → R are enumerated in a conventional manner and the validity of each trail is checked
according to the accurately deduced information in 0→ Rm. In this way, the cancellation
effects in 0→ Rm is handled so that the accuracy is improved. The limitations are also
obvious:

1. Rm cannot be large;
2. The trails within Rm → R should be very few, suitable for practical evaluations.
3. The cancellation effects in Rm → R is still not handled.

The most significant finding is that, for some key-recovery attacks on Trivium, there is
only 1 division trail within Rm → R and such a division trail cannot add key bits to the
superpolies according to their analysis to the ANFs of the intermediate state bits at round
Rm [YT19]. We are to use the ANF deduction method in [YT19] for double-check our
results.

2.5 Brief Introduction to Dinur et al.’s Dynamic Cube Attacks
In this part, we briefly introduce Dinur et al.’s dynamic cube attack on full Grain-128
[DGP+11]. In a cryptographic primitive with n key bits ~x = (x0, . . . , xn−1) and m public
IV bits ~v = (v0, . . . , vm−1), the ANFs of its arbitrary bit can be regarded as a polynomial
f(~x,~v) as follows:

f(~x,~v) =
∑

~u∈Fm2

a~u~v
~u where a~u ∈ F2[x[0,n)]. (11)

Dinur et al. [DGP+11] affect the output bit by replacing ~v by some ~̂v. For Grain-128,
after expressing the output bit z as a polynomial of intermediate state bits, Dinur et al.
find that the algebraic degree of the output bit can be decided by only 1 high-degree
monomial. Therefore, if particular intermediate state bits are nullified (set to 0), the
high-degree monomial can be largely simplified so that the degree of the output bit drops
making the output bit vulnerable to bias cube testers. A state bit sri (generated at round
r at position i) can be nullified by assigning particular IV bit to a dynamic value decided
by the ANF of sri . For example, we start from ~v = (v0, . . . , vm−1), if

sr
i = sr

i (~x,~v) = vl + f where f ∈ F2[x[0,n), v[0,m)\{l}],

sri can be nullified by setting the l-th entry of ~v to f . Let ~̂v be a vector deduced from ~v as

~̂v[j] =
{
~v[j], j 6= l

f, j = l
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and sri is therefore nullified for sri = sri (~x, ~̂v) = 0. The expression f is referred to as
dynamic value and the ith IV bit is referred to as the dynamic IV. If there are multiple
crucial bits sr1i1 , . . . , s

rt
it

(we constantly assume r1 ≤ . . . ≤ rt hereafter) to be nullified,
we also start from the same ~v and repeat the procedure t times: acquire ~̂v1, . . . , ~̂vt by
recursively replacing l1−th, . . . , lt−th IV bits with the corresponding dynamic values
f1, . . . , ft. Let ~̂v := ~̂vt, we know sr1i1 , . . . , s

rt
it

are successfully nullified. As can be seen, the
dynamic values can be uniquely decided by the pairs NS = {(l1, sr1i1 ), . . . , (lt, srtit )}, so we
refer to the set NS as the “nullification strategy” hereafter. The combination of (NS , I, ~IV )
can decide particular key bits that need to be guessed for assignment to dynamic values.
The correct key guess is supposed to be uniquely identified using cube testers dedicated for
particular non-randomness (such as bias phenomenon in [DGP+11]) in cube summations.

3 Formalize Proof 1 and 2 in Dynamic Cube Attacks
With the nullification strategy NS defined in Section 2.5 along with cube I and non-cube
IV assignment ~IV , we can deduce the ANF of the dynamic values f1, . . . , ft ∈ F2[x[0,n), vI ]
for assigning the IV bits at positions l1, . . . , lt during cube summations. Detailed analysis
to f1, . . . , ft enables us to determine the to-be-guessed key bits for computing dynamic
values. We denote to-be-guessed key bits as ~G = (g0, . . . , gκ−1) where gj ∈ F2[x[0,n)]
for j ∈ [κ). Such ~G is determined with the method in [HJL+18] making sure that only
the correct key guess can nullify all targeted intermediate state bits. We also follow
[HJL+18] and denote the ANF vectors of the 2κ possible key guesses as ~G0, . . . , ~G2κ−1,
where Gw[j] = gj + w[j] ∈ F2[x[0,n)] for w ∈ [0, 2κ) and j ∈ [0, κ). Apparently, w = 0 is
the correct key guess. We also specify w = 1 as the particular key guess s.t. srtit = 1 and
all targeted intermediate state bits are successfully nullified.

In dynamic cube attacks, the correct key guess ~G0 is supposed to be identified using
cube summations over several different qualified cube I’s dedicated for detecting the bias
phenomenon in Definition 3. Such a definition corresponds to the simple fact that the
truth table of the boolean polynomial p ~IV (~x) contains more 0 than 1 entries.

Definition 3. (General Bias Phenomenon In Cube Summations) Let p ~IV (~x) be
the superpoly of cube I with non-cube IVs assigned to ~IV . The bias phenomenon is that
the cube summation over CI( ~IV ) has higher probability of being 0 than 1 for randomly
chosen key ~x:

Pr
~x

[p ~IV (~x) = 0] = 2−1 + ε, where ε > 0. (12)

The parameter ε is referred to as “bias”, measuring the significance of the bias phenomenon.
Specifically, zero-sum property is also a bias phenomenon with ε = 2−1; if ε = 0, the
summation is random 0-1 without bias.

In dynamic cube attacks, different key guesses w ∈ [0, 2κ) result in different superpolies
pw~IV (~x) in the 1st output bit with different biases εw. A qualified cube I should detect a
bias phenomenon satisfying both Proof 1 and 2 for distinguishing the correct key guess
from the wrong ones. Therefore, we let εw be the bias of key guess w ∈ [0, 2κ), Dinur et
al.’s bias phenomenon in [DGP+11] can be formalized as Definition 4.

Definition 4. (Dinur et al.’s Bias Phenomenon [DGP+11])

Proof 1 For the correct guess w = 0, the superpoly p0
~IV

has bias 0 < ε0 < 2−1.

Proof 2 For all wrong guesses w = [1, 2κ), no bias can be detected: εw = 0.

They find 51 qualified cube I’s of dimension 49 or 50. For verifying Proof 1, they
randomly picked 107 keys and, under the correct key guess w = 0, there are 8 of them
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have more than 50 zero-summations, indicating 0 < ε0 < 2−1. Although ε0 > 0 seems
rational, a success probability of 8/107 ≈ 7.5% is far from good. Even for the 8 keys
with significant bias, Fu et al.’s lesson is still reminding us that there is a possibility that
such non-randomness remains for wrong guesses [FWDM18, HJL+18]. Proof 2 is only an
idealized wrong-key assumption whose rationality deserves further discussions.

In our dynamic cube attack on full Grain-128 in Section 6, we are going to use large
cube I’s of dimension 90 satisfying: for correct key guess, the cubes have zero-sum
property (ε = 2−1), a non-randomness provable with division property; for wrong guesses
w ∈ [1, 2κ), the cube summations will result in superpoly pw~IV ’s of extremely high algebraic
degrees. Furthermore, we proposed division property based methods for evaluating the
corresponding biases εw. Therefore, we can formalize our bias phenomenon with Proof 1
and 2 as Definition 5.

Definition 5. (Bias Phenomenon for Our Dynamic Cube Attacks)

Proof 1 For the correct key guess, there is zero-sum property: ε0 = 2−1.

Proof 2 For the wrong guesses w ∈ [1, 2κ), the superpoly is a high-degree polynomial
whose bias is smaller: max

{
0, ε[1,2κ)

}
< 2−1 = ε0.

Our evaluation of ε[1,2κ) indicates that the Proof 2 in Definition 4 doesn’t hold for
Grain-128. The last bit srtit can be nullified only if all other state bits have been nullified
before hand. Therefore, if 1 bit involved in sr1i1 is wrongly guessed, the nullification of
many other state bits will fail even if all other κ − 1 key bits are correctly guessed. In
this situation, the bias can be very small. On contrary, for w = 1, all other state bits
will be nullified and the only not nullified bit srtit will be constant 1, also of extremely low
algebraic degree. In such a situation, the corresponding bias ε1 can be quite significant,
approaching ε0. Therefore, we will regard an attack as successful if there is a theoretically
evaluatable success probability of distinguishing the correct key guess ~G0 with key guess
~G1. In other words, in the remainder of this paper, we regard w = 1 as the representation
of wrong key guesses for theoretic evaluations.

4 Evaluating the Bias Phenomenon
The theoretic evaluation of the bias phenomenon (Definition 5) requires a quantitative
measurement to the ε in (6). Let Fn2 be the key space of ~x in (6). We first introduce a
method for dividing Fn2 into a weak-key class and its complement so that the bias ε in
(6) can be computed directly. Then, the concept of “split set” is introduced to identify
a specific kind of weak-key classes so that the bias evaluation can be largely simplified
based on a hypothesis. A method for constructing split sets heuristically is also introduced
utilizing some algebraic properties of the superpolies.

4.1 Divide the Key Space with a Weak-Key Class
We suppose that the whole key space Fn2 can be divided into a weak-key class W and
its complement W s.t.: for ~x ∈ W , the superpoly p ~IV (x) is constant 0; otherwise, for
randomly chosen ~x ∈W , p ~IV (x) is randomly 0 or 1. Such a weak-key-W -division can be
summarized as (13) as follows:

Pr[p ~IV (~x) = 0|~x ∈ T ] =
{1, T = W

2−1, T = W
(13)

With such a weak-key class W , we can easily prove Proposition 6.
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Proposition 6. For the superpoly p ~IV (~x) as defined in (4) and with key space Fn2 divided
by a weak-key class W satisfying (13), the bias ε in (6) can be quantitatively measured as
ε = |W |/2n+1 where |W | is the size of W .

