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Abstract. In this work, we perform an extensive investigation and construct a portfolio
of S-boxes suitable for secure lightweight implementations, which aligns well with
the ongoing NIST Lightweight Cryptography competition. In particular, we target
good functional properties on the one hand and efficient implementations in terms
of AND depth and AND gate complexity on the other. Moreover, we also consider
the implementation of the inverse S-box and the possibility for it to share resources
with the forward S-box. We take our exploration beyond the conventional small (and
even) S-box sizes. Our investigation is twofold: (1) we note that implementations of
existing S-boxes are not optimized for the criteria which define masking complexity
(AND depth and AND gate complexity) and improve a tool published at FSE 2016
by Stoffelen in order to fill this gap. (2) We search for new S-box designs which
take these implementation properties into account from the start. We perform a
systematic search based on the properties of not only the S-box but also its inverse
as well as an exploration of larger S-box sizes using length-doubling structures. The
result of our investigation is not only a wide selection of very good S-boxes, but we
also provide complete descriptions of their circuits, enabling their integration into
future work.

Keywords: S-box · lightweight cryptography · masking · multiplicative complexity ·
AND depth

1 Introduction
The implementation complexity has always played a role in the choice of S-boxes for ciphers.
For example, in the design process of the Data Encryption Standard (DES) [oS77], the
eight DES S-boxes were chosen so that (given the cryptographic criteria), they have a low
number of minterms [MM82]. Several tools and methods are available today to minimize
the gate count of S-box implementations [BMP13a, Sto16]. However, gate count is not
necessarily the best optimization metric for cryptographic implementations.

Resistance against side-channel analysis attacks has become a quite mainstream re-
quirement for cipher implementations. This is for example witnessed by the ongoing
NIST Lightweight Cryptography competition, which states it as an important goal1.
In this context, enabling secure and efficient Boolean masked implementations typi-
cally implies reducing the number of multiplications of the algorithms to implement,

1https://csrc.nist.gov/Projects/Lightweight-Cryptography
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since they are the costly operations to mask [ISW03]. Minimizing the number of mul-
tiplications required to implement S-boxes which are designed without such consider-
ations is a challenging task [ÇTP19, GR16]. As a result, several modern cipher pro-
posals considered this during design phase, building on quite different design princi-
ples [BBK+13, GGNS13, GLSV14, JSV17, PRC12], and many submissions to the NIST
Lightweight Cryptography competition also follow this approach. For example, submis-
sions such as ASCON [DEMS16], ForkAE [ALP+19], ISAP [DEM+17], Pyjamask [GJK+],
Spook [BBB+] and TRIFLE [DGM+] mention explicitly efficient masking as a design
goal, while other submissions are re-using small S-boxes from existing designs (such as
Photon [GPP11], Skinny [BJK+16], Gift [BPP+17]) which are known to be easy to mask.

Low-latency is also gaining attention as the need for high-performance cryptography
increases together with the connectivity of devices. Minimizing the logical depth of an
existing S-box, such as that of the AES, is again non-trivial [BP11]. Being a relatively
young area of research, there are only a handful of low-latency (authenticated) encryption
schemes [Ava17, BJK+16, BCG+12] in literature. Even though these designs provide
low-latency when side-channel attacks are not of concern, their protected implementations
suffer from loss of performance, the main culprit being the multiplicative depth of the
underlying S-box [BKN18]. Therefore, it is important to consider not only the number of
multiplications but also the AND depth while designing a cryptographic algorithm. One
has a significant impact on the latency of hardware implementations which are prone to
glitches [NRS11], while the other affects the implementations’ (circuit and randomness)
complexity [GR17].

Motivation and Contribution. The literature shows that there is still a lack of under-
standing of the relationship between S-box design and their implementation efficiency
(with SCA protection). This is exemplified on the one hand in how existing S-boxes are
implemented (1) and on the other in how S-boxes for new designs are chosen (2). In this
work, we will address both aspects.

(1) In Section 3, we consider the issue of efficiently implementing specific S-boxes.
The cost optimization of a given S-box’ circuit is a hard problem, even for only one
optimization criterion [BMP13a, GR16, KPPY14, UDCI+11]. For small S-box sizes, some
optimization tools exist [UDCI+11, Gla07, BMP13b, Sto16, JPST17, BGLS19]. In the
context of masked implementations, it is common to consider the number of AND gates
(G) as primary quantity to minimize. Minimal circuit depth is targeted when low latency
is important. However, none of these tools consider the AND depth (D), which is a very
important cost indicator for the latency of masked hardware implementations. Moreover
S-boxes are never optimized for the AND depth and AND gate count jointly. To this
end, we extend the functionality of a tool by Stoffelen [Sto16], so that it becomes possible
to optimize for multiple criteria jointly. In this way, we are able to obtain small AND
depth and small AND gate count for various existing S-boxes, which improves their
masked implementation complexity. In particular, we show that most 4-bit S-boxes can be
implemented with the minimal AND gate count and AND depth (4 ANDs with AND depth
2). This demonstrates that previous works did not always consider the implementation
cost of masking.

