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Abstract. The Legendre PRF relies on the conjectured pseudorandomness properties
of the Legendre symbol with a hidden shift. Originally proposed as a PRG by
Damgård at CRYPTO 1988, it was recently suggested as an efficient PRF for
multiparty computation purposes by Grassi et al. at CCS 2016. Moreover, the
Legendre PRF is being considered for usage in the Ethereum 2.0 blockchain.
This paper improves previous attacks on the Legendre PRF and its higher-degree
variant due to Khovratovich by reducing the time complexity from O(p log p/M)
to O(p log2 p/M2) Legendre symbol evaluations when M ≤ 4

√
p log2 p queries are

available. The practical relevance of our improved attack is demonstrated by breaking
three concrete instances of the PRF proposed by the Ethereum foundation. Further-
more, we generalize our attack in a nontrivial way to the higher-degree variant of the
Legendre PRF and we point out a large class of weak keys for this construction.
Lastly, we provide the first security analysis of two additional generalizations of the
Legendre PRF originally proposed by Damgård in the PRG setting, namely the
Jacobi PRF and the power residue PRF.
Keywords: Cryptanalysis · Legendre PRF · MPC-friendly primitives · Collision
attack

1 Introduction
The Legendre symbol is a multiplicative function modulo an odd prime number p that
assigns to an element a ∈ Fp the value 1, 0 or −1 depending on whether or not a is a
square. Specifically,

(
a

p

)
=


1 if a = b2 for some b ∈ F×p ,

0 if a = 0 ,
−1 otherwise .

The distribution of Legendre symbols has been a subject of study for number theorists at
least since the early 1900s [Ala96,vS98,Jac06,Dav31,Dav39]. In particular, it follows from
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the Weil bound [Wei48] that the number of occurrences of a fixed pattern of l nonzero
Legendre symbols among the integers 1, 2, . . . , p− 1 modulo p is

p

2l +O(√p) ,

as p→∞. In other words, the distribution of fixed length substrings of Legendre symbols
converges to the uniform distribution.

In 1988, Damgård [Dam90] conjectured pseudorandom properties of the sequence(
k

p

)
,

(
k + 1
p

)
,

(
k + 2
p

)
, . . . ,

where k has been sampled from Fp uniformly at random. He proposed to use this
construction as a pseudorandom number generator. More recently, Grassi et al. [GRR+16]
have proposed the same construction as a candidate pseudorandom function and have
shown that it can be evaluated very efficiently in the secure multiparty computation setting.
Concretely, the Legendre pseudorandom function Lk(x) is defined by mapping the Legendre
symbol with a secret shift k to {0, 1}:

Lk(x) =
⌊

1
2

(
1−

(
k + x

p

))⌋
,

where p is a public prime number.
Damgård’s work additionally considers several generalizations of the Legendre PRG

that could be more efficient and/or more secure. One of these is to replace the Legendre
symbols above by Jacobi symbols. In this case, the public modulus n is taken to be a
product

∏
i pi of odd primes. Recall that the Jacobi symbol of a ∈ Fp is defined as(a

n

)
=
∏
i

( a
pi

)
.

Damgård argues that Jacobi symbols are more secure by showing that the Jacobi generator
is strongly unpredictable if the Legendre generator is weakly unpredictable. Further, he
notes that calculating Jacobi symbols is more efficient because computing them reduces
to computing Legendre symbols modulo each of the smaller prime factors. A second
generalization proposed by Damgård is the use of higher power residue symbols instead
of quadratic residue symbols. Concretely, for a prime p with p ≡ 1 mod r, he proposes
to use the r-th power residue symbol a 7→ a(p−1)/r mod p. This potentially increases the
throughput of the PRF, because we now obtain log2 r bits of output per PRF call rather
than a single bit.

Very recently, the Legendre PRF was proposed to be used in the Ethereum 2.0 proof-of-
custody mechanism [Fei19b]. In this context, several cryptanalysis bounties were announced
by the Ethereum foundation during the CRYPTO 2019 rump session [Fei19a]. Among
the proposed challenges, there are concrete instances of the Legendre PRF with expected
security levels ranging from 44 to 128 bits of security. For each instance, 220 sequential
output bits are given and the goal is to recover the secret key.

Despite the longevity of Damgård’s pseudorandomness conjecture and the recent surge
of application-oriented interest in the Legendre PRF, relatively few cryptanalytic results are
available. It is known that, given quantum query access to Lk, the key k can be recovered
with a single query to Lk and in quantum polynomial time [vDH00]. No subexponential
attacks are known in the classical setting or the setting where a quantum adversary is only
allowed to query Lk classically.

The best cryptanalytic results in the classical setting are due to Khovratovich [Kho19],
who gives a memoryless birthday-bound attack. His attack recovers the key with a
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computational cost of O(√p log p) Legendre symbol evaluations when given √p log p queries
to Lk. Khovratovich also considers a higher-degree variant of the Legendre PRF, where the
output is computed as the Legendre symbol of a secret polynomial in the input. Similar
to the Jacobi symbol generalization, the higher-degree Legendre PRF potentially offers
security and efficiency benefits.

Contributions. This paper aims to advance the state-of-the-art in the cryptanalysis of
the Legendre PRF by improving upon Khovratovich’s attacks on the one hand, and by
providing the first security analysis of the Jacobi and power residue symbol generalizations
on the other hand. Table 1 provides a summary of our main results. The main improvement
stems from the fact that, unlike earlier work, we manage to exploit the multiplicative
property of the Legendre symbol. The practical relevance of our attacks is demonstrated by
our solution of the first three concrete Legendre PRF challenges proposed by the Ethereum
foundation [Fei19b]. These were expected to correspond to a security level of 44 and 54 bits,
but our attacks imply that the actual security levels for these challenges are significantly
lower.

