
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. 1, pp. 185–232. DOI:10.13154/tosc.v2020.i1.185-232

Swap and Rotate: Lightweight Linear Layers for
SPN-based Blockciphers

Subhadeep Banik1, Fatih Balli1, Francesco Regazzoni2 and Serge Vaudenay1

1 Security and Cryptography Laboratory (LASEC), École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, {subhadeep.banik,fatih.balli,serge.vaudenay}@epfl.ch
2 Advanced Learning and Research Institute (ALaRI), University of Lugano, Lugano,

Switzerland. regazzoni@alari.ch

Abstract. In CHES 2017, Jean et al. presented a paper on “Bit-Sliding” in which
the authors proposed lightweight constructions for SPN based block ciphers like AES,
PRESENT and SKINNY. The main idea behind these constructions was to reduce the
length of the datapath to 1 bit and to reformulate the linear layer for these ciphers so
that they require fewer scan flip-flops (which have built-in multiplexer functionality
and so larger in area as compared to a simple flip-flop). In this paper, we develop
their idea even further in few separate directions.
First, we prove that given an arbitrary linear transformation, it is always possible to
construct the linear layer using merely 2 scan flip-flops. This points to an optimistic
venue to follow to gain further GE reductions, yet the straightforward application of
the techniques in our proof to PRESENT and GIFT leads to inefficient implementations
of the linear layer, as reducing ourselves to 2 scan flip-flops setting requires thousands
of clock cycles and leads to very high latency.
Equipped with the well-established formalism on permutation groups, we explore
whether we can reduce the number of clock cycles to a practical level, i.e. few
hundreds, by adding few more pairs of scan flip flops. For PRESENT, we show that 4
(resp. 8, 12) scan flip-flops are sufficient to complete the permutation layer in 384
(resp. 256, 128) clock cycles. For GIFT, we show that 4 (resp. 8, 10) scan flip flops
correspond to 320 (resp. 192, 128) clock cycles. Finally, in order to provide the best
of the two worlds (i.e. circuit area and latency), we push our scan flip-flop choices
even further to completely eliminate the latency incurred by the permutation layer,
without compromising our stringent GE budget. We show that not only 12 scan flip
flops are sufficient to execute PRESENT permutation in 64 clock cycles, but also the
same scan flip flops can be used readily in a combined encryption decryption circuit.
Our final design of PRESENT and GIFT beat the record of Jean et al. and Banik et al.
in both latency and in circuit-size metric. We believe that the techniques presented
in our work can also be used at choosing bit-sliding-friendly linear layer permutations
for the future SPN-based designs.
Keywords: Lightweight circuit, PRESENT, GIFT, FLIP

1 Introduction
The block cipher family Katan [CDK09] (whose precursor was the stream cipher Trivium
[CP08]) and then later Simon [BSS+] were in some sense aimed to achieve a lower limit of
lightweight encryption in terms of area occupied in silicon. Both these ciphers have shift
register based update functions, which is efficient to implement in ASIC when the length
of datapath is reduced to one bit. In CHES 2017, Jean et al. presented the concept of
“Bit-Sliding” [JMPS17] in which byte and nibble oriented block ciphers like AES [DR02],
PRESENT [BKL+07] and SKINNY [BJK+16] were implemented in hardware by updating

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-11-23, Accepted: 2020-01-23, Published: 2020-05-07

https://doi.org/10.13154/tosc.v2020.i1.185-232
mailto:{subhadeep.banik,fatih.balli,serge.vaudenay}@epfl.ch
mailto:regazzoni@alari.ch
http://creativecommons.org/licenses/by/4.0/

only one bit per clock cycle. This was counter-intuitive because the block ciphers in
question used 8/4-bit S-boxes and it was not immediately clear how the width of the
data-path could be made smaller than the size of the S-box that the block cipher was
employing. The main idea behind these constructions was to reformulate the linear layer
for these ciphers so that they require fewer scan flip-flops (which have built-in multiplexer
functionality at the input port and so larger in area as compared to a simple flip-flop).
In particular, the PRESENT linear layer which is essentially a bit permutation over the
state, was decomposed as P 4

2 ◦ P1, where P1 was a permutation that operated on each
16-bit block of the 64-bit state and P2 is some other permutation. This decomposition
allowed the authors of [JMPS17] to implement the linear layer using only 25 scan flip-flops
and 39 regular flip-flops, whereas previous implementations [RPLP08] have required all 64
flip-flops holding the state to have additional multiplexer at its input.

Motivation: There has been significant interest in the symmetric cryptology community
about efficient design/implementation of linear layers of block ciphers that additionally have
the maximum distance separable property [KLSW17, LSL+19, DL18, SS16, CLM16, LW17].
The main aim of investing research effort in this direction is to ensure that the construction
of the linear layer is efficient in hardware/software. For example, one of the target metrics
of optimization is minimizing the number of xor gates that would allow a hardware
implementation of the block cipher occupy less silicon area. Some block ciphers like
PRESENT and GIFT use simple bit permutations as their linear layers. These do not require
xor gates to construct. However the area of these block ciphers are lowest when implemented
serially i.e. in which only a fraction of the state is updated in each clock cycle. Usually the
lowest hardware footprint is obtained for implementations that update one bit of the state
per clock cycle (a technique made popular in [JMPS17]). Consider the following example:
imagine a block cipher with an 8-bit state that employs the following bit permutation
function Pex as the linear layer, where Pex(5) = 4, Pex(3) = 6 and Pex(i) = i− 1 mod 8
for all other i.

b7 b6 b5 b4 b3 b2 b1 b0

Sel

b b

Since Pex is a composition of a simple swap and rotate function, it can be efficiently
implemented using the circuit above using only 2 scan flip-flops (shown in green). A scan
flip-flop is a memory element with additional multiplexer functionality, (that occupies
more area than a simple flip-flop). Thus, when the Sel signal is 0, the circuit performs a
rotate operation Rot (which may be required for performing other block cipher operations
like adding round key bits or implementing s-box). However when the Sel signal is 1, then
the circuit performs the permutation function Pex on the state. Since Pex is simple, it can
be implemented with only 2 scan flip-flops. Since more scan flip-flops require more area to
implement, this is an attractive proposition for the lightweight context. However Pex is
quite simple, is unlikely to be the linear layer candidate for any real world cipher. For more
complicated bit permutations, there are therefore 2 dimensions of optimization. First is to
investigate if a more complicated permutation can be implemented using 2 scan flip-flops
alone. For example a permutation like P = Pex ◦Rot ◦ Pex can be implemented using the
above setup in 3 clock cycles (by setting the Sel signal to 1,0,1 in 3 consecutive cycles).
One of the results in group theory states that if Pex is chosen properly, any permutation
function can be constructed using only Pex and Rot [Con]. However the number of cycles

186

required to do so, (which is exactly equal to the minimum distance of P in a Cayley graph
of the corresponding permutation group with Pex and Rot as the generating nodes) may
be very high. Thus, for a more practical approach, a second dimension is investigating
if increasing the number of scan flip-flops to 4 or 6, a particular permutation can be
implemented efficiently in lower number of cycles, so as to not increase the circuit latency
too much. Thus we reformulate the problem of implementing bit permutations in hardware
from a circuit-theory perspective to one in algebraic group theory. Note that each pair of
additional scan flip flops affords us the ability to implement more direct swap functions on
the bits of the plaintext state in a single cycle, thus enabling us to implement complicated
permutations in lesser number of cycles. On the flip side, they consume more physical
area to implement. Thus the exercise of efficient implementation of bit permutation based
linear layers amounts to a balancing act between different type of swap/rotate functions.

Lightweight implementation of cryptosystems is an important application in itself,
as numerous papers in literature exist in which area optimization is the main goal
[JMPS17, MPL+11], even at the expense of latency and energy consumption. More-
over area minimization is crucial in applications like medical implants and passive RFID
tags (that typically do not use latest CMOS technology) run on extreme tight area budgets.
Moreover reducing the area footprint of a system, invariably reduces the power consumption
of the system (since CMOS power consumption is proportional to the number of switching
gates) which is also an important optimizable design metric. For example, in implantable
devices, power is a more crucial metric, as the wearer certainly can not tolerate any rise
in operating temperature as a side effect of high power consumption over a number of
cycles. It is however well known that most low area implementations of a block cipher
(that are generally serialized) are typically not energy efficient [BBR15]. Although energy
is an important metric, our research direction is directed towards applications that can
not ignore area and power constraints.

We choose PRESENT and GIFT block ciphers for our analysis, because both employ
bit permutations as their linear layer. Apart from this, studying these ciphers is of
independent interest because of the importance of these designs in the cryptographic
community. PRESENT is currently an ISO/IEC standard and an extremely popular in the
security community. GIFT is used as the underlying block cipher in 6 of the 33 candidates
in the second round of the NIST lightweight cryptography competition [nis19].

Contribution/Organization (Salient points): The contributions in the paper can be
summarized in the following salient points.

A. First Direction The main idea behind [JMPS17] was that the fewer scan flip-flops
one uses to construct the circuit is likely to translate into a lowering of the total
hardware area of the circuit. Taking this idea forward, in this paper we try to
answer the following question: is it possible to construct the linear layer if only 2
of the 64 flip-flops used to store the state are scan flip-flops? The answer is yes
and we can always do this by using results of classical permutation theory [Con].
However, even after applying various optimizations to the preliminary ideas of [Con],
the least amount of time required to implement a PRESENT/GIFT round function
was 1472/1728 cycles which is still very slow. Since latency is also an important
lightweight metric we explore a second direction in which we try to decrease latency
by minimally increasing the number scan flip-flops.
In Section 2, after introducing some preliminary definitions and notations (along
with a brief sketch of the proofs presented in [Con]) in Section 2, the following
Sections 3, 4 and 5 summarize the above ideas. The main mathematical background
is developed in Section 3. This section is mainly concerned with the PRESENT block
cipher. The theory built up in this section is done in various stages: in each stage we
try to decrease the number of permutations required to describe the PRESENT bit

187

permutation. Section 4 contains a circuit level description of the cipher along with a
cycle by cycle operational details of its functions. Thereafter we extend these ideas
to the GIFT block cipher in Section 5.

B. Second Direction Naturally, we then investigate if adding more scan flip-flops to the
circuit can significantly reduce the number of cycles/area of the circuit. Intuitively
this makes sense because more scan flip-flops allow us to execute more transposition
operations on the state register in a single clock cycle and hence it could reduce the
total number of cycles to implement the bit permutation layer. This could lead to a
much smaller size of control bits required to control swaps and keep the area to a
minimum. In fact we found that adding 2 or 4 additional scan flip-flops provides us
with a reasonable balance between area and throughput.
As a result of the theoretical foundations built in the paper, we construct lightweight
implementations of the PRESENT and GIFT [BPP+17] circuits for both encryption
(E) and combined encryption+decryption (ED) modes. Both PRESENT and GIFT are
block ciphers in which the linear layer is composed with a bit permutation over
the internal state. We increase the number of scan flip-flops gradually from 2 to 4
to 6 and so on and observe the reduction of both area and latency. Our smallest
implementation of PRESENT at 694 GE and GIFT at 907 GE are not only the lowest
reported in the literature so far, but each is achieved at only 64 clock cycles per
round, which is faster than both the 68 cycle/round implementation of PRESENT
in [JMPS17] and 96 cycle/round implementation of GIFT in [BPP+17]. In the ED
mode, the smallest PRESENT and GIFT circuits occupy 786 GE and 1025 GE which
are also the smallest reported thus far. (Note that all circuits have been synthesized
with the standard cell library CORE90GPHVT v 2.1.a of the STM 90nm CMOS
logic process). In Section 6, we summarize the above ideas and introduce necessary
mathematical background and hence construct circuits with smaller area and higher
throughput.

C. The Stream Cipher FLIP We take the ideas forward and look at the stream cipher
FLIP [MJSC16] whose core state update function is also a bit permutation. We
propose three circuits for FLIP: the first is a direct implementation of the ideas in
[Con]. This version however takes time proportional to the cube of the size of the
secret key to produce a single keystream bit and is hence not practical. The second
circuit we construct takes quadratic time and occupies only 3581 GE. The third
circuit we propose uses slightly different ideas for bit swapping and can achieve the
FLIP functionality in linear time. This circuit has an area of around 8605 GE. These
are the first reported hardware implementations of FLIP. All the results are tabulated
in Table 1. Section 8 concludes the paper.

2 Preliminaries
We use the symbol Sn to denote the permutation group on n elements. Naturally we have,
|Sn| = n! and the group is non-commutative. A k-cycle π ∈ Sn (for 1 ≤ k ≤ n) is generally
expressed as the k-tuple (i1, i2, . . . , ik) which implies

• π(i1) = i2, π(i2) = i3, · · · , π(ik) = i1, and

• π(i) = i, ∀i /∈ {i1, i2, . . . , ik}.

188

Table 1: Tabulation of Results (unless stated otherwise, power reported at 10 MHz.
Total latency refers to number of cycles required to encrypt one block of 64 bits. For
completeness, comparison with the most lightweight circuits of a few eStream finalist
candidates is also included) 1: Synthesized using IBM 130nm CMOS process, 2: Power
reported at 100 KHz

Design # Swaps Area (GE) Power (µW) Latency Ref
Per round (or bit) Total

1 PRESENT (E) 1 943 40.0 1536 47760 Section 4
6 694 34.5 64 2128 Section 6.5

8471 0.432 68 2252 [JMPS17]
2 PRESENT (ED) 1 1039 41.4 1536 47760 Section 4

6 786 34.2 64 2128 Section 6.5
1238 56.0 17 547 [BBR17b]

3 GIFT (E) 1 1132 49.8 1792 50304 Section 5
6 907 41.3 64 1920 Section 6.5

930 35.9 96 2816 [BPP+17]
4 GIFT (ED) 1 1290 52.6 1792 50304 Section 5

6 1055 43.6 64 1920 Section 6.5
5 FLIP 2nd ckt 3581 164.9 ≈ 217 ≈ 226 Section 7

3rd ckt 8605 171.9 530 33920 Section 7
6 Grain v1[HJMM08] 1005 38.9 225
7 Grain 128[HJMM08] 1455 57.8 321
8 Trivium[CP08] 1584 75.6 1217

This is a permutation of order equal to k. A transposition (or a swap) τ ∈ Sn is a 2-cycle.
Denote by Aπ the set of active elements in the permutation, i.e. {i1, i2, . . . , ik}. In general,
if π is a composition of several cycles of different orders, then define

Aπ = {x : π(x) 6= x}.

The cycles π1 and π2 of orders k1 and k2 respectively are called disjoint if Aπ1 and Aπ2

are disjoint, i.e. have no elements in common. It is easy to see all disjoint cycles commute
under the composition operation. It is well known that every permutation in Sn can be
expressed as a composition of disjoint k-cycles, uniquely up to ordering of the k-cycles. To
begin discussions, we cite a couple of results from [Con].

Lemma 1. [Con, Theorem 2.1] For n ≥ 2, Sn is generated by its transpositions.

The above is not particularly difficult to prove. We know that the identity permutation
can be written as τ2 where τ is any transposition. As stated above, any permutation can
be expressed as compositions of k-cycles, and any k-cycle (i1, i2, . . . , ik) can be written as
(i1, i2) ◦ (i2, i3) ◦ · · · ◦ (ik−1, ik) and so the result follows.

Lemma 2. [Con, Theorem 2.5] For n ≥ 2, Sn is generated by the transposition (1, 2)
and the n-cycle (1, 2, . . . , n).

A rigorous proof of the above lemma may be found in [Con], but for the benefit of the
reader we give the sketch idea. First note that the set G1 = {(1, 2), (2, 3), · · · , (n− 1, n)}
also generates Sn. That is because any arbitrary transposition (i, j) can be obtained by the
composition (i, i+1)◦(i+1, j)◦(i, i+1), where the first and third transpositions are already in
G1. If |i+1−j| > 1, then (i+1, j) can be further written as (i+1, i+2)◦(i+2, j)◦(i+1, i+2),
and so on, until the term in the middle is in G1. Given the following identity

π ◦ (i1, i2, . . . , ik) ◦ π−1 = (π(i1), π(i2), . . . , π(ik)),

189

for all k-cycles and π ∈ Sn, it is possible to show that any transposition of the form (i, i+1)
can be generated by (1, 2) and the n-cycle (1, 2, . . . , n). This is true since, if we denote
σ = (1, 2, . . . , n), then we have

σi−1 ◦ (1, 2) ◦ σ−(i−1) = (σi−1(1), σi−1(2)) = (i, i+ 1).

This completes the proof.

3 Application to PRESENT
The bit-permutation layer in PRESENT specifies that the i-th state bit is moved to the
P (i)-th position after application of the permutation layer. Let us look at the unique
decomposition of P into its disjoint k-cycles. The disjoint decomposition of P consists of a
total of twenty 3-cycles, where the remaining four points are fixed. The 3-cycles are listed
as follows:

• (1, 16, 4), (2, 32, 8), (3, 48, 12), (5, 17, 20), (6, 33, 24),

• (7, 49, 28), (9, 18, 36), (10, 34, 40), (11, 50, 44), (13, 19, 52),

• (14, 35, 56), (15, 51, 60), (22, 37, 25), (23, 53, 29), (26, 38, 41),

• (27, 54, 45), (30, 39, 57), (31, 55, 61), (43, 58, 46), (47, 59, 62).

Let the above 3-cycles be labeled by the symbols c0 to c19. Note that since all the ci’s
are disjoint, the composition of all of them in any order will result in P . Each ci may be
further expressed as a composition of two swaps: ci = si ◦ ti(note that si and ti do not
commute). Table 2 lists all such decompositions explicitly.

Table 2: Decomposition of the 3-cycle ci’s into swaps for the PRESENT permutation

i ci si ◦ ti i ci si ◦ ti

0 (1, 16, 4) (4, 16) ◦ (1, 4) 10 (14, 35, 56) (14, 35) ◦ (35, 56)
1 (2, 32, 8) (8, 32) ◦ (2, 8) 11 (15, 51, 60) (15, 51) ◦ (51, 60)
2 (3, 48, 12) (12, 48) ◦ (3, 12) 12 (22, 37, 25) (25, 37) ◦ (22, 25)
3 (5, 17, 20) (5, 17) ◦ (17, 20) 13 (23, 53, 29) (29, 53) ◦ (23, 29)
4 (6, 33, 24) (24, 33) ◦ (6, 24) 14 (26, 38, 41) (26, 38) ◦ (38, 41)
5 (7, 49, 28) (28, 49) ◦ (7, 28) 15 (27, 54, 45) (45, 54) ◦ (27, 45)
6 (9, 18, 36) (9, 18) ◦ (18, 36) 16 (30, 39, 57) (30, 39) ◦ (39, 57)
7 (10, 34, 40) (10, 34) ◦ (34, 40) 17 (31, 55, 61) (31, 55) ◦ (55, 61)
8 (11, 50, 44) (44, 50) ◦ (11, 44) 18 (43, 58, 46) (46, 58) ◦ (43, 46)
9 (13, 19, 52) (13, 19) ◦ (19, 52) 19 (47, 59, 62) (47, 59) ◦ (59, 62)

Note that if we were to compose a permutation consisting of application of all the ti’s
(in any order) followed by application of all the si’s (again in any order) we would get back
P . That is to say

P = sb0 ◦ sb1 ◦ · · · ◦ sb19 ◦ ta0 ◦ ta1 ◦ · · · ◦ ta19 ,

where a0, a1, . . . a19 and b0, b1, . . . b19 are any arbitrary orderings of the set {0, 1, . . . , 19}.
We will prove a generalized form of the above statement in the following lemma.