(2) Low latency in hardware does not carry over from unprotected to SCA-protected
implementations: one needs to consider the AND depth. We will show that currently, S-box
circuits are not optimized for this criterion and that by extension, the way new S-boxes
are chosen for SCA-efficient primitives in the literature is sub-optimal. For instance in the
current NIST LWC call, it is specified that "The implementations of the AEAD algorithms
and the optional hash function algorithms should lend themselves to countermeasures
against various side-channel attacks", yet most candidates were not designed with AND
depth in mind. We also observe that a lot of the NIST submissions are based on existing
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designs, which can be explained by NIST’s encouragement that submissions already be
scrutinized by third parties. As a result, a majority of the proposals use 4-bit S-boxes,
which according to our analysis, offer very little advantages compared to larger sized
S-boxes (see Table 9). The popularity of S-boxes of size 2k can historically be explained
by the size of CPU data paths. However, for hardware implementations and with the
possibility of bitslicing in software, this restriction is not reasonable. Still, there is a clear
lack of research on unconvential (e.g. odd) S-box sizes. The introduction of the Keccak
function [BDPA09] with its 5-bit S-box and its subsequent choice as the SHA-3 standard
were a positive development in this direction, yet further research using odd-sized S-boxes
remains absent. The lack of use and the lack of research of the broader search space of
S-boxes seem to reinforce each other in a cycle. Nevertheless, our research shows that
S-boxes of odd size n tend to have better properties and lower cost than S-boxes of even size
n+1 (see Table 9). In Sections 4 and 5, we consider the question of which S-boxes have both
good cryptanalytic properties and can be efficiently implemented. We introduce principled
criteria to guide S-box selection, and propose a dictionary of ready-to-use candidates,
which extends the search space well beyond the conventional options. Specifically, we focus
on the following aspects, which did not receive much attention in previous works:

1. Since low latency is a very important criterion and in the case of masked hardware
implementations depends strongly on the algebraic degree, we guide our search in
the first place by this property.

2. The implementation cost of the inverse S-box is often overlooked. Indeed while
many modes of operations are inverse-free (many lightweight ones [CDNY18]),
other modes require an inverse. Popular examples include the Tweakable Authen-
ticated Encryption (TAE) [LRW11], Authenticated Permutation-based Encryption
for Lightweight Cryptography (APE) [ABB+14] and OCB3 (CAESAR laureate for
high-performance2). For side-channel security, it has also been observed that an
efficiently invertible block cipher is instrumental in providing a secure tag verification
in the presence of leakage [BPPS17]. For this purpose, we do not only consider the
implementation properties of the forward S-box. We additionally consider various
levels of resource sharing between the inverse and forward S-box, such that the
inverse S-box can be implemented using the same building blocks (e.g. involutions,
zero-overhead constructions, self-inversely-equivalent S-boxes, . . . ).

3. The size of S-boxes used in easy-to-mask ciphers is variable, yet biased towards small
S-boxes. We investigate whether large(r) S-boxes may be useful. We observe that
while many systematic investigations exist for 4-bit S-boxes, both for cryptanalytic
and masking properties (e.g., [BNN+12, LP07]), much less is known for larger bit
sizes [BBS17, DB18]. We push the limits of the best-known large(r) S-boxes for
masking in different directions and provide a dictionary of suitable S-boxes.

4. S-boxes are often described using a Lookup Table (LUT) or algebraic normal form,
neither of which is trivially converted to an efficient circuit description. As a final
contribution, we provide concrete ready-to-use optimized circuit descriptions of
various S-boxes discussed in this paper (see Appendix) that might lead to tweaks for
existing designs and/or improve the cost of their side-channel secure implementations.

Remark. We acknowledge that the cryptographic strength of a cipher depends on the
intricate relationship between both the S-boxes and the linear layers. We consider here
only the S-boxes because our focus lies especially in their masked implementation efficiency.
It remains important for us to consider also the cryptanalytic properties of the S-box,

2https://competitions.cr.yp.to/caesar-submissions.html
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even though the exact nature of the relationship with the strength of the cipher cannot
be determined without the knowledge of linear layers. We leave a more global study that
combines our S-boxes with linear layers for future work.

2 Background: S-box properties
2.1 Cryptanalytic Properties
In many symmetric primitives, S-boxes are the only non-linear components. Hence, the
S-box properties have a significant impact on the strength of a cipher against attacks.
In order to determine the quality of an S-box S, it is common to measure the distance
between itself and any linear function. In this work, we will use three (standard) metrics
for this purpose: the algebraic degree, the differential uniformity and the linearity. We
introduce them using the following set of definitions:

Definition 1 (Algebraic Normal Form (ANF)). Any Boolean function f of s variables
can be represented as a unique multivariate polynomial with coefficients in F2 called the
algebraic normal form (ANF) of f, defined by:

f(x0, . . . , xs−1) =
∑
u∈Fs

2

au

(
s−1∏
i=0

xui
i

)
,

where ui is the ith bit of u.