After introducing the necessary preliminaries in Section 2, we show how the Khovra-
tovich attack can be significantly improved in the low-data setting. In particular, for
M ≤ 4

√
p queries, the attack in Section 3 of this paper recovers the key with a time-

complexity of O(p log2 p/M2) Legendre symbol evaluations and a memory cost of O(M2).
In Section 4, the attack from Section 3 is generalized to the higher-degree case. As
before, this amounts to a significant improvement in the low-data setting. In addition,
for d ≥ 3 and with M = p queries, we gain a factor of p in time-complexity compared
to Khovratovich’s results. Furthermore, in Section 4, a large class of weak keys for the
higher-degree Legendre PRF is shown to exist. For keys in this class, key-recovery requires
roughly O(pbd/2cd log p) Legendre symbol evaluations with only ddlog pe queries to the
PRF. This attack requires O(pdd/2ed log p) memory, but trade-offs are available using Van
Oorschot-Wiener golden collision search. We also give a reduction to the unique k-XOR
problem, which results in further time-memory trade-offs.

The first of Damgård’s generalizations is discussed in Section 6. Specifically, it will be
shown that the Jacobi PRF can be broken with cost proportional to the cost of breaking the
Legendre PRF for each of the prime factors of the modulus separately. The power residue
symbol generalization is analyzed in Section 7. Besides the straightforward generalization
of the attack from Section 3 to the r-th power residue symbol PRF, we additionally provide
a more efficient attack for the case where r is large.

Finally, concrete implementation results are provided in Section 8. We report on the
specific amount of time and memory that was necessary to solve the first three Legendre
PRF challenges of the Ethereum foundation. These results showcase the practical relevance
of our attacks.

Concurrent work. Days after this work first appeared on ePrint, Kaluđerović et al. [KKK20]
solved the next Legendre PRF challenge. Their attack uses similar ideas to our attack,
but with an improved complexity of O(M2/ log p+ p log p log log p/M2) operations on a
machine with word size Θ(log p).

2 Preliminaries
After introducing the Legendre PRF and some related notation in Section 2.1, Section 2.2
recalls how Legendre and power residue symbols can be computed efficiently. Finally,
Sections 2.3 and 2.4 discuss Khovratovich’s attacks on the Legendre PRF and its higher
degree variant.
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Table 1: Query, time and memory requirements of previous and new attacks on the
Legendre PRF. The reported time and memory values are asymptotic upper bounds
(O-notation) and assume a machine with word size Θ(log p), ` and s denote the time-
complexity of computing a Legendre and power residue symbol respectively. The attack
strategy for composite moduli from Section 6 can be combined with any of the attacks in
this table.

Reference Queries Time Memory

Legendre PRF

Randomized [Kho19] log p `p log p log p
Khovratovich [Kho19] √

p log p `
√
p log p log p

Section 3.1 M M + `p log p/M M log p
Section 3.3 M M2 + `p log2 p/M2 M2

Section 3.4 M M2 + p log2 p/M2 M2/ log p

Degree d ≥ 2
Legendre PRF

Randomized [Kho19] log p `pd d log p d log p
Khovratovich [Kho19] p `pd−1d log p d log p
Section 4 M M2 + `pdd2 log2 p/M2 M2

Section 5 d log p `pbd/2cd log p pdd/2ed log p

r-th power-
residue PRF

Section 7.2 M M2 + sp log2 p/(M2 log2 r) M2 log r
Section 7.3 M M + sp log2 p/(Mr log2 r) M log r

2.1 Legendre PRF
Definition 1 (Legendre function). For a given odd prime p, we consider the function

l : Fp → F2

x 7→
⌊

1
2

(
1−

(
x

p

))⌋
which maps quadratic residues modulo p to 0 ∈ F2 and quadratic non-residues to 1 ∈ F2.

Definition 2 (Legendre PRF). Let p be an odd prime and d a positive integer. The
degree d-Legendre PRF over Fp is a family of functions Lk : Fp → F2 such that for each
k ∈ Fdp,

Lk(x) = l
(
xd +

∑d−1
i=0 ki+1 x

i
)
.

Remark 1. For any given field Fp, the Legendre symbol is multiplicative, i.e.(
ab

p

)
=
(
a

p

)(
b

p

)
for all a, b ∈ Fp.

In terms of the Legendre function l, multiplication of inputs corresponds to addition in F2
of the respective images. Indeed

l(ab) = l(a)⊕ l(b) for all a, b ∈ F×p ,

where ⊕ denotes addition in F2.

In our analysis, we will often consider sequential evaluations of a given degree d Legendre
PRF Lk starting from a point a with an additive or multiplicative step b. We call such
vectors L-sequences.
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Definition 3 (L-sequences). Let p be an odd prime, m a positive integer and a, b ∈ Fp.
For a given Lk over Fp, we define the arithmetic L-sequence of length m with starting point
a and stride b as the Fm2 -vector

Lk(a+ b [m]) := (Lk(a), Lk(a+ b), . . . , Lk(a+ (m− 1)b) ).

Similarly, we define the geometric L-sequence of length m with starting point a and common
ratio b as the Fm2 -vector

Lk(a · b[m]) := (Lk(a), Lk(a · b), . . . , Lk(a · bm−1 )).

To justify the correctness of our attack, the following property of Lk will be assumed.

Assumption 1. Let p be an odd prime and d a positive integer. Let m = ddlog pe. For all
k ∈ Fdp, then as p→∞, there exist at most O(1) keys k′ ∈ Fdp such that Lk′([m]) = Lk([m]).