190

Lemma 3. Let π be a permutation in Sn whose disjoint cycle decomposition consists of
the cycles c0, c1, . . . , cm−1 each with orders i0, i1 . . . , im−1 respectively (with

∑m−1
j=0 ij = n),

i.e.
π = c0 ◦ c1 ◦ · · · ◦ cm−1.

Let i0 ≤ i1 ≤ · · · ≤ im−1. Let each cj be expressed as composition of ij − 1 transpositions
sj(1), sj(2), . . . , sj(ij − 1). So we have

sm−1(im−1 − 1) ◦ · · · ◦ · · · ◦ · · · ◦ sm−1(2) ◦ sm−1(1) =cm−1
...

sj(ij − 1) ◦ · · · ◦ · · · ◦ sj(2) ◦ sj(1) = cj
...

s0(i0 − 1) ◦ · · · ◦ s0(2) ◦ s0(1) = c0

Sets: χim−1−1 χij−1 χi0−1 · · · χ2 χ1

Define the set χk = {sm−1(k), sm−2(k), . . .} (for 1 ≤ k < im−1) as explained above. Let θk
be the composition of all transpositions in χk in any arbitrary order. Then we must have

A Each θk is invariant of the order in which the transpositions in χk are applied.

B We must have π = θim−1−1 ◦ · · · θij−1 ◦ · · · θ2 ◦ θ1.

Proof. Please see Appendix A.

The PRESENT permutation P follows a specific instance of the above lemma, with
m = 20 and i0 = i1 = · · · = i19 = 3. Thus the fact that

P = sb0 ◦ sb1 ◦ · · · ◦ sb19 ◦ ta0 ◦ ta1 ◦ · · · ◦ ta19

is a corollary of the above lemma.

3.1 Implementation using 2 scan flip-flops

Lemma 2 already states that any permutation in Sn can be generated by the cycles
(1, 2, . . . , n) and (1, 2). In a typical serial implementation, the cycle (1, 2, . . . , n) naturally
appears as the rotation operation of the pipeline, constructed from n flip flops. The swap
(1, 2) can be realized by simply replacing two of these flip-flops with scan flip-flops. There-
fore, Lemma 2 implies the existence of PRESENT permutation realization with only 2 scan
flip-flops. Therefore, we explore the number of cycles applying the PRESENT permutation
takes, i.e. by deriving the decomposition sequence with a straightforward application of
the above formalism.

In order to be compatible with the order of bit addressing used in block ciphers
[BKL+07, BPP+17], we relabel the set of 64 elements by the indices {63, 62, . . . , 0}. After
this relabeling, we can analogously claim that S64 is generated by the cycles w = (62, 63)
and r = (0, 1, 2, . . . , 63). The idea is to implement all the transpositions ti followed by
all the si’s. In order to do so, let us first see how any arbitrary transposition can be
implemented only using r and w.

Implementing a transposition (x, y) for (x > y) and x, y ∈ [0, 63]: Let x = 63 − x,

191

b b b b
b63 b62 b61 b1 b0

Sel Sel

Figure 1: Shift register circuit with (subsequent) 2 scan flip-flops

y = 63− y. As per the proofs outlined in Lemmas 1 and 2, we have :

(x, y) = (x, x− 1) ◦ (x− 1, y) ◦ (x, x− 1)
= (x, x− 1) ◦ (x− 1, x− 2) ◦ (x− 2, y) ◦ (x− 1, x− 2) ◦ (x, x− 1)
= (x, x− 1) ◦ (x− 1, x− 2) ◦ · · · ◦ (y + 1, y) ◦ · · · ◦ (x− 1, x− 2) ◦ (x, x− 1)
= (r−x ◦ w ◦ rx) ◦ (r−1−x ◦ w ◦ r1+x) ◦ · · · ◦ (r1−y ◦ w ◦ ry−1) ◦ · · · ◦

(r−1−x ◦ w ◦ r1+x) ◦ (r−x ◦ w ◦ rx)
= r−x ◦ w ◦ (r−1 ◦ w)x−y−1 ◦ (r ◦ w)x−y−1 ◦ rx

= r64−x ◦ w ◦ (r63 ◦ w)x−y−1 ◦ (r ◦ w)x−y−1 ◦ rx

= r1+x ◦ w ◦ (r63 ◦ w)x−y−1 ◦ (r ◦ w)x−y−1 ◦ r63−x

Given the decomposition (x, y) in terms of r and w as given above, the next question
naturally arises as to how to implement it using 2 scan flip-flops. Consider the circuit in
Figure 1. It consists of an array of 64 flip-flops, with the 2 at the extreme ends being
scan flip-flops controlled by a Sel signal. When Sel is 0, the data in the flip-flops simply
rotate bitwise towards the left. When Sel is 1, the b63 bit is held in place, and the data in
the remaining 63 flip-flops is rotated left bitwise. Implementing a particular permutation
π ∈ S64 on this circuit, essentially tries to answer the following question: If we consider
bi(t), i ∈ [0, 63], t ≥ 0 to be the bit value stored on the ith flip-flop at time t, does there
exist some sequence of Sel signals s0, s1, . . . , sT−1 such that for all b0(0), ..., b63(0), setting
Sel to st at clock cycle t implies that bπ(i)(T) = bi(0) for all i. The length T of the sequence
is the number of clock cycles needed to perform the permutation π.

Lemma 4. Considering the circuit in Figure 1, implementing an arbitrary swap operation
(x, y) requires at most 64(x− y) clock cycles.

Proof. To begin with, note that r is a function that performs a rotation operation by
one location towards the left. In Figure 1, setting the select signal Sel to 0, causes the
shift register to implement the r function, as data follows the circular path marked in the
bottom. Setting Sel to 1, brings about the following transformation:

(b63, b62, b61, . . . , b1, b0)→ (b63, b61, b60, . . . , b0, b62)

This is same as applying the function (r ◦ w). It is easy to see that r and (r ◦ w) also
generate S64. Thus by controlling the Sel signal, we can make the shift register circuit
alternate between r and v = (r ◦ w) functions. Note that (x, y) can be rewritten in blocks
of 64 operations each, in the following manner:

(x, y) = r1+x ◦ w ◦ (r63 ◦ w)x−y−1 ◦ (r ◦ w)x−y−1 ◦ r63−x

= [rx ◦ v ◦ r63−x] ◦ [rx−1 ◦ v ◦ r64−x] ◦ · · · ◦ [ry+2 ◦ v ◦ r61−y] ◦ [ry+1 ◦ vx−y ◦ r63−x]

192

Each block of operations in square braces in the above equation is a set of 64 operations,
and thus would take 64 clock cycles to execute using the shift register circuit. Since there
are a total of (x− y) braces, the result follows.

Corollary 1. Employing the shift register circuit in figure 1, one round of the PRESENT bit
permutation can be executed in 36480 clock cycles.

Proof. The idea is to execute the PRESENT permutation P by executing each of the
transpositions ti and then si sequentially. Denoting ti = (xi, yi) and si = (x20+i, y20+i) for
i ∈ [0, 19], (with xi > yi) the number of clock cycles can be calculated as

∑39
i=0 64·(xi−yi) =

36480.

This result is a pessimistic one since it implies that to perform the PRESENT encryption
operation on a shift register based circuit as given in Figure 1, would result in heavy loss
of throughput. In the following subsections, we will try to see if the number of operations
can be reduced in any way.

3.2 Decreasing the number of operations
Before we outline the method used to reduce the number of operations, let us look at the
following definition.

Definition 1. As in Lemma 4, let π be a permutation in Sn whose disjoint cycle decom-
position consists of the cycles c0, c1, . . . , cm−1 each with orders i0, i1 . . . , im−1 respectively.
Let each cj be expressed as composition of ij − 1 transpositions sj(1), sj(2), . . . , sj(ij − 1).
Denote the transposition sj(k) = (xj(k), yj(k)) with xj(k) > yj(k). π is said to be a
special permutation of the type κ, if κ is the largest integer for which the following holds:

xj(k)− yj(k) ≡ 0 mod κ, ∀ j ∈ [0,m− 1],∀ k ∈ [0, ij − 1]

It is easy to see from Table 2, that the PRESENT permutation P is a special permutation
of type 3. Before we proceed, let us look at a result concerning special permutations of
type κ.

Lemma 5. Let Gκ denote the set of all the special permutations of S64 of type κ. Then
Gκ can be generated by the permutations wκ = (63− κ, 63) and r = (0, 1, . . . , 63).

Proof. The proof is similar to the ideas already discussed. For a detailed proof, please see
Appendix B.

The next step naturally is to see how any transposition (x, y) with x ≡ y mod κ can
be implemented in a shift register structure using only 2 scan flip-flops using a method
that requires lesser number of cycles as compared to the previous construction. We try to
address this is the next lemma.

Lemma 6. Consider the circuit in Figure 2. Implementing an arbitrary swap operation
(x, y) with x > y and x ≡ y mod κ using it can be implemented in 64(x−y)

κ = 64z clock
cycles.

Proof. As before, setting Sel to 0, executes the rotate function r. Setting Sel to 1, achieves
the following transformation:

(b63, b62, b61, . . . , b1, b0)→ (b62, b61, . . . , b64−κ, b63, b62−κ, b61−κ, . . . , b0, b63−κ)

193

b b b
b63 b64−κ b63−κ b1 b0

Sel Sel

b b

Figure 2: Shift register circuit with (κ-respecting) 2 scan flip-flops

This is same as applying the transformation vκ = r ◦ wκ. Thus, as before, controlling Sel
makes the circuit alternate between r and vκ operations. As before we express (x, y) in
blocks of 64 operations:

(x, y) = r1+x ◦ wκ ◦ (r64−κ ◦ wκ)z−1 ◦ (rκ ◦ wκ)z−1 ◦ r63−x

= [rx ◦ vκ ◦ r63−x] ◦ [rx−κ ◦ vκ ◦ r63−x+κ] ◦ · · · ◦ [rx−(z−2)κ ◦ vκ ◦ r63−x+(z−2)κ]◦
[ry+1 ◦ (rκ−1 ◦ vκ)z ◦ r63−x]

Operations in each of the square braces take 64 cycles and since there are exactly z such
braces, the result follows.

Corollary 2. Using the shift register circuit in Figure 2, one round of the PRESENT bit
permutation P can be executed in 12160 clock cycles.

Proof. We have already noted that P is a special permutation of type 3. As in the previous
corollary, let ti = (xi, yi) and si = (x20+i, y20+i) for i ∈ [0, 19], (with xi > yi). For
performing all the ti’s followed by all the si’s sequentially, the number of clock cycles can
be calculated as

∑39
i=0 64 · (xi−yi)

3 = 12160.

By using the modified shift register structure, we obtain a threefold increase of through-
put in computation of the PRESENT permutation. However, this is still way too slow, and
in the subsequent sections we will try to find if the computations can be further sped up.

3.3 Further reduction
Until so far, we were executing each transposition operation sequentially, i.e. one after the
other. However in the interest of speeding up computations, let us investigate if it is at all
possible to execute some of the swap operations concurrently.

Definition 2. Let σ = (x, y) be a transposition in S64 with x > y. # »Selσ to be the vector
of Sel signals that achieves the computation of σ using the circuit in Figure 2. The length
of # »Selσ is therefore 64(x−y)

κ . For example, let κ = 3, as in PRESENT. Consider σ = (60, 51),
for which z = 3. We have

σ = [rx ◦ vκ ◦ r63−x] ◦ [rx−κ ◦ vκ ◦ r63−x+κ] ◦ · · · ◦ [rx−(z−2)κ ◦ vκ ◦ r63−x+(z−2)κ]◦
[ry+1 ◦ (rκ−1 ◦ vκ)z ◦ r63−x]

= [r60 ◦ v3 ◦ r3] ◦ [r57 ◦ v3 ◦ r6] ◦ [r52 ◦ (r2 ◦ v3)3 ◦ r3]
»Selσ = 060 1 03 057 1 06 052 021 021 021 03

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
←− Increasing Index

Note that to keep notations consistent as to the order of application of the permutations,
the rightmost element in the vector is denoted as the 0th element, and the index is increased

194

as we go left. This is consistent with the order of application in the composition notation,
in which the rightmost permutation of the composition is applied first. Let us now re-write
the permutations r and vκ in functional form:

r(α) = (α+ 1) mod 64, vκ(α) =


64− κ, if α = 63,
0, if α = 63− κ,
(α+ 1) mod 64, otherwise.

We can see that r and vκ differ on only two inputs 63 and 63− κ. By stretching notations
slightly, let # »Selp also denote a random 64-bit binary vector that implements the permutation
p when fed to the Sel port of the circuit in Figure 2 over 64 consecutive clock cycles. Let
Bp be the set of elements that denote the positions of 1’s in # »Selp. From the functional
equations of r and vκ, it is not difficult to deduce that (a simple code in any programming
language is sufficient to do this) Ap = Up ∪ Vp, where

Up = {63− α : α ∈ Bp}, Vp = {63− α− κ mod 64 : α ∈ Bp}

It is also possible to deduce p from Bp. If Bp contains elements b, b+κ, b+2κ, . . . , b+(l−1)κ
which are in an arithmetic sequence with common difference κ then we will have

p(63− b− iκ) = 63− b− (i− 1)κ, ∀i ∈ [1, l], and p(63− b) = 63− b− lκ

For all other elements b̂ in Bp that are not part of an arithmetic sequence with common
difference κ, we have p(63 − b̂) = 63 − b̂ − κ and p(63 − b̂ − κ) = 63 − b̂. For all other
elements we have p(b) = b.

Example 1. For example if Bp = {6, 9, 19, 29, 53, 56, 60, 61} with κ = 3, we see that
we have 2 arithmetic sequences of common difference 3: 6, 9 and 53, 56. So we have
Ap = {0, 2, 3, 4, 7, 10, 31, 34, 41, 44, 51, 54, 57, 63} We have p = (51, 54, 57) ◦ (4, 7, 10) ◦
(44, 41) ◦ (34, 31) ◦ (3, 0) ◦ (2, 63).

Consider every 64 bit block of the # »Selσ vector. Let πi (for i = 0 to z − 1) be the
composition of all the permutations in the ith 64-bit block. Let us use the notation

»Selσ = # »Selπz−1 ||
»Selπz−2 || · · · ||

»Selπ2 ||
»Selπ1 ||

»Selπ0 .

Of course we have σ = πz−1 ◦πz−2 ◦ · · · ◦π2 ◦π1 ◦π0. In the above example, for σ = (60, 51)
we have Bπ0 = {3, 6, 9}, Bπ1 = {6}, Bπ2 = {3}. Generalizing the above we can see
that Bπ0 = {63 − x, 63 − x − κ, . . . , 63 − y − κ}. Bπ0 only contains elements that are
x = 63 − x mod κ. And we have that Bπi ⊂ Bπ0 , ∀ i > 0. From the analysis presented
above, it can be deduced that for all i,

πi(α) = α, ∀α 6≡ x mod κ.

This is because the 1’s (equivalently vκ’s) in this block appear at distances of κ. If we
apply each function in πi one by one, for any input α 6≡ x mod κ, the corresponding input
to vκ is never 63 or 63− κ, and so a plain rotation is effectively executed. Therefore all
the πi’s perform shuffling on only a subset of elements that are congruent to x mod κ and
leave the others untouched. From the equation Ap = Up ∪ Vp, we can also deduce that
Aπ0 = {x, x− κ, x− 2κ, . . . , y}. Thus each πi is effectively a permutation function on only
a subset of {0, 1, 2, 3, . . . , 63} that are congruent to x mod κ.

Lemma 7. Let # »Selp1 and # »Selp2 be two 64 bit signal vectors implementing permutations
p1 and p2 on the circuit of Figure 2. If Ap1 ∩ Ap2 = ∅, then p1 ◦ p2 can be concurrently
executed on this circuit using the signal vector # »Selp1 |̂

»Selp2 , where |̂ denotes a bitwise OR
operation on the vectors.

195

Proof. See Appendix C.

Lemma 8. Let σ1 = (x1, y1) and σ2 = (x2, y2) be two special transpositions (xi > yi,
i = 1, 2) in S64 of type κ. Without loss of generality let `1 = (x1 − y1) ≥ (x2 − y2) = `2,
and zi = `i

κ . Let the respective decompositions are denoted by the symbols πi and θi, i.e.
σ1 = πz1−1 ◦ πz1−2 ◦ · · · ◦ π2 ◦ π1 ◦ π0 and σ2 = θz2−1 ◦ θz2−2 ◦ · · · ◦ θ2 ◦ θ1 ◦ θ0.

»Selσ1 and
»Selσ2 may not be of the same length, in which case append 64(z1 − z2) zeroes to # »Selσ2

1 to
make them of the same length. If Aπ0 ∩ Aθ0 = ∅, then it is possible to execute σ1 and
σ2 concurrently on the circuit in Figure 2 and achieve σ1 ◦ σ2 in 64 · z1 clock cycles. Let
»Selσ1◦σ2 be the vector of Sel signals required to achieve this. Then # »Selσ1◦σ2 = # »Selσ1 |̂

»Selσ2 .

Proof. See Appendix D.

The above result may be extended to a set of any number of special transpositions σi
(i = 1 to k) of the type κ, provided that the respective Aπ0 sets are pairwise disjoint. In
that case we have

»Selσ1◦σ2◦···◦σk = # »Selσ1 |̂
»Selσ2 |̂ · · · |̂

»Selσk

Corollary 3. Let σ1 = (x1, y1) and σ2 = (x2, y2) be two transpositions (xi > yi, i = 1, 2)
in S64 such that x1 − y1 ≡ x2 − y2 mod κ, and x1 6≡ x2 mod κ. Without loss of generality
let `1 = (x1−y1) ≥ (x2−y2) = `2, and zi = `i

κ . As before, let the respective decompositions
are denoted by the symbols πi and θi and append 64(z1 − z2) zeroes to # »Selσ2 to make the
two # »Sel vectors of the same length. It is possible to execute σ1 and σ2 concurrently on the
circuit in Figure 2 and achieve σ1 ◦ σ2 in 64 · z1 clock cycles by using # »Selσ1 |̂

»Selσ2 as the
select signal vector.