Definition 2 (Algebraic Degree). Let f be a Boolean function of s variables. We call the
algebraic degree of f, denoted as deg(f), the maximum Hamming weight of the degrees of
its ANF:

deg(f) = max
u∈Fs

2

{w(u)|au 6= 0} ,

where au are the coefficients of the ANF of f. Let F be a vectorial Boolean function from
Fs2 into Fs2, we call the algebraic degree of F, denoted deg(F), the maximum of the algebraic
degrees of its coordinate functions fi : (x1, . . . , xs) 7→ (F(x1, . . . , xs))i, 1 ≤ i ≤ s, with
(F(x1, . . . , xs))i the i-th bit of F(x1, . . . , xs).

Definition 3 (Derivative of a Function). Let F be a function from Fs2 into Fs2. The
derivative of F with respect to a ∈ Fs2 is the function DaF : x ∈ Fs2 7→ F(x+ a) + F(x) .

Definition 4 (Differential Uniformity [Nyb94]). Let F be a function from Fs2 into Fs2.
For any a ∈ Fs2 and b ∈ Fs2, we define δ(a, b) = |{x ∈ Fs2, DaF(x) = b}| . The multi-set
{δ(a, b), a ∈ Fs2 \ {0}, b ∈ Fs2} is the difference distribution table of F, and its maximum:

δ(F) = max
a 6=0,b

δ(a, b) ,

is the differential uniformity of F. We will also use a normalization of the differential
uniformity, called differential probability: DP(F ) = δ(F )

2s ·
F is called almost perfect nonlinear (APN) if it is differentially 2-uniform, i.e. δ(F) = 2.

Definition 5 (Linearity [CV94]). Given a function F from Fs2 to Fs2 with Walsh coefficients:

F̂(u, v) =
∑
x∈Fs

2

(−1)v·F(x)+u·x , u ∈ Fs2, v ∈ Fs2 ,

the multi-set F̂(u, v), v 6= 0 is called the linear approximations table of F. The linearity of
F, is the highest magnitude of its Walsh coefficients:

L(F) = max
v∈Fs

2\{0}
max
u∈Fs

2

| F̂,(u, v)| .
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and the squared normalized linearity is called linear potential (or linear probability):

LP(F ) =
(
L(F)

2s

)2
.

Finally, F is called almost bent (AB) if |L(F)| ≤ 2(s+1)/2.

Definition 6 (Worst Probability (WP)). The worst probability (WP) of a function F from
Fs2 to Fs2 is the maximum between DP(F ) and LP(F ), which corresponds to the resistance
provided by F against differential and linear attacks.

Although other cryptanalytic security criteria exist, we will restrict ourselves to these
three most fundamental ones, which are usually used to extrapolate the security of a full
cryptographic primitive, for instance using the wide-trail strategy [DR01].
Remark 1. Two definitions of linearity coexist in the literature, which differ by a factor 2.
One is based on the Hamming distance and the other is based on the Walsh transform.
We chose to use the latter which is usually easier to manipulate.
Remark 2. An S-box and its inverse have equal differential uniformity and linearity, but
not generally equal algebraic degree (it is equal for 3-bit and 4-bit S-boxes though [DB18]).

2.2 Implementation Properties
Traditionally in hardware implementations, XOR gates were considered more expensive
than AND gates. Indeed, in CMOS technology, a 2-input NAND gate requires only 4
transistors, whereas a 2-input XOR gate requires 8. However, with the advent of side-
channel attacks and masked implementations as countermeasure, the weights have shifted
and AND gates have become the most important cost factor3. In the case of hardware
masked implementations, not only the number of such nonlinear gates should be minimized,
but also the AND depth becomes very important. Larger AND depths are detrimental
for the latency, as nonlinear layers in masked implementations need to be separated by a
register stage [Bil15]. In contrast, XOR gates do not cause any increase in the number of
clock cycles. In recent literature, we indeed see a trend of new cipher designs with nonlinear
layers of minimal AND depth, such as Keccak [BDPA09] or PRIMATES [ABB+14]. Also
in this work, when it comes to implementation properties, we will in the first place look at
the AND depth of an S-box. Note that we only consider 2-input AND gates.

Definition 7 (AND depth). The AND depth D of a function’s circuit is defined as the
maximum number of 2-input AND gates on any path from a function input to a function
output over the basis (AND, XOR, NOT).

This implementation property is directly related to the cryptanalytic property of
algebraic degree.

Lemma 1. The implementation of a function F of algebraic degree deg(F) = d has AND
depth at least dlog2(d)e.

While it is possible to implement any function with its theoretical minimal depth by
considering every monomial in the ANF separately, we will only consider AND depths that
result in reasonable circuit complexity. For example, the AES S-box has algebraic degree
7, but many practical circuits in literature use AND depth 4 or more [CB09, BP10].

Next, we consider the number of AND gates required to implement a function. Consider
first the following definition.