Proof. Since the key space is Fn2 , we know the complement |W | = 2n − |W |. With the
knowledge of (13), (6) can be computed as

Pr
~x

[p ~IV (~x) = 0] = |W |2n
Pr

~x∈W
[p ~IV (~x) = 0] + |W |2n

Pr
~x∈W

[p ~IV (~x) = 0] = 2−1 + |W |
2n+1 ,

which completes the proof.

4.2 The Bias Evaluation using the Split Set
Let Λ = {i1, . . . , iλ} ⊆ [0, n) be an index set. We can refer such a subset as the “split set”
if it can define a specific weak-key class WΛ of size 2n−|Λ| as follows:

Definition 6. (Split Set) The superpoly p ~IV is of the same setting as (4). We let Λ be
an index set s.t. Λ ⊆ [0, n). It defines a key class WΛ ⊂ Fn2 as follows:

WΛ = {~x ∈ Fn2 : ~x[j] = 0 for all j ∈ Λ} . (14)

Such Λ is referred to as a “split set” if the superpoly p ~IV (~x) in Definition 5 satisfies
p ~IV (~x) ≡ 0 for all ~x ∈WΛ.

The split sets with the smallest size are of specific importance for evaluating the bias
phenomenon so we define them as the minimal split set in Definition 7.

Definition 7. (Minimal Split Set) Let Λ be a split set satisfying Definition 6. We call
this Λ a minimal split set if, for all Λ′ with size |Λ′| < |Λ| and the corresponding weak-key
class WΛ′ defined as (14), there is p ~IV (~x) 6≡ 0 for ~x ∈WΛ′ .

Definition 6 and 7 only guarantee half of (13). To make an evaluation to the bias, we
make a further hypothesis that, for a minimal split set Λ, the weak-key class WΛ satisfies
the whole (13) as Assumption 1.

Assumption 1. For a minimal split set Λ in Definition 7 and its corresponding weak-key
class WΛ as (13), we assume Pr[p ~IV (~x) = 0|~x ∈WΛ] = 2−1.

With Assumption 1, the bias of p ~IV (~x) can be directly acquired using Proposition 6,
which is formalized as Corollary 1.

Corollary 1. Let the superpoly p ~IV have a minimal split set Λ as in Definition 7 where
Λ also satisfies Assumption 1. The bias phenomenon of p ~IV (~x) in (6) can be evluated as
follows:

Pr
~x

[p ~IV (~x) = 0] = 2−1 + 2−(|Λ|+1). (15)

Proof. With Definition 6, we know that Pr[p ~IV (~x) = 0|~x ∈ WΛ] = 1. With Assumption
1, we know that Pr[p ~IV (~x) = 0|~x ∈ WΛ] = 2−1. Therefore WΛ satisfies (13) and |WΛ| =
2n−|Λ|. According to Proposition 6, we have ε = 2−(|Λ|+1) which completes the proof.

Our theoretical deductions are mostly based on Assumption 1 and Corollary 1. In fact,
we will see in Example 3 of Section 6 that the evaluation in Corollary 1 is more of a lower
bound. The reason is quite simple. For a superpoly p ~IV , the minimal split set Λ is not
necessarily unique. As a result, one minimal split set only can capture the largest zero-sum
keys while the rest of the key-space may still contain weak-key x’s corresponding to other
split sets s.t. p ~IV (~x) = 0. Therefore, for one minimal split set Λ, there should be more
~x ∈WΛ making p ~IV (~x) = 0 than those making p ~IV (~x) = 1. Their rationalities for using
such Assumption 1 and Corollary 1 on Grain-128 will be discussed in detail in Section 7.
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4.3 Algebraic Properties of Superpolies
The division property method given by Wang et al. in [WHT+18] exploits the algebraic
degree of the superpoly p ~IV (~x). Therefore, we introduce a (heuristic) method for finding
a split set Λ utilizing similar algebraic properties so that Wang et al.’s method can be
applied directly.

As a polynomial over the ring F2[x[0,n)], the superpoly p ~IV (~x) can be split into sub-
polynomials over subrings according to an arbitrary set Λ = {i1, . . . , iλ} ⊆ [0, n). With
such Λ, the corresponding vector ~kΛ ∈ Fn2 has divided the space Fn2 into 2 parts:

UΛ :=
{
~u ∈ Fn2 : ~u ∧ ~kΛ = ~0

}
and WΛ :=

{
~w ∈ Fn2 : ~w ∧ ~kΛ 6= ~0

}
. (16)

Following (1), the ANF of the superpoly p ~IV (~x) can be represented as (17).

p ~IV (~x) = fΛ + pΛ =
∑

~k∈Fn2

a~k~x
~k =

∑
~u∈UΛ

a~u~x
~u +

∑
~w∈WΛ

a~w~x
~w, (17)

where fΛ =
∑
~u∈UΛ

a~u~x
~u and pΛ =

∑
~w∈WΛ

a~w~x
~w. Apparently, fΛ(~x) = 0 for ~x ∈ WΛ

and pΛ ∈ Fn2 [x[0,n)\Λ] is irrelevant to the variables xΛ. If the Λ in (17) is further restricted
to a split set, we know pΛ ≡ 0 according to Definition 6 and fΛ = p ~IV accordingly. In
order to utilize Assumption 1 and Corollary 1 for bias evaluations, we need to construct a
split set with size as small as possible. So we propose a heuristic split set construction
method as follows.

4.4 Heuristic Construction of Split Sets
If p ~IV (~x) itself is constant 0 (deg(p ~IV ) = −1), we can simply conclude that the empty set
Λ = φ is the minimal split set. If p ~IV (~x) ≡ 1 (deg(p ~IV ) = −1), it cannot have a split set.
For non-constant p ~IV (~x) (deg(p ~IV ) ≥ 1), our heuristic method start from an empty set
Λ = φ and construct the final split set gradually by adding the most promising element to
the current Λ.

We consider the specific case of (17) where Λ only contains 1 element θ ∈ [0, n). Then,
we know that the fΛ can be represented as

fΛ = f{θ} = xθ · qφ∪{θ} where qφ∪{θ} ∈ Fn2 [x[0,n)\Λ].

The superpoly in (17) can be represented

p ~IV (~x) = xθ · q{θ} + p{θ},

where both q{θ}, q{θ} are polynomials of Fn2 [x[0,n)\Λ]. We evaluate the algebraic degree of
p{θ}. If deg(p{θ}) = −1, we know that Λ = {θ} is the minimal split set; if deg(p{θ}) = 0,
such superpoly do not have a split set; otherwise, we pick a new θ and rerun the procedure.
When the θ traverse all [0, n) and all p{θ}’s satisfy deg(p{θ}) > 0, we know that minimal
split sets for such superpoly p ~IV (~x) are of size larger than 1. So we need to consider Λ’s of
size 2, 3, 4.... Of course, traversing all possible 2, 3, 4...-element Λ’s can be computationally
infeasible. The time saving strategy for our heuristic method is that we select θ s.t. p{θ}
having the lowest algebraic degree and add it in Λ. Then, we start from Λ = {θ}, we
further search the minimal split set for p{θ} following the same procedure. As a result, our
heuristic for split set constructions can be summarized as follows:

1. Let Λ0 ← φ and pΛ0 = p ~IV (~x).

2. For j = 1, 2, . . .,
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(a) For all θ ∈ [0, n)\Λj−1, rewrite pΛj−1 = xθ · qΛj−1∪{θ} + pΛj−1∪{θ} and evaluate
the algebraic degree deg(pΛj−1∪{θ}).

(b) Λj ← Λj−1 ∪ {ij} where ij ∈ [0, n) satisfies

deg(pΛj−1∪{ij}) = min
θ∈[0,n)\Λj−1

deg(pΛj−1∪{θ}). (18)

(c) If deg(pΛj ) equals to −1 or 0, Λ← Λj and break.

3. If deg(pΛ) = −1, Λ is a split set7.

Such a heuristic split set construction algorithm can be carried out easily using Wang et
al.’s division property based degree evaluation technique in [WHT+18]. The generated Λ
satisfies Definition 6. Furthermore, such Λ is usually of small size and quite likely to be a
minimal split set as Definition 7: enabling use to provide theoretically evaluated success
probabilities based on Assumption 1 and Corollary 1. Like all heuristic algorithms, our
method has its limitation: it is possible that the heuristically generated Λ may not be
minimal. Our method can only exhaust all Λ’s of size 1 so the result may not be optimal
especially for the superpolies having much larger sized minimal split sets. So, in most
cases, the Λ’s constructed by our heuristic algorithm can only provide an approximation
to the bias provided by the minimal split set in Corollary 1. Fortunately, as can be seen in
Section 6, all the cubes used in our attacks have very small sized minimal split sets making
our heuristic method applicable to Grain-128. We will detail the limitation of our heuristic
method as well as the feasibility of our dynamic cube attack in Section 7.2. The idea and
limitation of our Λ-construction algorithm are demonstrated in the following Example 1.

Example 1. As an example, we choose pIV (~x) = x0x1x2 + x1x3 + x2x4. With i1 = 1,
we have pΛ1 = x2x4 and deg(pΛ1) = 2, followed by i2 = 2 making pΛ2 ≡ 0. So we have
Λ = {1, 2} as a split set. The changed order (i1, i2) = (2, 1) will have pΛ1 = x1x3 and
deg(pΛ1) = 2 but pΛ2 ≡ 0 remains. Both (1, 2) and (2, 1) satisfy deg(pΛ1) = 2 and can be
generated following our heuristic in (18). A different strategy, such as picking 3 or 4 first,
may lead |Λ| > 2. However, our heuristic cannot guarantee a minimal Λ as well: if i1 = 0,
we have deg(pΛ1) = 2 but it cannot make |Λ| = 2.