Proof. We have already seen that for any transposition σ = (x, y) = πz−1 ◦ · · · ◦ π0, we
have Aπ0 = {x, x− κ, x− 2κ, . . . , y}. Thus Aπ0 contains elements that are only congruent
to x mod κ. Since x1, y1 and x2, y2 belong to different equivalence classes modulo κ,
Aπ0 ∩ Aθ0 = ∅. Thus the result follows.

Corollary 4. Let σ1 = (x1, y1) and σ2 = (x2, y2) be two transpositions (xi > yi, i = 1, 2)
in S64 such that y1 > x2. Let `1 = (x1 − y1) ≥ (x2 − y2) = `2, and zi = `i

κ . Let the
respective decompositions are denoted by the symbols πi and θi. Then after making the
»Sel vectors of the same length by appending zeroes, it is possible to execute σ1 and σ2
concurrently on the circuit in Figure 2 and achieve σ1 ◦ σ2 in 64 · z1 clock cycles by using
»Selσ1 |̂

»Selσ2 as the select signal vector.

Proof. We have Aπ0 = {x1, x1−κ, x1−2κ, . . . , y1} and Aθ0 = {x2, x2−κ, x2−2κ, . . . , y2}.
Since y1 > x2, clearly Aπ0 ∩ Aθ0 = ∅. Thus the result follows.

We can use the results in the above two corollaries to further reduce the execution
time of the PRESENT permutation. We have to execute all the transpositions ti followed
by the transpositions si. The idea is to execute as many permutations concurrently which
have pairwise disjoint Aπ0 ’s. We can easily partition the transpositions modulo κ = 3.
Transpositions that are in different classes modulo 3 can obviously be executed concurrently.
Also transpositions in the same class modulo 3, which have disjoint Aπ0 ’s can also be
executed together. For the ti’s we can think of the following solution given in Table 3,
that takes (11 + 7 + 1) · 64 = 704 + 448 + 64 = 1216 cycles. All the swaps in ith group can
be executed concurrently, thereby reducing the number of cycles.

A similar construction for the si’s will take (12 + 12 + 7 + 4) · 64 = 2240 cycles. So
a total of 1216 + 2240 = 3456 cycles are required which is already way better than our
previous construction of 12160 cycles.

1Since r64 is the identity function, this does not affect either permutation

196

Table 3: Concurrent execution of the ti’s in the PRESENT permutation

Group mod3 ti max(xi − yi) #Cycles
1 0 (57, 39), (36, 18), (12, 3) 33 704

1 (61, 55), (52, 19), (4, 1)
2 (62, 59), (44, 11), (8, 2)

2 0 (60, 51), (45, 27), (24, 6) 21 448
1 (46, 43), (40, 34), (28, 7)
2 (56, 35), (29, 23), (20, 17)

3 1 (25, 22) 3 64
2 (41, 38)

Table 4: Concurrent execution of the si’s in the PRESENT permutation

Group mod3 si max(xi − yi) #Cycles
1 0 (51, 15) 36 768

1 (55, 31), (19, 13)
2 (53, 29), (17, 5)

2 0 (48, 12) 36 768
1 (58, 46), (34, 10)
2 (59, 47), (32, 8)

3 0 (54, 45), (39, 30), (18, 9) 21 448
1 (49, 28), (16, 4)
2 (50, 44), (35, 14)

4 0 (33, 24) 12 256
1 (37, 25)
2 (38, 26)

3.4 Final Optimization
In this final subsection we see if the number of clock cycles can be further optimized.
Specifically we want to see if it is possible to implement transpositions σ1 and σ2 concur-
rently, even if the corresponding Aπ0 ∩ Aθ0 6= ∅. We start with a well known result in
permutation theory.
Theorem 1. For every permutation σ ∈ S64, and every transposition (x, y) ∈ S64:

f = σ ◦ (x, y) = (σ(x), σ(y)) ◦ σ

The above is not difficult to prove, ∀α 6∈ {x, y}, we have f(α) = σ(α). And both sides
evaluate to f(x) = σ(y) and f(y) = σ(x).
Lemma 9. Let σ1 = (x1, y1) and σ2 = (x2, y2) be two special disjoint transpositions (xi >
yi, i = 1, 2) in S64 of type κ. Without loss of generality let `1 = (x1− y1) ≥ (x2− y2) = `2,
and zi = `i

κ . Let the respective decompositions be denoted by the symbols πi and θi, i.e.
σ1 = πz1−1 ◦ πz1−2 ◦ · · · ◦ π2 ◦ π1 ◦ π0 and σ2 = θz2−1 ◦ θz2−2 ◦ · · · ◦ θ2 ◦ θ1 ◦ θ0. Let us have
Aπ0 ∩ Aθ0 6= ∅. Denote by p = (π[i→ 0](x2), π[i→ 0](y2)), for some i ∈ [0, z1 − 1]. Let
the decomposition of p be denoted as

p = γq−1 ◦ γq−2 ◦ · · · ◦ γ1 ◦ γ0.

197

Now denote # »Sel1 = # »Selπz1−1 ||
»Selπz1−2 || · · · ||

»Selπi+1 and # »Sel2 = # »Selp. After appending with
zeroes to make # »Sel1 and # »Sel2 of the same length, the following vector

»Sel1̂|
»Sel2 ||

»Selπ[i→0]

will execute σ1 ◦ σ2 on the circuit in Figure 2, if Bγ0 ∩ Bπi+1 = ∅.
Proof. See Appendix E.

Example 2. An immediate application of the above is to construct a # »Sel vector to execute
(51, 15) and (48, 12) concurrently on the PRESENT circuit. In the previous subsection we
had executed them sequentially which had cost us 12 · 64 = 768 cycles each. Start with
σ1 = (48, 12). We have Bπ0 = {15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48}, Bπj = {48− 3j}
for 1 ≤ j ≤ 11. For σ2 = (51, 15), we observe that (π0(51), π0(15)) = (51, 18). If we let
p = (51, 18), then Bγ0 = {12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42}. Since Bγ0 ∩ Bπ1 = ∅,
this choice of p will work. Also # »Sel1 and # »Sel2 will be of the same length, due to which
zero padding is also not required. So we have Bγj = {42− 3j} for all 1 ≤ j ≤ 10. Since
»Selσ1◦σ2 = # »Sel1̂|

»Sel2 ||
»Selπ[i→0], denoting the decomposition of σ1 ◦ σ2 by the symbols ηj ,

we have Bη0 = Bπ0 , Bηj+1 = Bπj+1 ∪Bγj for 0 ≤ j ≤ 10. This therefore implements σ1 ◦ σ2
in only 12 · 64 = 768 cycles.

In the next lemma, we take things forward. If σ is a permutation which implements a
set of disjoint transpositions (instead of just a single transposition), it may be possible to
implement another transposition σ′ concurrently along with σ if certain conditions are
met.
Lemma 10. Let σ be a special permutation of type κ that is a composition of several
pairwise disjoint transpositions. Let σ′ = (x, y) be a special transposition (x > y) of type
κ, that is also pairwise disjoint with each of the transpositions that compose σ. Let the
respective decompositions are denoted by the symbols πi and θi, i.e. σ = πz1−1 ◦ πz1−2 ◦
· · · ◦ π2 ◦ π1 ◦ π0 and σ′ = θz2−1 ◦ θz2−2 ◦ · · · ◦ θ2 ◦ θ1 ◦ θ0. Let us have Aπ0 ∩ Aθ0 6= ∅.
Denote by p = (π[i→ 0](x), π[i→ 0](y)), for some i ∈ [0, z1 − 1]. Let the decomposition of
p be denoted as

p = γq−1 ◦ γq−2 ◦ · · · ◦ γ1 ◦ γ0.

Now denote # »Sel1 = # »Selπz1−1 ||
»Selπz1−2 || · · · ||

»Selπi+1 and # »Sel2 = # »Selp. After appending with
zeroes to make # »Sel1 and # »Sel2 of the same length, the following vector

»Sel1̂|
»Sel2 ||

»Selπ[i→0]

will execute σ ◦ σ′ on the circuit in Figure 2, if Bγ0 ∩ Bπi+1 = ∅.
Proof. We give a sketch of the proof as a complete analytical proof is likely to be quite
complicated. The idea is similar to the ideas explained in the proof of Lemma 9. Note that
Bπi+j+1 (j ≥ 0) will be the union of the corresponding B sets of the several transpositions
that compose σ. One has to iterate the “disjoincy” arguments introduced in Lemma 9, for
Bγ0 and each of those B sets to arrive at a proof.

Example 3. Let us construct a # »Sel vector for all the si’s in PRESENT that are congruent
to 0 mod 3. The transpositions are (51, 15), (48, 12), (54, 45), (39, 30), (18, 9), (33, 24). We
already have a # »Sel vector for (51, 15) ◦ (48, 12) in the previous example.

1. To start, we have σ = (51, 15) ◦ (48, 12), Bπ0 = {15, 18, 21, 24, 27, 30, 33, 36, 39, 42,
45, 48}, Bπ1 = {12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45}, and Bπj = {48−3j, 45−3j}
for all 2 ≤ j ≤ 11. Let σ′ = (54, 45). Now (π[1→ 0](54), π[1→ 0](45)) = (54, 51). If
p = (54, 51) then Bγ0 = {9}. which is disjoint with Bπ2 = {42, 39}. Since Bγ0 has only
one element it is sufficient to generate p. So we have Bη2 = Bπ2 ∪ Bγ0 = {42, 39, 9}.
For all other j, we have Bηj = Bπj . This will give us σ ◦ σ′.

198

2. This time σ = (51, 15) ◦ (48, 12) ◦ (54, 45). Shifting notations, we have Bπ0 =
{15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48}, Bπ1 = {12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45}, Bπ2 = {42, 39, 9}, and Bπj = {48 − 3j, 45 − 3j} for all 3 ≤ j ≤ 11. Let
σ′ = (33, 24). Now (π[1 → 0](33), π[1 → 0](24)) = (39, 30). If p = (39, 30) then
Bγ0 = {24, 27, 30}. which is disjoint with Bπ2 = {42, 39, 9}. We have Bγ1 = {27} and
Bγ2 = {24}. So we have Bη2 = Bπ2 ∪ Bγ0 = {42, 39, 30, 27, 24, 9}, Bη3 = Bπ3 ∪ Bγ1 =
{39, 36, 27}, Bη4 = Bπ4 ∪ Bγ2 = {36, 33, 24}. For all other j, we have Bηj = Bπj .

3. Now σ = (51, 15) ◦ (48, 12) ◦ (54, 45) ◦ (33, 24). Continuing in this manner, we
can add (39, 30) and (18, 9) to this chain. This completes the construction for all the
si’s of the form 0 mod 3. Let us enumerate the sets explicitly

Bη0 = {15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48}
Bη1 = {12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45}
Bη2 = {42, 39, 30, 27, 24, 9}, Bη3 = {39, 36, 27, 21, 18}
Bη4 = {51, 48, 45, 36, 33, 24, 18}, Bη5 = {48, 33, 30}
Bη6 = {45, 30, 27},Bηj = {48− 3j, 45− 3j}, ∀ 7 ≤ j ≤ 11

This therefore constructs all the si’s of the PRESENT permutation that are congruent
to 0 mod 3 in 12 · 64 = 768 cycles. We can use a similar approach to construct # »Sel
vectors for the si’s that are congruent to 1, 2 mod 3, that can operate in 8 · 64 = 512
cycles each. After padding of each of them to 768 cycles, a simple application of
lemma 8 and corollary 3, allows us to construct the # »Sel vector for the composition of
all the si’s by computing # »Sel0 mod 3̂|

»Sel1 mod 3̂|
»Sel2 mod 3 that operates in just 768

cycles. Table 12 in the appendix lists the B vectors for all the si transpositions that
are 1, 2 mod 3. Using a similar approach one can construct a similar # »Sel vector for
the composition of all ti’s that operate in 11 · 64 = 704 cycles. The B vectors for
the si transpositions are also listed in Table 12. Since our strategy is to execute the
composition of the ti’s followed by the si’s this approach takes 704 + 768 = 1472
cycles, which is the best we could manage.

4 The PRESENT circuit using 2 scan flip-flops
Using the mathematical background presented in the previous section, we present our
construction of the PRESENT circuit. The circuit for the datapath and the keypath are
described in Figures 3 and 4 respectively. Note that although it appears that the circuit
employs two s-boxes, one for the data and keypaths each, in fact there is only one s-box
circuit with a multiplexer in front which accepts inputs from the state and key registers at
different periods in the encryption cycle. We defer the cycle by cycle operational aspects
of the circuit to Appendix G.

4.1 Area and throughput results
The number of cycles taken to compute the encryption is therefore 80+1536·31+64 = 47760.
This is around 24 times slower than the implementation in [JMPS17]. Assuming that the
»Sel vector is stored as a look-up-table within the circuit, then after synthesizing the circuit
using the STM 90nm standard cell library, the synthesized circuit occupies logic area of
around 943 GE which is also 100 GE more than the implementation in [JMPS17]. This is
much more than we expected because of the following reason:

• A single round requires the Sel signal to be micro-controlled for 1472 cycles. This
can only be done if the corresponding bit values are available as a lookup table inside
the circuit.

199

Sel SB

b b b

S-box

b b b

⊕

b b b b

SBSB SB Sel Load

PT

CT

Roundkey

b63 b62 b60b61 b3 b2 b1 b0

3

1

4

Add

Figure 3: The PRESENT datapath

• This requires around 200 B of storage and as seen in Figure 13, it requires around
170 GE of circuit area.

• Thus, the 2 scan flip-flop circuit proves counterproductive and is of only theoretical
interest.

4.2 Circuit for combined encryption and decryption
The approach outlined in the previous section is surprisingly effective when we try to
implement a PRESENT circuit that can offer the combined functionalities of encryption
and decryption. As already pointed out in [BBR16, BBR17a, JMPS17], such circuits are
useful in implementing modes of operation like ELmD, CBC that require access to both the
block cipher and its inverse operation. Our strategy to execute the PRESENT permutation
P was to first execute the transpositions ti in any order and then the transpositions si
again in any order. In order to execute the inverse permutation P−1 it is enough to reverse
the order: first execute the si’s followed by the ti’s as explained below.

In order to understand why this is so, let us denote the composition of all si’s as S and
the composition of all ti’s as T , so that we have P = S ◦T . Both S and T are compositions
of disjoint transpositions. Transpositions are involutary functions, which is to say they are
self-inverses. Since all the ti’s in T are disjoint, T −1 is again the composition of all the

Rtx KB

b b

S-box

b b b

⊕

b b b b

KBKB KB Rtx Inp

Key

RCi

k79 k78 k14k15 k3 k2 k1 k0

3

1

4

AddC

b b

Roundkey

Figure 4: The PRESENT Keypath

200

ti’s therefore equal to T . The same is true for S. So we have P−1 = T −1 ◦ S−1 = T ◦ S.
Thus the inverse permutation can be executed on the same circuit by shuffling around the
»Sel vector. The operational levels of the circuit are deferred to Appendix G.

The area occupied by the circuit when synthesized with the standard cell library of
the STM 90nm CMOS process, is around 1040 GE. This is around 200 GE less than the
previous best reported implementation of the combined circuit for PRESENT in [BBR17b],
which occupies around 1240 GE. However the area is still high due to the inclusion of the
control bits as a lookup table.

5 Application to GIFT
GIFT was a block cipher designed by Banik et al. [BPP+17] and presented at CHES 2017,
with a view to strengthen the cryptographic properties of PRESENT by redesigning the
permutation layer and keyschedule. It is a block cipher with an SPN round function in
which the linear layer is a bit permutation similar to PRESENT.

The following can be said about the permutation function G used in GIFT:

1. It is a special permutation of type κ = 4.

2. It can be decomposed into fourteen 4-cycles and two 2-cycles all of which are pairwise
disjoint. Additionally it has 4 fixed points.

3. Each 4-cycle can be decomposed into three transpositions si ◦ ti ◦ ui. The decompo-
sition is shown in the following table.

Table 5: Decomposition of the ci’s in the GIFT permutation
i ci si ◦ ti ◦ ui i ci si ◦ ti ◦ ui

0 (1, 17, 21, 5) (5, 17) ◦ (17, 21) ◦ (1, 5) 8 (11, 19, 55, 47) (19, 47) ◦ (19, 55) ◦ (11, 47)
1 (2, 34, 32, 10) (10, 34) ◦ (34, 42) ◦ (2, 10) 9 (13, 33, 25, 53) (13, 25) ◦ (25, 53) ◦ (13, 33)
2 (3, 51, 63, 15) (15, 51) ◦ (51, 63) ◦ (3, 15) 10 (14, 50, 46, 58) (14, 46) ◦ (46, 58) ◦ (14, 50)
3 (4, 48, 12, 16) (12, 16) ◦ (16, 48) ◦ (4, 16) 11 (20, 52, 60, 28) (28, 52) ◦ (52, 60) ◦ (20, 28)
4 (6, 18, 38, 26) (18, 26) ◦ (18, 38) ◦ (6, 26) 12 (23, 39, 43, 27) (27, 39) ◦ (39, 43) ◦ (23, 27)
5 (7, 35, 59, 31) (31, 35) ◦ (35, 59) ◦ (7, 31) 13 (24, 36, 56, 44) (36, 44) ◦ (36, 56) ◦ (24, 44)
6 (8, 32) (8, 32) ◦ ◦ 14 (30, 54) (30, 54) ◦ ◦
7 (9, 49, 29, 37) (29, 37) ◦ (37, 49) ◦ (9, 37) 15 (41, 57, 61, 45) (45, 57) ◦ (57, 61) ◦ (41, 45)

As per the strategies outlined in the case of PRESENT, we try to implement all the ui’s
first, followed by the ti’s and si’s, since as per Lemma 3, we would have then constructed
G. Furthermore for each of the ui’s, ti’s and si’ we construct composite # »Sel vectors by
finding # »Sel vectors for each equivalence class modulo 4 and then doing a bitwise OR. Each
of the transposition sets can be implemented in 9× 64 = 576 cycles. This implies that G
can be executed in 3 × 576 = 1728 cycles. The results are tabulated in Table 13 in the
appendix.

5.1 Circuit details
Since the structure of GIFT is similar to PRESENT, the circuit for the datapath is exactly
the same as in Figure 3, with the obvious exception that the scan flip-flop is used in the
60th instead of the 61st location. The sequence of operations in GIFT is only slightly
different from PRESENT and we leave the operational details of the circuit to Appendix H.
The encryption only circuit occupies 1132 GE which is around 200 GE higher than the

201

implementation reported in [BPP+17], on account of the large control bit table required
in the circuit. The encryption+decryption circuit occupies 1290 GE in hardware and is
the first reported synthesis results for the combined circuit for this block cipher.