2.2 Evaluating Legendre and Power Residue Symbols
Using the law of quadratic reciprocity, i.e. for odd coprime integers p and q(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 ,

Legendre symbols (and more generally Jacobi symbols) can be computed at essentially the
same cost as a GCD computation. Using the Euclidean algorithm, the cost of a Legendre
symbol computation is O(log p) arithmetic operations, or O(log2 p log log p) bit operations.
Brent and Zimmerman [BZ10] give an asymptotically better algorithm with complexity
O(log p log2 log p). Power residue symbols can be computed via modular exponentiation in
time O(log p log(p/r) log log p). In the remainder of this paper, we will often refer to the
cost of an algorithm in terms of the number of Legendre symbol computations or power
residue symbol computations.

2.3 Attacks on the Linear Legendre PRF
Khovratovich [Kho19] describes a chosen plaintext attack for the linear Legendre PRF Lk
that recovers k ∈ Fp with O(√p log p) queries to Lk. The attack is based on a memoryless
collision search between two specific functions and can be briefly summarized as follows.

Let m = dlog pe and consider the functions x 7→ Lk(x + [m]) and x 7→ L0(x + [m]).
Note that the L-sequence Lk(x+ [m]) is available by querying the Legendre PRF, whereas
L0(x+ [m]) does not depend on k. By Assumption 1, a collision between x 7→ Lk(x+ [m])
and x 7→ L0(x + [m]) yields k with high probability. Indeed, let a, b ∈ Fp be such that
Lk(a+ [m]) = L0(b+ [m]). We have

L0(a+ k + [m]) = L0(b+ [m]).

In accordance with Assumption 1, the number of superfluous candidates for k satisfying
the above equality is expected to be at most O(1).

Collisions between x 7→ Lk(x+ [m]) and x 7→ L0(x+ [m]) can be found with a generic
memoryless collision search method [MOM92, vOW94] in O(√p) evaluations of both
functions. Since computing each L-sequence requires m = O(log p) calls to Lk, the overall
complexity sums up to O(√p log p) queries to Lk and L0. More generally, if onlyM queries
to Lk are allowed, a collision can be found with O(p log2 p/M) queries to L0. This will be
discussed in detail in Section 3.1.

We note that Khovratovich’s original attack builds sequences of lengthm using arbitrary
evaluations of the Legendre function Lk rather than consecutive ones. This difference does
not affect the overall attack complexity, but by using L-sequences we will be able to reduce
the data complexity in Section 3.
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2.4 Attacks on the Higher-Degree Legendre PRF
Khovratovich [Kho19] also presents a generalization of the chosen plaintext attack from
Section 2.3 to the quadratic case and, ultimately, to arbitrary degrees.

Let k = (k1, k2) ∈ F2
p and consider the associated quadratic Legendre PRF Lk. Choose

any r ∈ F×p . From the multiplicative property of the Legendre symbol we get that for any
a ∈ Fp and j ∈ Z,

L(r2j k1,rj k2)(a) = l(r2j)⊕ L(k1,k2)(ar−j) = Lk(ar−j), 1

since r2j is clearly a quadratic residue modulo p. Let m = 2dlog pe. If we find a k′ ∈ F2
p

and a j ∈ Z such that
Lk′(r · r[m]) = Lk(r1−j · r[m]),

then we successfully recover k by letting k1 = k′1r
−2j and k2 = k′2r

−j . As for the linear case,
such a collision can be found memorylessly with O(p) queries to Lk and O(p) Legendre
symbol computations.

For the general case, consider the degree-d Legendre PRF Lk. Similarly to the quadratic
case, we have for each a ∈ Fp and j ∈ Z that

Lk1rdj ,k2r(d−1)j ,...,kdrj (a) = l(rdj)⊕ Lk(ar−j).

By guessing the coefficients k3, . . . , kd, it is possible to attack the remaining coefficients
k1 and k2 using geometric L-sequences of length ddlog pe similar to the quadratic case.
It follows that k can be recovered using O(pd−2 · p · d log p) = O(pd−1d log p) Legendre
symbol evaluations, given O(p) queries to Lk.

3 Improved Attack on the Linear Legendre PRF
In this section, we show how Khovratovich’s attack (Section 2.3) on the Legendre PRF
can be improved when the total number of available queries is less than √p. Although, in
its simplest form, our method requires additional memory, we discuss several techniques
to reduce memory requirements while keeping the same overall time complexity.

3.1 Table-Based Collision Search
We first transform the attack by Khovratovich into a table-based collision search.

Let M be the allowed number of queries to the oracle Lk, where log p�M <
√
p. Let

m = dlog pe and let M̃ = M −m+ 1. The attack proceeds as follows:

1. Store in a table T the pairs (Lk(a+ [m]), a) for all a ∈
{

0, . . . , M̃ − 1
}
.

2. Sample b uniformly at random from Fp until (L0(b + [m]), a) ∈ T for some a ∈
{0, . . . , M̃ − 1}. For each a corresponding to such a collision, a candidate key k̃ is
recovered as k̃ = b− a. By Assumption 1, the number of candidate keys is at most
O(1). Candidate keys k̃ can be tested by comparing one or more entries of T with
the corresponding arithmetic L-sequences with starting point k̃.

Regarding the time and memory complexity of this attack, we note that the first
step requires M queries to Lk, from which we obtain M̃ arithmetic L-sequences that are
stored using O(M log p) memory. The second step requires O(p log p/M) evaluations of the

1This equation, and many other equations in this paper, only holds if none of the involved Legendre
symbols evaluate to zero. Since this does not pose a problem in practice we choose to ignore this issue for
notational convenience.
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Legendre symbol and no additional memory is needed. Hence, the overall computational
cost of the attack is O(M + p log p/M).

Note that this variant of the attack already reduces the query and time complexities by
a log p factor compared to the memoryless collision search, although a significant amount
of memory is employed.
Remark 2. The above attack can be made deterministic by choosing b ∈ {0, . . . , bp/M̃c}
and considering the sequences v = L0(bM̃ + [m]) in the second step of the attack. Indeed,
it is easy to see that for any k ∈ Fp, the arithmetic L-sequence at offset M̃

⌈
k/M̃

⌉
will be

computed in both steps of the attack and the correct key is guaranteed to be recovered
after at most O(M + p log p/M) Legendre symbol evaluations.