Note that Example 1 is only a toy case showing the limitation of the heuristic split
set construction technique. So we use simple pIV involving very few key bits. In the
case of Grain-128, pIV ’s are extremely complicated: having high algebraic degree over 39
and involving almost all 128 key bits. The heuristic method can still construct Λ of size
2 or 3 but the corresponding pΛ1 , pΛ2 will become much more complicated polynomials.
Therefore, in the case of our dynamic cube attack on Grain-128, it is rational to assume
that, for randomly chosen ~x, which is not in the weak-key class captured by the minimal
split set, the probability for a pΛj (~x) being 0 or 1 is approximately 2−1.

5 Division Property Description of Dynamic Cube Attacks
In this section, we introduce the division property description of the dynamic cube attack.
According to Section 2.5, the nullification strategy NS = {(l1, sr1i1 ), . . . , (lt, srtit )} affects
both the initial DP structure ~kx,~kv and the DP structures ~kr1 [i1], . . . ,~krt [it] corresponding
to the nullified state bits sr1i1 , . . . , s

rt
it
.

7If deg(pΛ) = 0, we know that, for randomly chosen ~x, p ~IV
(~x) can also be constant 1. This is also a

non-random property but such a non-randomness has never been detected in any cube attack yet especially
for Grain-128, as analyzed in [DS11]. So we do not consider such Λ’s here.
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5.1 The ModelConstruct and InitDP for Dynamic Cube Attacks
The init ~kx,~kv is affected because the IVs ~v[lj ] are to be changed from vlj to a polynomial
fwj ∈ F2[x[0,n), vI ] decided by NS and the key guess ~Gw (j = 1, . . . , t, w ∈ [0, 2κ)). Each
polynomial fj can be regarded as a summation of monomials composed of variables
x[0,n), vI . We encode each monomial (including constant 1’s) into a numeric sequence as
follows:

xi1xi2 · · ·xisvj1vj2 · · · vjt → (i1, i2, . . . , is, n+ j1, n+ j2, . . . , n+ jt)
1→ (−1)

. (19)

Therefore, for f ∈ F2[x[0,n), v[0,m)], we can construct the set Sf containing all the numeric
sequences corresponding to all the monomials of f :

Sf :=
{

(i1, . . . , is, n+ j1, . . . , n+ jt) :
xi1 · · ·xisvj1 · · · vjt

is a monomial of f

}
. (20)

For the wrong guesses ~Gw (w ∈ [1, 2κ)), the corresponding ANF of the dynamic values
will become fwj = f0

j + gwj , where gwj ∈ F2[vI ] for j = 1, . . . , t.

Algorithm 2 The division property of initial key and IV bits.
1: procedure IniDP(MILP modelM, cube index set I, non-cube IV assignment ~IV , initialization round number

R, nullification strategy NS , guess number w ∈ [0, 2κ), etc. ) . split set Λ,
2: Declare the DP structures ~k0

x,
~k0
v of lengths n and m respectively.

3: For i ∈ I, setM.con← ~k0
v[i].val = 1 and ~k0

v[i].F = δ.
4: For i /∈ I, set M.con ← ~k0

v [i].val = 0 and assign the flag value according to ~IV [i]: ~k0
v [i].F = 1c if

~IV [i] = 1 and ~k0
v[i].F = 0c if ~IV [i] = 0.

5: For j ∈ [0, n), set ~k0
x[j].F = δ. . SetM.con← ~k0

x[Λ].val = 0 and ~k0
x[Λ].F = 0c. Set ~k0

x[j].F = δ for
j /∈ Λ.

6: According to NS and w, deduce the ANFs of the dynamic values fw1 , . . . , f
w
t .

7: Encode fw1 , . . . , f
w
t to the corresponding sets defined in (20) and denote them as S1, . . . , St.

8: for α = 1, . . . , t do
9: Update (M, ~kαx ,

~kαv )← PolyDiv(M, ~kα−1
x , ~kα−1

v , lα, Sα).
10: end for
11: return (M, ~ktx,

~ktv).
12: end procedure

With the nullification strategyNS and integer w ∈ [0, 2κ) identifying key guess ~Gw along
with the split set Λ defined in Definition 6, the procedure (~kx,~kv)← IniDP(M, I, ~IV ,R, etc.)
used in DegEval in Algorithm 1 can now be specified as Algorithm 2. The subroutine
PolyDiv is defined in Algorithm 3, handling the DP structure of 1 dynamic value.

The DP structures ~kr1 [i1], . . . ,~krt [it] should reflect the key guess w ∈ [0, 2κ) and the
effect of nullification. According to the analysis in Section 3, we only consider the correct key
guess w = 0 and the wrong guess w = 1. During the implementation of the ModelConstruct
in Algorithm 1, if w = 0 makes all sr1i1 , . . . , s

rt
it

nullified, we should additionally set their flag
values to ~krj [ij ].F = 0c and add constraintsM.con← ~krj [ij ].val = 0 for j = 1, . . . , t. As
to the wrong key guesses w = 1, we have sr1i1 = . . . = s

rt−1
it−1

= 0 and srtit = 1. Reflecting the
DP structures, the division property values areM.con← ~krj [ij ].val = 0 for j = 1, . . . , t
and the flag values are ~kr1i1 .F = . . . = ~k

rt−1
it−1

.F = 0c, ~krtit .F = 1c. With all factors, the
ModelConstruct procedure in Algorithm 1 can now be described as Algorithm 4.

5.2 Selecting Qualified Cubes for Dynamic Cube Attacks
With such division-property-based tools, we can theoretically analyze a dynamic cube
attack for not only Proof 1 but also Proof 2 in Definition 5. Proof 1 specifies the zero-sum
property (ε0 = 2−1). Such a property can be checked by the degree evaluation technique
as −1 = d0 = DegEval(I, ~IV ,NS , w = 0). Proof 2 indicates that pw~IV (~x) 6= 0 for w = 1
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Algorithm 3 Evaluate the division property of a polynomial encoded as Sf .
1: procedure PolyDiv(MILP modelM, DP structures for key bits ~kx and current IV values ~kv , the targeted

dynamic IV index lα, the encoded ANF of the dynamic value Sα defined as (20). )
2: Initialize an empty set T .
3: for ~γ ∈ Sα do
4: Call the subroutine algorithm (M, ~kx, ~kv, o)← MonoDiv(M, ~kx, ~kv, ~γ).
5: Add o in T .
6: end for
7: If |T | = 1 and T = {u}, update ~kv [lα]← u; otherwise, call (M, u)← xorf(M, T ) and assign ~kv [lα]← u.
8: return (M, ~kx, ~kv).
9: end procedure
1: procedure MonoDiv(MILP model M, DP structures of current key ~kx and IV ~kv , a monomial encoded as

sequence γ = (i1, i2, . . . , is, n+ j1, n+ j2, . . . , n+ jt) or γ = (−1).)
2: If the sequence is (−1), declare a DP structure o s.t. M.con ← o.val = 0, o.F ← 1c and return

(M, ~kx, ~kv, o).
3: Initialize an empty set P .
4: for µ = i1, i2, . . . , is, n+ j1, n+ j2, . . . , n+ jt do
5: if µ < n then
6: (M, x′µ, x

?
µ)← copyf(M, ~kx[µ], 2).

7: Add x′µ into P and update ~kx as ~kx[µ]← x?µ.
8: else
9: (M, v′µ−n, v

?
µ−n)← copyf(M, ~kv[µ− n], 2).

10: Add v′µ−n into P and update ~kv as ~kv[µ− n]← v?µ−n.
11: end if
12: end for
13: If P only contains 1 element, we denote it as ~P = {o}; otherwise, we call (M, o)← andf(M, P ).
14: return (M, ~kx, ~kv, o).
15: end procedure

Algorithm 4 Evaluate the division property of a polynomial encoded as Sf .
1: procedure ModelConstruct(M, DP structures for keys and IVs ~kx, ~kv , round R, nullification strategy NS =
{(l1, s

r1
i1

), . . . , (lt, srtit s)}, guess number w ∈ [0, 2κ).)
2: Initialize the division property of the initial state as ~k0 according to ~kx, ~kv .
3: for r = 1, . . . , R do
4: Update M as (M, ~kr) ← UpdDiv(M, ~kr−1, r, NS , w) capturing the division trail ~kr−1 Upd

−−→ ~kr using
copyf, andf, xorf in Proposition 3, 5 and 4.

5: if There is j ∈ {1, . . . t} s.t. r = rj then
6: UpdateM asM.con← ~kr[ij ].val = 0.
7: If w = 0 or w 6= 0

∧
j 6= t, ~kr[ij ].F = 0c; otherwise, ~kr[ij ].F = 1c.

8: end if
9: end for
10: Update modelM according to Output to complete the division trail ~k0 → ~kR‖o.
11: Add constraintsM.con← ~kR‖o = ~0‖1.
12: Return (M, ~k0, . . . , ~kR, o).
13: end procedure

so the degree evaluation should return 0 < d1 = DegEval(I, ~IV ,NS , w = 1). Proof 2
also requires that p1

~IV
(~x) has insignificant bias phenomenon: ε1 < 2−1. According to

Section 4, we need to find the minimum split set Λ for p1
~IV

(~x). Therefore, we realize the
heuristic Λ-construction method in Section 4.4 as DeteLam defined in Algorithm 5. Note
that DeteLam use IniDP as the subroutine. The additional parameter Λ of Algorithm 5
only affects IniDP in Algorithm 2 by replacing the statements colored in blue with the
corresponding comments.