6 Adding more scan flip-flops
In this section, we look at trade-off between the number of scan flip-flops and the latency
of the permutation layer. In other words, we employ multiple scan flip-flops to complete
the permutation layer operation in at most few hundreds of cycles.

In order to understand how more scan flip-flops can be accommodated, let us start
with the basics. Let rot denote the simple rotation operation of the pipeline, that is
rot ∈ S64 such that rot(i) = i+1 mod 64. Then we additionally introduce swap-then-rotate
operations to this pipeline. A swap-then-rotate operation is denoted with swp(x,y), and it
first swaps x and y, and then rotates the pipeline. Namely,

swp(x,y)(x) = y + 1 mod 64, swp(x,y)(y) = x+ 1 mod 64

and the others elements remain untouched. We have already seen that a swap-then-rotate
operation can be done in the pipeline quite efficiently, i.e. requires only two extra muxes
before inputs of flip flops x + 1 and y + 1. Our technique for reducing the number of
required gates of the permutation layers of both PRESENT and GIFT is through realizing
them with rot and as few as possible swp operations. We extend the notion into multiple-
swaps-then-rotate in a natural way. If {x, y} ∩ {z, t} = ∅, then swp(x,y),(z,t) corresponds to
swapping both (x, y) and (z, t) first, and then rotating the pipeline by one position. We
invite the reader’s attention to the difference between the swap operations, e.g. swp(x,y),
and swap permutations, e.g. 2-cycle (x, y).

6.1 4× 4 matrix transposition with swaps

For simplicity, first imagine a pipeline that consists of 4× 4 bits (see Figure 5). Suppose
that the pipeline supports only rot and swp(11,14) operations. These two permutations are
given in their mathematical forms in Table 6, where rot(i) denotes the final position of the
bit i after rot is executed.

Our claim is that the usual 4× 4 matrix transposition τ can be written in terms of rot
and swp(11,14) permutations. Namely, our formula is τ = seq3 ◦ seq2 ◦ seq1 where

seq1 := rot4 ◦
[
rot ◦ swp3

(11,14)

]3
seq2 := rot8 ◦

[
rot ◦ swp2

(11,14) ◦ rot
]2

seq3 := rot13 ◦ swp(11,14) ◦ rot2.

This is demonstrated in Figure 5, and derivation of the sequence is explained in Section 6.4.
In conclusion, performing a transposition τ requires three full rotations of the pipeline, i.e.
takes 3× 16 cycles, with a single swap operation.

In order to optimize the number of clock cycles spent for each τ application, we can add
one or two more swaps into the pipeline. Hence, there is a trade-off between the number
of cycles and the circuit area required to execute the permutation. The sequences of
operations with two and three swap operations are demonstrated in Figure 6, and further
explanations regarding working mechanism of τ is given in Section 6.4.

202

Table 6: Mathematical forms of some permutations over S16

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rot(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

swp(11,14)(i) 1 2 3 4 5 6 7 8 9 10 14 12 13 11 15 0

τ(i) 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

σ(i) 0 5 10 15 12 1 6 11 8 13 2 7 4 9 14 3

1312

8

0 1 2 3

4 5 6 7

9 10 11

14 15


swp3(11,14), rot



3
, rot4

109

5

0 4 8 12

1 2 3 13

6 7 14

11 15 76

2

0 4 8 12

1 5 9 13

3 10 14

11 15


rot, swp2(11,14), rot



2
, rot8

73

2

0 4 8 12

1 5 9 13

6 10 14

11 15

rot2, swp(11,14), rot
13

Figure 5: A transposition can be done with rot and swp(11,14) in 3× 16 cycles. The opera-
tions separated by comma are executed in leftmost-first fashion. The cells corresponding
to fixed swap positions of swp(11,14) are marked with green.

1312

8

0 1 2 3

4 5 6 7

9 10 11

14 15


swp(11,14), rot



2
, rot4

79

2

0 4 8 12

1 5 6 13

3 10 14

11 15 73

2

0 4 8 12

1 5 9 13

6 10 14

11 15

swp(11,14)(7,13), swp(7,13), rot
2, swp2(7,13), rot

2

rot2, swp(11,14), rot
13

1312

8

0 1 2 3

4 5 6 7

9 10 11

14 15

swp(11,14), rot
5

swp(11,14)(7,13)(3,12), rot
4, swp(11,14)(7,13), rot

4

73

2

0 4 8 12

1 5 9 13

6 10 14

11 15

Figure 6: Transposition τ can also be done in 128 (resp. 64) cycles with 2 (resp. 3) swap
operations.

203

Table 7: Specifications of PRESENT bit-permutation layer. Vertical matrix M3 and a
horizontal matrix N0 are colored with green and blue colors respectively and their shared
bits are colored with dark blue-green.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

6.2 From Transpositions to PRESENT Permutation
Now we show how to decompose the PRESENT permutation P . The crucial observation
is that the permutation P from S64 can be written in terms of eight applications of τ
from S16 so long as we chop 64 bits into four 16-bit matrices in a careful manner. We
further use the pipeline rotation to use the same swap operation to perform τ operation
on different sub-matrices of the pipeline.

In the first pass, we divide 64 positions {0, . . . , 63} into four vertical disjoint matrices,
that is we construct M0,M1,M2,M3 such that i-th row, j-th column of Mr is 16i+ j + 4r
(where columns/rows are indexed from 0 to 3). Then we apply τ on each Mr. In the
second pass, we construct horizontal matrices Nr such that i-th row, j-th column of Nr is
4i+ j + 16r. Again, τ is applied over each Nr. The choices of 16 indices for M3 and N0
are demonstrated in Table 7.

More formally, let Z denote an ordered subset {z0, z1, . . . , z15} of {0, . . . , 63} (equiva-
lently Z can be considered as a 4× 4 matrix). Then we define the permutation τZ ∈ S64
as applying τ ∈ S16 over Z while keeping the other 48 bits untouched. Which is to say,
given i ∈ {0, . . . , 63}, if i = zj for some j then τZ(i) = τZ(zj) = zτ(j), and otherwise (if
i /∈ Z) then τZ(i) = i. Our claim is that P = τN0 ◦ τN1 ◦ τN2 ◦ τN3 ◦ τM0 ◦ τM1 ◦ τM2 ◦ τM3 .

For a particular choice of Z, we need to consider that τZ ∈ S64 can differ from τ ∈ S16
in two ways: 1) the positions of (x, y) in swp(x,y) operation and 2) how many rot ∈ S64
application it takes to complete a full rotation in Z. For the former, we need to choose
(z11, z14) as swap positions instead of (11, 14). For the latter, we need to update our
schedule of operations. For instance M3 requires 64 cycles of rot to complete its full
rotation instead of 16. That means during τMr

operations, rot ∈ S64 that rotates the
pipeline is actually different than the one we used previously, i.e. rot ∈ S16, to formulate
τ ∈ S16. In particular, since the pipeline consists of 64 bits, it takes 16 cycles for the
second row of M to move to its first row. Hence, we need to update our decomposition
sequences to interleave τMr operations.

We interleave τM operations as follows. Given

seq1 := rot16 ◦
[
rot ◦ swp3

(47,62)

]12

seq2 := rot32 ◦
[
rot ◦ swp2

(47,62) ◦ rot
]8

seq3 := rot48 ◦
[
rot ◦ swp(47,62) ◦ rot2

]4
204

1312

8

0 1 2 3

4 5 6 7

9 10 11

14 15 98

4

0 5 10 15

12 1 2 11

13 6 7

14 3

rot2, swp4(14,15), rot, swp(14,15)

rot, swp2(14,15), rot, swp(14,15), rot
3 rot3, swp(14,15), rot, swp(14,15), rot

10

94

8

0 5 10 15

12 1 6 11

13 2 7

14 3

Figure 7: Performing σ with swp(11,15) and rot in 2 full rounds, i.e 2× 64 cycles.

then seq3 ◦ seq2 ◦ seq1 = τM0 ◦ τM1 ◦ τM2 ◦ τM3 . And for τN operations, given

seq4 :=
[
rot4 ◦

[
rot ◦ swp3

(59,62)

]3]4

seq5 :=
[
rot8 ◦

[
rot ◦ swp2

(59,62) ◦ rot
]2]4

seq6 :=
[
rot13 ◦ swp(59,62) ◦ rot2

]4
then seq6◦seq5◦seq4 = τN0 ◦τN1 ◦τN2 ◦τN3 . Finally, P = seq6◦seq5◦seq4◦seq3◦seq2◦seq1.
The full worked-out schedules and decomposition of PRESENT permutation is given in
Table 9. Note that we require 2 different swaps (therefore 4 scan flip-flops), to work
this out. Each seqi requires 64 cycles and hence the permutation can be realized with
6 · 64 cycles.

6.3 From Transpositions to GIFT Permutation
The decomposition of GIFT permutation G is slightly different than P . We choose our
matrices such that the first operation becomes transposition τ over nibbles instead of bits,
and the second one consists of series of ad hoc swaps described as the permutation σ in
Table 6. In the same fashion, σ is a permutation over S16, but we can extend it to S64 by
defining σZ for Z being an ordered subset of {0, . . . , 63} as before.

Performing G takes four applications of τ followed by four applications of σ. We choose
our matrices as follows. The i-th row, j-th column ofMr is 4i+16j+r. Then we apply τ on
Mr matrices. In the second pass, the i-th row, j-th column of Nr is 16i+j+4r. Again, σ is
applied over Nr matrices. Our finding is that G = σN0 ◦σN1 ◦σN2 ◦σN3 ◦τM0 ◦τM1 ◦τM2 ◦τM3 .
The sequence of operations to realize G with minimum number of swaps are presented in
Table 10.

6.4 Reducing Cycles and Decryption
In order to complete P and G permutations in fewer number of cycles, we can introduce
one or two more additional swap operations to the pipeline. The sequence of operations
for a reduced number of cycles are given in Tables 9, 10. Below we explain the intuition of
how we can derive a sequence of swap and rotations to execute transposition τ , and how
we can trade one or two more swap operations with a number of cycles.

In Figure 5, the execution of τ in three rounds, i.e. 3×16 cycles, is given. For simplicity,
consider τ in terms of an (arbitrary-order) composition of the swaps: (1, 4), (2, 8), (3, 12),
(6, 9), (7, 13), (11, 14). Equipped with swp(11,14) (denoted with green cells) that swaps two
neighbors of the rightmost bottom cell (i.e. the cells initially storing 11, 14), we begin
constructing our sequence. Since both swp and rot operations move the pipeline (the
direction of the pipeline is such that the bit at i moves to rot(i) as given in Table 6), we

205

Table 8: Specifications of GIFT bit-permutation layer.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
G(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
G(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
G(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
G(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

can actually perform swap between any pair of bits initially located at row x, column
y and row x − 1, column y + 1 for x = 1, 2, 3, y = 0, 1, 2. All we need to do is to wait
until the sufficient number of rot/swp operations are performed so that bit that is initially
at row x, column y arrives at 14 and the pair can be swapped during that cycle with
swp(11,14). However, notice that the operation swp(11,14) does not allow us to swap bits
that do not initially share a corner point, such as bits located at (7, 13) pair. We tackle
this by splitting those swaps into multiple pair-swap operations, e.g. (7, 13) can also be
done with a sequence of (13, 10), (10, 7), (13, 10) pair-swaps, as they are supported by
swp(11,14) operation. Similarly, we can split combination of (3, 12), (6, 9) pairs into the
sequence (12, 9), (9, 6), (6, 3), (12, 9), (9, 6), (12, 9) that is supported by swp(11,14).

In the two previous examples, a crucial observation is that a sequence might require
more than one round of rotation of the pipeline. This is caused by the pipeline movement.
For instance, suppose that we need to execute a sequence of pair-swaps such that (x0, y0)
pair comes later than (x1, y1) but (x0, y0) arrives to its swap position earlier than (x1, y1).
Then we need another round to perform (x0, y0), as the pipeline only moves in one direction.
Similarly, repetition of swaps causes extra rounds to be incurred, as swaps themselves also
move the pipeline. This is the exact reason why for instance the sequence (12, 9), (9, 6),
(6, 3), (12, 9), (9, 6), (12, 9) requires 3 passes in the case of a single swap operation, as
(12, 9) repeats thrice. Here the trade-off is much clearer to see. If we relax our restriction
on the number of allowed swap operations, e.g. by adding two more swap operations, then
we can find better sequences which require less rounds. Below, we consider the case of two
swaps.

Suppose that the pipeline supports swp(11,14) and swp(7,13) besides rot as given in
Figure 6. The second swap operation implies that we can swap pairs such as (12, 6), (9, 3),
(13, 7), (8, 2) in an atomic fashion (that is we do not need to split them into sequences of
swaps) by waiting sufficient number of rot/swp operations so that the pair of bits move
into cells indexed with (13, 7). As the only remaining swap that cannot be done in atomic
fashion is (3, 12), we can split it into the sequence (12, 6), (9, 3), (6, 3), (12, 9), which is
supported by swp(7,13), swp(7,13), swp(11,14), swp(11,14) operations respectively. Indeed, one
can observe that this sequence of swaps are actually run as soon as their pairs are moved
into the correct swap positions in Figure 6.

Finally, if we can spare three swap operations in total, e.g. swp(11,14), swp(7,13),
swp(3,12), then we can perform τ in just one round. This is given in Figure 6. In order to
give the intuition, we further explain how we derive the sequence of operations. Recall
that we need to perform swaps (1, 4), (2, 8), (3, 12), (6, 9), (7, 13), (11, 14). At the very
first cycle, we perform three pair-swaps of (11, 14), (7, 3) and (3, 12) simultaneously, i.e.
running swp(11,14),(7,13),(3,12). Note that since the cells of swaps are not overlapping, we
can perform multiple swaps in the same cycle. For the pair-swap of (6, 9) and (2, 8), we

206

Table 9: Cycle vs. Mux trade-off for PRESENT
swaps round cycles decomposition

PRESENT 2 1 0-47 [swp3
(47,62), rot]12

48-63 rot16

2 0-31 [rot, swp2
(47,62), rot]8

32-63 rot32

3 0-15 [rot2, swp(47,62), rot]4

16-63 rot48

4 0-63 ([swp3
(59,62), rot]3, rot4)4

5 0-63 ([rot, swp2
(59,62), rot]2, rot8)4

6 0-63 [rot2, swp(59,62), rot13]4

PRESENT 4 1 0-15 [swp(47,62),(31,61), swp(31,61), rot2]4

16-47 [swp2
(31,61), rot2]4, [swp(47,62), rot]8

48-64 rot16

2 0-63 [rot2, swp(47,62), rot]4, rot48

3 0-3, 16-19, 32-35, 48-51 swp(59,62),(55,61), swp(55,61), rot2

4-15, 20-31, 36-47, 52-63 swp2
(55,61), rot2, [swp(59,62), rot]2, rot4

4 0-63 [rot2, swp(59,62), rot13]4

PRESENT 6 1 0-15 [swp(47,62),(31,61),(15,60), rot3]4

16-31 [rot, swp(47,62),(31,61), rot2]4

32-63 [rot2, swp(47,62), rot]4, rot16

2 0-7, 16-23, 32-39, 48-55 swp(59,62),(55,61),(51,60), rot4, swp(59,62),(55,61), rot2

8-15, 24-31, 40-47, 56-63 rot2, swp(59,62), rot5

use the 6-th cycle to run swp(11,14),(7,13), as they will be located in cells marked with green
and purple in Figure 6. Finally, the pair-swap (1, 4) will arrive to green cells at 11-th cycle,
so we can run swp(11,14).

The similar tradeoff also applies for σ permutation, as it also consists solely of some set
of pairs to swap as shown in Figure 7. The main difference is that all pair-swaps can be
done atomically with only two swap operations, making it more efficient compared to τ .

One might notice that neither of G and P are involution, that is P (P (i)) = i does not
hold, meaning the permutation logic for encryption cannot be readily used in decryption.
A straightforward idea for decryption that avoids adding extra gates could be based on the
fact that P 3 and G4 are identity permutations. Hence one can repeat P and G two and
three times respectively to get their inverse permutation. However, this is not an optimal
solution, as it double or triples the number of cycles required for the inverse permutation
layer, making decryption significantly more costly than encryption.

On the other hand, we draw attention to the fact that our decomposed permutations τ
and σ are involutions, as they only swap pair of elements. Hence, for decryption, we only
need to change the order of executions. As an example, for PRESENT we only need to run
τNr permutations in the first pass, and τMr

in the second pass for decryption. The number
of cycles and tradeoffs remain exactly same. No extra gates or cycles are required. In
conclusion, the advantage of decomposing a permutation with our swap-based technique
is twofold: it adds quite small amount of gates (2 extra muxes for each swap), and it
readily supports decryption with no extra cost, even if the composed permutation is not
an involution and might seem to require some extra gates for its inverse.

6.5 Lowering latency further
This section is dedicated to the goal of decreasing the latency. In Section 6, we have
shown that various PRESENT and GIFT implementations can be realized with very small

207

Table 10: Cycle vs. Mux trade-off for GIFT

swaps round cycles decomposition

GIFT 2 1 0-63 [swp12
(47,62), rot4]3, rot16

2 0-63 [rot4, swp8
(47,62), rot4]2, rot32

3 0-63 rot8, swp4
(47,62), rot52

4 0-31 [rot2, swp2
(47,63)]4, [swp2

(47,63), rot, swp(47,63)]4

32-63 [rot, swp2
(47,63), rot]4, [swp(47,63), rot3]4

5 0-63 [rot3, swp(47,63)]4, [rot, swp(47,63), rot2]4, rot32

GIFT 4 1 0-23 swp4
(47,62),(31,61),(15,60), rot16, swp4

(47,62),(31,61)

25-63 rot16, swp4
(47,62), rot20

2 0-31 [rot2, swp2
(47,63)]4, [swp2

(47,63), rot, swp(47,63)]4

32-63 [rot, swp2
(47,63), rot]4, [swp(47,63), rot3]4

3 0-63 [rot3, swp(47,63)]4, [rot, swp(47,63), rot2]4, rot32

GIFT 5 1 0-23 swp4
(47,62),(31,61),(15,60), rot16, swp4

(47,62),(31,61)

25-63 rot16, swp4
(47,62), rot20

2 0-31 [rot2, swp(47,63), swp(30,62)]4, [swp(47,63), swp(30,62), rot2]4

32-63 [rot2, swp(47,63), rot]4, [swp(30,62), rot3]4

additional cost, i.e. 4 to 12 scan flip-flops (i.e. 2 to 6 swaps). Even though our approach
achieves roughly 20 % reduction in the circuit area, it causes the latency of the circuit
to increase to threefold. Hence, in this section we show that by carefully arranging all
swap operations to run concurrently, we can beat the state-of-the-art implementations of
PRESENT and GIFT [JMPS17], in terms of both latency and circuit-size.

