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Abstract. Cryptographic competitions, like the ongoing NIST call for lightweight
cryptography, always provide a thriving research environment, where new interesting
ideas are proposed and new cryptographic insights are made. One proposal for
this NIST call that is accepted for the second round is Pyjamask. Pyjamask is an
authenticated encryption scheme that builds upon two block ciphers, Pyjamask-96
and Pyjamask-128, that aim to minimize the number of AND operations at the cost of
a very strong linear layer. A side-effect of this goal is a slow growth in the algebraic
degree. In this paper, we focus on the block cipher Pyjamask-96 and are able to
provide a theoretical key-recovery attack reaching 14 (out of 14) rounds as well as a
practical attack on 8 rounds. We do this by combining higher-order differentials with
an in-depth analysis of the system of equations gotten for 2.5 rounds of Pyjamask-96.
The AEAD-scheme Pyjamask itself is not threatened by the work in this paper.
Keywords: cryptanalysis · NIST call for lightweight cryptography · Pyjamask ·
algebraic cryptanalysis · higher-order differentials · symmetric cryptography

1 Introduction
Reducing the number of multiplications within cryptographic primitives is a quite recent
trend that was initiated by LowMC [ARS+15], which lead to many interesting design ap-
proaches like FLIP [MJSC16], Kreyvium [CCF+18], MiMC [AGR+16], or Rasta [DEG+18].
The prime focus of these designs is to provide benefits in the areas of fully homomor-
phic encryption (FHE), multi-party computation (MPC), or post-quantum signature
schemes [CDG+17, CDG+19]. Moreover, reducing the number of multiplications, or —
more generally — the number of nonlinear building blocks provides benefits in the area
of side-channel countermeasures. In particular, the costs of masking can be reduced as
already brought forward by the block cipher Noekeon [DPVR00]. Pyjamask [GJK+19],
an entry to the NIST lightweight call, follows this direction in a more aggressive manner
than Noekeon and introduces two block ciphers Pyjamask-96 and Pyjamask-128, claiming
to need the smallest number of binary multiplications (ANDs) per input bit processed,
not considering designs like LowMC [ARS+15], or Rasta [DEG+18] that follow a more
unconventional design approach. Note that there exist also other designs, which achieve
a small number of AND per processed bit apart from block cipher based designs, e.g.,
constructions based on Xoofff [DHVV18], or the authenticated encryption schemes
Ascon [DEMS19], Keyak [BDP+14], and Xoodyak [DHP+19].

The quest on reducing the number of multiplications has motivated cryptanalysts to
look at these newly proposed constructions. This is because the nonlinear elements in
ciphers provide the necessary confusion part in the confusion and diffusion duality [Sha49]
that most of the modern designs still follow. Hence, new attacks and insights have
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been published that took advantage of this, like, e.g., analysis that exploits the low
algebraic degree of the functions [DEM15, DLMW15], the sparsity of nonlinear elements
per encryption round [RST18], or other structural properties inherited from the quest to
reduce the number of multiplications [DLR16].

The design of Pyjamask-96 follows quite conventional principles. We have the iterated
application of a round function consisting of the parallel applications of 3-bit S-boxes, a
linear diffusion layer, and the key addition where the round keys are derived via a linear
key schedule. In contrast to other designs like LowMC [ARS+15], or Zorro [GGNPS13]
that use incomplete S-box layers to reduce the number of nonlinear elements, Pyjamask-96
uses a complete one. Hence, the only option of Pyjamask-96 to reduce the number of
multiplications within the circuit is to aggressively reduce the number of rounds. In this
paper, we will analyze the effects of this aggressive reduction and present attacks on round-
reduced-versions of Pyjamask-96 that take advantage of a combination of higher-order
differential properties, together with the low monomial count we have in the equations that
we want to solve. An overview of our results is shown in Table 1 and Table 2. Note that
memory complexity is negligible, hence not included in the table. We want to emphasize
that our attacks just focus on the block cipher Pyjamask-96 and that especially the attacks
on the higher number of rounds do not apply when Pyjamask-96 is used in the context of
the authenticated encryption scheme Pyjamask, partially due to the high data complexity.
Hence, our attacks do not invalidate the security of any of the full-round authenticated
encryption schemes specified in Pyjamask.

Table 1: Overview of the results on our key recovery attacks on Pyjamask-96.
Rounds Time Data Reference

(in Pyjamask-96 calls) (in blocks)
14/14 2115 296 Section 6
13/14 2125 294 Section 5
13/14 299 296 Section 6
12/14 296 296 Section 6
11/14 291 295 Section 7
10/14 283 287 Section 7
9/14 267 271 Section 7
8/14 235 239 Section 7
7/14 227 223 Section 7

Table 2: Overview of the results on our key recovery attacks on Pyjamask-96-AEAD.
Rounds Time Data Reference

(in Pyjamask calls) (in blocks)
7/14 286 241 Section 8

2 Description of Pyjamask
Pyjamask is a block cipher-based authenticated encryption scheme designed by Dahmun
Goudarzi, Jérémy Jean, Stefan Kölbl, Thomas Peyrin, Matthieu Rivain, Yu Sasaki,
and Siang Meng Sim, which has passed into the second round of the NIST lightweight
competition. The mode of operation chosen by the authors of Pyjamask is the OCB AEAD
mode of operation [KR14]. Pyjamask comes with two variants, one with a 128-bit block-size
and one with a 96-bit block-size. Both use a 128-bit secret key.
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Figure 1: The state of Pyjamask-96.
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Figure 2: The round-function of Pyjamask-96.

In this paper, we focus on the analysis of the underlying block cipher with the 96-bit
block-size, denoted as Pyjamask-96. Our attack is not directly applicable on Pyjamask-128
as the algebraic degree of Pyjamask-128 increases faster compared to Pyjamask-96 and the
degree of the equations is one of the crucial points of our cryptanalysis. Hence, we only
give the description of the 96-bit version Pyjamask-96. Pyjamask-96 is an iterated block
cipher that consists of a data path and a key schedule. The key schedule is linear and the
key state can be seen as a matrix of size 4× 32. The data path consists of fourteen rounds
that we will describe next. A state in the data path can be seen as an array of size 3× 32
as in Figure 1.

2.1 Round function
The number of rounds of Pyjamask-96 is 14. One round function is applied on the 3× 32
state and consists of the following operations, see also Figure 2:

• AddRoundKey: Bitwise addition of the round key defined by the key schedule.

• SubBytes: The same 3-bit S-box is applied to each of the 32 columns of the state.

• MixRows: For i ∈ {0, 1, 2} we compute the rows of the updated state as Mi · RT
i ,

where the matrices Mi are defined as 32× 32 circulant binary matrices.

After the last round, another key addition (AddRoundKey) is performed.