The algebraic degrees in (18) are evaluated with Wang et al.’s division property based
algorithm DegEval. Such DegEval is defined in Algorithm 1 and its subroutines IniDP,
ModelConstruct are defined as Algorithm 2 and 4 respectively.

Therefore, with a predefined nullification strategy NS and non-cube IV assignment to
~IV , a qualified cube I suitable for dynamic cube attacks can be constructed as follows:

1. Randomly construct a high-dimensional cube I ⊆ [0,m)\{l1, . . . , lt}.
2. For w = 0, 1, evaluate the degree d0 ← DegEval(I, ~IV ,R,NS , 0) and d1 ← DegEval(I, ~IV ,R,NS , 1).
3. If d0 = −1 and d1 > 0, keep such I as a qualified cube and go to Step 4; otherwise, go back
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Algorithm 5 A heuristic construction of the split set Λ.
1: procedure DeteLam(Cube indices I, non-cube IV assignment ~IV , round R, nullification strategy NS , key

guess w ∈ [0, 2κ).)
2: Initialize Λ← φ and d← DegEval(I, ~IV ,R,NS , w,Λ).
3: while d 6= −1 do
4: Initialize a table T containing n entries and all entries are initialized as

T [i] = n for all i ∈ [0, n). (21)

5: for i ∈ [0, n)\Λ do
6: Compute di = DegEval(I, ~IV ,R,NS , w,Λ ∪ {i}) and set T [i]← di.
7: end for
8: Search T and pick an ij ∈ [0, n)\Λ s.t. T [ij ] = min1≤i≤n{T [i]}.
9: Update Λ← Λ

⋃
{ij} and d← T [ij ].

10: end while
11: return Λ.
12: end procedure

to Step 1.
4. Let w = 1, heuristically build a split set Λ as Λ← DeteLam(I, ~IV ,R,NS , w).
5. If |Λ| is large, keep such I as a qualified cube; otherwise, go back to Step 1.

The good cubes should be the ones satisfying d0 = 0� d1 and Λ > 1, indicating that the
superpoly p1

~IV
corresponding to the wrong guess w = 1 is a high-degree polynomial rather

than constant 0 and the bias of wrong guess is smaller than 2−2. If we are able to find
sufficiently many such cube I’s, such a collection of cubes makes up a cube tester available
for launching dynamic cube attacks. This is exactly the kind of cube we use in our attack
on full Grain-128 in Section 6.

6 Dynamic Cube Attack on Full Grain-128 with Theoretic
Evidence for Both Proof 1 and 2

The specification of Grain-128 is described in Appendix A. More details can be seen in
[HJMM06] In accordance to [DGP+11], the bits in LFSR (NFSR) are denoted as s0, s1, . . .
(b0, b1, . . .). For full Grain-128, the 1st output bit is computed after 256 initialization rounds
so the keystream bits are z256, z257, . . .. The corresponding division property propagation
is described by the MILP models in Appendix B.

The 1st and most important step of the dynamic cube attack is setting the nullification
strategy NS , determining which intermediate state bit is nullified and how. In [DGP+11],
Dinur et al.’s terminal goal is to nullify b203. But the ANF of b203 is too complicated
involving too many key bits to be guessed. Therefore, they nullify other intermediate state
bits to simplify b203. At last, their nullification strategy contains 13 pairs requiring to
guess κ = 39 key bits. They use 51 I’s consisting of one 50-dimensional cube along with
its 49-dimensional sub-cubes. According to [DGP+11], for the correct key guess ~G0, more
than 50 out of the 51 cubes can have zero-sum property with probability 8/107 ≈ 7.5%.
But the bias of wrong key guesses is never tested, so whether ε0 � max{0, ε[1,239)} is
unknown.

In comparison, our NS is quite simple only containing 1 pair: NS = {(l1, b158)}. We
find that when b158 is nullified by setting IV bits at position l1 = 30 or l1 = 90 to dynamic
values, the superpoly of the cube summations over I = [0, n)\{30} (or I = [0, n)\{90})
at round 256 is constant. Another good news is that the dynamic values for the two l1’s
share the same key guesses only involving κ = 3 bits, since the ANFs of the two dynamic
values are as follows:

f30 = g0 + x42v38 + x125v72 + v43v50 + v90,

f90 = g0 + x42v38 + x125v72 + v43v50 + v30,
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where g0 is a polynomial of key bits:

g0 =x30 + x32 + x33x97 + x41x43 + x42x125 + x45 + x47x48 + x56 + x57x89 + x66+
x70x78 + x75 + x86 + x91x95 + x94 + x98x114 + x103 + x119 + x121 + x126 + 1.

So the correct key guess should be defined as ~G0 = (g0, x42, x125). Furthermore, when
the wrong guess number w = 1 (~G1[0] is wrongly guessed as g0 + 1, x42 and x125 are
correctly guessed), we have b1158 ≡ 1. For w > 1, the corresponding ANF bw158’s are even
more complicated. Therefore, we run the procedure in Section 5.2 and find some qualified
cubes of dimension 90, denoted as I1, . . . , I29 in Table 3. As can be seen, such cubes
not only have large d1’s (d1 ≥ 39 > d0 = 0) but split sets of size |Λ| ≥ 2 as well. This
indicates that for wrong guesses w ∈ [1, 2κ), the superpoly pw~IV (~x) is a polynomial of degree
deg(p ~IV ) ≥ 39 and, if Assumption 1 holds, the bias can be evaluated as εw ∈ [2−4, 2−3]
according to Corollary 1. Such Λ’s are to be used to theoretically evaluate the success
probability, denoted as PTPS , of our dynamic cube attacks. The procedure of our dynamic
cube attack is quite simple. For the 29 90-dimensional cubes in Table 3, we select N of
them, denoted as Ii1 , . . . , IiN (1 ≤ i1 < · · · < iN ≤ 29), and do the following steps:

1. Guess g0, x42 and x125.

2. For each guess, sum over CIi1 (~0), . . . , CIiN (~0) while ~v[l1] is assigned to the corre-
sponding dynamic value.

3. If any of the N summations is non-zero, the key guess is wrong; otherwise, keep the
key guess as a correct key guess candidate.

Complexity and Success Probabilities The time and data complexities of the attack
are both Comp = 23 ·N · 290 = N · 293. The memory complexity is only 23 counters of
dlogNe bits, which is negligible. Since the correct key guess makes sure N 0-summations,
evaluating the success probability PS is equivalent to evaluating the probability for a wrong
key guess to generate N zero summations. In Dinur et al.’s idealized setting in Definition
4, ε[1,2κ) = 0 so the probability of having N 0-summations is 2−N and such idealized
success probability can be easily evaluated as P idealS = 1 − 2−N which is demonstrated
in the 2nd line of Table 4. On the other hand, our evaluation of PS takes the split set Λ
into account. We use the worst case ε[1,2κ) = 2−3, so our theoretically evaluated success
probability, based on Assumption 1 and Corollary 1, is PTPS = 1− (5/8)N when N which
is demonstrated in the 3rd line of Table 4.

Table 3: The qualified 90-dimensional cubes used for attacking 256-round Grain-128. The
nullification strategy is NS = {(l1, b158)} where l1 = 90 for I1, . . . , I15 and l1 = 30 for the
others.
i Ii for l1 = 90 d1 Λ i Ii for l1 = 30 d1 Λ
1 [0, 96)\{39, 40, 41, 43, 50, 90} 42 36,81,85 16 [0, 96)\{30, 39, 40, 41, 45, 50} 39 38,81,125
2 [0, 96)\{39, 40, 41, 45, 50, 90} 39 65,81,125 17 [0, 96)\{21, 30, 39, 40, 41, 43} 45 81,89,125
3 [0, 96)\{21, 39, 40, 41, 43, 90} 45 38,81,125 18 [0, 96)\{25, 30, 39, 40, 41, 43} 44 52,81,125
4 [0, 96)\{25, 39, 40, 41, 43, 90} 44 81,91,125 19 [0, 96)\{30, 39, 40, 41, 43, 44} 41 81,89,125
5 [0, 96)\{30, 39, 40, 41, 43, 90} 44 57,81,125 20 [0, 96)\{30, 39, 40, 41, 43, 49} 44 77,81,125
6 [0, 96)\{39, 40, 41, 43, 44, 90} 41 38,81,125 21 [0, 96)\{30, 39, 40, 41, 43, 50} 42 69,81,125
7 [0, 96)\{39, 40, 41, 43, 49, 90} 44 77,81,125 22 [0, 96)\{30, 39, 40, 41, 43, 50} 42 58,81,125
8 [0, 96)\{39, 40, 41, 43, 50, 90} 42 58,81,125 23 [0, 96)\{30, 40, 41, 43, 44, 50} 42 69,81,125
9 [0, 96)\{39, 40, 41, 43, 54, 90} 45 57,81,125 24 [0, 96)\{30, 39, 40, 41, 43, 54} 45 81,106,125
10 [0, 96)\{39, 40, 41, 43, 61, 90} 44 54,81,125 25 [0, 96)\{30, 39, 40, 41, 43, 61} 44 50,81,125
11 [0, 96)\{39, 40, 41, 43, 72, 90} 43 81,125 26 [0, 96)\{30, 39, 40, 41, 43, 72} 43 81,125
12 [0, 96)\{39, 40, 41, 43, 87, 90} 44 81,125 27 [0, 96)\{30, 39, 40, 41, 43, 87} 44 81,125
13 [0, 96)\{39, 40, 41, 43, 89, 90} 43 81,91,125 28 [0, 96)\{30, 39, 40, 41, 43, 89} 43 81,91,125
14 [0, 96)\{39, 40, 41, 43, 90, 94} 43 81,125 29 [0, 96)\{30, 39, 40, 41, 43, 94} 43 81,125
15 [0, 96)\{40, 41, 43, 44, 50, 90} 42 69,81,125