3A Boolean masked implementation of an AND gate requires at least (d+ 1)2 AND and 2(d2 + d) XOR
gates; whereas of an XOR gate requires d+ 1 XOR gates where d corresponds to the security level [ISW03].
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Definition 8 (Multiplicative Complexity [Sch88]). The multiplicative complexity MC of
a function F is defined as the minimal number of AND gates required to evaluate F over
the basis (AND, XOR, NOT).

However, a circuit with the absolute minimal number of AND gates may require more
than the minimal AND depth. Mirwald and Schnorr [MS92] introduced the concept of
level-1 multiplicative complexity, which we generalize as follows:

Definition 9 (Level-D Multiplicative Complexity). The level-D multiplicative complexity
MCD of a function F is defined as the multiplicative complexity of F when constrained to
D layers of AND gates.

They show that for quadratic Boolean functions and pairs of quadratic Boolean
functions, MC = MC1. Whether this is true for more general vectorial Boolean functions
remains an open question [BF18].

In this work, in the context of low-latency masked hardware implementations, reducing
AND depth is considered more important than reducing the AND gate complexity. For
brevity, we refer to level-D multiplicative complexity as the AND gate complexity G =
MCD where D is clear from the context.

Finally, for some applications, we also consider the cost (D and G) of the inverse S-box.
For this purpose, we will introduce some new properties in § 4.1.

2.3 S-box Classification
Definition 10 (Affine Equivalence (AE)). Two S-boxes S1, S2 from Fs2 into Fs2 are affine
equivalent (S1 ∼ S2) if and only if there exists a pair of affine permutations A,B from Fs2
into Fs2 such that

S1 = B ◦ S2 ◦ A

where ◦ denotes function composition.

The following properties are all invariant under affine equivalence (AE):
• Differential uniformity δ
• Linearity L
• Algebraic degree
• Possibility to implement with AND depth D
• Multiplicative complexities MC, MCD

More precisely, affine equivalent S-boxes can be implemented with the same non-linear
block. For these reasons, AE is a popular tool for classifying S-boxes. For instance for
4-bit S-boxes, rather than exploring 16! S-boxes, one can restrict the search to the 302
AE classes [Can07, Saa11]. Since linear operations are considered costless for masking,
one can restrict to analyzing only one representative per AE class for an exhaustive
exploration of masked implementation complexities. Full AE classification is available
for 4-bit permutations, for APN S-boxes up to dimension five [BL08] and for quadratic
S-boxes up to dimensions five [BBS17] and six [DB18] (note that quadratic S-boxes are
useful for masking since they have minimal AND depth).

3 Optimizing Implementations for Masking
Circuit minimization for a given function is a complex problem. Still, for small-input
functions, finding efficient implementations may be doable. For S-boxes, one usually
aims at minimizing the number of gates, or the multiplicative complexity MC (e.g.
in [SP14, Sto16, ÇTP19]). However, we focus here on jointly minimizing the AND gate
count G and the AND depth D to enable low-latency masked hardware implementations.
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In this section, we survey the S-box optimization tools from the literature and conclude
that none of them consider the best criteria for masked hardware implementations. In
this context, we adapt one of these tools for our purpose and apply it to various existing
4-bit S-boxes. We do not consider 3-bit S-boxes here, since they are quadratic and thus
trivial to optimize. We do consider them in our overview Table 9 for comparison with
other sizes. Our results show that the joint optimization for both G and D was previously
not considered, as for some S-boxes, we reduce the AND depth D while maintaining the
same AND gate count G. While this section introduces a tool that is instrumental in
obtaining these results, the more important take-away is that the cost of masked hardware
implementations has so far not been correctly perceived in the literature. Additionally, we
provide specific circuit descriptions for all the results we obtain.

3.1 State of the Art of S-box optimization
Several tools exist to obtain implementations of S-boxes. We summarize some relevant
tools for minimizing G and D in Table 1. Many tools look for bit-sliced implementations,
i.e. with 2-input gates (AND and XOR, optionally OR, NAND, NOR, MOV and NOT).

One ground work is that of Ullrich et al. [UDCI+11] which uses an iterative-deepening
depth-first-search (DFS) algorithm. We note that the purpose of this tool is not to
optimize the implementation of a given S-box, but to find 4-bit S-boxes which satisfy given
properties. It gives implementations with optimal number of bit-sliced gates. Another
DFS algorithm was developped by Gladman [Gla07] to optimize the Serpent S-boxes, the
code is available online4. The tool in [BMP13b] is based on short straight line programs
(SLP) and is practical for up to 5-bit inputs for nonlinear functions. They optimize for
multiplicative complexity and/or circuit depth.

The LIGHTER tool [JPST17] and the new platform PEIGEN[BGLS19] use the same
core of optimizations: heuristic breadth-first search (BFS) and graph meet-in-the-middle
strategy. They can optimize either for MC, number of gates or gate-equivalent-complexity
(GEC), with a restriction on the set of operations: each operation must be invertible. These
tools cannot handle S-boxes on more than 4 bits. Stoffelen’s tool [Sto16] uses a SAT solver
(CryptoMiniSat-55 [SNC09]) to find optimal circuit representations for a given metric. It
can be applied to find circuits for S-boxes on up to 5 bits and becomes impractical for 6
bits. It is designed to minimize one of the following metrics: circuit depth, multiplicative
complexity, bitslice gate complexity or logic gate complexity.