3.2 Expanding the Number of L-Sequences
We now show that the table can be expanded without increasing the number of queries M .
The key idea is to exploit the multiplicative property of the Legendre symbol.

Lemma 1. Let m be a positive integer and k ∈ Fp. For any b ∈ F×p and a ∈ Fp it holds
that

Lk/b(a/b+ [m]) = (l(b), . . . , l(b))⊕ Lk(a+ b[m]).

Proof. Immediate by the multiplicative property of l.

Lemma 2. Let k ∈ Fp and m ≤ M positive integers. Then from the arithmetic L-
sequence Lk([M ]), it is possible to extract ∼ M2/m arithmetic L-sequences of the form
Lk/b(a/b+ [m]) for distinct pairs (a, b) ∈ Fp × F×p .

Proof. Let b a positive integer such that b ≤ bM/mc. By Lemma 1, we get

Lk(a+ b[m]) = (l(b), . . . , l(b))⊕ Lk/b(a/b+ [m])

for any a ∈ [0,M−bm+1), thus each b yields a total ofM−bm+1 L-sequences of lengthm.
Moreover, since Lk(a−b[m]) is equal to the sequence Lk(a−b(m−1)+b[m]) = Lk(a′+b[m])
written in reverse order, we can consider negative values for b too, thus doubling the total
number of sequences. Hence, the total number of arithmetic L-sequences of length m that
can be extracted from Lk([M ]) equals

2
bM/mc∑
b=1

(M − bm+ 1) ∼ 2M2

m
−m

M/m∑
b=1

b ∼ 2M2

m
− M2

m
= M2

m
.

3.3 An Improved Table-Based Collision Search
The observations from Section 3.2 will now be used to improve the table-based collision
search from Section 3.1.

As before, let M be the allowed number of queries to the oracle Lk, where log p �
M <

√
p. Let m = dlog pe. The attack proceeds as follows:

1. Query the sequence Lk([M ]) and extract ∼M2/m sequences of the form Lk/b(a/b+
[m]) from it. This is possible by Lemma 2. Store all of the triples (Lk/b(a/b+[m]), a, b)
in a table T .

2. Sample c uniformly at random from Fp until (L0(c+ [m]), a, b) ∈ T for some a and b.
For each pair (a, b) corresponding to such a collision, a candidate key k̃ is recovered
as k̃ = bc− a. By Assumption 1, the number of candidate keys is at most O(1). As
before, the correctness of candidate keys k̃ can easily be verified.
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The first step of the attack requires M queries to Lk and ∼ M/m Legendre symbol
evaluations. Storing the table T requires O(M2) memory. In the second phase, an average
of ∼ mp/M2 samples must be tested before a collision is found. Hence, the computational
cost of this step is dominated by O(pm2/M2) Legendre symbol evaluations.

It follows that the overall cost of the attack is dominated by the extraction of O(M2/m)
sequences, the evaluation of O(M/m + p log2 p/M2) Legendre symbols and a memory
requirement of O(M2). For M <

√
p, this is always an improvement over the attack from

Section 3.1 – possibly after discarding some of the data.

3.4 Additional Optimizations
This section describes a number of additional optimizations that allow a further reduction
of both the time and the memory complexity of the attack by a factor Ω(log p).

Using Consecutive Values of c

The second step of the attack from Section 3.3 can be optimized by choosing consecutive
values of c rather than uniform random samples. This approach allows us to reuse most of
the Legendre symbol computations since, for example, L0(c + [m]) and L0(c + 1 + [m])
overlap almost completely. A priori, this allows reducing the number of Legendre symbol
computations by a factor of Ω(m). However, there is an important caveat: since the
guesses for c are not independent, the expected number of iterations of the second step is
no longer pm/M2. To see why this is the case, recall that for any c, the algorithm will
output the correct key k if there exists (∗, a, b) ∈ T such that k = bc− a. Since the table
contains an entry (∗, a, b) for all sufficiently small values of a and b, it is clear that if the
table contains (∗, a, b) such that k = bc− a it is likely to also contain (∗, a′ = a+ b, b) such
that k = b(c + 1) − a′. Therefore, if c is a good guess, then c + 1 is also likely to be a
good guess. Since the “good” values of c are clustered together in groups of size O(m), we
expect the required number of iterations to be O(pm2/M2), which means that the factor
Ω(m) that we saved by using consecutive guesses for c is lost again. However, we can
still use this idea to reduce the memory complexity of the algorithm: by only storing one
entry (∗, a, b) for each cluster of good c’s, i.e. we only store the triples (∗, a, b) such that
|a| < |b|, the size of the table can be reduced by a factor of Ω(m) without impacting the
time complexity of the attack.

Expanding the Number of L-Sequences in the Second Step

The idea outlined in Section 3.2 can be used to create new L-sequences from those computed
during the second step of the attack. Indeed, after computing a large number of w = Ω(m)
consecutive Legendre symbols L0(c+ [w]), it is possible to extract Ω(w2/m2) arithmetic
subsequences of the form L0(c+ c′ + d[m]) such that |c′| < |d|, with no need to compute
additional Legendre symbols. Using the property that

L0(c+ c′ + d[m]) = L0((c+ c′)/d+ [m])⊕ L0(d)

we can then do Ω(w2/m2) table lookups. Asymptotically, this allows to amortize away
the cost of computing Legendre symbols, so the time complexity is dominated by the
extraction of O(pm2/M2) subsequences rather than by the computation of O(pm2/M2)
Legendre symbols.