Building upon our finding in Section 6, we provide realization of PRESENT and GIFT
permutations with 6 swaps that require no additional clock cycles. While encryption/de-
cryption rounds take precisely 64 cycles to complete for each round (add round key and
sbox), our permutation layer operates on the state pipeline seamlessly to ensure that each
bit leaving the pipeline is already moved to its permuted position. There is no need to
freeze the state pipeline or allocate extra clock cycles to the permutation layer either. In
comparison, the smallest known implementation from Jean et al. [JMPS17] requires 4
additional cycles each round, leading to a loss of more than a hundred cycles in latency.
This is because the additional circuitry that handles the permutation layer requires four
cycles to complete the permutation, during which add round key and sbox layers must be
stalled. Our implementation of permutation layer, on the other hand, reaches to maximum
utilization in a bit-serial implementation architecture, as it brings no additional cycles.

The intuitive idea is to use the core idea of Lemma 3, which, in informal sense, states that
(disjoint) cycles can be applied in any order. Since swaps are simply 2-cycles, given (a, b),
(c, d) checking whether they are disjoint is straightforward by a 6= d∧ a 6= c∧ b 6= c∧ b 6= d.
On the contrary, if two dependent swaps are given, e.g. (a, b), (b, c), then we must preserve
the order between them. At this point, one needs to be cautious about which exact
2-cycle is run at some given clock cycle, as swp operations on the hardware actually
operate at different 2-cycles. For instance, swp(11,14) performs to the set of 2-cycles
{(11 + i mod 64, 14 + i mod 64)} for the clock cycles i in which it is active. Hence, if we
expand the operation sequences that leads to two rounds from Tables 9, 10 into a series of
actual 2-cycles applications by replacing each swp(x,y) at active clock cycle i with 2-cycle
(x+ i mod 64, y + i mod 64), the following question arises:

Can the expanded sequence of 2-cycles (which takes 128 according to Section 6) clock
cycles be squeezed into fewer number of clock cycles (close to 64) so that we can complete

208

Table 11: Realization of GIFT and PRESENT permutations in 64 cycles.
mode swap active cycles (round i) active cycles (round i + 1)

PRESENT ENC (20, 5) 22, 26, 30, 34, 39, 43, 47, 51, 56, 60 0, 4
(34, 4) 37, 41, 45, 49, 54, 58, 62 2
(48, 3) 52, 56, 60 0
(60, 57) 62 3, 8, 14, 19, 24, 30, 35, 40, 46, 51, 56
(61, 55) 0, 5, 16, 21, 32, 37, 48, 53
(62, 53) 2, 18, 34, 50

PRESENT DEC (20, 5) 33, 37, 41, 45, 50, 54, 58, 62 3, 7, 11, 15
(34, 4) 48, 52, 56, 60 1, 5, 9, 13
(48, 3) 63 3, 7, 11
(60, 57) 9, 14, 19, 25, 30, 35, 41, 46, 51, 57, 62 3
(61, 55) 11, 16, 27, 32, 43, 48, 59 0
(62, 53) 13, 29, 45, 61

GIFT ENC (24, 12) 29, 30, 31, 32, 49, 50, 51, 52 5, 6, 7, 8
(37, 13) 46, 47, 48, 49 2, 3, 4, 5
(50, 14) 63 0, 1, 2
(61, 45) 0, 4, 8, 12, 14, 18, 22, 26, 32, 36, 40, 44
(62, 30) 2, 6, 10, 14, 16, 20, 24, 28
(63, 15) 0, 4, 8, 12

GIFT DEC (56, 44) 0, 1, 2, 3, 20, 21, 22, 23, 40, 41, 42, 43
(55, 31) 3, 4, 5, 6, 23, 24, 25, 26
(50, 14) 2, 3, 4, 5
(61, 45) 49, 53, 57, 61
(62, 30) 37, 41, 45, 49, 51, 55, 59, 63
(63, 15) 21, 25, 29, 33, 35, 39, 43, 47, 53, 57, 61 1

the permutation layer in one pass (single round), with the help of Lemma 3?
Fortunately, the answer to this question is affirmative. Furthermore, if we make our

choices for the initial swap operations wisely, we can even use the exact same swap opera-
tions in a combined ENC/DEC circuit for PRESENT permutation. For GIFT permutation,
we need to add two more swaps for the combined circuit. The fully worked-out schedule
and the carefully chosen six swaps are given in Table 11, for both encryption and decryption
circuits. In summary, we achieve the following permutation layer implementations:

1. PRESENT ENC only: 6 swaps, 64 clock cycles per permutation

2. PRESENT ENC/DEC: 6 swaps, 64 clock cycles per permutation

3. GIFT ENC only: 6 swaps, 64 clock cycles per permutation

4. GIFT ENC/DEC: 8 swaps, 64 clock cycles per permutation

6.6 Circuit Details
With the improved swap sequences from Table 11, we are able to construct state pipelines
that constantly run, both for PRESENT and GIFT. Each round of the state is 64 bits, and
the round function consists of adding the key for each bits, passing each nibble through
S-box, and finally permuting positions of the bits. This means that the key pipeline needs
to keep up with the state pipeline for key addition, and provide the correct bits without
skipping a clock cycle. This does not constitute a problem for PRESENT, but for GIFT, we
need to improve the way we manage the key pipeline. Therefore, the key scheduling for
GIFT that can constantly run is presented in Section 6.7.

209

SBOX

ISBOX

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

47 46 45 44 43 42 41 40 39 38 37 36 35 34

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

33 32

St(47)

St(31)

St(15)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

47 46 45 44 43 42 41 40 39 38 37 36 35 34

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 09 08 07 06 05 0004 03 02 01

33 32

Key47

Key31

76 75 74 73 72 71 70 69 68 67 66 65 64
Key63

Nibble

St(2 downto 0) & SxD

SxD

Key(79 downto 76)

79 78 77

EDxSI

St(52 downto 49)
OPER

Key(79 downto 76)

St(52) & St(63)

BytesxD(3 downto 0)

Load

IN PT

SxD = OUT CT

EDxSI

KeyOP

StOP

IN KEY
3

Key(79)
Load

St(52)

St(63)

SxD

/4

/4

/4

4/

/4

/4

/2
1

/12

/6

Round & Count

/6

Round Count

Round(4 downto 0)

Round(0 to 4)

/5
/5

EDxSI

RC(4 downto 0)/5

Figure 8: Combined ENC+DEC PRESENT circuit using only 6 swaps with no permutation
latency

The details for both PRESENT and GIFT circuits for both ENC and combined ENC/DEC
variants differ from the previous design presented in Sections 4, 4.2, 5.1 in the following
ways:

• For both encryption only and combined circuits, each round takes exactly 64 clock
cycles, during which key addition, sbox and permutation layers are always active. In
total, we spend 80 clock cycles to load the key and the state simultaneously, and
do not perform any operation while loading. Then, we start our round operations.
We spend 31 × 64 cycles to complete 31 rounds, and use the final 32nd round to
complete the last key addition and output the results simultaneously. In total it
takes 2128 clock cycles.

• During encryption, the key and the state are loaded as in the specified order, i.e. k79
first and k0 last. During decryption, we reverse the order of the key and the state,
so that the direction of the rotation naturally suits both encryption and decryption
at the same time without losing any clock cycles. As an example, we load k0 first
and k79 last during decryption.

• During encryption, each bit enters into the state pipeline at flip flop 00 and exits
from flip flop 63 (see Figure 8). However, during decryption each bit enters into the
pipeline from flip flop 53, and exits from 52.

• Since the key pipeline needs to always provide one bit at each clock cycle, for
PRESENT, we stop its movement at every last 3 clock cycles out of 64 during
encryption. We use a combinatorial logic (a combination of muxes) to select the
correct key bit, by reaching to the remaining key bits that reside in key flip flops 78,
77, 76. During decryption, we actually skip cycles 60, 61, 62 (but not the last one at
63), which requires us to extend the bit selection logic down to key flip flop 75.

210

b
b
b
b

b
b
b
b

b
b
b
b

b
b
b
b

b
b
b
b

b
b
b
b

b
b
b
b

b
b
b
b

0

1

15

14

13

31

30

29

47

46

45

63

62

61

79

78

77

95

94

93

111

110

109

127

126

125

113

112

97

96

81

80

65

64

49

48

33

32

17

16
Key

Columns

Clock Gating

b b b b b

Ck1 Ck2 Ck3 Ck8

0||0||K127||K111

0||0||K95 || K79

0||0||K63 || K47

0||0||K31 || K15

RoundKey

Round

Figure 9: GIFT key schedule circuit

• Except cycle 0, the state pipeline actually contains bits from round i and round i+ 1
at the same time. Given that swaps are constantly operating, roughly half of the
operations they perform update the state from round i, and the remaining operations
modify the state i+ 1. In other words, an actual permutation layer operation of the
state bits are divided into two rounds. This can be seen more clearly in Table 8.

6.7 GIFT key schedule: Reduction of power+latency
The keyschedule of GIFT significantly differs in the sense that it consists of eight 16 bit
columns that are shuffled in a 128 bit register in a peculiar way. Recall the key schedule
function of GIFT (Li (i ∈ [0, 7]) are the columns):

L7||L6|| · · · ||L0 ← L1 ≫ 2||L0 ≫ 12||L7|| · · · ||L2

Each 32 bit block Mi = L2i+1||L2i gets rotated by 32 positions in each cycle, along
with internal rotation of 2, 12 bits within each column. This means two things: first there
is no mixing of key bits between two different 32 bit blocks and second every four cycles,
the individual blocks are back to their starting positions in the registers.

In the original design paper of GIFT [BPP+17], the authors had reported a 96 cycle
per round bit serial implementation. Since there are no circuit level details provided in the
paper, this was probably because not only did the circuit have to produce the appropriate
round key bits during the key addition phase, but it also had to prepare the key register
for the next round. In the first 64 cycles, the last 2 columns would provide the round key
bits to the GIFT state update pipeline (and at the same time undergo the internal column
rotation), and the final 32 bit rotation along with the 2 sets of internal rotations would be
done in the subsequent 32 cycles. Although this seems to be the most natural way to work
the circuit, there are 2 issues to this ideology:

• This requires the key bits to be rotated through the full length of the key register
every four rounds. This contributes to waste of power and energy, considering we
have not utilized the fact that there is no inter-block mixing in the keybits.

• There seems to be no straightforward method to bring down the number of cycles
required per round to less than 96.

In this subsection we look at an alternate keyschedule for the GIFT cipher that solves
both the above problems with slight increase in hardware area. In Figure 9, we present

211

the diagrammatic representation of the circuit. Note that each of the key register columns
have a scan flip-flop at the bottom (shown in green), and are wired to do both serially push
key bits into the register and to do internal rotation in the columns. The first connection
is used only during the load stage to insert all the 128 key bits in the register. We describe
its functioning briefly as follows:

Only internal rotation We find that that it is not necessary to rotate the key bits across
the entire length of the register. Instead we limit ourself to only internal rotation in
the columns. Note that the block Mi (i ∈ [0, 3]) supplies key material for addition in
every 4th round (specifically the rounds 4 · t+ i). Since there is no mixing among
the key material in the blocks, we could simply extract key bits from each block and
use a 4-to-1 multiplexer (controlled by the current round) to filter the appropriate
key material in each round.

Smart use of clock gating In every 64 clock cycles the key pipeline has to supply 32 key
bits to the state pipeline for addition. In round 1, this is usually the keybits k31||k15
(of the current key) for the first state nibble, k30||k14 for the second state nibble and
so on. In a bit serial datapath, it takes the state bits 4 cycles to be appropriately
positioned for the addition. Therefore, we can extract the key bits from the to
flip-flop of the 2 least significant columns for the first nibble. Every 4 cycles the
columns would internally rotate so that the next keybits (k30||k14) are moved to the
top flip-flops of the columns for the next nibble addition. This when done 16 times
over 16 cycles solves the key addition function requirements. Since key material
is extracted from different blocks in every round, all the columns must be rotated
in this manner in the appropriate round (i.e. once in every 4 clock cycles). This
requires some fine grained control over the clock gating circuit.

Key Update Rotating every column once in every 4 cycles over 64 cycles, brings about the
identity transformation, and so we still have to solve the 2, 12 bit internal rotation
required to update the key. The solution to this is simple and requires some more
control over the clock gating circuit. Note that once a block Mi is used for key
addition, it is not required to supply key bits for another 3 rounds. So if theMi block
supplies key bits at round j, the round j + 1 can be used to rotate the individual
columns by 2, 12 bits. So in essence this means that we can easily accommodate
keyschedule in 64 cycles.

Encrypt/Decrypt This circuit can be easily adopted to perform decryption. The only
changes required in decryption is that the key update requires 32 bit rotation in the
opposite direction, and the internal rotation be done by 14, 4 bits respectively. While
the latter change can be easily accommodated by updating the clock gating circuit,
the former change only implies that the order in which the individual blocks/columns
supply key material in the successive rounds is reversed. Thus a simple tweak to
the logic block that produces select signals for the multiplexer is sufficient for this
purpose.

6.8 Area and throughput results
Figure 8 shows a block level diagram of PRESENT using 12 scan flip-flops. The encryption
only circuits of occupy 694 and 907 GE respectively. These are the lowest reported in the
literature so far, and they achieve the maximum utilization by processing exactly 64 bits
each cycle. In the combined encryption+decryption architecture, we have implementations
of both PRESENT and GIFT occupying 786 and 1055 GE respectively. The combined
circuit also attains the same latency. These are also the lowest yet reported in literature.

212

b b b b b b b bb

b b b b b b b bb

b b b b b b b bb

b b b b b b b bb

Key Register

Permutation

Filter Function

Permutation
Generator

IV

Keystream Bit

Figure 10: The FLIP stream cipher

7 Application to FLIP (how to do Knuth shuffles in con-
strained hardware)

FLIP is a family of stream ciphers proposed by Méaux et al. at Eurocrypt 2016 for FHE
based applications. In [MJSC16] the authors suggested a stream cipher based solution to
implement the above. The FLIP family stream ciphers have the lowest multiplicative depth
compared with previous ciphers. Several versions are provided including 80-bit and 128-bit
security instantiations. The main design principle is to filter a constant key register with a
time-varying public bit permutation. For 80-bit security the authors suggest the use of
the instance FLIP (42, 128,8 ∆9) which uses a 530-bit secret key with hamming weight 265.
The internal state Statei of the cipher is a permutation of the original secret key sk. The
cipher works as follows:

• Let skS ∈ {0, 1}530 with HW (sk) = 265.

• For i = 1→ n do

1. Choose a random permutation Pi from the symmetric group S530. (Pi may be
a function of IV)

2. Let Statei = Pi(sk).
3. Compute zi = F (Statei).

In the above definition, F is a {0, 1}530 → {0, 1} Boolean function of multiplicative depth
4. It consists of a linear function of 42 variables, a quadratic bent function of 128 variables
and the remaining 360 variables are used to construct 8 triangular functions of algebraic
degree 9 each. For example a degree 3 triangular function is given as x1 + x2x3 + x4x5x6
(a degree n function thus has n(n+ 1)/2 variables).

Although the designers stop short of providing detailed design specifications, they do
however mention that the permutations are generated by employing a combination of the
IV and a PRP (possibly in the counter mode) to generate a sequence of pseudo-random
bits, which are then used as random inputs to a Knuth shuffle module which generates
the permutation. The question is therefore how to efficiently do a Knuth shuffle in a
lightweight setting. In this let us make two observations:

Observation 1: If P1 and P2 are random permutations over any symmetric group then
P1 ◦ P2 is also a random permutation. This means that we can modify the sequence
of operations in FLIP to the following:

• Let sk ∈ {0, 1}530 with HW (sk) = 265.

213

b b
b529 b528 b527 b1 b0

Sel Sel

b2b526
bb

bb
bb

S1 S2

Sel Sel Sel Sel Sel

Figure 11: 2nd Circuit for Knuth Shuffle

• State0 = sk

• for i = 1→ n do
1: Pi

$← S530.
2: Let Statei = Pi(Statei−1).
3: Compute zi = F (Statei).

This makes the ith state Pi ◦ Pi−1 ◦ · · · ◦ P1(sk) in place of Pi(sk) but since Pi and
Pi ◦ Pi−1 ◦ · · · ◦ P1 are both random permutations, this does not differ from the
ideology of FLIP.

Observation 2: The above allows us to simply place the secret key in a register of equal
length and do state updates by implementing the permutations Pi via some circuit.
Since the authors recommend Knuth Shuffle, let us look at the algorithm. Let the
state be denoted by the bits b529, b528, . . . , b0.

• for i from 529 downto 1 do
1: j ← random integer such that 0 ≤ j ≤ i.
2: swap bj and bi

Each of these swaps could be implemented with a circuit as shown in Figure 1.

7.1 First Attempt
The first idea is therefore to use the circuit in Figure 1 to implement a swap. As explained
in Lemma 4, any swap of the form bi ↔ bj (j < i) is implemented by the sequence of
functions:

[ri ◦ v ◦ r529−i] ◦ [ri−1 ◦ v ◦ r530−i] ◦ · · · ◦ [rj+2 ◦ v ◦ r527−j] ◦ [rj+1 ◦ vi−j ◦ r529−i]

and by the identity function when i = j. This transpositions would take 530(i− j) cycles
to complete and we could certainly use this circuit to implement one swap. The average
value of i− j is around 530

4 and so implementing 529 swaps one after the other would take
around 5303

4 ≈ 225 cycles which is a high price to pay for one keystream bit.

7.2 Second Attempt
We try to investigate if we can affect any speedup by increasing the circuit size. One of
the reasons that a swap takes 530(i− j) cycles is that data can be transferred in only one

214

direction. This is true because as per Lemma 4, the above sequence of transitions may
also be written as

r1+i ◦ w ◦ (r529 ◦ w)i−j−1 ◦ (r ◦ w)i−j−1 ◦ r529−i

= (r−1)530−i ◦ (r−1 ◦ w′)i−j−1 ◦ (r ◦ w)i−j ◦ r529−i

In the above equation w′ is a permutation that swaps the 1st and 0th bits i.e. (1, 0). The
above is not difficult to deduce once we use the fact r−1 = r529 and r−1 ◦w′ = r ◦w ◦ r−2.
Denote u = r−1 ◦ w′, then the above is written as (r−1)530−i ◦ ui−j−1 ◦ vi−j ◦ r529−i. It
can be seen that the circuit of Figure 11, it is possible to realize the functions r, u, v by
appropriately adjusting the Sel, S1 and S2 signals. If we assume that in Figure 11, the
signal at the top is filtered when the corresponding select signal is 0 and the one at the
bottom when select is 1, it is easy to deduce that Sel, S1, S2 = (0,0,0) achieves v, Sel, S1,
S2 = (0,1,1) achieves r and Sel, S1, S2 = (1,*,*) achieves u (* denotes any signal 0 or 1).