Minimizing for AND depth and AND gate complexity. None of the above described
tools can optimize for AND depth, which is our primary target. Thus we build our own
tool based on Stoffelen’s [Sto16], since it can easily be adapted to minimize AND depth D.
We also care about AND gate count G for masking, but Stoffelen’s tool cannot optimize
jointly for G and D, nor for G then D (or the reverse), since Stoffelen’s tool takes as input
a look-up table and therefore cannot make use of a previously optimized circuit.

Our tool builds upon Stoffelen’s tool and extends its functionality (1) by allowing the
optimization of D (a simple tweak) and (2) by enabling the joint optimization of G and D.
We achieve this by generating the input for the SAT solver in an integrated way so that
both G and D are optimized together (with priority on D). A more detailed description
of our tool is given in Appendix A and in Algorithm 1.

3.2 Application to 4-bit S-boxes
We use the 4-bit S-boxes (and their inverses) as a case-study to demonstrate previous trends
in the literature and to test the power of our tool in Table 2. Quadratic permutations on 4

4http://brg.a2hosted.com//oldsite/cryptography_technology/serpent/anal1.cpp
5https://www.msoos.org/cryptominisat5

150

http://brg.a2hosted.com//oldsite/cryptography_technology/serpent/anal1.cpp
https://www.msoos.org/cryptominisat5


Table 1: Capabilities of several state-of-the-art tools regarding G and D.
Tool Ref. method G D (G,D) size (≤ n)
Gladman [Gla07] DFS × × × 4
Ullrich et al. [UDCI+11] ID-DFS × × × 4
Boyar et al. [BMP13b] ad hoc + SLP X × × 5
Stoffelen [Sto16] SAT X × × 5
LIGHTER [JPST17] BFS-MitM X × × 4
PEIGEN [BGLS19] -//- X × × 4
This work - SAT X X X *7
∗ very long run-times for n ≥ 6

Table 2: Overview of optimization for various 4-bit S-boxes. The rows marked “inv” are
involutions.

Cryptanalytic Prop. Implementation Prop.
S δ L WP Degr. D # AND # XOR Prop.

S S−1 S S−1 S S−1 S S−1

iClass13 [GLSV14] 4 8 2−2 3 3 2 2 4 4 8 8 inv
Prøst [KLL+14] 4 8 2−2 3 3 2 2 4 4 17 17 inv
Noekeon [DPVAR00] 4 8 2−2 3 3 2 2 4 4 17 17 inv
Littlun-4 [KG16] 4 8 2−2 3 3 2 2 4 4 4 5 -
Piccolo [SIH+11] 4 8 2−2 3 3 2 2 4 4 4 11 -
Skinny [BJK+16] 4 8 2−2 3 3 2 2 4 4 4 11 -
Class13 [UDCI+11] 4 8 2−2 3 3 2 2 4 4 4 17 -
Rectangle [ZBL+15] 4 8 2−2 3 3 2 2 4 4 14 19 -
Present [BKL+07] 4 8 2−2 3 3 2 2 4 4 19 19 -
Gift [BPP+17] 6 8 2−2 3 3 2 2 5 5 19 20 -
Prince [BCG+12] 4 8 2−2 3 3 2 2 6 6 24 22 -
x−1 4 8 2−2 3 3 2 2 6 6 25 25 inv
x3 2 8 2−2 2 - 1 - 5 - 15 - non-bij
x6 2 8 2−2 2 - 1 - 5 - 14 - non-bij

bits have bad cryptanalytic properties, hence we focus on permutations with AND depth 2.
Table 2 lists the evaluated 4-bit S-boxes along with their cryptanalytic and implementation
properties, obtained with our tool. Observe that most of these S-boxes can have AND
depth 2 and 4 AND gates. In fact, according to [CDL15, Lemma 4], 4 AND gates is the
minimal G for 4-bit S-boxes with (δ,L) = (4, 8).

Note that the PRESENT S-box [BKL+07] has a slightly better diffusion and that x−1

defined modulo X4 +X + 1 and the Gift [BPP+17] and Prince [BCG+12] S-boxes have
stronger algebraic properties6. We remark that these stronger properties seem to come
with a slightly increased cost.

We add two non-bijective quadratic AB functions x3 and x6 over F24 , as good building
blocks for Feistel-like constructions (see §5).

Full circuit representations of all the S-boxes are given in supplementary material.

Improvements over the state-of-the-art: Table 3 demonstrates the improvements (in
terms of masked cost) we were able to obtain over the implementations that exist in the
literature. Since previous works often targeted minimal AND gate complexity, our most
significant impact is naturally on the AND depth.