Not Storing Reverse Sequences

Since the sequence a+ b[m] is just the reverse of the sequence a+ b(m− 1)− b[m], there
is some redundancy in the lookup table. Indeed, for each entry (s, a, b) ∈ T , the reverse
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sequence corresponding to the entry (s′, a+ b(m− 1),−b) is also stored. If, instead, we
only store either the sequence or its reverse (e.g. by storing the lexicographically smallest
sequence), then the memory requirements are reduced by a factor of two without affecting
the overall time-complexity just by looking up either the sequence L0(c + [m]) or its
reverse in T , depending which comes first lexicographically.

4 Application to the Higher-Degree Legendre PRF
In this section we generalize the attack described in Section 3 to Legendre PRFs of degree
d > 1. In Section 4.1 it is shown how to expand the number of L-sequences in the
higher-degree setting. The resulting attack is detailed in Section 4.2.

4.1 Expanding the Number of L-Sequences
In order to generalize Lemma 2, we need to extend Lemma 1 to the higher-degree case.
This is the object of Lemma 3.

Lemma 3. For any positive integer m, b ∈ F×p and a ∈ Fp, there exists an invertible
affine transformation Ta,b such that for any k ∈ Fdp,

LTa,b(k)([m]) = (l(bd), . . . , l(bd))⊕ Lk(a+ b[m]).

Moreover, for any choice of (a, b) ∈ Fp × F×p , the transformation Ta,b can be efficiently
computed.

Proof. Lef f be the monic degree d polynomial with coefficient vector k, and let Ta,b(k) be
the coefficient vector of the monic polynomial f(a+ bx)/bd. Then, by the multiplicative
property of the Legendre symbol, we have that

LTa,b(k)([m]) = (l(bd), . . . , l(bd))⊕ Lk(a+ b[m]).

Furthermore, it is not hard to see that Ta,b is invertible, affine and that it can be computed
efficiently.

Lemma 4. Let k ∈ Fdp and m ≤M positive integers. Then from the arithmetic L-sequence
Lk([M ]), it is possible to extract ∼ M2/m arithmetic L-sequences of the form Lk′([m])
with k′ as defined in Lemma 3 for distinct pairs (a, b) ∈ Fp × F×p .

Proof. The proof is completely analogous to that of Lemma 2.

4.2 An Improved Table-Based Collision Search
The attack proceeds in essentially the same way as described in Section 3.3 for the
linear case. Let M be the allowed number of consecutive queries to the oracle Lk. Let
m = d dlog pe. The attack comprises the following steps:

1. Query the sequence Lk([M ]) and extract ∼M2/m sequences of the form Lk′([m])
from it. This is possible by Lemma 4. Store all of the triples (Lk′([m]), a, b) in a
table T .

2. Sample k′ uniformly at random from Fdp until (Lk′([m]), a, b) ∈ T for some a and
b. For each pair (a, b) corresponding to such a collision, a candidate key k̃ can be
recovered from k, a and b as in Lemma 3. By Assumption 1, the number of candidate
keys is at most O(1). As before, the correctness of candidate keys can easily be
verified.
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As in Section 3.3, the computational cost of the first step is dominated by the extraction
of O(M2/m) sequences. For the second step, at most O(pdm2/M2) Legendre symbols
are expected to be evaluated. Hence, the total computational cost of the attack consists
of O(M2/m) sequence extractions and O(pd d2 log2 p/M2) Legendre symbol evaluations.
The attack requires O(M2) memory.

For d ≥ 3, the time-complexity is minimized for M = p. The time complexity is then
O(pd−2d2 log2 p) Legendre symbol computations. Hence, we gain a factor of p in time
relative to the attacks by Khovratovich [Kho19].

5 Weak Keys in the Higher-Degree Legendre PRF
In this section, we exhibit a large class of weak keys for the higher-degree Legendre PRF.
Our attacks are based on the observation that for some keys, the corresponding monic
polynomial factors as a product of polynomials of lower degree.

5.1 A Birthday-Bound Attack for Some Keys
Consider the Legendre PRF of degree d ≥ 2 over Fp for a prime p. Recall that the key
k ∈ Fdp of the PRF corresponds to the monic polynomial f(x) = xd +

∑d−1
i=0 ki+1x

i ∈ Fp[x].
The attack in this section is based on the observation that, with high probability, the
polynomial f has a factor of degree t = bd/2c. In this case, there exist two monic
polynomials g, h ∈ Fp[x] with deg g = t and deg h = d− t such that f = gh.

Assume that we are given the outputs of the PRF on m = ddlog pe arbitrary inputs,
for example the sequence Lk([m]). Then, by the multiplicative property of the Legendre
symbol2,

Lk([m]) = l(g([m]))⊕ l(h([m])).

Hence, the problem of finding the secret key k ∈ Fdp reduces to a simple collision search:

1. Query the sequence Lk([m]) from the PRF. For each monic polynomial g of degree t,
store the pair (Lk([m])⊕ l(g([m])), g) in a table T .

2. Sample monic polynomials h of degree d− t until (l(f([m])), g) ∈ T for some monic
polynomial g of degree t. For each such g, recover a candidate key from the coefficients
of gh. By Assumption 1, the number of candidate keys will be at most O(1).

For t = dd/2e, this attack requires O(pdd/2ed log p) memory and its time complexity is
dominated by O(pbd/2cd log p) Legendre symbol computations. The attack requires only
m = O(d log p) queries to the PRF.

Using Van Oorschot-Wiener golden collision search [vOW94], an improved time-memory
trade-off can be obtained: given M bits of memory, the key can be recovered with a time-
complexity of O(d log p

√
p3d/2/M) Legendre symbol evaluations.