The algorithm for the Knuth shuffle basically consists of applying the following trans-
positions

πK = (1, j1) ◦ (2, j2) ◦ (3, j3) ◦ · · · ◦ (528, j528) ◦ (529, j529), with (ji ≤ i, ∀ i)

Denote ∆i = i− ji, we have

(i, ji) =
{

(r−1)530−i ◦ u∆i−1 ◦ v∆i ◦ r529−i, if ∆i > 0,
(r−1)529−i ◦ r529−i, if ∆i = 0.

This results in the following expression for πK :

πk = r ◦ [u∆1−1 ◦ v∆1] ◦ [u∆2−1 ◦ v∆2] ◦ · · · ◦ [r]
when ∆i = 0

◦ · · · ◦ [u∆529−1 ◦ v∆529]

The above expression is solely in terms of r, u, v and thus can be executed on the circuit
in figure 11. Unless ∆i = 0 which requires a single rotation, each of the expressions in
the square braces takes 2∆i − 1 cycles. Since ∆i has an average value of 530

4 , each shuffle
takes around 530 · (2 · 530

4 − 1) ≈ 217 cycles. A synthesis of the above circuit using the
standard cell library of the STM 90nm logic process, yielded a circuit of 3581 GE. The
circuit is certainly an improvement on the previous circuit but still takes a lot of cycles to
produce one keystream bit.

7.3 Third Attempt
The previous circuits took time proportional to N3 and N2 clock cycles respectively to
produce one keystream bit where N is the size of the key. In this part, we will try to
construct a circuit in which the number of clock cycles taken to produce a keystream bit
is at most linear in N . In order to achieve this, let us look at a few facts:

1: In order to achieve a shuffle in linear time, each individual swap has to be executed in
constant time.

2: Observe that logically, a swap bi ↔ bj needs to be executed only when bi and bj are
opposite values. No swap operation is really necessary if bi and bj are logically equal.
Furthermore, when bi and bj are logically unequal, a swap is essentially executed by
toggling the values of both bi and bj , i.e. swap(bi, bj) is same as bi ← not bi and
bj ← not bj .

3: In order to design this circuit, we note that a memory element must be able to
accommodate a) the secret key during the initial loading cycle, b) hold the current

215

b
D0

D1

ENABLE

CLK

Key

LOAD

(a) Memory Element

⊕

b

b

b

b

b

b

D
E
C
O
D
E
R

b

b

b

b

b

b

D
E
C
O
D
E
R

i j

e0

e1

e529

d0

d1

d529

⊕

t = 0 → 529

et

dt

c

LOAD

LOAD

ent

i j

bi bj

c

EN=en0, en1, . . . , en529

b0, b1, . . . , b529 KEY

b0, b1, . . . , b529

(b) Circuit Details

Figure 12: 3rd Circuit for FLIP

value stored in the flip-flop for the next cycle, if no swap is required and finally c)
toggle the current logic state if a swap is required at the particular location. In
order to do this we use a scan flip-flop with an additional ENABLE pin that allows
transitions at the positive clock edge only if it is HIGH, as shown in Figure 12a.

Thus we propose the circuit in Figure 12b. The circuit comprises of the following
elements:

Multiplexer: We employ two banks of multiplexers to filter out the bits bi and bj from
the current state. We compute c = bi ⊕ bj to determine the difference in the logic
values of bi and bj .

Decoder: We employ 2 decoder circuits that convert the 10-bit values i and j into a
corresponding set of 530-bit signals et, dt (for t = 0→ 529), such that et = 1 iff t = i,
and dt = 1 iff t = j, and all signals are 0 otherwise. These signals are employed to
feed the the ENABLE ports of the register bank. We argue that the logic value ent
driving the t− th flip-flop is given as [(et ⊕ dt) · c] OR LOAD. The logic behind this
is as follows. The signal LOAD is high only in the first cycle when in loads the key
on to the register and is low thereafter. Thus ent is forced to be high when LOAD is
high. In the subsequent cycles ent evaluates as (et ⊕ dt) · c. If c = 0, i.e. bi and bj
are of same parity then ent evaluates to 0 which means that the flip-flop holds its
previous value as no swap is required. If c = 1, then ent = et ⊕ dt. Now et = dt = 0
implies that no swap is scheduled at location t in that particular clock cycle and
in this event ent is 0. Now et = dt = 1 occurs when i = j in some iteration of the
Knuth Shuffle. Here too, no swap operation is required and ent evaluates to 0. When
et 6= dt, ent evaluates to 1, and it is then that bi and bj are both toggled to effect a
swap.

From the above description of the circuit elements and operational details, it is clear
that each swap can be performed in one clock cycle, and so the shuffle takes exactly
529 + 1 = 530 (1 extra cycle for key loading) clock cycles to execute a shuffle and hence
produce one keystream bit. This circuit when synthesized with standard cell library of the
STM 90nm logic process occupies around 8605 GE.

216

1 Swap (943 GE) 6 Swaps (694 GE)

Key Register (273 GE)

State register(218 GE)

Control Signal Lookup table (178 GE)

S-box (21 GE)

Xors, Counters, Controller (254 GE)

Key Register (267 GE)

State register(222 GE)

S-box (21 GE)

Xors, Counters, Controller (184 GE)

29.0%

23.1% 18.8%
2.2%

26.9%
38.5%

32.0%

3.0%

26.5%

Figure 13: Breakdown of the area requirements of the individual components of
PRESENT in the 1 and 2 swap architectures

8 Results and Conclusion
In this paper we looked at a few circuit constructions aimed at achieving minimalism in
block cipher and stream cipher circuits. The final results are presented in Table 1. More
specifically, we tried to answer the question if bit-permutations like the one used in the
linear layers of block ciphers PRESENT and GIFT can be executed in a flip-flop array
using only two scan flip-flops. While it was already known [Con] that the answer to the
above question was yes, a straightforward application of the ideas [Con] would take a lot
of clock cycles, and thus affect the throughput of the resulting circuit drastically. Much
of the paper is then dedicated to reducing the number of operations required to execute
the bit permutation in this setting. As an outcome, we construct extremely lightweight
implementations of the PRESENT and GIFT circuits for both encryption (E) and combined
encryption+decryption (ED) functionalities. In the 2 scan flip-flop setup, the circuits of
both PRESENT and GIFT are, for both the (E) and (ED) variants, way too large and have
poor throughput.

8.1 Increasing scan flip-flops
We tried to see the effect on latency if we added more and more scan flip-flops to the
design and finally achieved 64 cycle per round implementations of both PRESENT and
GIFT circuits at 694 and 907 GE respectively. These are lowest reported in literature so
far. Figure 13 shows a breakdown of the area requirements of the individual components of
PRESENT in the 1 and 6 swap architectures. It can be clearly seen the additional control
logic used in the 1 swap circuit proves counterproductive in terms of circuit area. One of
the reasons that the 6 swap circuit taking 64 cycles/round consumes much less hardware
area is the reduced control circuit. A 64 cycle per round finite state machine would require
only a 6 bit register to implement and the associated logic blocks used to produce control
signals are also much smaller. This area, of course, increases as the number of cycles per
round increases. In the (ED) architecture, we have implementations of both PRESENT and
GIFT occupying 786 and 1055 GE respectively. These are also the lowest yet reported in
literature.

We extend the above ideas to construct a circuit for the stream cipher FLIP. The first
circuit we investigate is due to a straightforward application of the results [Con], but

217

takes around 225 cycles to produce one keystream bit. This is deemed too impractical
to be of any use. The second circuit we construct takes time quadratic in the size of
the secret key to produce a keystream bit and occupies only 3581 GE. We then observe
that a third circuit that uses slightly different ideas for bit swapping can achieve the
FLIP functionality in linear time but occupies around 8605 GE. These are the first reported
hardware implementations of FLIP.

8.2 Final words
Although one of the goals of this paper is to achieve the smallest area implementation of
block ciphers with bit permutations as linear layers, we have also tried to investigate the
theory to implement bit permutations in a serialized manner. In this exercise we learnt
many interesting things:

• Although implementing block ciphers with only 2 scan flip-flops is a challenging and
interesting task, it proves counterproductive, because the control circuit required to
operate such a design would be large and thus negate any minimalism achieved due
to less number of scan flip-flops in the design.

• On the other hand, increasing the number of scan flip-flops gradually, not only reduces
the circuit latency, but it also reduces the total area of the the circuit. The principal
reason for this is that with reduced latency, the size of control circuit required to
operate the design can be constructed in a much more compact manner. In fact
the best implementation of both PRESENT and GIFT circuits, are those which allow
slight increase in number of scan flip-flops to bring per round latency to 64 cycles.
This reduces the size of the control circuit more than the corresponding increase due
to increase in number of scan flip-flops.

• We hope that our findings can help derive design strategies for future cryptosystems.

Acknowledgments
We thank Christina Boura for helping to improve the quality of the paper. Subhadeep
Banik and Fatih Balli are supported by the Ambizione Grant no. PZ00P2_179921, awarded
by the Swiss National Science Foundation (SNSF). Francesco Regazzoni received support
from the European Union Horizon 2020 research and innovation program under CERBERO
project (grant agreement number 732105).

References
[BBR15] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Exploring

energy efficiency of lightweight block ciphers. In Selected Areas in Cryptography
- SAC 2015 - 22nd International Conference, Sackville, NB, Canada, August
12-14, 2015, Revised Selected Papers, pages 178–194, 2015.

[BBR16] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-AES:
A Compact Implementation of the AES Encryption/Decryption Core. In
Progress in Cryptology - INDOCRYPT 2016 - 17th International Conference
on Cryptology in India, Kolkata, India, December 11-14, 2016, Proceedings,
pages 173–190, 2016.

[BBR17a] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Compact
circuits for combined AES encryption/decryption. Journal of Cryptographic
Engineering, pages 1–15, 2017.

218

[BBR17b] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Efficient
configurations for block ciphers with unified ENC/DEC paths. In 2017 IEEE
International Symposium on Hardware Oriented Security and Trust, HOST
2017, McLean, VA, USA, May 1-5, 2017, pages 41–46, 2017.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
Family of Block Ciphers and Its Low-Latency Variant MANTIS. In Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages
123–153, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer
Science, pages 450–466. Springer, 2007.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards
Reaching the Limit of Lightweight Encryption. In Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, pages 321–345, 2017.

[BSS+] Ray Beaulieu, Douglas Shors, Jason Smith, Treatman-Clark Stefan, Bryan
Weeks, and Louis Wingers. Simon and Speck: Block Ciphers for the
Internet of Things. Available at https://csrc.nist.gov/csrc/media/
events/lightweight-cryptography-workshop-2015/documents/papers/
session1-shors-paper.pdf.

[CDK09] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN
and KTANTAN - A Family of Small and Efficient Hardware-Oriented Block
Ciphers. In Cryptographic Hardware and Embedded Systems - CHES 2009,
11th International Workshop, Lausanne, Switzerland, September 6-9, 2009,
Proceedings, pages 272–288, 2009.

[CLM16] Victor Cauchois, Pierre Loidreau, and Nabil Merkiche. Direct construction of
quasi-involutory recursive-like MDS matrices from 2-cyclic codes. IACR Trans.
Symmetric Cryptol., 2016(2):80–98, 2016.

[Con] Keith Conrad. Generating Sets. Available at http://www.math.uconn.edu/
~kconrad/blurbs/grouptheory/genset.pdf.

[CP08] Christophe De Cannière and Bart Preneel. Trivium. In Matthew J. B. Robshaw
and Olivier Billet, editors, The eSTREAM Finalists, volume 4986 of Lecture
Notes in Computer Science, pages 244–266. Springer, 2008.

[DL18] Sébastien Duval and Gaëtan Leurent. MDS matrices with lightweight circuits.
IACR Trans. Symmetric Cryptol., 2018(2):48–78, 2018.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer Verlag, Berlin, Heidelberg, New York,
2002.

[HJMM08] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. The
Grain Family of Stream Ciphers, pages 179–190. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

219

https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/papers/session1-shors-paper.pdf
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/papers/session1-shors-paper.pdf
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/papers/session1-shors-paper.pdf
http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/genset.pdf
http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/genset.pdf

[JMPS17] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-Sliding:
A Generic Technique for Bit-Serial Implementations of SPN-based Primitives -
Applications to AES, PRESENT and SKINNY. In Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, pages 687–707, 2017.

[KLSW17] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer. Shorter
linear straight-line programs for MDS matrices. IACR Trans. Symmetric
Cryptol., 2017(4):188–211, 2017.

[LSL+19] Shun Li, Siwei Sun, Chaoyun Li, Zihao Wei, and Lei Hu. Constructing
low-latency involutory MDS matrices with lightweight circuits. IACR Trans.
Symmetric Cryptol., 2019(1):84–117, 2019.

[LW17] Chaoyun Li and Qingju Wang. Design of lightweight linear diffusion layers
from near-mds matrices. IACR Trans. Symmetric Cryptol., 2017(1):129–155,
2017.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude
Carlet. Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts.
In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vi-
enna, Austria, May 8-12, 2016, Proceedings, Part I, pages 311–343, 2016.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of aes. In
Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011,
pages 69–88, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[nis19] Nist lightweight cryptography project. https://csrc.nist.gov/projects/
lightweight-cryptography, 2019.

[RPLP08] Carsten Rolfes, Axel Poschmann, Gregor Leander, and Christof Paar. Ultra-
Lightweight Implementations for Smart Devices - Security for 1000 Gate
Equivalents. In Smart Card Research and Advanced Applications, 8th IFIP
WG 8.8/11.2 International Conference, CARDIS 2008, London, UK, September
8-11, 2008. Proceedings, pages 89–103, 2008.

[SS16] Sumanta Sarkar and Habeeb Syed. Lightweight diffusion layer: Importance of
Toeplitz matrices. IACR Trans. Symmetric Cryptol., 2016(1):95–113, 2016.

Appendices
A Proof of Lemma 3
Proof. We start with A as it is not difficult to prove. Note that cj ’s are themselves disjoint
decompositions of π. Thus it is easy to verify that any sj1(a) and sj2(b) will be disjoint
for any j1 6= j2 and any a, b. In particular, they are of course disjoint when a = b. This
proves that all transpositions in any given χk are disjoint. Since disjoint cycles commute,
composing the elements of χk in any order, gives the same permutation. This proves that
θk is invariant with respect to ordering.

220

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography

Denote by µj [x → y] = sj(x) ◦ sj(x − 1) ◦ · · · ◦ sj(y) (for x ≥ y). Naturally we have
µj [ij − 1 → 0] = cj . Although cj is a cycle of order ij , for the completeness of the
proof, let us define sj(ij), sj(ij + 1), . . . , sj(im−1 − 1) to be the identity permutation
with Asj(ij),Asj(ij+1), . . . ,Asj(im−1−1) equal to ∅. With this definition we also have
µj [im−1 − 1→ 0] = cj . Now to prove B, consider the following composition θ2 ◦ θ1.

θ2 ◦ θ1 = sm−1(2) ◦ sm−2(2) ◦ · · · ◦ s0(2) ◦ sm−1(1) ◦ sm−2(1) ◦ · · · ◦ s0(1) (1)
= sm−2(2) ◦ · · · ◦ s0(2) ◦ (sm−1(2) ◦ sm−1(1)) ◦ sm−2(1) ◦ · · · ◦ s0(1) (2)
= sm−2(2) ◦ · · · ◦ s0(2) ◦ µm−1[2→ 1] ◦ sm−2(1) ◦ · · · ◦ s0(1) (3)
= µm−1[2→ 1] ◦ sm−2(2) ◦ · · · ◦ s0(2) ◦ sm−2(1) ◦ · · · ◦ s0(1) (4)
= µm−1[2→ 1] ◦ µm−2[2→ 1] ◦ · · · ◦ µ0[2→ 1] (5)

(1)→ (2) is true because all θk’s are invariant to internal ordering of transpositions as
proven in A. (2)→ (3) follows from the definition of µj [x→ y]. To prove (3)→ (4), we
start with the fact that sj1(a) and sj2(b) are disjoint for any j1 6= j2 and any a, b, which is
to say

Asj1 (a) ∩ Asj2 (b) = ∅, ∀j1 6= j2,∀ a, b

Therefore, we have, for all j ∈ [0,m− 2], the following relation:

Aµm−1[2→1] ∩ Asj(2) = (Asm−1(2) ∪ Asm−1(1)) ∩ Asj(2)

= (Asm−1(2) ∩ Asj(2)) ∪ (Asm−1(1) ∩ Asj(2))
= ∅ ∪∅ = ∅

This proves that µm−1[2 → 1] is disjoint with all of sm−2(2), sm−3(2) . . . , s0(2) and so
(3) → (4) follows. (4) → (5) is just a generalization of steps (2), (3), (4) for the indices
m− 2,m− 3, . . . , 0. Proceeding as in mathematical induction, we can follow exactly the
steps above to prove that θ3 ◦ θ2 ◦ θ1 = µm−1[3→ 1] ◦ µm−2[3→ 1] ◦ · · · ◦ µ0[3→ 1] and
ultimately the fact that

θim−1−1 ◦ θim−2−1 ◦ · · · ◦ θ1 = µm−1[im−1 − 1→ 1] ◦ µm−2[im−1 − 1→ 1] ◦ · · · ◦ µ0[im−1 − 1→ 1]
= cm−1 ◦ cm−2 ◦ · · · ◦ c0 = π

B Proof of Lemma 5
Proof. The only thing we need to show is that any transposition (x, y) with x > y and
x ≡ y mod κ, can be generated using wκ and r. Let z = x−y

κ . We have

(x, y) = (x, x− κ) ◦ (x− κ, y) ◦ (x, x− κ)
= (x, x− κ) ◦ (x− κ, x− 2κ) ◦ (x− 2κ, y) ◦ (x− κ, x− 2κ) ◦ (x, x− κ)
= (x, x− κ) ◦ (x− κ, x− 2κ) ◦ · · · ◦ (y + κ, y) ◦ · · · ◦ (x− κ, x− 2κ) ◦ (x, x− κ)
= (r−x ◦ wκ ◦ rx) ◦ (r−κ−x ◦ wκ ◦ rκ+x) ◦ · · · ◦ (rκ−y ◦ wκ ◦ ry−κ) ◦ · · · ◦

(r−κ−x ◦ wκ ◦ rκ+x) ◦ (r−x ◦ wκ ◦ rx)
= r−x ◦ wκ ◦ (r−κ ◦ wκ)z−1 ◦ (rκ ◦ wκ)z−1 ◦ rx

= r64−x ◦ wκ ◦ (r64−κ ◦ wκ)z−1 ◦ (rκ ◦ wκ)z−1 ◦ rx

= r1+x ◦ wκ ◦ (r64−κ ◦ wκ)z−1 ◦ (rκ ◦ wκ)z−1 ◦ r63−x

221

C Proof of Lemma 7
Proof. To begin with we have p1 and p2 disjoint, as Ap1 ∩Ap2 = ∅. Note that this implies
Bp1 ∩Bp2 = ∅ (although the converse may not always be true). This means that the 1’s in
the # »Selp1 and # »Selp2 vectors are not aligned. Which is to say # »Selp1 |̂

»Selp2 has 1’s in all the
locations in which either # »Selp1 or # »Selp2 has 1. Let # »Selp = # »Selp1 |̂

»Selp2 . We already know that
Bp would contain all elements of Bp1 and Bp2 . Thus the arithmetic sequence structures of
both Bp1 and Bp2 are preserved in Bp. Furthermore, Ap1 ∩ Ap2 = ∅ ensures that no new
arithmetic sequence of common difference κ is created Bp that are already not present in
Bp1 or Bp2 . We will prove this by contradiction: if possible let ∃b1 ∈ Bp1 , b2 ∈ Bp2 such
that b2 = b1 +κ. Then by definition 63−b1, 63−b1−κ ∈ Ap1 and 63−b2, 63−b2−κ ∈ Ap2 .
But 63− b1 − κ = 63− b2, and so this contradicts the fact that Ap1 ∩ Ap2 = ∅. Since the
arithmetic structures are preserved, p essentially executes p1 and p2 concurrently: we have
∀α ∈ Ap1 , p(α) = p1(α) and ∀α ∈ Ap2 , p(α) = p2(α). Also p(α) = α for all α 6∈ Ap1 ∪ Ap2 .
Thus we have p = p1 ◦ p2.