2.1.1 The S-box

The 3-bit S-boxes of the SubBytes layer have Algebraic Normal Form (ANF): S(x0, x1, x2) =
(y0, y1, y2), where y0, y1, y2 satisfy:

y0 :=x0x2 + x1

y1 :=x0x1 + x0 + x1 + x2

y2 :=x1x2 + x0 + x1 + 1

Hence, the S-box is a quadratic mapping. As the S-box is a 3-bit permutation, the inverse
of the S-box is also quadratic. The ANFs of the 3 component functions of the inverse of
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the S-box are given by:

x0 := y0y1 + y2 + 1
x1 := y1y2 + y0 + y1 + y2 + 1
x2 := y0y2 + y1 + y2 + 1

2.1.2 MixRows

The MixRows layer of Pyjamask-96 consists of three binary circulant matrices of size 32×32
that are applied to the three 32-bit rows of the current state. The three matrices are
defined as:

M0 = cir([1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0]),
M1 = cir([0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1]),
M2 = cir([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1]),

where cir is the function that creates a circular matrix with the input as its first row. The
Hamming weight of the vectors that define the matrices is 11 for M0 and M1, and 13 for
M2. The inverse of the MixRows layer can also be defined as the application of 3 circulant
matrices. The Hamming weight of the vector that defines M−1

1 is 13. The two vectors
defining M−1

0 and M−1
2 are of Hamming weight 11.

2.2 The Key Schedule
The key schedule of Pyjamask-96 determines round keys according to the following key
schedule. As the state in Pyjamask-96 is a 3 × 32-bit array, a round key will always be
determined by taking the first three rows of the key state. The key state is a 128-bit state
(4 32-bit rows) and the first round key consists of just the first three rows. The remaining
round keys are determined by the following key schedule. The first step consists of the
application of a 4 × 4 matrix that operates independently on each column, allowing a
bitslice implementation. This matrix is

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
The next step consists of applying a circulant matrix of size 32× 32, defined as

MK = cir([1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0]),

to the first row of the key state, while left-rotating the other rows in the key state by 8,
15 and 18 positions respectively. Finally, a four byte round constant is added bitwise to
various parts of the state. This constant is given by the list

[0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, ∗, ∗, ∗, ∗],

where the (∗, ∗, ∗, ∗) is the binary representation of the round number n ∈ {0, . . . , 13} .
The first byte is added to the first byte of the last row. The second byte is added to second
byte of the third row, and so on. Only the last half of the last byte changes throughout
the rounds of the key schedule. Then the key schedule provides the first three rows as the
new round key and the steps are iterated.
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2.3 Implementation Cost of Pyjamask-96
As our upcoming analysis is a key recovery attack where the time complexity is dominated
by binary operations, we estimate the costs of a software implementation of Pyjamask-96
for comparison.

• Costs of SubBytes: SubBytes uses a 3-bit S-box of degree two. Hence, we assume
that a software implementation of this S-box needs at least 3 nonlinear operations to
compute the degree two terms of the S-box in each output bit and 3 linear operations
to add the linear parts to the output. Needing a total of 6 32-bit instructions for
SubBytes.

• Costs of MixRows: MixRows consists of three matrix multiplications. In the follow-
ing we only want to count the number of XOR operations needed to apply a matrix,
neglecting the necessary storing or rotations. We assume that an implementation of
one matrix multiplication needs at least 4 32-bit XOR operations since the hamming
weight of the circular matrices involved is at least 11. Hence, we assume that the
linear layer of Pyjamask-96 then needs 4 + 4 + 4 = 12 32-bit instructions.

• Costs of AddRoundKey: We assume that add key needs 3 32-bit XOR operations.

• Costs of Key Schedule: We assume that the cost of applying M is 6 32-bit XOR.
We estimate the costs of the matrix multiplication with 4 32-bit instructions (as for
the matrices of the linear layer). We do not count the 3 left-rotations, since they
might be integrated in upcoming instructions. Finally, the constant addition requires
4 instructions. This counting gives us a total of 6 + 4 + 4 = 14 32-bit instructions
per round (for the key schedule).

To sum up, we assume that one round of Pyjamask-96 needs at least 14+6+12+3 = 35 32-
bit instructions. As Pyjamask-96 consists of 14 rounds, and one separate AddRoundKey, one
evaluation of Pyjamask-96 for a given key and plaintext then needs at least 14 ·35+3 = 493
32-bit instructions.

3 Attack principle
The small number of ANDs in Pyjamask is compensated by the cost of a strong linear layer,
leading to very high diffusion after only a few rounds. Hence, it is likely that Pyjamask
withstands attacks based on differential and linear cryptanalysis.

However, a low degree in the equations involved by the application of the cipher may
lead to vulnerabilities with regard to higher-order differential cryptanalysis [Lai94], cube
attacks [DS09] or algebraic cryptanalysis [Cou03, CM03].

Our idea is to combine integral distinguisher, algebraic cryptanalysis and Guess-and-
Determine techniques, in order to attack Pyjamask-96. The attack is practical for a
round-reduced version and academical for the full-round version. Figure 3 schematizes the
principle of our cryptanalysis.

Integral distinguisher. The integral distinguisher (that we will explain in Section 4)
allows us to distinguish 11 rounds of Pyjamask-96 from a random permutation with a
probability close to 1. Using only degree arguments, we can distinguish up to only 10 rounds.
However, thanks to the parallel application of the S-boxes, we can input specific vector
spaces, allowing us to gain one more round (at the cost of making some pre-computation).
Since the inverse of the S-box is also quadratic, we can apply the same distinguisher on
the inverse of Pyjamask-96 for the same amount of rounds. Furthermore, since MixRows
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comes after SubBytes and MixRows is linear, we can include that as “half” a round to get
the following property: ∑

X∈X
Pyj−11.5

K (X) = c

where c ∈ F96
2 is a precomputed constant (expressible in some key-bits) and X a subset of

F96
2 that is specifically chosen (again, see Section 4). Pyj−11.5

K denotes the last 11.5 rounds
of Pyjamask backwards, or the first 11.5 rounds of Pyjamask−1.

Getting key-bits equations. We apply our distinguisher to a chosen set of ciphertexts,
and solve a system of equations involving the first three round keys. Namely, we have to
solve a system of equations of the form∑

P∈P
Pyj2.5

K (P ) = c (1)

where P denotes the corresponding subset of F96
2 defined as the pre-image of X through

Pyjamask.

Plaintext
2.

1.

2.5 rounds

Solving equations

11.5 rounds

Integral property
1.

Ciphertext

Figure 3: General setting of our cryptanalysis for the full-round attack. The integral
property and the solving of equations.

Guess-and-Determine. If we want to attack 13 rounds (as described in Section 5), we
can combine an 11 round distinguisher with a 1.5 round key recovery. After 1.5 rounds, a
single output bit of the key schedule (or of the round function) does not depend on all
cipher key-bits. So, we can apply a simple Guess-and-Determine technique in order to
filter the keys faster than exhaustive search. However, for 2.5 rounds of Pyjamask a single
output bit depends on almost all cipher key-bits, preventing us from using the simple
Guess-and-Determine technique.

Solving polynomial equations. Although we cannot use the simple Guess-and-Determine
technique, the number of monomials occurring in Equation 1 can be upper bounded and
evaluated (see Section 6.2). This number of monomials occurring in the equations gives
a bound on the number of bit-operations needed to solve the system by linearization
technique. However, the number of possible equations we have is very limited. Finally,
in order to solve the system, we need to combine Guess-and-Determine techniques and
advanced linearization techniques in order to solve the corresponding system.