Even if the polynomial f does not have a factor of degree exactly dd/2e, it might still
have a factor of large degree t < dd/2e. In this case, the same strategy results in an
attack with time complexity O(pd−td log p) and memory complexity O(ptd log p). This
gives a trade-off between more efficient attacks on a smaller fraction of keys (when t is
large) or less efficient attacks on a larger fraction of the keys (when t is small). This
trade-off is illustrated in Figure 1. The figure shows the time-complexity of the attack
for a desired fraction of attackable keys. The construction of Figure 1 is based on the
following fact [Tao15]: the fraction of monic degree-d polynomials whose factorization has
exactly ci monic irreducible factors of degree i is 1/

∏d
i=1 ci! ici as p→∞. By summing

2For convenience, we extend our notation for arithmetic L-sequences (Definition 3) to arbitrary functions
on Fp. In particular, l(g([m])) = (l(g(0)), . . . , l(g(m − 1))).
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Figure 1: The complexity of the attack, measured as a power of p, as a function of the
degree of f and the desired fraction of keys we want to attack.

these probabilities over all integer partitions of d that allow a (t, d− t) split, we obtain the
probability that a uniformly random key is weak.

We conclude that if the key is chosen uniformly at random, the higher-degree Legendre
PRF has security only up to the birthday bound. To completely prevent this class of
attacks, one can choose the key k such that the corresponding polynomial f is irreducible.

5.2 Reduction to the Unique k-XOR Problem
More generally, the secret polynomial could factor into k polynomials of degree roughly
d/k. For example, if d is divisible by k and f =

∏k
i=1 fi with deg fi = d/k, we have

Lk([m]) =
k⊕
i=1

l(fi([m])).

That is, it suffices to find a solution to a variant of the k-XOR problem. Specifically,
since each list has length pd/k, a unique solution is expected. This makes Wagner’s
approach [Wag02] inapplicable, but some improvements over the attack in Section 5.1 are
nevertheless possible.

In particular, for k = 4, the algorithm of Chose, Joux and Mitton [CJM02] leads
to a time complexity Õ(pd/2) with only Õ(pd/4) memory. Corresponding time-memory
trade-offs can also be obtained.

Finally, we mention that there exist asymptotically better quantum algorithms for the
unique k-XOR problem. Bernstein et al. [BJLM13] give an Õ(p0.3d) algorithm requiring
Õ(p0.2n) quantum-accessible quantum memory for k = 4. For any k ≥ 3, Naya-Plasencia
and Schrottenloher [NPS19] give algorithms running in time Õ(pβkd) where βk = (k +
dk/5e)/(4k) using Õ(p0.2n) quantum-accessible quantum memory. For k = 3, there is an
algorithm using Õ(pd/3) time and Õ(pd/3) quantum-accessible classical memory.

6 Jacobi Symbol PRF
The Jacobi pseudorandom generator was proposed by Damgård [Dam90] as a variation
on the Legendre PRG. As discussed by Damgård [Dam90, §5], it is potentially more
efficient because it can be computed as the exclusive-or of several Legendre PRGs with a
relatively small modulus. In addition, Damgård showed that if the Legendre generator is
weakly unpredictable, then the Jacobi generator is strongly unpredictable. A generator is
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defined to be weakly unpredictable if, for all polynomials f , there exist only finitely many
integers m ≥ 0 such that the next output bit in a sequence of length m can be predicted
with probability greater than 1− 1/f(m). Similarly, the generator is said to be strongly
unpredictable if the probability of successful prediction exceeds 1/2 + 1/f(m) for only
finitely many m. For a more formal definition, see [Dam90, §3] and references therein.

This section investigates the security of the Jacobi PRF in the chosen-plaintext setting.
Whereas the unpredictability result of Damgård could be regarded as a positive result
related to the security of the Jacobi PRF, it remains inconclusive concerning its concrete
security. Indeed, strong unpredictability is a weaker property than PRF-security and, in
addition, it is only an asymptotic notion of security.

Clearly, the cost of a key-recovery attack on the Jacobi PRF is at least the cost of
attacking a Legendre PRF corresponding to a prime factor of the modulus. Below, a
chosen-plaintext key-recovery attack on the Jacobi PRF is given which nearly attains
this lower bound. Hence, for most purposes, the Jacobi PRF offers little benefit over the
Legendre PRF.

Let n =
∏m
i=1 pi with p1, . . . , pm distinct odd primes. Note that it may be assumed

that the prime factors of n are distinct, since(
x+ k

n

)
=
(

x+ k∏m
i=1 p

ei
i

)
=

m∏
i=1
ei odd

(
x+ k

pi

)
.

Let λj =
∏m
i=1
i 6=j

pi and denote the inverse of λj modulo pj by λ′j . Then(
λj x+ k

n

)
=

m∏
i=1

(
λj x+ k

pi

)
=
(
λj
pj

)(
k

n/pj

)(
x+ λ′j k

pj

)
.

Hence, in the chosen-plaintext setting, the key-recovery attack on the Legendre PRF from
Section 3 can be used to recover the key modulo pj . The factor

(
k

n/pj

)
is not known to the

attacker, but it is constant so the cost of the attack is increased by a factor of at most two.
Given the value of the key modulo each prime factor of n, the Chinese remainder theorem
yields the value of the key modulo n. Hence, key recovery for the Jacobi symbol costs at
most O(mM2 +

∑m
i=1 pi log2 pi/M

2) Legendre symbol evaluations. The same strategy is
applicable to the higher-degree case and can also be combined with the attacks in Section 7
below. Note that a distinguishing attack on the Jacobi PRF reduces to a distinguishing
attack on the Legendre PRF corresponding to the smallest prime factor of the modulus.

7 Attacks on the Power Residue PRF
The MPC protocol of Grassi et al. [GRR+16] for computing the Legendre PRF requires
only three rounds of communication, which makes the Legendre PRF superior among the
PRF constructions investigated by Grassi et al. in terms of latency. However, since the
Legendre PRF only produces one bit of output, it compares less favorably in terms of
throughput than e.g. MiMC [AGR+16], a block cipher that outputs full field elements.