Practical Verifications We verify the correctness of our method with practically
computable cube I’s for round reduced Grain-128. Following the procedure in Section 4.4,
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Table 4: The complexities and success probabilities for attacking 256-round Grain-128
using different cube number N ’s. P idealS is based on Dinur et al.’s idealized wrong-key
hypothesis in Definition 4 while PTPS is our theoretically evaluated success probability
based on Assumption 1 and Corollary 1

N 1 2 3 4 5 6 7 8 9 10
Comp 93.00 94.00 94.58 95 95.32 95.58 95.81 96.00 96.17 96.32
P idealS 0.78% 13.35% 39.27% 63.65% 80.07% 89.56% 94.66% 97.30% 98.64% 99.32%
PTPS 0.01% 0.31% 2.16% 6.98% 15.01% 25.36% 36.68% 47.79% 57.90% 66.65%
N 11 12 13 14 15 16 17 18 19 20
Comp 96.46 96.58 96.70 96.81 96.91 97.00 97.09 97.17 97.25 97.32
P idealS 99.66% 99.83% 99.91% 99.96% 99.98% 99.99% 99.99% 100.00% 100.00% 100.00%
PTPS 73.93% 79.83% 84.51% 88.17% 91.01% 93.19% 94.86% 96.12% 97.08% 97.80%
N 21 22 23 24 25 26 27 28 29
Comp 97.39 97.46 97.52 97.59 97.64 97.70 97.75 97.81 97.86
P idealS 100.00% 100.00% 100.00% 100% 100.00% 100.00% 100.00% 100.00% 100.00%
PTPS 98.35% 98.76% 99.07% 99.30% 99.47% 99.61% 99.70% 99.78% 99.83%

we acquire the cube I’s satisfying d0 = 0, d1 > 0 but with split set Λ of different sizes by
calling Algorithm 5. Then, for key guess w = 0 and w = 1, we practically evaluate the
corresponding biases ε0, ε1 respectively with sufficiently many random keys. We find that
the zero-sum property ε0 = 2−1 is satisfied whenever d0 = 0. But Dinur et al.’s wrong-key
hypothesis ε1 = 0 (Proof 2 of Definition 4) is incorrect. We present Example 2 and 3: the
former can be regarded as a disproof to Definition 4 while the latter can be regarded as a
support to our theories in Section 4.2: Assumption 1 based Corollary 1 serves as a lower
bound to the bias phenomenon. It remains to be discussed whether Corollary 1 based bias
evaluations can be used as success probability evaluation to dynamic cube attacks, as we
will show immediately in Section 7.

Example 2. For R = 179, ~IV = ~0 and NS = {(90, b158)}, following the procedure of
Section 5.2, we construct two 9-dimensional cubes I1 = {15, 31, 33, 34, 44, 65, 79, 86, 88}
and I2 = {5, 6, 9, 37, 40, 41, 43, 64, 67} sharing d1

0 = d2
0 = 0 and d1

1 = d2
1 = 18. The

experimentally acquired statistics support Proof 1 in Definition 5 as all randomly chosen
keys have zero-sum property for the correct key guess w = 0. For Proof 2, we evaluate the
actual bias of wrong guesses as ε11 = 0.165 and ε21 = 0.464: both significantly larger than 0,
violating Dinur et al.’s wrong-key hypothesis in Definition 4.

Example 3. For the I1, I2 in Example 2 with the same R, ~IV and NS settings. We call
Algorithm 5 only finding that their split set Λ’s for wrong key w = 1 are different: Λ1 =
{37, 125} and Λ2 = {75}. According to Corollary 1, such a difference |Λ1| = 2 > |Λ2| = 1
indicates that, for wrong guesses, the bias of I1 is less significant than that of I2 making
I1 more suitable for dynamic cube attacks. The experimentally acquired statistics support
our deductions: for sufficiently many randomly chosen keys, we evaluate the actual bias
of wrong guesses as ε11 = 0.165 ≥ 2−3 = 0.125 and ε21 = 0.464 ≥ 2−2 = 0.25. This is in
accordance with our theories in Section 4.2.

On the Accuracy of the Division Property. We use [YT19]’s method to verify
the non-constant property of p1

~0. We find that for arbitrary 0 ≤ Rm ≤ 256, there are
sufficiently many division trails within Rm → R in (10). We also practically check the ANF
of (~bRm , ~sRm) for Rm ≤ 210 finding that all of them can add key bits to the superpolies.
So the superpolies are unlikely to be constants. This is an additional theoretic evidence
supporting the feasibility of our dynamic cube attack on full Grain-128.

7 Discussions and Comparisons
We discuss the unsolved issues (such as the rationality of Assumption 1, the limitations of
our dynamic cube attacks etc.). We also make detailed comparisons between our attack
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with Dinur et al.’s in [DGP+11] and point out some promising improvements.

7.1 Probability Evaluation based on Assumption 1
Although our dynamic cube attack in Section 6 provides PTPS , such a theoretic evaluation
of the success probability is based on Corollary 1, which can only be valid when Assumption
1 holds. According to the analysis in Section 4.2, for a single cube, the bias evaluation in
Corollary 1 is more of a lower bound. However, in our practical experiments on Grain-
128, we try many cube I’s resembling the I1, I2 in Examples 2 and 3. Such I’s have
d0 = 0, d1 > 0 and a non-empty Λ. When we practically measure their bias, there is
an interesting finding: their bias parameter ε in Definition 5 always falls into the range
[2−(|Λ|+1), 2−|Λ|]. If this is the case, the cubes with |Λ| = 3 will have bias [2−4, 2−3] while
those with |Λ| = 2 will be within [2−3, 2−2]. Since most of the cubes in Table 3 have
|Λ| = 3 and the rest have |Λ| = 2, we believe it rational for us to use the median number
2−3 an approximate bias for success probability evaluation.

7.2 Limitation of Heuristic Split Set Construction and the Rationality
of the Dynamic Cube Attack

As has been pointed out in Section 4.4 and demonstrated in Example 1, our heuristic split
set construction cannot guarantee to generate the theoretically minimum Λ. But, it should
also be noticed that the nature of our heuristic method will exhaustively try all Λ of size
|Λ| = 1. Therefore, this at least guarantees that all cubes in Table 3 have split set sizes
larger than 1. So we have |Λ| ≥ 2 and the split sets with |Λ| = 2 in Table 3 should be
regarded as optimal. During the Λ-construction process in Algorithm 5, we find that, after
nullifying most of the key bits, the degree of the superpoly will not drop at all. Just as
x3, x4 in Example 1, such key bits should not have priority for entering Λ. For the rest, it
will be possible for us to exhaust all Λ’s with |Λ| = 2 only to find that all 2-sized Λ cannot
make pΛ in (17) become constant 0. Therefore, the 3-sized Λ’s in Table 3 are also optimal.
Therefore, although it is not theoretically perfect, our heuristic split construction method
in Section 4.4 works well in our dynamic cube attack on Grain-128.

7.3 Comparison with Dinur et al.’s Result
As can be seen in Section 6, our nullification strategy only requires to guess 3 key bits.
Therefore, we are able to recover 3 key bits with complexity bounded by 297.86 and success
probability 99.83%. The remaining 125 key bits are supposed to be recovered through
exhaustive search with complexity 2125. On the contrary, Dinur et al.’s nullification
strategy in [DGP+11] requires 39 bits of key guesses. They use a 50-dimensional cube
along with its 49-dimensional subcubes so they are able to recover the 39 key bits with
complexity 293.71 and success probability only 7.5%. The remaining 89 key bits should
also be exhausted with complexity 289, lower than that of their dynamic cube partial-key
recovery. Our partial-key recovery has overwhelmingly better success probability but only
3 bits are recovered, which is obviously a limitation making the overall complexity high.
To sum up, our attack can be regarded as a special kind of tradeoff of Dinur et al.’s: we
trade a higher complexity for a better success probability and theoretic reliability.

7.4 Additional Comments on Dinur et al.’s Attack
Dinur et al. also claimed in [DGP+11] that some unspecified tradeoffs can be made to
their attacks to improve the efficiency of their attack, but our analysis reveals many
underlying problems. Using the same modeling method in Section 5, we are also able to
evaluate Dinur et al.’s result with division property techniques. For each of the 51 cubes
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(a 50-dimensional one along with its 49-dimensional subcubes), we search for minimal
split sets for both correct w = 0 and incorrect key guess w = 1. We find that such a
cube-subcube combination is not optimal: there are unqualified cubes included. Examples
can be seen in I\{79}: both correct and incorrect key guess share the same Λ of size 78
indicating an insignificant bias for the correct key guess. Such subcube can be a distraction
for identifying the correct key guess from wrong ones.

If a larger cube is used to make a more significant bias for the correct key guess, more
key bits will be involved so that the number of key guesses will be skyrocketing because,
in Dinur et al.’s nullification strategy in [DGP+11], the ANFs of the dynamic IVs have
already mixed the key and IV bits quite thoroughly. Besides, larger cubes still cannot
avoid the bad-subcube distractions.

On the other hand, if they abandon the cube-subcube strategy and use our random
cube picking strategy in Section 5.2, they may still be confronted with an increased number
of key guesses because different cubes will involve different key guesses. Furthermore,
Dinur et al.’s complicated nullification strategy may result in that some of the key guesses
are involved in very few randomly constructed cubes. When these key bits are wrongly
guessed while others are correctly guessed, there will still be high probability of witnessing
significant bias so that the success probability can be even lower. So abandoning the
cube-subcube strategy can be hard for Dinur et al.’s attack.

Besides, according to our division property evaluations, with Dinur et al.’s nullification
strategy, even the largest possible cube cannot provide zero-sum property for the correct
key guess. So, it is hard for them to draw the threshold for the bias parameter to distinguish
correct key guess from the wrong ones.