Complexity for attacking round-reduced versions. An advantage of our attack is that
it can be also applied easily to a lower number of rounds. Hence, we can accurately
compute the complexities of our cryptanalysis for round-reduced versions of Pyjamask-96
(see Table 1 for the complexities and Section 7 for the computation).
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4 Integral distinguisher on 11 rounds
The core of our attack (and its variants) consists of applying an integral distinguisher with
probability close to 1 on 11 rounds of Pyjamask-96. The reason for this is that in 11 rounds
of Pyjamask-96, when using higher-order derivatives, we obtain expressions that always
yield zero, while for a random permutation this has a very low probability.

4.1 Degrees of Pyjamask
As described by Boura et al. in [BCD11, BC13], there is an upper bound for the degree of
the round-reduced functions. This upper bound will increase asymptotically to the length
of the input. In particular, specific formulae for the upper bound are deduced. Using
this, the authors of Pyjamask computed the upper bounds. We point out that the degrees
computed by the designers [GJK+19] for Pyjamask-128 are too conservative with regards
to the bounds provided by [BCD11]. With the bounds as in Table 3, we cannot mount
this attack on Pyjamask-128. However, the bound of Pyjamask-96 matches [BCD11].

Table 3: Upper bounds on the degrees of each round of Pyjamask.
Round 1 2 3 4 5 6 7 8 9 10 11 12+

Pyjamask-96 2 4 8 16 32 64 80 88 92 94 95 95
Pyjamask-128 3 9 27 81 112 122 126 127 127 127 127 127

As you can see, the degree of any of the 96 component functions of Pyjamask-96 is
upper bounded by 94 after 10 rounds. As the key schedule of Pyjamask is linear, any
component function, seen as a Boolean function on 128 + 96 = 224 variables, is of degree
smaller than 94.

4.2 Reminder: Higher-order derivatives
Definition 1 (Derivative [Lai94]). For a Boolean function F : Fn

2 → Fm
2 and an element

a ∈ Fn
2 we can define the derivative of F with respect to a, ∆aF as:

∆aF (x) = F (x+ a) + F (x).

In [Lai94], Lai also defined higher-order derivatives, that are obtained just by iterating
the derivative. In particular, Lai proved that when iterating derivatives over linearly
independent ai we get

∆a1∆a2 · · ·∆ak
F (x) =

∑
v∈V

F (x+ v), (2)

where V is the vector space spanned by a1, . . . , ak.

Definition 2 (Higher-order derivatives). For a Boolean function F : Fn
2 → Fm

2 and a
vector space V ⊂ Fn

2 we define the higher-order derivative with respect to V as the function
∆V F given by:

∆V F (x) =
∑
v∈V

F (x+ v).

For any Boolean function F , Lai also showed that deg ∆V F ≤ degF −dimV. A fortiori,
for any vector space V of dimension strictly greater than k, we have

∆V F = 0 .
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We can replace vector space in the above with affine space, as we have∑
v∈A

F (x+ v) =
∑
v∈V

F (x+ v + b) = ∆V F (x+ b).

Hence, as the component functions are of degree 94, we know from Equation 2 that for
any affine space V of dimension 94 that∑

v∈V

Pyj10
K (x+ v)

is constant.

4.3 Our specific input affine spaces
Since the substitution layer of Pyjamask-96 consists of the parallel application of 3-bit
S-boxes, we can input specific affine spaces of dimension 94 that will even yield that∑

v∈V

Pyj11
K (x+ v)

is constant.
We consider vector spaces of the form V = V0

⊕
U , where we have V0 = {0, v0} with

v0 any non-zero vector of the form

v0,i =
{

0 if i 6≡ 0 (mod 32);
∗ if i ≡ 0 (mod 32),

with ∗ ∈ F2. Thus dimV0 = 1. For U we have the 93-dimensional vector space that has as
a basis

{e1, . . . , e31, e33, . . . , e63, e65, . . . , e95} ,

where ei is the standard basis vector that is zero everywhere except in position i. Indeed,
dimV = dimV0 + dimU = 94.

Theorem 1. Let S denote a SubBytes layer that applies 3-bit S-boxes in parallel on
columns of a state, let F denote any Boolean function of degree ≤ 94 and let V be as above.
We write x = (x0, x1, . . . , x95) and k = (k0, k1, . . . , k95) in F96

2 . Then the value of∑
v∈V

(F ◦ S)(x+ k + v)

is constant and depends on at most 3 key-bits.

Proof. Since V = V0 ⊕ U we get∑
v∈V

(F ◦ S)(x+ k + v) =
∑
u∈U

(F ◦ S)(x+ k + u) + (F ◦ S)(x+ k + v0 + u)

Now, we define ~x and ~x as

~x = (x0, 0, . . . , 0, x32, 0, . . . , 0, x64, 0, . . . , 0)
~x = (0, x1, . . . , x31, 0, x33, . . . , x63, 0, x65, . . . , x95).

The same notational conventions hold for k, u, v0. Furthermore we introduce two maps
S0, S

′ : F96
2 → F96

2 where S0 applies the S-box to the first column and the zero-mapping to
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all other columns. The map S′ then applies the zero-mapping to the first column and the
S-box to all other columns. (In this definition, we assume that elements in 96 are again
represented as 3× 32 arrays.) Since the S-boxes are applied in parallel on columns, we get:

=
∑
u∈U

F (S0( ~x+ ~k + ~u) + S′(~x+ ~k + ~u)) + F (S0( ~x+ ~k + ~v0 + ~u) + S′(~x+ ~k + ~v0 + ~u))

Since ~u = 0 and ~v0 = 0 we can leave them out:

=
∑
u∈U

F (S0( ~x+ ~k) + S′(~x+ ~k + ~u)) + F (S0( ~x+ ~k + ~v0) + S′(~x+ ~k + ~u))

By writing y = S0( ~x+ ~k), y + v′0 = S0( ~x+ ~k + ~v0), u′ = S′(~x+ ~k + ~u) , we get:

=
∑

u′∈U
F (y + u′) + F (y + v′0 + u′)

which is just

=
∑

v′∈V′

F (y + v′)

where V ′ = {0, v′0} ⊕ U . By the previous section, this result is a constant C, since
degF ≤ dimV ′. This constant depends on V ′ and the value y. Since U does not depend
on any of the key variables or plaintext variables, we see that the value of C only depends
on at most 3 key-bits and 3 plaintext-bits.

The previous result holds for Pyjamask-96 and thus for our attack, where F is just
Pyj10

K . It is now manageable to pre-compute the corresponding algebraic expression (on
the 3 key-bits involved) by pre-computing all the following values:∑

v∈V
(F ◦ S)(x+ k + v)

for all possible v0 as above, and x ∈
(
F96

2 / {0, v0}
)
\ {0} and k0, k32, k64 (all keys of the

form k = (∗, 0, . . . , 0, ∗, 0, . . . , 0, ∗, 0, . . . , 0), again ∗ ∈ F2). We will then recover 7 × 3
expressions of

∑
v∈V(F ◦ S)(x+ k + v) = F (k0, k32, k64).