To mitigate this limitation of the Legendre PRF we can, as proposed by Damgård
[Dam90], consider higher power residue symbols rather than quadratic residue symbols. If
r divides p− 1, the r-th power residue symbol of x ∈ Fp is defined as(

x

p

)
r

:= x
p−1

r mod p.

Jointly computing r-th power residue symbols in the MPC setting can be done at essentially
the same cost as computing Legendre symbols with the advantage that log r bit outputs are
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produced instead. Therefore, this modification has the potential to significantly increase
the throughput of the Legendre PRF at essentially no cost – keeping in mind that r should
not be too large, since the corresponding power residue PRF might lose its security (e.g.
r = p− 1). In this section we provide the first security analysis of the power residue PRF.
We show that there exists an attack with time complexity O(p log2 p/(Mr log2 r)), given
M ≤ √p queries to the PRF.

7.1 Power Residue PRF
By generalising the Legendre function and the Legendre PRF to higher power residues, we
obtain the following definitions:

Definition 4 (r-th power residue function). Let p be a prime congruent to 1 mod r and
g a generator of F×p . Then we define the r-th power residue function l(r) : Fp → Zr as

l(r)(a) =
{
k if a 6≡ 0 mod p and a/gk is an r-th power mod p
0 if a ≡ 0 mod p

Definition 5 (r-th power residue PRF). Let p be a prime congruent to 1 modulo r. The
power residue PRF over Fp is a family of functions L(r)

k : Fp → Zr such that for each
k ∈ Fp,

L
(r)
k (x) = l(r)(k + x).

7.2 Generalising our Attack to the Power Residue PRF
The attacks described in Section 3 and Section 4 do not use any properties of the Leg-
endre symbol other than its multiplicativity. Therefore, they trivially generalize to any
multiplicative function with a hidden shift, including the r-th power residue function.

Unlike the quadratic case, the r-th power residue function can take r distinct values, so it
suffices to consider L-sequences of length log p/ log r. It follows that a straightforward gener-
alization of our attack to r-th power residue Legendre PRFs requires O(p log2 p/(M2 log2 r))
power residue symbol evaluations and O(M2 log r) memory. However, for large values of r,
there exists a better attack which is detailed in the next section.

7.3 Attacks for Large r

We first describe a very simple attack on the linear r-th power residue Legendre PRF that
requires O(p/r) power residue symbol evaluations. In the following, denote the subgroup
of (p− 1)/r-th roots of unity of F×p by G. That is,

G = {x ∈ F×p | x(p−1)/r = 1}.

Remark that G is generated by gr, where g is any generator of F×p .
By querying L(r)

k (0), the attacker immediately learns l(r)(k), the power residue symbol
of k ∈ Fp. We observe that this single query already narrows down the set of possible
values for k to at most (p− 1)/r elements of Fp. Indeed, from Definition 4, k is contained
in the coset gsG, where g is any generator of F×p and s is equal to l(r)(k). Therefore, an
attacker can just go through all of these elements and check each candidate. Since, on
average, only O(1) power residue symbols must be computed to check the validity of a
candidate key, the attack requires O(p/r) power residue symbols evaluations. The attack
requires a generator g, which can be precomputed in probabilistic subexponential time by
factoring p− 1.
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We now explain a more general attack that requires O(p log2 p/(Mr log2 r)) power
residue symbol evaluations and O(M log r) memory. The attack is similar to the table-
based collision search from Section 3.1. A speed-up of a factor r is obtained by querying
the PRF at more carefully chosen arithmetic L-sequences. Let m = dlog p/ log re and
M < p/r. The attack proceeds as follows:

1. For M/m distinct values a ∈ G, store each pair (L(r)
k (a[m]), a) in a table T . Further-

more, query the PRF to get the value s = L
(r)
k (0).

2. Sample x uniformly at random from the coset gsG until (L(r)
0 (x+ [m]), a) ∈ T for

some value a. For each entry (L(r)
0 (x+ [m]), a) ∈ T corresponding to such a collision,

a candidate key is recovered as k̃ = xa. By a variant of Assumption 1, the number
of such candidate keys will be at most O(1).

The first step of the above attack usesM = m·(M/m) queries to L(r)
k and needs O(M log r)

memory to store the table T . The key k is found when, in the second step, the attacker
samples an x such that k/x is one of the a-values stored in the table. On average,
|G|/(M/m) = O(pm/(Mr)) iterations of the second step are required in order to find a
candidate key. Since each iteration requires m power residue symbol computations to
evaluate L(r)

0 (x + [m]), it follows that the total time-complexity of the attack consists
of O(M) storage operations and O(pm2/(Mr)) = O(p log2 p/(Mr log2 r)) power residue
symbol evaluations.

8 Implementation Results
This section discusses several aspects of our implementation of the attack from Section 3.3
that we applied to the key recovery puzzles proposed by the Ethereum foundation [Fei19b].
Using the attack from Section 3, we managed to solve three out of six challenges (including
the test instance with a 40-bit prime). A summary of the instance parameters and the
time and memory requirements of the attack is given in Table 2.