Faced with these problems, the unspecified tradeoffs in [DGP+11] may not bring too
much improvements to the success probability or the average efficiency.

7.5 Future Improvements
According to the analysis above, we can see that Dinur et al.’s dynamic cube attack has
lower complexity along with a limited success probability. Their complicated nullification
strategy also makes it hard to find a good tradeoff. On the other hand, our attack has a
much higher success probability for recovering the 3 key bits determined by a quite simple
nullification strategy. But such a simple nullification strategy also makes the complexity
for recovering all 128 key bits quite high. In other words, an extremely simple nullification
strategy also has its disadvantage for involving too few key guesses. As a promising
compromise, there might be a nullification strategy NS that involve more than 3 key
guesses. Along with such a NS , there should also be highly qualified cubes that maintain
a significant bias phenomenon for the correct key guess and far less significant one for the
wrong guesses. Of course, designing the NS and finding the corresponding cubes can be
quite challenging as well.

8 Other Applications of the Split Sets
We now focus on n split sets each contain n − 1 elements denoted as Λi := [0, n)\{i}
for i ∈ [0, n). For round number R and some cube I, if 1 = DegEval(I, ~IV ,R,Λi), we
know that xi can appear in the linear part of the superpoly p ~IV (~x) of the output bit zR;
otherwise, xi can only appear in the non-linear part. Therefore, we have two directions for
extension:

1. Draw secure bounds for stream ciphers against the bias cube tester.

2. Minimize the J̃1 generated by Algorithm 1.
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The 1st extension is applied to the Grain-like primitives while the latter is applied to
Kreyvium and Acorn for better key-recovery attacks.

8.1 Upper Bounds for Grain-Like Stream Ciphers Against Bias Testers
In [Liu17], Liu et al. draw upper bounds for Trivium-like stream ciphers against the
zero-sum cube tester: they give a round number R s.t. the summation over the largest
possible cube I = [0,m) of the output bits after (R − 1)-round initialization still have
the zero-sum property but UNKNOWN for R and more rounds. Todo et al. verified and
expanded the bounds soon afterwards in [TIHM17b].

According to existing practical results on Trivium-like primitives [ADMS09, LYWL18],
as long as the superpoly is non-zero, the biases are usually not so significant as those for
Grain-128 [ADH+09, DGP+11]. Therefore, drawing zero-sum bounds is quite meaningful.
But for Grain-like stream ciphers, simply drawing zero-sum bounds is not enough: as can
be seen in Section 6 as well as in previous cryptanalysis results [DGP+11, DS11, ADH+09],
even if the superpoly is not constant 0, the cube summation may still have significant bias
that can be utilized as an efficient cube tester. Therefore, it is necessary to draw bounds
for Grain-like stream ciphers against the bias cube tester.

Corollary 1 has revealed that significant biases can be detected when there is a small
split set Λ found by calling Algorithm 5. Therefore, for the largest cube I = [0,m), the
round number R should be the secure bound against bias testers only if it is the smallest
integer satisfying 1 = DegEval(I, ~IV ,R,Λi) for all Λi = [0, n)\{i} where i ∈ [0, n). This
indicates that, even for the largest cube I = [0,m) and the largest possible Λ’s (|Λ| = n−1),
the corresponding superpoly may still have a non-constant pΛ which is defined in (17).

Table 5: The Upper Bounds for Grain Family Against Bias Testers

Grain-128 Grain-128a
Bound Full #IV Type Bound Full #IV Type
254 256 96 0-sum 184 256 96 0-sum
265 bias 190 bias

Grain-V1 Plantlet
Bound Full #IV Type Bound Full #IV Type
80 160 64 0-sum 101 320 90 0-sum
82 bias 138 bias

Using this method, we are able to draw bias bounds for Grain-like stream ciphers,
namely Grain-128, Grain-128a, Grain-V1 and Plantlet, in Table 5. As can be seen, 256-
round initialization is not enough for Grain-128. Such a method can be regarded as an
effective general tool for new stream ciphers for evaluating its security against bias cube
testers. Note: since all IV indices are included in the cube I, there is no non-cube IVs
making such results an application of manipulating the key flag values only.
On the Accuracy of the Division Property. Same with the situation of Grain-128,
for arbitrary Rm’s and the bound R, there are sufficiently many division trails within
Rm → R and, using the ANF checking method in [YT19], we find most of such division
trails are related to monomials involving key bits. Such monomials are in fact adding key
bits to the superpolies so the bounds we draw are reasonable.

8.2 Improved Relaxed Term Enumeration with Smaller J̃1

In [WHT+18], for predefined I, ~IV ,R, the degree d is first evaluated as 1 ≤ d =
DegEval(I, ~IV ,R). Then, the relaxed term enumeration in Algorithm 1 is called and ac-
quired J̃1, . . . , J̃d as J̃ t ← RTermEnum(I, ~IV ,R, t) for t = 1, . . . , d. According to [WHT+18],
the sets have relationship J̃1 ⊇ · · · ⊇ J̃d. But, in fact, there might be key bit xj ’s only ap-
pearing in non-linear part of the superpoly p ~IV (~x). Such a case can be seen in the practical
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example on 576-round Kreyvium in [WHT+17]: for I = {0, 10, 20, 30, 40, 50, 60, 70}8 and
~IV = (0x613fa9ca, 0x5068e953, 0xe0f73db6, 0xc8c3491f), the corresponding superpoly
is

p ~IV (~x) = x47 + x72x73 + x74. (22)

Using the relaxed term enumeration method in [WHT+18], we have J̃1 = {47, 72, 73, 74}
⊇ J̃2 = {72, 73}. But in fact, x72 and x73 only appear in the nonlinear part of p ~IV in (22)
and should be excluded from J̃1. In order to reflect such a property of p ~IV , we borrow the
idea in Section 8.1: if xj does not appear in the linear part of p ~IV , the degree evaluation
should have 0 = DegEval(I, ~IV ,R,Λj) where Λj = [0, n)\{j} resembling Section 8.1.
Therefore, we can do the following steps to diminish J̃1:

1. For j ∈ J̃2, evaluate dj ← DegEval(I, ~IV ,R,Λj) where Λj = [0, n)\{j},

2. If dj = 0, update J̃1 by excluding j: J̃1 ← J̃1\{j}.

We apply this method to Kreyvium and Acorn, and improve the results in [WHT+18] by
1 and 13 rounds respectively. The detailed parameters are listed in Table 6. As can be seen,
both attacks have d = 2 and the complexities are computed according to (8) where J is the
set including all involved key bits deduced with Algorithm 1 as J ← TermEnum(I, ~IV ,R, 1).
Apparently, smaller J̃1 can bring down the complexity Comp. Note that, for Acorn,
there is the relationship J = J̃1 = J̃2, indicating that all involved key bits appear both in
linear and non-linear parts of the superpoly. So the diffusion of Acorn round function is
quite smooth. The whole process needs to manipulate the flag values of both non-cube IV
bits and key bits for a precise description of J̃1.

Table 6: The detailed parameters for our improved attacks on 892-round Kreyvium and
763-round Acorn.

Kreyvium: R = 892, ~IV = ~1, d = 2, Complexity 2121.19.
I 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127 (|I| = 115)

J 2, 12, 17, 26, 27, 34, 37, 40, 47, 50, 51, 52, 59, 60, 61, 62, 63, 71, 72, 73, 74, 76, 77, 78, 84, 85,
86, 88, 89, 90, 96, 109, 121 (|J| = 33)

J̃1 J\{60, 76, 77, 84, 88, 89} (|J̃1| = 27)
J̃2 59, 60, 72, 73, 76, 77, 84, 85, 88, 89 (|J̃2| = 10)

Acorn: R = 763, ~IV = ~1, d = 2, Complexity 2125.54.
I 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87,
89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127 (|I| = 116)

J 0, 1, 2, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 34, 35, 39,
44, 46, 49, 50, 54, 56, 59, 60, 83, 93 (|J| = 38)

J̃1 J (|J̃1| = 38)
J̃2 J (|J̃2| = 38)

On the Accuracy of the Division Property. For Kreyvium, we choose Rm as large
as 312. We find that there are multiple trails in Rm → R and all of them can add key
bits to the superpoly. Such a situation is also true for Acorn: there are multiple division
trails making non-constant superpolies for arbitrary Rm’s and the practical ANF analysis
(can only be carried out within Rm < 256) also supports the non-constant property of
the superpoly. These supportive verifications are showing not only the feasibility of our
attacks but the better linear diffusions of such stream ciphers as well.

8The index in [WHT+17] starts from 1 while ours from 0.
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9 Conclusion and Future Works
In this paper, we draw links between the division property and the bias phenomenon, the
non-random property used in dynamic cube attack method in [DGP+11]. Based on such a
theoretic finding, we are able to give the 1st dynamic cube attack on full Grain-128 with
a theoretically evaluated success probability 99.83%. There are also other applications
namely: drawing secure bounds for Grain-like stream ciphers against bias cube testers,
and improved cube attack results on Kreyvium and Acorn.

As to future works, although most of the existing cube attack methods have been
described by the division property bringing better results and steadier theoretic foundations,
there are still cube attack variants, such as the correlation cube attack in [LYWL18], not
included in the division property based models. Besides, as is pointed out in Section 7.5, a
compromised dynamic cube attack that combines the advantages of both our attack and
Dinur et al.’s is also a promising direction that deserves pursuing.
Acknowledgement. The authors thank the anonymous reviewers and the shepherd, Dr.
Zhenzhen Bao, for careful readings and helpful comments. This work is supported National
Key Research and Development Program of China (No. 2018YFA0306404), National
Natural Science Foundation of China (Grant No. 61902030), the University of Luxembourg
Internal Research Project (IRP) FDISC. Chaoyun Li is supported in part by the Research
Council KU Leuven C1 on Security and Privacy for Cyber-Physical Systems and the
Internet of Things with contract number C16/15/058.