4.4 Why choose x to be non-zero?
As the main part of our attack is to recover simple algebraic equations, we also have to
guarantee that the expressions we get by doing this are linearly independent. Note that
Pyjamask-96 is a block cipher, so that it is a permutation when the key k is chosen. If we
choose v0 as in the preceding section, and define X to be

X =
{

(x0, 0, . . . , 0, x32, 0, . . . , 0, x64, 0, . . . , 0) ∈ F96
2 | (x0, x32, x64) ∈ F3

2/ {0, (v0,0, v0,32, v0,64)}
}
.

Then we have ∑
x∈X

∑
v∈V

(Pyj10
K ◦ S)(x+ k + v) =

∑
x∈F96

2

(Pyj10
K ◦ S)(x) = 0

since choosing out of the four distinct x, the values in
∑

v∈V(Pyj10
K ◦S)(x+k+ v) partition

the entire F96
2 into four pairwise disjoint spaces of dimension 94. The sum over all elements

in those four pairwise spaces together then yields a sum over all of F96
2 .

This means that the four equations given by
∑

v∈V(Pyj10
K ◦ S)(x+ k + v) sum to zero.

Hence any fourth is a linear combination of the other three.
Since we want linear independent equations, we need to choose one of those values and

do not compute the sum over that x. We choose, without loss of generalization, x such
that (x0, x32, x64) ∈ F3

2/ {0, (v0,0, v0,32, v0,64)} is not 0.
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010
1 0 0

C
Pyj−10

K

deg ≤ 94

0 1∗
∗∗ ∗

U S−1
⊕

L−1(k14)

1 0 ∗
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U L−1 |A| = 294

Figure 4: Integral distinguisher on 11.5 rounds of the decryption of Pyjamask-96, for
v0 = 100 (as defined in Section 4) and L−1(k14) = 10 ∗ ∗ · · · .

4.5 What do we get?

Putting everything together, for one S-box, we pre-compute all values of the sum, leading
to 7 × 3 expressions on 3 key variables. By doing a Gaussian elimination we delete
the equations that are key dependent and keep the other equations. There are 3 key-
bits involved, so only 7 different monomials exist. Hence, we can then recover at least
7× 3− 7 = 14 values of the corresponding sum, with an output being 0 or 1 which does
not depend on the secret key. Collecting those values comes naturally with a price of
pre-computation that is below the cost of our online attack.

As previously described, we collect our equations by evaluating 11.5 rounds of Pyjamask-
96 (almost all Pyjamask-96) for 23 possible sub-keys, and thus for all 294 sets present in the
sum and also for all choices of v0 and x. This means that we need to evaluate Pyjamask-96
on its whole codebook, for all possible sub-keys. This leads to a pre-computation complexity
of

23 × 296 = 299

to get 14 different values. As we will need more equations, we will pre-compute this for all
possible S-boxes, that means the pre-computation phase of our attack is then

23 × 296 × 32 = 2104

evaluations of Pyjamask-96 to get 14× 32 = 448 equations. We can still assume that all
those equations are linearly independent, as the input plaintext 0 is never evaluated.

4.6 Going in the other way

The integral property described above comes from the fact that we input affine spaces,
and from the fact that the degree of 10 rounds is upper bounded by 94. Hence, we can use
the same principle for the inverse of Pyjamask-96 by taking equivalent key k′14 as L−1(k14)
and by changing the inputs to L−1(C) where L denotes MixRows and C the ciphertext.

The bounds on the degree are computed using the algebraic properties of the S-box.
Since for a 3-bit S-box, the properties of S and S−1 are equivalent, this leads to the same
upper bound values of the degrees for both decryption and encryption for Pyjamask-96.
Eventually, we can extend the 11-rounds integral distinguisher of Pyjamask-96 to a 11.5
rounds of the inverse of Pyjamask-96 as the linear layer does not impact the degree. The
description of this integral distinguisher is depicted in Figure 4.
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Figure 5: Principle of 13 round attack.

5 A simple attack on 13 rounds
With the knowledge of the previous section, we are able to mount a simple attack on 13
(out of 14) rounds of the block cipher Pyjamask-96. The attack is split into four phases and
the concept is outlined in Figure 5. In the first pre-computation phase, we determine the
three equations for the three equivalent key-bits k′13

0 , k′13
32 , and k′13

64 for three bits of the
output of a single S-box of the 2nd round using a specific vector space V ′. In the second
online phase, we query the plaintexts for the ciphertexts forming V ′. In the third phase, we
set up three equations in plaintext and key-bits that express the three bits of the output
of one S-box in the second round. Then, we compute the sum of them using the queried
key-bits in order to end up with three equations just involving the key-bits. In the fourth
phase, we solve those equations using brute force in order to reduce the key space by 2−3

on average. Next, we explain all steps in more detail.

Pre-computation. As outlined in Subsection 4.6, we can build a vector space V ′ in the
ciphertexts at the end of the 13th round, so that this space iterates over 94 bits of the
outputs of the S-boxes of the 13th round while for one S-box 2 bits are constant. Without
loss of generality, we may assume that this S-box is the first S-box and the equivalent
key-bits at the output of this S-box are k′13

0 , k′13
32 , and k′13

64 . When computing the sum of
the bits when going 11.5 rounds backwards for V ′, this sum is a function fi(k′13

0 , k′13
32 , k

′13
64 ),

which is in general a different function for each bit. In the pre-computation phase, we
aim to recover this function for three bits after going 11.5 rounds backwards (those are
three bits at the output of a 2nd round S-box). This can be done by evaluating V ′ for
all possible assignments of k′13

0 , k′13
32 , and k′13

64 , while keeping the rest of the key constant.
The costs of doing this are 23 · 294 11.5 round inverse Pyjamask-96 evaluations.

Online phase. During the online phase, we query the oracle under attack for the vector
space of ciphertexts forming V ′ and store the corresponding plaintexts. This needs a total
of 294 queries to the oracle and 294 space for storing the plaintexts.

Getting equations in the key-bits. Now, it is time to compute the connection to the three
bits after the 2nd round S-box from the plaintext side, hence to find

∑
j

(
gi(k0, k1, Pj)

)
that connects with the respective fi(k′13

0 , k′13
32 , k

′13
64 ). To do so, we have to set up three

equations gi and evaluate and sum them for all 294 plaintexts. Due to the limited diffusion
(see Figure 6) of the single linear layer we have to pass, only 66 bits of k0 and 66 bits of
Pj can appear in gi, while we only have to take 3 bits of k1 into account that influence a
single S-box. Note that if we compute gi connecting to the 3 output bits of the 2nd round,
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all 3 gi involve the same bits of k0, k1, and Pj . Since the monomials of gi are at most of
degree 4, the maximum number of different monomials is upper bounded by:

#monomials in gi(k0, k1, Pj) ≤
4∑

i=0

(
66 + 66 + 3

i

)
= 13 643 011 < 223.71.

As a consequence, computing the
∑

j

(
gi(k0, k1, Pj)

)
= hi(k0, k1) for all three equations

requires 3 · 223.71 · 294 < 2119.3 monomial evaluations and additions. The three equations
can be stored in 3 · 223.71 < 225.3 bits of space. At the end, we have three equations of the
form hi(k0, k1) = fi(k′13

0 , k′13
32 , k

′13
64 ).