In some cases, such as for x−1 of [ZJ14] or the Gift S-box of [BPP+17], the difference
in results clearly follows from a different optimization target, since we obtain lower AND
depth at the cost of higher AND gate count. On the other hand, Table 3 also shows various

6Any linear combination of the output bits has degree 3, which helps against more sophisticated attacks
than differential and linear.
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Table 3: Improvements over the state-of-the-art
S Ref. D G∗ D G

iClass13 [GLSV14]∗∗ 3 4 ⇒ 2 4
Prøst [Sto16] 3 4 ⇒ 2 4

Present [PMK+11] 2 9 ⇒ 2 4[ZJ14] 4 4
Rectangle [Sto16] 4 4 ⇒ 2 4
Rectangle−1 [Sto16] 4 4 ⇒ 2 4
Piccolo−1 [SIH+11] 4 4 ⇒ 2 4
Skinny−1 [BJK+16] 4 4 ⇒ 2 4
Prince [BKN18] 3 6 ⇒ 2 6

x−1 [ZJ14] 5 5 ⇒ 2 6[BP11] 2 7
Gift [BPP+17] 4 4 ⇒ 2 5
Noekeon [DPVAR00] 4 4 ⇒ 2 6
∗ # AND gates or equivalents (OR,NAND,NOR)
∗∗ Note that the circuit in [GLSV14] is wrong, the last AND should have input bits 0 and 2, not 1
and 2 as depicted.

cases where our tool was able to lower D while achieving the same G.
Note that the implementations of the Present [PMK+11] and Prince [BKN18] S-boxes

were meant for hardware masking (with TI) and that their optimization goal was thus
similar to that of our tool.

3.3 Conclusion
Our results in this section can be seen as an improvement over the state-of-the-art for
low latency masked implementations, but this is easily explained by the fact that these
criteria were not previously considered in the literature. If they were not considered for
the optimization of S-box circuits, they could not have been considered for the choice of
S-boxes in new primitive designs. Hence, in the remainder of this work, we will explore
suitable S-box choices for low latency masking, since it is essential that side-channel attacks
are taken into account at design time. We will also use the tool of this section to obtain
specific circuits for the proposed S-boxes.

4 AE Class-based Search of Low-depth S-boxes
While 4-bit S-boxes are very popular in the literature, a quick look at Table 2 reveals none
of those with good cryptographic properties can be implemented with minimal AND depth
(D = 1). As such, we extend the search space beyond this size and perform a search for
larger S-boxes using affine equivalence classes, as many of the properties we are interested
in are invariant within a class. We aim for high resistance against differential and linear
cryptanalysis, but low algebraic degree, since we use it as a predictor for the AND depth
D.

In the search for good S-boxes, the properties of the inverse S-box are often overlooked.
Cryptographically, there is no need to worry about the differential uniformity and linearity,
since they are identical to that of the forward S-box. For implementations however, the
inverse S-box can be considerably more complex, especially when the algebraic degree is
higher for the inverse than for the forward S-box.

The knowledge of S-boxes that have efficient implementations both forwards and
backwards, would be a useful addition to the designer’s toolbox. Especially interesting
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are those S-boxes, which can be implemented together with their inverse, while sharing
hardware resources. We will refer to them as auto-invertible S-boxes. The straightforward
example in this respect is the AES S-box, which is based on the algebraic inversion in F28 .
However, in the context of masking, we target low AND depth S-boxes. For 3- and 4-bit
S-boxes, the algebraic inverse mappings (resp. x6 and x14) are obvious candidates, since
they can be implemented with AND depth resp. one and two. The algebraic degree of
the inverse mapping in F2n is n− 1. Hence, for n > 4, we are interested in finding more
efficient alternatives with good cryptanalytic properties.

4.1 Inversion Properties

We start by introducing a series of properties related to the efficiency of an implementation
of an inverse S-box together with the forward S-box. In these properties, we focus
completely on the non-linear aspects of an implementation (D,G) since they constitute the
largest cost factor in masked implementations. This also means that, in addition to the
properties listed in §2.3, these inversion properties are invariant under affine equivalence.
Hence, we can limit our search to the representatives of affine equivalence classes.

Involutive S-boxes (e.g. the algebraic inverse) are clearly superior when it comes to the
implementation of the inverse S-box, but their use is not that common. Moreover, affine
transformations do not preserve the involutive property. For example, the AES S-box
is not involutive. However, it is auto-invertible because it is affine equivalent with the
algebraic inverse and therefore also affine equivalent with its own inverse. We therefore
first consider the following property:

Property 1. Consider an n-bit S-box S, which is affine equivalent to its inverse S−1, i.e.
S ∼ S−1 = B ◦ S ◦ A. Hence, the S-box S completely shares its non-linear components with
the inverse S-box S−1. We consider such an S-box auto-invertible.

An S-box that satisfies this property is an involution apart from the affine transforma-
tions. The same is true for all S-boxes affine equivalent to it.