References
[ADH+09] Jean-Philippe Aumasson, Itai Dinur, Luca Henzen, Willi Meier, and Adi

Shamir. Efficient FPGA implementations of high-dimensional cube testers
on the stream cipher Grain-128. SHARCS’09 Special-purpose Hardware for
Attacking Cryptographic Systems, page 147, 2009.

[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube
testers and key recovery attacks on reduced-round MD6 and Trivium. In Orr
Dunkelman, editor, FSE 2009, volume 5665 of LNCS, pages 1–22. Springer,
2009.

[ÅHJM11] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a:
a new version of Grain-128 with optional authentication. IJWMC, 5(1):48–59,
2011.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A prac-
tical solution for efficient homomorphic-ciphertext compression. In Thomas
Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages 313–333. Springer,
2016.

[CJF+16] Tingting Cui, Keting Jia, Kai Fu, Shiyao Chen, and Meiqin Wang. New
automatic search tool for impossible differentials and zero-correlation linear
approximations, 2016. http://eprint.iacr.org/2016/689.

[DGP+11] Itai Dinur, Tim Güneysu, Christof Paar, Adi Shamir, and Ralf Zimmer-
mann. An experimentally verified attack on full Grain-128 using dedicated
reconfigurable hardware. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 327–343. Springer, 2011.

http://eprint.iacr.org/2016/689


Yonglin Hao, Lin Jiao , Chaoyun Li, Willi Meier, Yosuke Todo and Qingju Wang 389

[DLWQ17] Xiaoyang Dong, Zheng Li, Xiaoyun Wang, and Ling Qin. Cube-like attack
on round-reduced initialization of ketje sr. IACR Trans. Symmetric Cryptol.,
2017(1):259–280, 2017.

[DMP+15] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Cube attacks and cube-attack-like cryptanalysis on the round-reduced
Keccak sponge function. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 733–761. Springer,
2015.

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials.
In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages
278–299. Springer, 2009.

[DS11] Itai Dinur and Adi Shamir. Breaking Grain-128 with dynamic cube attacks.
In Antoine Joux, editor, FSE 2011, volume 6733 of LNCS, pages 167–187.
Springer, 2011.

[EJT07] Håkan Englund, Thomas Johansson, and Meltem Sönmez Turan. A framework
for chosen IV statistical analysis of stream ciphers. In K. Srinathan, C. Pandu
Rangan, and Moti Yung, editors, INDOCRYPT 2007, volume 4859 of LNCS,
pages 268–281. Springer, 2007.

[FKM08] Simon Fischer, Shahram Khazaei, and Willi Meier. Chosen IV statistical
analysis for key recovery attacks on stream ciphers. In Serge Vaudenay, editor,
AFRICACRYPT 2008, volume 5023 of LNCS, pages 236–245. Springer, 2008.

[FTIM17] Yuki Funabiki, Yosuke Todo, Takanori Isobe, and Masakatu Morii. Improved
integral attack on HIGHT. In Josef Pieprzyk and Suriadi Suriadi, editors,
ACISP 2017, Part I, volume 10342 of LNCS, pages 363–383. Springer, 2017.

[FV13] Pierre-Alain Fouque and Thomas Vannet. Improving key recovery to 784 and
799 rounds of Trivium using optimized cube attacks. In Shiho Moriai, editor,
FSE 2013, volume 8424 of LNCS, pages 502–517. Springer, 2013.

[FWC+17] Ximing Fu, Xiaoyun Wang, Jiazhe Chen, Marc Stevens, and Xiaoyang Dong.
Improved attack on full-round Grain-128. Cryptology ePrint Archive, Report
2017/412, 2017. https://eprint.iacr.org/2017/412.

[FWD+18] Ximing Fu, Xiaoyun Wang, Xiaoyang Dong, Willi Meier, Yonglin Hao, and
Boxin Zhao. A refinement of “a key-recovery attack on 855-round Trivium"
from crypto 2018. Cryptology ePrint Archive, Report 2018/999, 2018. https:
//eprint.iacr.org/2018/999.

[FWDM18] Ximing Fu, Xiaoyun Wang, Xiaoyang Dong, and Willi Meier. A key-recovery
attack on 855-round Trivium. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 160–184, 2018.

[GRB] Zonghao Gu, Edward Rothberg, and Robert Bixby. Gurobi optimizer. http:
//www.gurobi.com/.

[HJL+18] Yonglin Hao, Lin Jiao, Chaoyun Li, Willi Meier, Yosuke Todo, and Qingju
Wang. Observations on the dynamic cube attack of 855-round TRIVIUM
from Crypto’18. Cryptology ePrint Archive, Report 2018/972, 2018. https:
//eprint.iacr.org/2018/972.

[HJM07] Martin Hell, Thomas Johansson, and Willi Meier. Grain: A stream cipher
for constrained environments. IJWMC, 2:86–93, 01 2007.

https://eprint.iacr.org/2017/412
https://eprint.iacr.org/2018/999
https://eprint.iacr.org/2018/999
http://www.gurobi.com/
http://www.gurobi.com/
https://eprint.iacr.org/2018/972
https://eprint.iacr.org/2018/972


390 Links between Division Property and Other Cube Attack Variants

[HJMM06] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A
stream cipher proposal: Grain-128. In IEEE International Symposium on
Information Theory, 2006.

[HW19] Kai Hu and Meiqin Wang. Automatic search for a variant of division property
using three subsets. In Mitsuru Matsui, editor, CT-RSA 2019, volume 11405
of LNCS, pages 412–432. Springer, 2019.

[HWX+17] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan
Zhao. Conditional Cube Attack on Reduced-Round Keccak Sponge Function.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT
2017, Part II, volume 10211 of LNCS, pages 259–288. Springer, 2017.

[KMN10] Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional differ-
ential cryptanalysis of NLFSR-based cryptosystems. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 130–145. Springer, 2010.

[LBDW17] Zheng Li, Wenquan Bi, Xiaoyang Dong, and Xiaoyun Wang. Improved
conditional cube attacks on keccak keyed modes with MILP method. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I,
volume 10624 of LNCS, pages 99–127. Springer, 2017.

[LDW17] Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional cube attack on
round-reduced ASCON. IACR Trans. Symmetric Cryptol., 2017(1):175–202,
2017.

[Liu17] Meicheng Liu. Degree evaluation of NFSR-based cryptosystems. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of
LNCS, pages 227–249. Springer, 2017.

[LLW15] Meicheng Liu, Dongdai Lin, and Wenhao Wang. Searching cubes for testing
boolean functions and its application to Trivium. In ISIT 2015, pages 496–500.
IEEE, 2015.

[LYWL18] Meicheng Liu, Jingchun Yang, Wenhao Wang, and Dongdai Lin. Correlation
cube attacks: From weak-key distinguisher to key recovery. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 715–744. Springer, 2018.

[MAM16] Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On ciphers that
continuously access the non-volatile key. IACR Trans. Symmetric Cryptol.,
2016:52–79, 2016.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Chuankun
Wu, Moti Yung, and Dongdai Lin, editors, INSCRYPT 2011, volume 7537 of
LNCS, pages 57–76. Springer, 2011.

[Saa06] Markku-Juhani Olavi Saarinen. Chosen-iv statistical attacks on estream
ciphers. In Manu Malek, Eduardo Fernández-Medina, and Javier Hernando,
editors, SECRYPT 2006, pages 260–266. INSTICC Press, 2006.

[SBD+16] Md. Iftekhar Salam, Harry Bartlett, Ed Dawson, Josef Pieprzyk, Leonie
Simpson, and Kenneth Koon-Ho Wong. Investigating cube attacks on the
authenticated encryption stream cipher ACORN. In Lynn Batten and Gang
Li, editors, ATIS, volume 651 of CCIS, pages 15–26. Springer, 2016.



Yonglin Hao, Lin Jiao , Chaoyun Li, Willi Meier, Yosuke Todo and Qingju Wang 391

[SHW+14a] Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang
Ma, Danping Shi, and Ling Song. Towards finding the best characteristics
of some bit-oriented block ciphers and automatic enumeration of (related-
key) differential and linear characteristics with predefined properties, 2014.
http://eprint.iacr.org/2014/747.

[SHW+14b] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling
Song. Automatic security evaluation and (related-key) differential charac-
teristic search: Application to SIMON, PRESENT, LBlock, DES(L) and
other bit-oriented block ciphers. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 158–178. Springer,
2014.

[SMB17] Santanu Sarkar, Subhamoy Maitra, and Anubhab Baksi. Observing biases in
the state: Case studies with Trivium and Trivia-SC. Des. Codes Cryptography,
82(1-2):351–375, January 2017.

[ST17] Yu Sasaki and Yosuke Todo. New impossible differential search tool from
design and cryptanalysis aspects - revealing structural properties of several
ciphers. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT2017, Part III, volume 10212 of LNCS, pages 185–215. Springer,
2017.

[SWW16] Ling Sun, Wei Wang, and Meiqin Wang. MILP-aided bit-based division prop-
erty for primitives with non-bit-permutation linear layers. IACR Cryptology
ePrint Archive, Report 2016/811, 2016. http://eprint.iacr.org/2016/
811.

[SWW17] Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based
division property for ARX ciphers and word-based division property. IACR
Cryptology ePrint Archive, Report 2017/860, 2017. http://eprint.iacr.
org/2017/860.

[TIHM17a] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on
non-blackbox polynomials based on division property. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS,
pages 250–279. Springer, 2017.