S

L

S

Figure 6: Information needed to compute the output bits of one S-box after 1.5 rounds.

Filter the key. Now we can use the three equations to filter wrong key candidates. Since
all three equations use the same 72 bits of key material, we can brute-force for solutions.
Again, we can upper bound the number of monomials in hi(k0, k1) by:

#monomials in hi(k0, k1) ≤
4∑

i=0

(
66 + 3
i

)
= 919 311 < 219.82,

and the number of monomials in fi(k′13
0 , k′13

32 , k
′13
64 ) with 23. Hence, the cost of reducing

the key space by brute-forcing the key-bits is approximately 3 · 272 · 219.82 · 23 < 296.41

monomial evaluations plus summations.

Total costs of the attack. The most time consuming part of the attack (besides testing
all 2125 key candidates at the end) is the set up of the equations in the key-bits. This takes
approximately 2119.3 monomial evaluations and bit additions. As detailed in Subsection 2.3,
13 rounds of Pyjamask-96 need 13 · 35 + 3 = 458 32-bit instructions. If we compare it with
the bit instructions needed to evaluate the equations, this most expensive part translates
to

2119.3 · 4
458 · 32 < 2107.5

13 round Pyjamask-96 evaluations. Indeed, to add one monomial, we need one XOR and at
most 3 ANDs as the monomials are of degree smaller than 4. Moreover, those bit-operations
can be converted to 32-bit operations by evaluating every plaintext in parallel over 32-bit
registers. The attack gives us a 3-bit advantage on average. Hence, at the end it remains to
test all 2125 key candidates, which needs 2125 + 2−96 · 2125 ≈ 2125 Pyjamask-96 evaluations.
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The biggest space would be used during the online phase if all 294 plaintexts would be
stored. However, it is possible to directly use them when computing

∑
j

(
gi(k0, k1, Pj)

)
,

hence, the biggest space needed is to store the 3 equations gi(k0, k1, Pj) during the
summations, which is 225.3 bits, or 225.3/96 < 218.72 Pyjamask-96 states. The data
complexity is 294 chosen ciphertext-plaintext pairs.

6 Attack on full-round Pyjamask-96
Instead of brute-forcing key-bits, an attacker could also try to solve the system of equations
that we obtain after the evaluation of the whole codebook. However, solving polynomial
equations is a quite hard problem in general. In symmetric cryptography, we often have
plethora of equations (for instance if we take algebraic attacks on stream ciphers) and the
critical problem for the cryptanalyst is the complexity of solving a system of high-degree
equations. Here, we have a different context and are more in the context of [CDM+18],
where the number of equations is much smaller than the number of monomials. Thus, a
simple linearization technique will then more likely fail, as the number of monomials we
have is much bigger than the size of the set of equations (which is 448). As the number of
monomials in the algebraic normal form of one specific bit after 2.5 rounds is the critical
point of our cryptanalysis, we evaluate it carefully in the following subsections.

6.1 Two critical metrics

The number of monomials present after 2.5 rounds (or 1.5 rounds for the 13-round attack)
is critical for two reasons: first, we need to evaluate those monomials for almost the whole
codebook; and second, ideally we want to solve the system of equations using linearization
techniques.

The complexity of constructing the system of equations relies on the number of
monomials formed with input plaintext variables while the complexity of solving the
system relies on the number of monomials formed with secret key variables. The first type
of monomials are called evaluating monomials and the second type solving monomials.
Of course, the total number of monomials is at least as big as the number of evaluating
monomials or solving monomials.

Example 1. Let us explain what happens with one round of Pyjamask-96 for a bit at
position 0 in the state. We denote this bit as b0. Variables are noted canonically as K =
(k0, k1, . . . , k95) and X = (x0, x1, . . . , x95). By construction, we have b0 = (L ◦ S)(X +K),
for one value of plaintext X and round key K.

Hence, we have

b0 =
∑
i∈I

(xi + ki)(xi+64 + ki+64) + xi+32 + ki+32

where I is defined by the linear layer: namely I = {0, 1, 3, 8, 13, 18, 19, 24, 25, 26, 30}. In
this expression of bit b0, there are exactly 6× |I| = 66 monomials.

The equations we get are formed by the sum over 294 input plaintexts for a fixed
key. So we have only to evaluate the monomials where plaintext bits appear, namely
xixi+64, xiki+64, xi+64ki and xi+32 for all I and for all 294 plaintexts. Hence we have 44
evaluating monomials. For our solving monomials, we have to consider terms that contain
key-bits, that are kiki+64, xiki+64, xi+64ki and ki+32 in our example. So we have 44 solving
monomials.
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6.2 Upper bound of the number of monomials
The cost of solving a system of equations of degree d with n variables is naturally bounded
by the complexity of D3 bit-operations and a data complexity close to D, where D is given
by

D =
d∑

i=1

(
n

i

)
.

Indeed, this is the classical cost of solving a linear system of equation, when considering
all monomials of degree greater than 2 as new independent variables. However, this is a
generic method and it does not use the inherent structure of the considered system.

Generic bound. For Pyjamask-96, we have 128 variables for the key and 96 variables for
the plaintext. After 2.5 rounds, the degree of the multivariate polynomial is at most eight,
so an upper bound for the number of monomials is

8∑
i=1

(
96 + 128

i

)
= 143 811 244 303 500 ≈ 247.

The number of evaluating monomials is upper bounded by Ne =
∑8

i=1
(96

i

)
≈ 237 and the

number of solving monomials is upper bounded by Ns =
∑8

i=1
(128

i

)
≈ 240.5. Then, the

cost of the evaluation, in order to get the equations will be 294 ×Ne × 7 (see Section 4).
After this evaluation, one also need to solve a system of degree 8, with 128 variables, but
with only 448 equations. Here, we see that just a degree argument will fail to attack
Pyjamask-96, as the number of monomials is too large compared to the number of equations.
We then have to take into account that we are not talking about ANY system of equations,
we are talking about Pyjamask-96, which is a block cipher with quadratic 3-bit S-boxes.

In the following, we will then go into details in the structure of the system of equations
that we have to solve.

Counting through layers. AddRoundKey of course adds one (linear) monomial to the
expression. Then we consider the first SubBytes, where in the worst case the number of
monomials gets to ten:

S(P +K)1 = (p0 + k0)(p1 + k1) + p0 + k0 + p1 + k1 + p2 + k2

= p0p1 + p0k1 + k0p1 + k0k1 + p0 + k0 + p1 + k1 + p2 + k2

MixRows consists of circulant matrices with Hamming weight 11 or 13 in the last row.
Hence, it multiplies the number of monomials by 11 (or 13). So after one round, we have
at most 110 monomials in the algebraic expression of every state-bit in the first two rows
of the state and 130 monomials in the third row.

Then we have AddRoundKey. This operation adds 45 monomials to the first 32
coordinates, and 3 to the other 64. The 3 comes from the matrix M , while the matrix
MK has Hamming weight 15.