D Proof of Lemma 8
Proof. Since Aπ0 ∩ Aθ0 = ∅, from the result of the previous lemma, we can certainly use
»Selπ0 |̂

»Selθ0 to get π0 ◦ θ0. Since all Aπi ’s and Aθi ’s are subsets of Aπ0 and Aθ0 respectively,
we also have Aπi ∩ Aθi = ∅ for all 0 ≤ i ≤ z1 − 1. We can then use # »Selπi |̂

»Selθi to get
πi ◦ θi for all 0 ≤ i ≤ z1 − 1. Thus if # »Selp = # »Selσ1 |̂

»Selσ2 , we naturally have

p = (πz1−1 ◦ θz1−1) ◦ (πz1−2 ◦ θz1−2) ◦ · · · ◦ (π1 ◦ θ1) ◦ (π0 ◦ θ0)

Denote by π[i → j] = πi ◦ πi−1 ◦ · · · ◦ π0 and θ[i → j] = θi ◦ θi−1 ◦ · · · ◦ θ0. Note that
Aπ[i1→j1] ∩ Aθ[i2→j2] = ∅, since the parent sets Aπ0 and Aθ0 are themselves disjoint. So
we have

p = (πz1−1 ◦ θz1−1) ◦ (πz1−2 ◦ θz1−2) ◦ · · · ◦ (π1 ◦ θ1 ◦ π0 ◦ θ0) (6)
= (πz1−1 ◦ θz1−1) ◦ (πz1−2 ◦ θz1−2) ◦ · · · ◦ (θ1 ◦ π1 ◦ π0 ◦ θ0) (7)
= (πz1−1 ◦ θz1−1) ◦ (πz1−2 ◦ θz1−2) ◦ · · · ◦ (θ1 ◦ π[1→ 0] ◦ θ0) (8)
= (πz1−1 ◦ θz1−1) ◦ (πz1−2 ◦ θz1−2) ◦ · · · ◦ (θ1 ◦ θ0 ◦ π[1→ 0]) (9)
= (πz1−1 ◦ θz1−1) ◦ (πz1−2 ◦ θz1−2) ◦ · · · ◦ (θ[1→ 0] ◦ π[1→ 0]) (10)

(6→ 7) follows because Aπ1 ∩ Aθ1 = ∅. (8→ 9) follows because Aπ[1→0] ∩ Aθ0 = ∅. The
remaining statements follow from definition. The steps in the above equations can be
repeated for i = 2 to z1 − 1 to get p = π[z1 − 1→ 0] ◦ θ[z1 − 1→ 0] = σ1 ◦ σ2.

E Proof of Lemma 9
Proof. First of all, let us clarify what we are trying to do. We want to implement

σ1 ◦ σ2 = πz1−1 ◦ πz1−2 ◦ · · · ◦ π2 ◦ π1 ◦ π0 ◦ (x2, y2)
= πz1−1 ◦ πz1−2 ◦ · · · ◦ πi+1 ◦ π[i→ 0] ◦ (x2, y2)
= πz1−1 ◦ πz1−2 ◦ · · · ◦ πi+1 ◦ (π[i→ 0](x2), π[i→ 0](y2)) ◦ π[i→ 0]
= πz1−1 ◦ πz1−2 ◦ · · · ◦ πi+1 ◦ p ◦ π[i→ 0]

We are therefore trying to implement πz1−1 ◦ πz1−2 ◦ · · · ◦ πi+1 = π[z1 − 1→ i+ 1] and p
concurrently after implementing π[i→ 0]. Now Bπi+1 ,Bπi+2 , . . . are singleton sets and so
are Bγ1 ,Bγ2 , If Bγ0 = {g1, g1 + κ, g1 + 2κ, . . . , h1} and Bπi+1 = {g2} are disjoint (note

222

we have taken h1 > g1), then we have

Bγ1 = {h1 − κ}, Bπi+2 = {g2 − κ}
Bγ2 = {h1 − 2κ}, Bπi+3 = {g2 − 2κ}

...

Thus Bγj and Bπi+j+1 are not only disjoint (for j ≥ 1), but the distance between the
single elements in the sets equals g2 − h1 which is a non-zero constant. Note that we have
g1 ≡ h1 ≡ g2 mod κ, since Aπ0 ∩ Aθ0 6= ∅. Since Bγ0 ∩ Bπi+1 = ∅, we must have either
g2 ≥ h1 + κ or g2 < g1 − κ. g2 = g1 − κ is not possible as it leads to a contradiction: if
g2 = g1 − κ, then the largest element in Bπ0 is g1 + iκ, and so σ1 = (u, 63− g1 − (i+ 1)κ),
for some u. We have p = (63− h1, 63− g1 − κ) = (63− h1, π[i→ 0](63− g1 − (i+ 1)κ)),
which means σ2 = (v, 63 − g1 − (i + 1)κ), for some v. This contradicts the fact that σ1
and σ2 are disjoint. Denote z3 = π[i→ 0](x2)− π[i→ 0](y2)). We have

Aγ0 = {63− g1, 63− g1 − κ, . . . , 63− h1, 63− h1 − κ}, Aπi+1 = {63− g2, 63− g2 − κ}
Aγ1 = {63− h1 + κ, 63− h1}, Aπi+2 = {63− g2 + κ, 63− g2}

Aγ2 = {63− h1 + 2κ, 63− h1 + κ}, Aπi+3 = {63− g2 + 2κ, 63− g2 + κ}
...

Aγq−1 = {63− g1, 63− g1 − κ}.

Thus Aγj and Aπi+j+1 are non-disjoint (for j ≥ 0) only if g2 = h1 + κ or g2 = g1 − κ. Also
note that

Aπ[i+j+1→i+1] = {63− g2 − κ, 63− g2, 63− g2 + κ, . . . , 63− g2 + jκ}

We want to find Aπ[i+j+1→i+1] ∩ Aγj . The numerical maximum of Aπ[i+j+1→i+1] is
63− g2 + jκ and numerical minimum of Aγj is 63−h1 + (j−1)κ. The min - max difference
comes out to be g2−h1−κ. If g2 > h1 +κ, this is always greater than 0 and so the sets are
disjoint. If g2 < g1−κ, then the minimal element of Aπ[i+j+1→i+1], i.e. 63−g2−κ > 63−g1
which is the maximal element in the Aγj ’s. Here too the sets are disjoint. So we have
three cases to analyze (A) g2 > h1 + κ or g2 < g1 − κ, (B) g2 = h1 + κ. So let us split the
analysis into two cases:

A: g2 > h1 + κ or g2 < g1 − κ: We have Aγj ∩ Aπi+j+1 = Bγj ∩ Bπi+j+1 = ∅ for all
j ≥ 0. We also have Aπ[i+j+1→i+1] ∩ Aγj = ∅. This means that # »Sel1̂|

»Sel2 has 1’s in
locations where either # »Sel1 or # »Sel2 is 1. Let z be the final length of # »Sel1,

»Sel2 after
padding. By Lemma 7, if # »SelΠ = # »Sel1̂|

»Sel2, then

Π = (πz+i ◦ γz−1) ◦ (πz+i−1 ◦ γz−2) ◦ · · · ◦ (πi+2 ◦ γ1) ◦ (πi+1 ◦ γ0) (11)
= (πz+i ◦ γz−1) ◦ (πz+i−1 ◦ γz−2) ◦ · · · ◦ (γ1 ◦ πi+2) ◦ (πi+1 ◦ γ0) (12)
= (πz+i ◦ γz−1) ◦ (πz+i−1 ◦ γz−2) ◦ · · · ◦ (γ1 ◦ π[i+ 2→ i+ 1] ◦ γ0) (13)
= (πz+i ◦ γz−1) ◦ (πz+i−1 ◦ γz−2) ◦ · · · ◦ (π[i+ 2→ i+ 1] ◦ γ1 ◦ γ0) (14)
= (πz+i ◦ γz−1) ◦ (πz+i−1 ◦ γz−2) ◦ · · · ◦ (π[i+ 2→ i+ 1] ◦ γ[1→ 0]) (15)
= π[z + i→ i+ 1] ◦ γ[z− 1→ 0] = π[z + i→ i+ 1] ◦ p (16)

(11 → 12) follows because Aγj ∩ Aπi+j+1 = ∅ for all j. (13 → 14) follows because
Aπ[i+j+1→i+1] ∩ Aγj = ∅ for all j. (15→ 16) follows after repeating (11→ 15) for
j = 0, 1, 2 . . . etc. The remaining statements follow by definition.

223

B: g2 = h1 + κ: Before we analyze this case, let us restate a result in permutation theory
(xn1 , xn2 , . . . , xnl) ◦ (xnl , xnl+1 , . . . , xnk) = (xn1 , xn2 , . . . , xnl , . . . , xnk). (17)

Since g2 = h1 + κ, the following is easy to verify (denote h1 = 63− h1, g1 = 63− g1)

πi+j+1 = (h1 + (j − 2)κ, h1 + (j − 1)κ), and

γj =
{

(h1 − κ, h1, h1 + κ, . . . , g1), if j = 0,
(h1 + (j − 1)κ, h1 + jκ), otherwise.

By directly applying equation (17), we can obtain the following

πi+j+1 ◦ γj =
{

(h1 − 2κ, h1 − κ, h1, h1 + κ, . . . , g1), if j = 0,
(h1 + (j − 2)κ, h1 + (j − 1)κ, h1 + jκ), otherwise.

(18)

π[i+ j + 1→ i+ 1] = (h1 + (j − 1)κ, . . . , h1, h1 − κ, h1 − 2κ)
By induction it is easy to deduce that

γ[j → 0] = (h1 − κ, h1 + jκ, h1 + (j + 1)κ, . . . , g1)
From the above two equations we can deduce that
π[i+j+1→ i+1]◦γ[j → 0] = (h1−2κ, h1 +(j−1)κ, . . . , h1, h1−κ, h1 +jκ, . . . , g1)

(19)
Note that if we denote Bqj = Bγj ∪ Bπi+j+1 , then Bq0 = {g1, g1 + κ, . . . , h1, h1 + κ}
and Bqj = {h1 − (j − 1)κ, h1 + jκ} for j > 0. From this it is easy to deduce that
qj = πi+j+1 ◦ γj for all j, (only that this time πi+j+1 and γj do not commute). Thus
as per the analysis of case (A) we again have

Π = (πz+i ◦ γz−1) ◦ (πz+i−1 ◦ γz−2) ◦ · · · ◦ (πi+2 ◦ γ1) ◦ (πi+1 ◦ γ0)

where Π is such that # »SelΠ = # »Sel1̂|
»Sel2. In spite of the fact that πi+j+1 and γj do

not commute, we intend to prove that
(πi+j+1 ◦ γj) ◦ · · · ◦ (πi+2 ◦ γ1) ◦ (πi+1 ◦ γ0) = π[i+ j + 1→ i+ 1] ◦ γ[j → 0], ∀ j

which would prove equation (16) for this case too. We proceed by mathematical
induction: for j = 1, from equation (19), we have

π[i+ 2→ i+ 1] ◦ γ[1→ 0] = (h1 − 2κ, h1, h1 − κ, h1 + κ, . . . , g1)
Also (πi+2 ◦ γ1) ◦ (πi+1 ◦ γ0) can be calculated from equation (18) as:

(h1 − κ, h1, h1 + κ) ◦ (h1 − 2κ, h1 − κ, h1, h1 + κ, . . . , g1)
= (h1 − 2κ, h1, h1 − κ, h1 + κ, . . . , g1) = π[i+ 2→ i+ 1] ◦ γ[1→ 0].

We will now prove instance j+1 assuming all instances from 1→ j are correct. From
equations (18), (19) we can calculate (πi+j+2 ◦ γj+1) ◦ π[i+ j + 1→ i+ 1] ◦ γ[j → 0]
as follows:

(h1 + (j − 1)κ, h1 + jκ, h1 + (j + 1)κ) ◦ (h1 − 2κ, h1 + (j − 1)κ, . . . , h1,

h1 − κ, h1 + jκ, . . . , g1)
= (h1 − 2κ, h1 + jκ, h1 + (j − 1)κ, . . . , h1, h1 − κ, h1 + (j + 1)κ, . . . , g1)
= π[i+ j + 2→ i+ 1] ◦ γ[j + 1→ 0].

This concludes proof for case (B).

224

F PRESENT and GIFT control tables

Table 12: Constructed B sets for the ti’s and si’s in the PRESENT permutation
Group mod3 j Bηj #Cycles

si 1 0 {29, 32, 35, 38, 41, 44, 47, 50} 512
1 {8, 11, 14, 17, 20, 23, 26, 47}
2 {5, 8, 11, 23, 44}
3 {8, 20, 26, 29, 32, 41}
4 {5, 17, 29, 38, 47, 50, 53, 56}
5 {14, 26, 35, 44, 53}
6 {11, 32, 50}
7 {8, 29, 47}

2 0 {31, 34, 37, 40, 43, 46, 49, 52} 512
1 {10, 13, 16, 19, 22, 25, 28, 49}
2 {25, 28, 31, 34, 37, 40, 43, 46}
3 {4, 7, 10, 22, 40, 43}
4 {7, 19, 25, 28, 37, 40, 46, 49, 52, 55}
5 {4, 10, 13, 16, 25, 34, 37, 52}
6 {10, 13, 31, 34, 49}
7 {10, 28, 31, 46}

ti 0 0 {18, 21, 24, 27, 30, 33, 39, 42, 45, 48, 51, 54} 576
1 {6, 9, 12, 15, 18, 30, 51}
2 {15, 27, 48}
3 {12, 24, 45}
4 {9, 21, 27, 30, 33, 36, 39, 42}
5 {6, 18, 36, 39}
6 {3, 6, 9, 33, 51, 54, 57}
7 {6, 30, 54}
8 {3, 27, 51}

1 0 {11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41} 704
1 {38}
2 {35}
3 {32}
4 {29, 35, 38, 41, 44, 47, 50, 53}
5 {2, 5, 20, 23, 26, 50}
6 {2, 14, 20, 23, 35, 59}
7 {20, 44}
8 {17, 41}
9 {14, 38}

10 {11, 35}
2 0 {19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49} 704

1 {7, 10, 13, 16, 19, 22, 46}
2 {19, 31, 34, 43, 55, 58}
3 {1, 16, 31, 40, 55}
4 {13, 19, 37, 43}
5 {10, 34}
6 {7, 31}
7 {28}
8 {25}
9 {22}

10 {19}

225

Table 13: Constructed B sets for the ui’s, ti’s and si’s in the GIFT permutation
Group mod4 j Bηj mod4 j Bηj
ui 0 0 {19, 23, 27, 31, 35} 1 0 {26, 30, 34, 38, 42, 46, 50}

1 {31, 47, 51, 55} 1 {26, 30, 34, 38, 42, 46}
2 {27, 35, 39, 51} 2 {18, 38, 42}
3 {23, 35, 47} 3 {34, 38, 58}
4 {19} 4 {30, 34}

5 {26, 30}
6 {26}

2 0 {13, 17, 21, 25, 29, 33, 37, 41, 45} 3 0 {16, 20, 24, 28, 32, 36, 40, 44, 48}
1 {41, 53, 57} 1 {28, 32, 36, 40, 44, 48, 52}
2 {37, 53} 2 {40, 44, 48, 52, 56}
3 {33} 3 {28, 36, 44, 52}
4 {29, 37, 41, 45, 49, 53} 4 {32, 40, 48}
5 {25, 49} 5 {28, 36}
6 {21, 45} 6 {24, 32}
7 {17, 41} 7 {20}
8 {13, 37} 8 {16}

ti 0 0 {15, 19, 23, 27, 31, 35, 39, 43} 1 0 {10, 14, 18, 22, 26, 30, 34}
1 {7, 11, 15, 19, 39} 1 {10, 14, 18, 30}
2 {3, 15, 35} 2 {14, 26, 42}
3 {11, 31} 3 {2, 10, 22}
4 {7, 27} 4 {18}
5 {23} 5 {14}
6 {19} 6 {10}
7 {15}

2 0 {25, 29, 33, 37, 41} 3 0 {8, 12, 16, 20, 24, 28, 32, 36, 40}
1 {5, 9, 13, 37} 1 {4, 8, 12, 16, 20, 36}
2 {9, 21, 33} 2 {0, 16, 32}
3 {5, 29} 3 {12, 16, 28}
4 {25} 4 {8, 24}

5 {4, 20}
6 {16}
7 {12}
8 {8}

si 0 0 {31, 35, 39, 43, 47, 51} 1 0 {6, 10, 14, 38, 42, 46}
1 {11, 15, 19, 23, 27, 57} 1 {10, 26, 30, 42}
2 {15, 19, 23, 43} 2 {6, 26, 38, 46, 50, 54}
3 {15, 19, 39, 47} 3 {50}
4 {15, 35} 4 {54}
5 {11, 31}

2 0 {17, 21, 25, 29, 33, 37, 41, 45} 3 0 {12, 16, 20, 24, 28, 32, 36, 40, 44}
1 {9, 13, 17, 21, 25, 41} 1 {12, 16, 20, 24, 28, 32, 36, 40}
2 {21, 25, 29, 33, 37, 41, 45, 49} 2 {16, 20, 24, 32, 36}
3 {17, 29, 33, 37, 45} 3 {16, 20, 28, 32}
4 {13, 29, 33, 41} 4 {16, 24, 28}
5 {9, 25, 37} 5 {20, 24}
6 {21, 33} 6 {16, 20}
7 {17, 29} 7 {12, 16}

8 {12}

G Circuit Details for PRESENT

Note that the sequence of operation in PRESENT are as follows:

226

PRESENT Datapath

1. For i = 1→ 31 do

addRoundkey(STATE,Ki)

sBoxLayer(STATE)

pLayer(STATE)

2. addRoundkey(STATE,K32)

PRESENT Keypath

1. For i = 1→ 32 do

Ki = [k79, k78, . . . , k16]

[k79, k78, . . . , k1, k0]← [k18, k17, . . . , k20, k19]

[k79, k78, k77, k76]← S[k79, k78, k77, k76]

[k19, k18, k17, k16, k15]← [k19, k18, k17, k16, k15]⊕ i

In order to explain the circuit operations, it is most instructive to give a cycle by cycle
explanation of the flow of data in the registers.