[TIHM17b] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on
non-blackbox polynomials based on division property. IACR Cryptology ePrint
Archive, Report 2017/306, 2017. http://eprint.iacr.org/2017/306.

[TIM+18] Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang.
Fast correlation attack revisited. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, pages 129–159, Cham,
2018. Springer International Publishing.

[TM16] Yosuke Todo and Masakatu Morii. Bit-based division property and application
to SIMON family. In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS,
pages 357–377. Springer, 2016.

[Tod15a] Yosuke Todo. Integral cryptanalysis on full MISTY1. In Rosario Gennaro and
Matthew Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS,
pages 413–432. Springer, 2015.

http://eprint.iacr.org/2014/747
http://eprint.iacr.org/2016/811
http://eprint.iacr.org/2016/811
http://eprint.iacr.org/2017/860
http://eprint.iacr.org/2017/860
http://eprint.iacr.org/2017/306


392 Links between Division Property and Other Cube Attack Variants

[Tod15b] Yosuke Todo. Structural evaluation by generalized integral property. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 287–314. Springer, 2015.

[Vie07] Michael Vielhaber. Breaking ONE.FIVIUM by AIDA an algebraic IV dif-
ferential attack. IACR Cryptology ePrint Archive, Report 20107/413, 2007.
http://eprint.iacr.org/2007/413.

[WGR18] Qingju Wang, Lorenzo Grassi, and Christain Rechberger. Zero-sum partitions
of PHOTON permutations. In Nigel Smart, editor, CT-RSA 2018, volume
10808 of LNCS, pages 279–299. Springer, 2018.

[WHG+18] Senpeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. MILP
method of searching integral distinguishers based on division property using
three subsets. Cryptology ePrint Archive, Report 2018/1186, 2018. https:
//eprint.iacr.org/2018/1186.

[WHG+19] SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, and TaiRong Shi. A practical
method to recover exact superpoly in cube attack. Cryptology ePrint Archive,
Report 2019/259, 2019. https://eprint.iacr.org/2019/259.

[WHT+17] Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and
Willi Meier. Improved division property based cube attacks exploiting alge-
braic properties of superpoly. Cryptology ePrint Archive, Report 2017/1063,
2017. https://eprint.iacr.org/2017/1063.

[WHT+18] Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe,
and Willi Meier. Improved division property based cube attacks exploiting
algebraic properties of superpoly. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 275–305, 2018.

[Wu16] Hongjun Wu. ACORN v3, 2016. Submission to CAESAR competition.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP method to searching integral distinguishers based on division property
for 6 lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 648–678.
Springer, 2016.

[YT19] Chen-Dong Ye and Tian Tian. Revisit division property based cube attacks:
Key-recovery or distinguishing attacks? IACR Trans. Symmetric Cryptol.,
2019(3):81–102, 2019.

A Specification of Grain-128
Grain-128 [HJMM06] is a NLFSR-based stream cipher. It takes as input 128 key bits
x[128) and 96 IV bits v[96). Its internal state consists of an LFSR and an NFSR, both of
length 128 bits. The NFSR and LFSR, denoted as ~b0, ~s0, are initialized by the key and IV
bits respectively as follows:

~b0 = (b0, b1, . . . , b127) = (x0, . . . , x127), ~s0 = (s0, s1, . . . , s127) = (v0, . . . , v95, 1, . . . , 1).
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Figure 1: Structure of Grain-128

After that, for r = 0, . . . , 255, the NLFSRs are updated by calling Upd as follows:

hr ← br+12sr+8 + sr+13sr+20 + br+95sr+42 + sr+60sr+79 + br+12br+95s95

zr ← hr + sr+93 +
∑
j∈A

br+j where A = {2, 15, 36, 45, 64, 73, 89} (23)

gr ← br + br+26 + br+56 + br+91 + br+96 + br+3br+67 + br+11br+13 + br+17br+18

+ br+27br+59 + br+40br+48 + br+61br+65 + br+68br+84

br+128 ← gr + zr + sr (24)
fr ← sr + sr+7 + sr+38 + sr+70 + sr+81 + sr+96

sr+128 ← fr + zr (25)
~br ← (br+1, . . . br+128) (26)
~sr ← (sr+1, . . . sr+128) (27)

Finally, the first keystream bit z256 is output, computed as (23) with parameter r = 256.
Such a procedure can be reflected by Fig. 1.

B The Division Property Propagation of Grain-128
The division property propagation corresponding to the whole procedure of updating
function can be constructed by calling UpdDiv Algorithm 6. It is the subroutine of
Algorithm 4. The subroutines funcZ, funcG, funcF are defined in Algorithm 7, where
funcZ can also describe the DP structure of the output bit, denoted as o in Algorithm 4.
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Algorithm 6 MILP model for the Upd of Grain-128 under dynamic cube attack
1: procedure UpdDiv(the current MILP model M, the DP structure ~kr−1 = (~kr−1

b
, ~kr−1
s ) where ~kb and

~ks are of length 128 corresponding to the DP structures of ~br−1, ~sr−1 respectively, the round number r
(r = 1, 2 . . .), the nullification strategy NS = {(l1, αr1 ), . . . , (lt, αrt )} where αx ∈ {bx, sx}, the key guess
number w ∈ [0, 2κ).)

2: (M, ~k′b,
~k′s, z) ← funcZ(M, ~kr−1

b
, ~kr−1
s )

3: (M, zg, zf )← copyf(M, z)
4: (M, ~k′′b , g) ← funcG(M, ~k′b)
5: (M, ~k′′s , f) ← funcF(M, ~k′s)
6: (M, s?0 , s

??
0 )← copyf(M, ~k′′s [0], 2)

7: (M, br+127)← xorf(M, g, s?0 , zg)
8: (M, sr+127)← xorf(M, f, s??0 , zf )
9: Assign ~krb ← ~k′′b [1, . . . , 127]‖br+127 and ~krs ← ~k′′s [1, . . . , 127]‖sr+127
10: if r + 127 ∈ {r1, . . . , rt} of NS then
11: if αr+127 = sr+127 then
12: Add constraintM.con← ~ks[127].val = 0.
13: If w = 0, set flag value ~ks[127].F = 0c; otherwise, ~ks[127].F = 1c.
14: else
15: Add constraintM.con← ~kb[127].val = 0.
16: If w = 0, set flag value ~kb[127].F = 0c; otherwise, ~kb[127].F = 1c.
17: end if
18: end if
19: Assign ~kr = (~krb , ~k

r
s).

20: end procedure

Algorithm 7 MILP model for NLFSR and LFSR in Grain-128
1: procedure funcZ(M,~b, ~s)
2: (M,~b1, ~s1, a1) ← CAND(M,~b, ~s, {12}, {8})
3: (M,~b2, ~s2, a2) ← CAND(M,~b1, ~s1, φ, {13, 20})
4: (M,~b3, ~s3, a3) ← CAND(M,~b2, ~s2, {95}, {42})
5: (M,~b4, ~s4, a4) ← CAND(M,~b3, ~s3, φ, {60, 79})
6: (M,~b5, ~s5, a5) ← CAND(M,~b4, ~s4, {12, 95}, {95})
7: (M,~b6, ~s6, x) ← CXOR(M,~b5, ~s5, {2, 15, 36, 45, 64, 73, 89}, {93})
8: (M, z)← xorf(M, x, a1, . . . , a5)
9: return (M,~b6, ~s6, z)
10: end procedure
1: procedure funcF(M, ~s)
2: (M, φ, ~s1, f) ← CXOR(M, φ, ~s, φ, {7, 38, 70, 81, 96})
3: return (M, ~s1, f)
4: end procedure
1: procedure funcG(M,~b)
2: (M,~b1, φ, a1) ← CAND(M,~b, φ, {3, 67}, φ)
3: (M,~b2, φ, a2) ← CAND(M,~b1, φ, {11, 13}, φ)
4: (M,~b3, φ, a3) ← CAND(M,~b2, φ, {17, 18}, φ)
5: (M,~b4, φ, a4) ← CAND(M,~b3, φ, {27, 59}, φ)
6: (M,~b5, φ, a5) ← CAND(M,~b4, φ, {40, 48}, φ)
7: (M,~b6, φ, a6) ← CAND(M,~b5, φ, {61, 65}, φ)
8: (M,~b7, φ, a7) ← CAND(M,~b6, φ, {68, 84}, φ)
9: (M,~b11, φ, x) ← CXOR(M,~b10, φ, {0, 26, 56, 91, 96}, φ)
10: (M, g)← xorf(M, x, a1, . . . , a10)
11: return (M,~b11, g)
12: end procedure
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Algorithm 8 MILP model for COPY+XOR and COPY+AND in Grain-128
1: procedure CAND(M,~b, ~s, I, J)
2: (M, b′i, xi)← copyf(M, bi) for all i ∈ I
3: (M, s′j , yj)← copyf(M, sj) for all j ∈ J
4: for all i ∈ {0, 1, . . . , 127}\I do
5: b′i = bi
6: end for
7: for all j ∈ {0, 1, . . . , 127}\J do
8: s′i = si
9: end for
10: (M, z)← andf(M, b′i,i∈I , s

′
j,j∈J )

11: return (M,~b′, ~s′, z)
12: end procedure
1: procedure CXOR(M,~b, ~s, I, J)
2: (M, b′i, xi)← copyf(M, bi) for all i ∈ I
3: (M, s′j , yj)← copyf(M, sj) for all j ∈ J
4: for all i ∈ {0, 1, . . . , 127}\I do
5: b′i = bi
6: end for
7: for all j ∈ {0, 1, . . . , 127}\J do
8: s′i = si
9: end for
10: (M, z)← xorf(M, b′i,i∈I , s

′
j,j∈J )

11: return (M,~b′, ~s′, z)
12: end procedure
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