At this point, we have at most 155 monomials. The second SubBytes can create up to
1552 new monomials (by doing one AND) and 3 · 155 linear monomials. In total this gives
an upper bound of 24 490 monomials.

Again, we multiply by 13 for MixRows and perform AddRoundKey. This operation
adds now up to 128 monomials to the first 32 coordinates (as the key schedule reaches
full diffusion for the first row after two rounds), and 51 to the other 64 coordinates. The
upper bound we get is then 24490 · 13 + 128 = 318 498. After applying the last SubBytes,
we get 101 441 931 498 ≈ 236.56 monomials.
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We could also count the number of evaluating monomials together with the number of
solving monomials more accurately, but as we will see, we can do a smarter thing, leading
to the possibility to get the exact number of monomials and not only an upper bound.

Using quadratic properties. We can greatly improve the preceding estimation by adding
new independent variables. In a general algebraic attack, one can linearize the nonlinear
system, that means consider every nonlinear monomial as new independent variables and
then solve a (much bigger) linear system. However, this is only done when there is no
known special structure. For Pyjamask-96, we mainly use the fact that the nonlinear layer
is quadratic to introduce new variables, drastically decreasing the number of appearing
monomials in our equations. For SubBytes we have:

S(P +K) = S(P ) + S(K) + LP (K)

where LP (K) is a square matrix of size 96 with coefficients determined by the value of P ,
applied to K. As an example, we can focus on the first component:

S(P +K)0 = (p0 + k0)(p2 + k2) + p1 + k1

= p0p2 + p1 + k0k2 + k1 + p0k2 + p2k0

= S(P )0 + S(K)0 + p0k2 + p2k0.

A similar expression holds for the other components as well, where one can notice that the
matrix LP defined above has, for every line and every column only 2 non-zero coefficients
that depend on the value of P . For the last component of the S-box, a constant 1 has to
be added. In order to reduce the expansion, we will consider this constant as part of the
equivalent key S(K).

If we then apply MixRows and another AddRoundKey, we obtain an expression of the
form

(L ◦ S)(P ) + (L ◦ S)(K0) +K1 +
∑
i∈I

|I|=11,13

pikj + pjki. (3)

In order to reduce the minimal number of monomials occurring in an output bit, we now
rename

κ := (L ◦ S)(K0) +K1

P ′ := (L ◦ S)(P )

So we introduce |κ| = 96 new key variables, and |P ′| = 96 new plaintext variables.
We then continue by counting the number of monomials using the specific structures of

Pyjamask-96. Before SubBytes, we have 28 monomials at maximum, one out of κ, one out
of P ′, 26 of the form pikj . The S-box then turns this into 282 + 3 · 28 = 868 monomials at
maximum. MixRows gives an upper bound of 13 ·868 = 11 284. Considering the third round
key K2 as a new independent key leads to an addition of exactly one (linear) monomial.
Lastly, the third SubBytes gives an upper bound on the number of monomials to be

(11 285)2 + 3 · (11 285) = 127 385 080 ≈ 227.

To sum up, the fact that one round is quadratic allows us to decrease the number of
monomials by gathering nonlinear monomials that only depend on key variables, in new
variables. This can also be done for the second round. Let us reuse Equation 3, and write

eP
K = (L ◦ S)(P ) +

∑
i∈I

|I|=11,13

pikj + pjki.
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Then, the state after one round can be written as

κ+ eP
K .

Eventually, after another round, the state equals

(L ◦ S)(κ+ eP
K) +K2 = (L ◦ S)(κ) +K2 + (L ◦ S)(eP

K) +
∑
i∈I

|I|=11,13

κj

(
eP

K

)
i
+ κi

(
eP

K

)
j
.

We replace K2 by (L ◦S)(κ) +K2, allowing us to decrease the size of the system, attacking
full Pyjamask-96.

6.3 Exact number of monomials
We could invest more time to upper bound the number of monomials. For instance, by
separating which variables are taken into account, or by considering that the number of
monomials of a certain degree is limited as explained in the following example.

Example 2. Let us reuse our example on one round of Pyjamask-96 (Example 1). We
showed that the number of evaluating monomials after one round was 44, of which 11 are
linear. If we use the fact that MixRows transforms these into 11 · 13 linear monomials, we
end up with 143 linear terms. Clearly, this 143 is much higher than 96 (the number of
plaintext variables), so we can decrease this 143 to 96. This has implications on the upper
bounds.

As the upper bound found in the number of monomials happens to be practical (up to
227), we can investigate this on a computer and determine the bit corresponding to the
equation with the least number of monomials.

Overestimate the number of solving monomials. As the number of solving monomials
is a critical point in our attack, we also need some clarification about this number.

We considered all monomials involving key-bits, but this does not take into account
that, in order to construct our system, we evaluate the function an even number of times
(this is because we input affine spaces at the entry). Thus, we know that the monomials
that do not involve plaintext variables will vanish.

Example 3. Let us continue on our example on one round of Pyjamask-96 (Examples 1
and 2). We have

b0 =
∑
i∈I

(xi + ki)(xi+64 + ki+64) + xi+32 + ki+32 .

Hence, kiki+64 and ki+32 will never occur in the constructed system, this leads then to:

• a linear system in key variables (for one round);

• not 44 solving monomials, but 22.

Exact number of monomials. Using SageMath [The19] and the BooleanPolynomialRing
library, we are able to construct the list of all monomials that can appear in the equation,
using the quadratic properties of the round function. For the code see the supporting
material on gitHub1. As we can construct this list, we can also find the exact number of
solving monomials, together with the number of evaluating monomials. This allows us to
determine the exact number of bit-operations needed in our attack.

1https://github.com/JJPSchoone/alg-att-pyjamask-supp
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The output bit that has the least number of monomials when expressed as a Boolean
function is bit 32. More precisely this is true for all state-bits from 32 to 63, as we omit the
key-schedule and consider independent round keys. Hence, our metrics are shift-invariant.
We also observed that the effective number of key-bits actually involved in the equation is
smaller than expected. The results obtained are depicted in Table 4.

Table 4: Maximum number of monomials present in the system for state-bit 32. Nm is the
total number of monomials, Ne is the number of monomials needed to evaluate for each
plaintext, Ns is the maximum number of monomials present in the system after evaluation
and Nkeybits is the effective number of (equivalent) keybits involved.

Rounds Nm Ne Ns Nkeybits

1.5 648 571 569 56
2.5 7 642 713 3 910 569 3 829 480 154

In the attack from Section 5 we can substitute the numbers obtained via computer to
improve the complexity of the attack. However, for the attack in Section 5, the complexity
will still be dominated by 2125 Pyjamask-96 evaluations.

6.4 Guess-and-Determine: attacking full Pyjamask-96
A big challenge we face in our attack is the number of equations that we can get, which is
limited to 448. Since the number of solving monomials is much bigger than the number
of equations, we need to apply other techniques than a trivial linearization for solving
the system. We choose a Guess-and-Determine strategy, already investigated for stream
ciphers in [EJ02, HR00] and more recently in the context of solving polynomial equations
in [DLR16, CDM+18]. This hybrid strategy (Guess-and-Determine), in Gröbner basis
algorithms seems to be a very powerful technique when solving over small fields, which fits
our cryptanalysis perfectly.