First 80 cycles: In this period the plaintext and key are loaded onto the state and key
registers bit by bit. We initiate a register Cycle which is reset to zero at the end of
the key and plaintext loading.

Cycle 0 to 63: This period is used for adding the roundkey to the state bits and then
a subsequent S-box operation. Although key addition and the subsequent register
updates are done bitwise, it is possible to execute the 4-bit S-box operation by using
the idea introduced in [JMPS17]. In Figure 3, we can see that the last 4 flip-flops
in the circuit are in fact scan flip-flops which will help in the S-box operation. In
the first 3 cycles of every 4-cycle period, the SB signal that controls these flip-flops
are kept at zero so that in these 3 cycles the updated value is the addition of the
corresponding state and keybits without the S-box operation. In the 4th cycle of
this 4-cycle period, the SB signal is changed to 1 so that 4 bit output of the S-box is
updated en-masse in this cycle.

Cycle 64 to 1535: The next 1472 cycles are used to implement the permutation layer as
explained in the previous sub-section. The Sel port that controls the 61st flip-flop is
fed the signals from the # »Sel vector constructed in the previous section. The Cycle
register is reset to zero at the end of this period.

The above procedure is repeated 31 times. In the 32nd iteration the first 64 cycles are used
for the final roundkey addition operation and the ciphertext is available at the output of the
xor gate that does the key addition. The keypath operations are slightly more involved. We
need to perform the key update operations correctly, and at the same time ensure that the
correct roundkey bit is available during the roundkey addition operation. The key update
operation rotates the 80-bit key towards the left by 61 bits, then applies the s-box to a fixed
nibble and then adds the round-constant to another fixed 5 bit chunk. The main concern
therefore is to ensure that after the completion of a round, which in this case consists of
1536 cycles, the key is rotated by exactly 61 bits. It may have been possible to achieve
this using a gated clock in the key registers that freezes the update operations for certain
period of time. But clock gating requires some logic of its own and our intention was to
see if we could achieve the required functionality without resorting to gating. Note that if
we were to let the key register rotate uninterrupted for 1536 cycles, we would achieve a left
key rotation of 1536 mod 80 = 16 bits. However if we rotate the register for β cycles such
that β ≡ 61 mod 80 and somehow freeze the rotation for the remaining 1536−β cycles, we
would achieve the required functionality. We chose β = 1341, which would require freezing
the rotation operation for 195 cycles. To achieve this we use a scan flip-flop in the 15th
location, controlled by a Rtx signal. When the Rtx signal is 1, the key register performs inter-
nal rotation between the first 65 and the next 15 bit chunks as shown in the following figure.

k79 k78 k77
b b b b

k15 k14 k13
b b b b

k0

195 cycles

227

Since 195 is a multiple of both 15 and 65, such internal rotation when performed for
195 clock cycles, results in the identity function, and so we achieve our end objective of
arresting rotation for exactly 195 cycles. For this purpose, one can choose any 195 of the
1536 cycles used in every round, except of course for the first 64 when the key addition is
being performed. There are additional control signals KB that like SB in the case of of the
state path controls the S-box operation in the key registers. And the AddC signal controls
addition with round constants. These signals are set to 1 at appropriate cycles to ensure
the respective functionalities.

Circuit for Encryption+Decryption

There are few additions to the combined circuit, as compared to the encryption-only
circuit that are listed below:
• There is an additional circuit for the PRESENT inverse S-box.

• The order of operations in the decryption process is listed as follows:
PRESENT Datapath

1. addRoundkey(STATE,K32)

2. Inv-pLayer(STATE)

3. For i = 31→ 2 do

Inv-sBoxLayer(STATE)

addRoundkey(STATE,Ki)

Inv-pLayer(STATE)

4. Inv-sBoxLayer(STATE)

5. addRoundkey(STATE,K1)

PRESENT Keypath

1. K32 = [k79, k78, . . . , k16]

2. For i = 31→ 1 do

[k19, k18, k17, k16, k15]← [k19, k18, k17, k16, k15]⊕ i

[k79, k78, k77, k76]← S−1[k79, k78, k77, k76]

[k79, k78, . . . , k1, k0]← [k60, k59, . . . , k62, k61]

The sequence of operations during decryption is slightly different. So let us look at
the sequence of operations in each cycle:
First 80 cycles: As usual the ciphertext and key are loaded onto the respective registers.

Cycle 0 to 63: In the round immediately after ciphertext loading, we perform only bitwise
round key addition in this period. However in all the subsequent rounds, we need to
do an Inverse s-box operation before roundkey addition. This would require some
incremental additions to the circuit. First of all we need a 4-bit xor to do the key
addition instead of just a single bit xor in the encryption path. A four bit multiplexer
is additionally required to select between the 4-bit updates during encryption and
decryption. The logic circuit is explained diagrammatically in Figure 14.

Cycle 64 to 1535: The next 1472 cycles are used to implement the inverse permutation
layer, with the S executed ahead of T .

• The keyschedule involves addition by round constant followed by application of
inverse s-box on a fixed nibble followed by rotation by 19 bits to the left. As before
we need to try to rotate the key register for β ≡ 19 mod 80 cycles and somehow arrest
the rotation for the remaining 1536− β cycles. We choose β = 1399, which requires
stopping the rotation for 237 cycles. Again, we try to achieve this by breaking up the
key into chunks of 79 and 1 bits and doing internal rotation within the key-chunks
for 237 cycles. Since 237 is a multiple of 79 and 1, internal rotation for 237 cycles
again gives the identity transformation which satisfies our end objective. In terms of
hardware, this requires two extra multiplexers to do the internal rotation as shown
in Figure 14.

228

SB

S-box

b b b

⊕

b b b b

SBSB SB Sel Load

Inp

Roundkey

b3 b2 b1 b0

3

1

4

Add

Inv S-box⊕

b63

b60

Dec Key

3

1Dec op

KB

S-box

b b b

⊕

b b b b

KBKB KB Rtx Load

Key

RCi

k3 k2 k1 k0

3

1

4

AddC

Inv S-box

k79

k14

3

1

k0

k79

Rtd

Rtd

Figure 14: Modified logic around the last 4 flip-flops to accommodate decryption

H Circuit Details for GIFT
The sequence of operations in the data and keypaths are as follows:
GIFT Datapath

1. For i = 1→ 28 do

sBoxLayer(STATE)

pLayer(STATE)

addRoundkey(STATE,RKi)

GIFT Keypath

1. For i = 1→ 28 do

Ki = [k127, k78, . . . , k0]

For j = 0→ 7: Lj ← [k16j+15, k16j+15, . . . , k16j]

RKi = L1||L0

L7||L6|| · · · ||L0 ← L1 ≫ 2||L0 ≫ 12||L7|| · · · ||L2

So the sequence of operations in the datapath is as follows:

First 128 cycles: In this period the key is loaded onto the state and key registers bit by bit.
In cycles 64 to 127, the plaintext is loaded onto the state register after performing
the s-box operation. Thereafter we have 28 iterations of the following operations.

Cycle 0 to 1727: Used to compute the permutation layer.

Cycle 1728 to 1791: The next 64 cycles are used to compute add roundkeys and then
perform the s-box operation of the next round.

Thus the total number of cycles taken for the encryption routine is 128+28×1792 = 50304.
The keyschedule is slightly more complicated: it breaks up the current key into eight 16 bit
words L7 to L0. L1 and L0 are internally right rotated by 2, 12 bits respectively and the
whole key is then right rotated by 32 bits. In other words this means internal left rotation
of L1 and L0 by 14, 4 bits and overall left rotation by 96 bits. So we do the following:

• Let the key register rotate left for 96 cycles. After this L1 and L0 occupy the most
significant 32 bits of the register(k127 to k96).

• At this point of time we will partition the key register into chunks of 16 (k127 to
k112), 16 (k111 to k96) and 96 bits (k95 to k0) and do an internal rotation for 288
cycles. Since 1792− 288 = 1504 ≡ 96 mod 128 this achieves our first objective of 96
bit left rotation.

229

bb

bbk127 k126 k112

k95 k94 k0

k125 bbk111 k96k100bb k99

Figure 15: The GIFT key register

• To achieve left rotation of L1 by 14 bits, we partition the 1st 16 MSBs into chunks
of 2 (k127 to k126) and 14 (k125 to k112) bits and do an internal rotation in these 2
groups for 98 cycles, and do a normal rotation over (k127 to k112) over the remaining
288-98=190 cycles (see figure 15). Since 2 and 14 both divide 98, the rotation results
in identity transformation. So the effective rotation is for 190 ≡ 14 mod 16 cycles.

• Similarly rotating L0 by 4 bits, we partition 2nd 16 MSBs into chunks of 12 (k111
to k100) and 4 (k99 to k96) bits. Internal rotation is carried out for in these smaller
chunks 12 cycles. So effectively we rotate the 2nd chunk by 276 ≡ 4 mod 16 bits.

However the key addition in GIFT is quite complicated: neighboring key bits do not
xor with neighboring state bits as in PRESENT. In fact, the designers recommend that
∀i ∈ [0, 31] the ith bit of L1 be xored with the (4i+ 2)nd state bit and the the ith bit of
L0 be xored with the (4i+ 1)st state bit. Thus, the circuit also requires a filter to extract
the correct roundkey bit in every cycle, which increases the total area slightly.

I Combined Circuit for encryption and decryption

The GIFT decryption circuit suffers from the same issues as the corresponding PRESENT cir-
cuit, and therefore the circuit for the combined decryption is same as the one outlined in
Figure 14. The only differences are in the order in which the functions are carried out.
The following is the sequence of operations:

GIFT Datapath

1. addRoundkey(STATE,RK28)

2. inv-pLayer(STATE)

3. For i = 27→ 1 do

inv-sBoxLayer(STATE)

addRoundkey(STATE,RKi)

inv-pLayer(STATE)

4. inv-sBoxLayer(STATE)

GIFT Keypath

1. For i = 1→ 28 do

Ki = [k127, k78, . . . , k0]

For j = 0→ 7: Lj ← [k16j+15, k16j+15, . . . , k16j]

RKi = L1||L0

L7||L6|| · · · ||L0 ← L5|| · · · ||L0||L7 ≪ 2||L6 ≪ 12

As expected, the inverse permutation layer is constructed by executing the si trans-
positions first, followed by the ti’s and then the ui’s. The cycle by cycle execution of
operations is as follows:
First 128 cycles: In this period the key is loaded onto the state and key registers bitwise.

In cycles 64 to 127, the plaintext is loaded onto the state register without performing
the inverse s-box operation. Thereafter the next operations are executed 28 times.

Cycle 0 to 63: Used for executing the inverse s-box operations followed by roundkey
addition as shown in Figure 14. As in PRESENT only in the first round, the inverse
s-box operation is omitted.

230

Cycle 64 to 1791: Used for executing the inverse p-layer.

After this, the GIFT decryption process requires one more inverse s-box operation. Hence
the decryption operation requires an additional 64 cycles to complete. The key schedule
for decryption can be carried out using the same circuit as in Figure 15. We need left
rotation of L7, L6 by 2, 12 bits followed by a left rotation by 32 bits. At the beginning of
the round cycle when L7, L6 still occupy the 32 MSBs in the key register we do internal
rotation for 96 cycles. It is easy to see to verify that this will achieve left rotation by 32
bits. In these 96 cycles, we do further internal rotation between the 2 and 14 bit chunks
(k127 to k126 and k125 to k112) for 14 cycles, and for 36 cycles between the 12 and 4 bits
chunks (k111 to k100 and k99 to k96) for 36 cycles. This is sufficient to achieve the required
functionalities in the inverse keyschedule.

J Python code for GIFT permutation
We present a simple python3 code that simulates how GIFT permutation layer is operated
over the pipeline with the help of six swap operations. The swaps are (24, 12), (37, 13),
(50, 14), (61, 45), (62, 30), (63, 15).

In Figure 16, the list S represents the 64 bits stored in the pipeline. Let A63, A62, . . . , A0
be the sequence of bits that needs to be permuted. These bits arrive to S[0] one at a time
fashion in the first round. For i ∈ {0, 1, . . . , 63}, A63−i is loaded into S[0] at the end of
the i-th cycle (this variable is denoted with count in line 62 of the code). All bits are
completely stored in the pipeline S at the end of the 63-th cycle of the round. Hence the
permuted bits can be read from S[63] between cycles 0 to 63 of the next round.

In this example, we permute 31× 64 bits (inputbits) with GIFT permutation, in exactly
32× 64 = 2048 cycles. Additional 64 cycles are incurred not because of our permutation,
but due to the time it takes to fill and flush the pipeline with state bits. This already
happens in a serial implementation regardless of our permutation layer, as bits are fed into
the circuit one bit each cycle. In other words, simply filling 31× 64 bits into the pipeline
and then waiting them to completely flush out from the pipeline would also take precisely
32× 64 cycles in total. Therefore, our permutation in fact operates seamlessly in parallel
without incurring no latency.

231

1 GIFT = [0, 17, 34, 51, 48, 1, 18, 35, 32, 49, 2, 19, 16, 33, 50, 3,
2 4, 21, 38, 55, 52, 5, 22, 39, 36, 53, 6, 23, 20, 37, 54, 7,
3 8, 25, 42, 59, 56, 9, 26, 43, 40, 57, 10, 27, 24, 41, 58, 11,
4 12, 29, 46, 63, 60, 13, 30, 47, 44, 61, 14, 31, 28, 45, 62, 15]
5
6 cycles1 = [[29 , 30, 31, 32, 49, 50, 51, 52, 5, 6, 7, 8],
7 [46 , 47, 48, 49, 2, 3, 4, 5],
8 [63 , 0, 1, 2]]
9

10 cycles2 = [[0, 4, 8, 12, 14, 18, 22, 26, 32, 36, 40, 44] ,
11 [2, 6, 10, 14, 16, 20, 24, 28] ,
12 [0, 4, 8, 12]]
13
14 swaps1 = [(24 , 12) , (37 , 13) , (50 , 14)]
15 swaps2 = [(61 , 45) , (62 , 30) , (63 , 15)]
16
17
18 def apply_permutation (X, perm):
19 Z = [’ ’] * 64
20 for i in range (64):
21 Z[63 - perm[i]] = X[63 -i]
22 return Z
23
24
25 def print_pipe (S):
26 Z = list(reversed (S))
27 print (Z [:16])
28 print (Z [16:32])
29 print (Z [32:48])
30 print (Z [48:])
31 print ()
32
33
34 def executeSwaps (S, round , count):
35 disableSwaps1 = (round == 0 and count < 29) or (round == 31 and count > 28)
36 disableSwaps2 = round == 0
37 for j in range (3):
38 if count in cycles1 [j] and not disableSwaps1 :
39 (x, y) = swaps1 [j]
40 (S[x], S[y]) = (S[y], S[x])
41 for j in range (3):
42 if count in cycles2 [j] and not disableSwaps2 :
43 (x, y) = swaps2 [j]
44 (S[x], S[y]) = (S[y], S[x])
45 return S
46
47
48 def rotate_pipieline (S):
49 return [S[-1]] + S[: -1]
50
51 def store_input_bit (S, bit):
52 S[-1] = bit
53 return S
54
55 def read_exit_bit (S):
56 return S[-1]
57
58 def simulate_permutation_over_pipeline (inputbits):
59 K = [[None]*64 for _ in range (32)] # to store output bits from pipeline
60 S = [’___ ’] * 64 # keeps the contents of the pipeline
61 for round in range (32):
62 for count in range (64):
63 print ("at the beginning of round " + str(round) + "\ tcylce : " + str(count))
64 S = executeSwaps (S, round , count)
65 print_pipe (S)
66 K[round][count] = read_exit_bit (S)
67 S = store_input_bit (S, inputbits [round][count])
68 S = rotate_pipieline (S)
69 return K[1:]
70
71 stateletters = [chr(y+65) for y in range (26)] + [chr(y+97) for y in range (6)]
72 inputbits = [[str(x) + y for x in range (63 , -1, -1)] for y in stateletters]
73 results = [apply_permutation (x, GIFT) for x in inputbits]
74 results = results [: -1] # the last 64 bits are not used , they are placeholder
75 K = simulate_permutation_over_pipeline (inputbits)
76
77 print ("An example output from the first round of the pipeline :")
78 print_pipe (K[0])
79 print (" Expected result : ")
80 print_pipe (results [0])
81
82
83 if K == results :
84 print (str(len(results)) + "*64 bits are permuted correctly ")

Figure 16: Example code for GIFT permutation using 6 swaps in 64 cycles.

232

	Introduction
	Preliminaries
	Application to PRESENT
	Implementation using 2 scan flip-flops
	Decreasing the number of operations
	Further reduction
	Final Optimization

	The PRESENT circuit using 2 scan flip-flops
	Area and throughput results
	Circuit for combined encryption and decryption

	Application to GIFT
	Circuit details

	Adding more scan flip-flops
	4 4 matrix transposition with swaps
	From Transpositions to PRESENT Permutation
	From Transpositions to GIFT Permutation
	Reducing Cycles and Decryption
	Lowering latency further
	Circuit Details
	GIFT key schedule: Reduction of power+latency
	Area and throughput results

	Application to FLIP (how to do Knuth shuffles in constrained hardware)
	First Attempt
	Second Attempt
	Third Attempt

	Results and Conclusion
	Increasing scan flip-flops
	Final words
	Proof of Lemma 3
	Proof of Lemma 5
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	PRESENT and GIFT control tables
	Circuit Details for PRESENT
	Circuit Details for GIFT
	Combined Circuit for encryption and decryption
	Python code for GIFT permutation