S-box composition is a popular mechanism for obtaining higher-quality and higher-
degree S-boxes which can be efficiently implemented with masking [BNN+12, KNP13,
CPRR15, BGG+17]. This is useful if the depth-one S-boxes that satisfy Property 1 do
not have sufficient quality for cryptographic purposes. In that case, we need to look
for depth-two S-boxes that either satisfy Property 1 or can be decomposed into S-boxes
that satisfy Property 1. We note that S-box decompositions have been studied many
times [CPRR15, NNR19], but in this case, our particular focus lies in the joint consideration
of the S-box itself with its inverse.

Moreover, even better than an auto-invertible S-box with depth two in the forward
and backward direction, is an auto-invertible S-box of depth one with a depth-two inverse.
This can be achieved as follows:

Property 2. Consider an n-bit S-box S with an inverse S−1 which can be decomposed as
follows: S−1 = S◦F or S−1 = F◦S with dlog2(deg(F))e ≤ dlog2(deg(S−1))e−dlog2(deg(S))e.
Then, the inverse S-box S−1 only requires an additional implementation of F next to the
original S-box S. We consider such an S-box auto-invertible.

S-boxes that satisfy this property can be implemented together with their inverse by
implementing the inverse S-box only. The component F can simply be bypassed in the
forward direction. The requirement dlog2(deg(F))e ≤ dlog2(deg(S−1))e − dlog2(deg(S))e
makes sure that the total AND depth of the composition F ◦ S is not larger than the AND
depth with which S−1 can be implemented.
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Figure 1: Efficient implementation of the AB power map S-box x5 (Class 75) together
with its inverse x7.

4.2 5-bit S-boxes
Minimal depth. The work of Bozilov et al. [BBS17] gives us an exhaustive overview of
5-bit S-boxes with the minimal AND depth of one. Among these, classes 74 and 75, affine
equivalent respectively to power maps x3 and x5 in F25 , are AB functions. Their inverses
are also AB, but of cubic degree and thus not with minimal AND depth.

Table 1 in [BBS17] notes all quadratic 5-bit S-box classes which have a quadratic
inverse. Interestingly, we found that all 18 classes in this table satisfy Property 1.

Proposition 1. Any quadratic 5-bit S-box S such that deg(S) = deg(S−1) = 2 satisfies
Property 1.

This property is particularly useful when one wants to share resources between the
encryption and decryption implementations. However, as the best cryptanalytic properties
among these classes are (δ,L) = (16, 32), none of them constitutes a suitable candidate.
The number of rounds required to obtain a sufficiently low differential and linear property
would nullify the advantage of low AND depth.
Remark 3. There exist no 5-bit S-boxes with good cryptanalytic properties and minimal
AND depth for both the forward and backward direction.

Higher AND depth. Non-quadratic 5-bit S-boxes have not been classified so far. However,
by composing quadratic functions, we can obtain higher-degree S-boxes with AND depth
exactly two. This was done for example in [DB18, Table 7]. It is shown that the quartic
APN function (x15) can be decomposed using classes 74 and 75 from [BBS17], i.e. has AND
depth two. This can also be shown using power maps [NNR19]: x15 = (x3) ◦ (x5). This
S-box is thus useful when one is willing to trade minimal AND depth for higher algebraic
degree. Moreover, since x15 is affine equivalent to the inversion (x30 = (x15) ◦ (x2)) in F25 ,
this S-box satisfies Property 1. Hence, this is an excellent auto-invertible candidate of
depth two.

However, a 5-bit S-box that satisfies Property 2 also exists and is well known. It was
shown in [DB18, NNR19] that the inverse of quadratic AB class 75 (power map x5), is in
fact a composition of class 75 with itself. Indeed: (x5) ◦ (x5) ◦ (x5) = x125 = x1 mod 31. This
forward and inverse S-box can therefore be implemented together as shown in Figure 1.
For implementation purposes, this makes class 75 far superior above class 74, which has
the same cryptanalytic properties and has been used in the Fides authenticated encryption
algorithm [BBK+13]. The most important 5-bit S-boxes are summarized in Table 4. Any
of the AB’s or APN suffice when the inverse S-box is not required, but only the AB x5

and the APN x15 are good candidates when they should be implemented together with
their inverse.

4.3 6-bit S-boxes
Minimal depth. As for 5-bit S-boxes, all 6-bit quadratic S-boxes have been classified
according to affine equivalence [DB18]. There are no 6-bit AB functions and the only
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Figure 2: Efficient implementation of the 6-bit quadratic power map x5 (class 2263)
together with its inverse.

known APN has depth three. The search did however deliver eight quadratic classes (classes
2256 to 2263) that are far better than the others in terms of cryptanalytic properties with
δ = 4 and L = 16. We note that these are the same cryptanalytic properties as for the
Galois field inversion x−1 = x62, which has algebraic degree 5 and AND depth 3. However,
none of these eight S-boxes have a quadratic inverse.

We again search first for the equivalence classes that satisfy Property 1. Of the 70
classes that have a quadratic inverse, again all of those inverses belong to the same class.

Proposition 2. Any quadratic 6-bit S-box S such that deg(S) = deg(S−1) = 2 satisfies
Property 1.