The idea is to guess some variables in order to drastically decrease the number of
monomials appearing in our equations.

Example 4. Let us assume that we have the following equation:

k0k1k2 + k1k2 + k3 = 0 .

Then, one way to reduce the number of monomials is to guess the value of k0. If k0 equals
one, the equation we get is k3 = 0. This gives directly the potential set of solutions 1 ∗ ∗0.
If k0 = 0, we recover k1k2 + k3 = 0. Then we guess k3. If k3 = 1, then k1 = k2 = 1. If not,
we have k1k2 = 0.

We see by guessing k0 = 1 we reduce the number of possibilities from 16 to 4, and by
guessing k0 = 0 we reduce to 3 possibilities.

In larger examples, we also greatly decrease the search space when guessing a few well-
chosen bits. The idea is really simple and is the same that is used in [DLR16, CDM+18].
We guess enough key-bits to guarantee that the number of monomials present in the system
is smaller than the number of equations we have in our possession.

Computer investigation. Using Sage, we are able to compute a choice of guesses, such
that the number of monomials drastically decreases. The algorithm we implement is a
greedy algorithm and works as follows. After computing the list of all monomials potentially
present in the system of equations, we quotient this set of monomials by every variable,
and take as a first guess the variable for which the quotient set of monomials has the
smallest size. We continue this process until we are below 448 monomials.
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A (much) better guessing strategy on 13 rounds. For the 13 rounds attack described
in Section 5, we needed to brute-force all key-bits involved in the equation. However, the
number of monomials (for 13 rounds) that can appear in our equations is very close to
448. It appears that, by guessing only 4 bits (namely bit 1, 13, 25 and 26), the number of
monomials decreases directly to 411.

Eventually, we have to guess 4 bits, evaluate those bits in the monomials where they
appear (which is bounded by 4 + 4 · 56) as for 1.5 rounds, the degree is bounded by 2 after
linearization and there are only 56 key-bits involved.

As explained in Section 5, for each plaintext, we have to compute one round of Pyjamask-
96 without the key schedule (new variables are used to decrease the number of monomials).
This costs 35 32-bit instructions. Then, we have to evaluate the monomials in the plaintext
bits. For the evaluating monomials, we know that, after linearization and adding new
variables, all monomials that we need to evaluate are of degree smaller than 2. Hence the
cost of constructing the system is given by

296 · (35 · 32 + 2 ·Ne)
458 · 32 ≤ 293.3

Pyjamask-96 evaluations.
One can notice that the cost of solving the system is roughly 24(4 + 4 · 56 + 4113) ≈ 230

bit-operations, where we bounded Gaussian elimination on an n × n matrix by O(n3).
Solving the system needs to be done at most 24 times, since we guess 4 bits. Then we need
to evaluate our equations for those guesses. The number of places where that needs to be
done is 4 + 4 · 56, since the monomials are at most of degree 2. The cost of solving the
system is then much smaller than the cost of constructing the system.

Cost of system building for 14 rounds. For 14 rounds, we first have to construct the
system of 448 equations. We have 296 online queries. For all plaintexts, we have to
evaluate the monomials present in our system. However, we introduced new variables,
corresponding to (L ◦ S)(P ). Hence, for all 296 plaintexts, we have to apply one round
of Pyjamask-96 without key addition. Then, the cost of this is 296 · 35 32-bit operations.
Afterwards, we need to evaluate the monomials present in the system. One can notice that
introducing new variables linearizes the monomials in only key or only plaintext variables,
guaranteeing that the evaluating monomials (and solving monomials) have a degree smaller
than 4. Eventually, constructing the system has a cost of

296 · (35 · 32 + 4 · 3910569 · 411) ≤ 2128.6

bit-operations. Counting using bit-operations gives a complexity bigger than 2128. However,
if we compare to the exhaustive search of Pyjamask-96, the complexity for constructing
the system is

2128.6

493 · 32 ≤ 2114.7

Pyjamask-96 evaluations.

Cost of system solving for 14 rounds. After constructing the system, we have to solve
it. To do so, we first guess the first 96 bits (k0). It happens (and it is natural) that the
remaining maximum number of monomials is 569, as we reduced the system to the 1.5
round attack described previously with a cost of 296 guesses. Naturally, by guessing 4
more bits, namely the same as for 1.5 rounds: k1

1 = κ1, k1
13 = κ13, k1

25 = κ25, k1
26 = κ26,

we get a system with at most 411 monomials, with a cost of 295 · 24 = 2100 guesses.
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Eventually, the cost (in bit-operations) the complexity for solving the system is

2100 · (3829480 · 4 · 411 + 4113) ≤ 2132.6

bit-operations. The ·4 comes naturally from the fact that all monomials are of degree
smaller than 4.

We can improve the previous complexity by making key guesses in a smarter way, by
ordering the guesses such that only one bit changes per iteration. This is an example of a
Gray code as first described in [Gra47].

Since we only change one bit in each step, only the monomial where this bit occurs
have to be evaluated again, since we can retain the older values.

Using our program, we computed the average number of monomials needed to be re-
evaluated for all variables that we guess. (See again the supporting material on gitHub2.)
This value is 132767.66. We can now substitute the 3829480 for this much smaller number.

Eventually, all of this can be done using 32-bit instructions, and for each guess we solve
a system of size 411 using linearization techniques. If we compare to the exhaustive search
of Pyjamask-96, the complexity for solving the system is

2100 · (132767.66 · 4 · 411 + 4113)
493 · 32 ≤ 2114.2

Pyjamask-96 evaluations.
The data complexity is just 296 as we need that many queries to the Pyjamask-96 oracle.

For the memory complexity that we get, we need to store the three gi equations during
the summations, like we did in the simple attack of Section 5. So here, that is bounded by
230.11/96 < 223.53 Pyjamask-96 states.

7 Round-reduced attacks
As detailed in the previous section, our full-round attack requires the full code book of the
block cipher which is very unpractical. When analyzing the security of block ciphers, it is
important to know the best attack that is below the security claim, but also to see the
best attack that can be practical in order to understand the security level better.

In our case, this is quite straightforward. Indeed, the main complexity of our attack
comes from the data complexity, which is directly derived from the integral distinguisher.
When reducing the number of rounds, we can obtain the zero-sum property using much
less data.

For 14, 13 and 12 rounds, we still need the whole code book to get enough equations.
For the other round-reduced versions, we can decrease the data complexity. To keep it
simple, we fix the number of equations that we need to collect to 128 = 27. We know
that we gain one round for free for the integral distinguisher and we choose to solve a
system corresponding to 1.5 rounds . Using Table 3, we get the following complexities.
For an 11-round attack, we use an integral distinguisher on 11− 2− 1 = 8 rounds (one
round is for free, the two others are used to build the system of equations), meaning that
we input affine spaces of dimension 88. As we need 27 equations, the data complexity
becomes 27 · 288 = 295. For a 10 round-attack, we need an integral distinguisher on 7
rounds, leading to a data complexity of 280 · 27 = 287.