The source code of our implementation is publicly available at

https://github.com/cryptolu/LegendrePRF

Table 2: Parameters of the concrete challenges proposed by the Ethereum founda-
tion [Fei19b]. For all instances, the first M = 220 consecutive PRF outputs were given.
For the first three instances, the running time and peak memory usage is given, for the
three hardest instances an estimation of time is provided (marked by †). All experiments
were performed on a Dell C6420 server with two Intel Xeon Gold 6132 CPUs clocked at
2.6 GHz and 128 GB of RAM.

p
Security level3

(bits)
Time

(core-hours)
Memory / thread

(GB) Key

240 − 87 20 < 0.001 < 1 4e2dea1f3c
264 − 59 44 1.5 3 90644c931a3fba5
274 − 35 54 1500 3 384f17db02976dcf63d
284 − 35 64 221† 3
2100 − 15 80 237† 3
2148 − 167 128 265† 3

https://github.com/cryptolu/LegendrePRF
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We compiled our C++ implementation of the attack using Clang 6.0.0 and executed it
on a Dell C6420 server with two Intel Xeon Gold 6132 CPUs clocked at 2.6 GHz (28 cores)
and 128 GB of RAM. The optimizations described in Section 3.4 allow to significantly
reduce the required memory and the number of evaluations of the Legendre symbol. As a
result, the table lookups are the bottleneck in our implementation. On average, a single
thread required 0.08µs to compute and check a single 64-bit sequence. As discussed below,
we expect to compute p/228 sequences on average before the key is recovered. Hence,
the required core time to solve a challenge with a prime p and 220 bits of PRF output
can be estimated as p/228 × 0.08µs. The required memory is 1 GB per server and an
additional 3 GB per thread. The parameters can be modified to reduce the memory
without significantly decreasing the performance.

For the first three instances we successfully recovered the secret key of the PRF in a
timespan close to our estimation. The corresponding keys are given in Table 2. The third
instance was solved in under two hours using a cluster of 40 nodes with the described
configuration. Further details about the main steps of the attack are provided below.

Step 1: Processing the PRF Output

As a first step we compute the set T consisting of all arithmetic sequences extracted
from the sequence Lk([220]) given in the challenge. We chose to store sequences of length
m = 64 since this length provides an acceptable rate of false-positives and enables to
efficiently process sequences as 64-bit words. As a result, the set T contains approximately
M2/(2m2) = 227 of such words-sequences.

A straightforward way to implement a set is by using a hash table, which has a constant
amortized time-complexity for membership testing. However, this constant time may be
quite large in practice, especially in the case of large tables. Random memory accesses
are often the main bottleneck. In our case, the set T is never modified after its creation.
To exploit this fact, we sort the elements of T and we store them in an array. Then, we
compute membership queries in batches. First, we collect a large amount of membership
queries and we sort them. Then, we scan through the two sorted arrays checking for
collisions. The bottleneck in this approach is represented by the sorting step of each
batch of membership queries. The described set T contains 227 64-bit words and the
corresponding sorted array requires 1 GB of memory. An extra 1 GB of memory is used
to store information required for the key recovery. Note that the set T and the extra
information are shared among all threads that are used to parallelize the workload of the
next step.

Step 2: Random Sampling

The second and main step of the attack consists of sampling sequences L0(c + [m]) for
randomly chosen c and checking if they collide with an entry of T . Note that the reversed
sequence L0(c+ [m]) is checked if it is lexicographically smaller.

For a uniformly chosen c ∈ Fp we compute a long sequence L0(c+ [t]) and we extract
a large amount of m-bit sequences from it. More precisely, for all b ∈ {1, 2, . . . , 28} and
a ∈ {0, 1, . . . , t − 1 − b(m − 1)}, we extract L0(c + a + b[m]). The upper-bound for b is
chosen as 28 since it is enough to make the time spent on computing Legendre symbols
negligible. Furthermore, all these sequences can be computed on the fly by storing only
the last sequence per pair (b, a). Indeed, for a large enough i ∈ Z, after expanding the
computed sequence L0(c + [i − 1]) by one Legendre symbol L0(c + i) we obtain a new
sequence L0(c+ i− b(m− 1) + b[m]) for each b. In other words, we obtain 28 sequences
from each single consequent Legendre symbol computation.

3Expected security level (conservative estimate) prior to this work.
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As described above, the computed sequences are accumulated and checked in batches
for a collision with the set T . Each batch is sorted using base-28 radix sort and collisions
are checked using a linear scan through the sorted batch and the sorted array of T . In the
case of a collision, a key candidate is recovered and checked against extra bits from the
given PRF output.

Note that this step can be efficiently parallelized. Each thread starts with a uniformly
random a ∈ Fp and proceeds as described above. After a predetermined amount of steps,
a new value for a can be chosen to ensure a sufficiently uniform coverage of the possible
offsets of the sequences.

9 Conclusions
In Section 3, a new attack on the Legendre PRF was presented. It is of particular interest
in the low-data setting. Specifically, given M ≤ 4

√
p queries, our attack recovers the

key using O(p log2 p/M2) Legendre symbol evaluations. The practical relevance of this
result was demonstrated by solving the first two Legendre PRF challenges set out by the
Ethereum foundation [Fei19b]. Several aspects of our implementation of the attack were
discussed in Section 8.

In Section 4, it was shown how the technique from Section 3 yields improved attacks
on the higher-degree generalization of the Legendre PRF. Further attacks on the higher-
degree case were given in Section 5, where a large class of weak keys was revealed.
Keys from this class can be recovered using O(pbd/2cd log p) Legendre symbol evaluations
and O(pdd/2ed log p) memory. Further improvements to the memory usage, based on a
reduction to the unique k-XOR problem, were also discussed. These weak key attacks
can be prevented by choosing the key such that the corresponding monic polynomial is
irreducible.

In addition to the above, we provided the first security analysis of the Jacobi and
power-residue generalizations of the Legendre PRF. These extensions were first suggested
– for the Legendre pseudorandom generator – at CRYPTO 1988 by Damgård [Dam90].
It was demonstrated in Section 6 that the key of a Jacobi PRF can be recovered with
time-complexity proportional to the time-complexity of key-recovery on the Legendre PRF
for each of the prime factors of the modulus separately. This result eliminates the potential
efficiency benefits offered by Jacobi symbols.

Power residue symbols were considered in Section 7. The low-data attack from Section 3
equally applies in this setting, but we provide an additional attack that preforms better
for large power residue symbols. Specifically, for r-th power residue symbols and given
M ≤ √p queries, our key-recovery attack requires O(p log2 p/(rM log2 r)) power residue
evaluations and O(M) memory.
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