Even though we choose to collect only 128 equations, we still get a system of equations
with much more monomials. However, by looking carefully at the system, only 19 bits out
of 56 shall be guessed, in order to guarantee a number of monomials below 128. The bits
that we need to guess are at positions 1, 13, 25, 26, 0, 3, 8, 18, 19, 24, 29, 64, 65, 67, 72,
77, 82, 83 and 88, such that only 114 monomials remain.

2https://github.com/JJPSchoone/alg-att-pyjamask-supp



308 Algebraic and Higher-Order Differential Cryptanalysis of Pyjamask-96

The pre-computation part costs 2c · 23 Pyjamask-96-calls, where c is the dimension of
the affine spaces we use for integral distinguisher (88 for 11 rounds, 80 for 10 rounds, 64
for 9 rounds, 32 for 8 rounds and 16 for 7 rounds). The 23 comes from the fact that we
consider three equivalent key-bits. (See Subsection 4.5.)

The cost of constructing the system is 2c(35 · 32 + 2 · 571) bit-operations (we have to
apply one round of Pyjamask-96 and evaluate the 571 monomials).

The cost for solving the system is the cost for evaluating those 19 bits which is smaller
than (19 + 19 · 56) (the maximal number of monomials of degree 2 involving those bits)
plus the cost for solving the system with 128 equations, and we have to multiply the sum
by 219 as we repeat this for each guess. The cost of solving the equation is then bounded
by

219(19 + 19 · 56 + 1283) ≈ 240

bit-operations for all round-reduced version attacked.

Example 5. (8 rounds of Pyjamask-96) Since the dimension of the affine spaces for 8
rounds is 32, the pre-computation phase of the attack takes 23 · 232 Pyjamask-96-calls.

The construction phase then costs 232(35 · 32 + 2 · 571) ≈ 243.14 bit-operations. To
express this in Pyjamask-96 evaluations, we see that the cost of 8 rounds of Pyjamask-96
gives 8 · 35 + 3 32-bit operations. Hence we get

232(35 · 32 + 2 · 571)
283 · 32 ≈ 229.99

Pyjamask-96-calls.
For the solving of the system we do the same computation and get to 226.9 Pyjamask-

96-calls.
So the time complexity for the attack on 8 rounds of Pyjamask-96 is bounded by 235.

8 Application on Pyjamask-96-AEAD
So far, we have focused our analysis solely on the 96-bit block cipher Pyjamask-96. As the
NIST candidate Pyjamask-96-AEAD uses Pyjamask-96 in OCB3 [KR14], we discuss how
our attack translates to this use. The first restriction lies in the data limit that we have
to use less than 248 blocks. We can then apply our attacks needing less than 248 data to
Pyjamask-96-AEAD, but with a loss of 2 rounds. In the following, we explain why.

8.1 Losing one round inputing affine spaces
In OCB3, blocks of messages are processed with independent block cipher calls using
different masks added to the input and output. Those masks are formed using the following
rule: we compute a 96-bit value that depends nonlinearly on the nonce and the key (let
us say O0(K,N) for simplicity here), and another 96-bit value depending only on the key
(EK(0)). From this second value, we form a basis of F96

2 denoted by L0, L1, L2, . . . , L95.
Each time a new mask is used (for block number i), one has to add Lntz(i) to previously
computed mask, where ntz(i) is the number of trailing zero bits in the binary representation
of i.

Hence, from block 1 to block 2k − 1, k < 95, every mask is of the form

O0(K,N) +
k−1∑
i=0

aiLi
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where ai ∈ F2. This is because, if i < 2k − 1, then ntz(i) < k. Moreover, at least one ai is
always non-zero in each expression of the masks. Hence, from 2k − 1 blocks, we can choose
plenty of affine spaces of dimension k − 1, by just choosing one mask value as offset. One
then needs to carefully choose corresponding blocks that form an affine space of dimension
k − 1. We cannot have an affine space of dimension k with 2k blocks, as Lk will appear in
the expression of the later block.

We can then process integral distinguisher using OCB mode, but as we do not know the
key, we do not know the value of the masks. Thus we cannot input specific affine spaces.
Hence, what we described in Section 4 is not possible respecting the OCB mode. So we
lose one round. However, as we are not restricted to specific affine spaces, the number of
equations we get will not be critical anymore.

8.2 Losing one round for system solving
In the system solving part, it appeared that a lot of monomials occur in our system. The
masks added at the output will also increase the number of monomials, since masks are
formed using EK(0). As we cannot easily express the masks in key bits, we have to consider
EK(0) as new independent keys for solving the system. Therefore, the estimated number
of monomials given in Section 6.2 is not valid, but will increase, making a system obtained
from 2.5 rounds very hard to solve. However, for 2 rounds, the degree is only 4, and an
upper bound on the number of monomials will show that system is solvable.

Let us consider the key used in Pyjamask-96 as 128 bits. Let us also consider mask
O0(K,N) to be 96 new variables, and write L0 for a new 96-bit value independent from
the others. Every mask can then be written as a linear combination of L0 and O0(K,N).
As a result, the number of evaluating monomials is the same since it comes from the known
values (plaintext as we go in the backward direction). However, the system we would have
to solve is of degree 4, with 128 variables coming from the key, 96 variables coming from
O0(K,N) and 96 variables coming from L0. Thus, the number of solving monomials will
be bounded by

4∑
i=1

(
320
i

)
≤ 228.7 .

Note that this is a crude upper bound, improving on this bound might improve the time
complexity of the attack.

If we want a zero sum after 5 rounds, we need an affine space of dimension 33. Per
affine space we get 96 equations that we can use for solving. Using 40 basis vectors, we
can gather 96 ·

(40
33
)
≈ 230.7 equations. To sum up, considering the data limit of 248, we

can get distinguishers for a maximum of 5 rounds and can add 2 rounds of key recovery.
Hence, for Pyjamask-96-AEAD, we can target 5 + 2 = 7 rounds.

9 Conclusion
In this paper we investigated the security of Pyjamask, a candidate participating in NIST’s
lightweight competition. Our focus was on the block-cipher Pyjamask-96 underlying one
variant of Pyjamask and we were able to show a full-round (14 rounds) attack using the
whole codebook of the block cipher (296 blocks in data complexity). However, the cost of
our attack is approximately 2114.7 Pyjamask-96 evaluations, which is below a brute-force key
search for Pyjamask-96 128-bit key. Furthermore, we give a practical attack for Pyjamask-96
reduced to 8 rounds.

In order to make the attack practical, one needs to decrease the size of input vector
spaces. A possible topic for further research is to investigate on how to improve upper
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bounds on the degree or to find integral distinguishers that are not related with the degree
of the permutation.

Our attacks exploit the algebraic properties of Pyjamask-96 through higher-order
derivatives, combined with a guess-and-determine strategy for solving linearized systems
of monomials. In particular, the rather small block-size of Pyjamask-96 combined with its
low-degree round function leads to a rather slow increase of the algebraic degree, which we
exploit in our attacks. Furthermore, the fact that a round is quadratic allows us to work
with equivalent keys to gain one round in the backward direction (almost) for free.

The AEAD-scheme Pyjamask has an extra layer of protection in the form of the mode
(OCB) that ensures that it is not threatened by the work we discussed in this paper.
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