All but one of these classes have differential uniformity at least 32 or linearity at
least 64 and are thus not interesting. Only class 2230 achieves (δ,L) = (16, 32), which is
remarkably good considering the quality of the remaining quadratic S-boxes (see [DB18,
Table 14]). In fact, there are only two quadratic 6-bit S-boxes with better properties
(classes 2256 to 2263), but those do not satisfy Property 1. Nevertheless, we continue the
search for better quality S-boxes.

Higher AND depth. We first attempt to find quadratic S-boxes that satisfy Property 2.
For this, we only consider the eight best classes (2256 to 2263) since they have the best
cryptanalytic properties and since the next best quality for quadratics ((δ,L) = (16, 32))
is obtained by the self-inverse class 2230, which already satisfies Property 1. We use
the decomposition algorithm of [DB18] for each S−1, in which we constrain one of the
components to be S. This algorithm allows us to find F such that deg(F) = 2 and
S−1 ∼ F ◦ S. We find that for none of these eight classes, such a function F exists. This
does not necessarily mean that none of the classes satisfy Property 2, but it is a lot more
difficult to verify whether an F exists such that S−1 ∼ S ◦ F. The algorithm from [DB18]
would have to search for F−1 such that S ∼ F−1 ◦ S−1, in which case F−1 is not necessarily
quadratic. Hence, the complexity of the search becomes too large.

Alternatively, we look at power maps in F26 and realize that odd class 2263 is AE to
the power map x5. The inverse of this map is x38 which is affine equivalent to x13. Neither
this exponent 13 nor any other 2i · 13 is divisible by 5. However, apart from concatenation
(f ◦g), another popular mechanism for function composition is that of multiplication chains.
For example, the AES S-box has been decomposed using many variants of multiplication

Table 4: Minimal-depth 5-bit S-boxes Overview
Cryptanalytic Prop. Implementation Prop.

S δ L WP Degr. D # AND # XOR Prop.
S S−1 S S−1 S S−1 S S−1

Ascon (∼Keccak) 8 16 2−2 2 3 1 2 5 9 5 38 -
Fides (∼ x3) 2 8 2−4 2 3 1 2 7 10 29 50 -
(x5) 2 8 2−4 2 3 1 2 7 10 26 54 2
(x15) 2 12 2−2.8 4 4 2 2 ≤ 14 ≤ 14 ≤ 55 ≤ 55 1

155



chains [GPS14]. This can be considered as composition at the algebraic level (in the field
F26) instead of at bit-level. In this case, x13 can be written as a multiplication of x5 itself
with the linear map x8, which allows a very large degree of resource sharing between the
forward S-box x5 and its inverse. In the forward direction, the composition with x8 can
simply be bypassed (see Figure 2).

We summarize the results for 6 bits in Table 5. We do not include all classes since
at this point, the tool is not able to find implementations for their inverses. However, in
the forward direction, they all have an AND gate complexity of 8 at AND depth 1. We
mention in particular class 2263 for its power map equivalence, and class 2258, to give a
(far from optimal) estimate of a cost. For its inverse, we were able to reduce the cost of the
implementation from the ANF to 22 AND gates. We also compare with the non-bijective
cube function x3 over F26 .

Table 5: Minimal-depth 6-bit S-boxes Overview
Cryptanalytic Prop. Implementation Prop.

S δ L WP Degr. D # AND Prop.
S S−1 S S−1 S S−1

Cl. 2230 16 32 2−2 2 2 1 1 ≤ 6 ≤ 6 1
Cl. 2258 4 16 2−4 2 3 1 2 8 22 -
Cl. 2263 (∼ x5) 4 16 2−4 2 3 1 2 8 ≤ 26 2
(x3) 2 16 2−4 2 - 1 - 9 - non-bij

4.4 7-bit S-boxes
The space of 7-bit S-boxes (even only quadratic) is too large to classify with today’s
resources. Hence, very little is known about it. We do know that with odd size 7, we again
get quadratic AB functions from power maps: x3, x5 and x9 [Gol68]. The inverses of these
permutations all have algebraic degree four.

It is clear that none of these functions satisfy Property 1. Our next best option is to
find one that satisfies Property 2, but for simplicity, we now limit our search to power
maps only.

First, for each power map xq, we attempt to find a length-two decomposition of the
inverse map using xq as one of the components. We find the following results:
• x1/3 ∼ x45 = x3 ◦ x15 with deg(x15) = 4
• x1/5 ∼ x27 = x5 ◦ x107 with deg(x107) = 5
• x1/9 ∼ x15 = x9 ◦ x44 with deg(x44) = 3

While such decompositions exist, they are not useful in any of the three cases, since the
total AND depth D of the composed inverse would be at least 3, which is larger than
the lower bound (2) for quartic functions. Hence, when restricted to power maps, these
permutations do not satisfy Property 2.

However, for each of the inverses, we do find length-two decompositions consisting only
of quadratic components, as shown in Table 6. Interestingly, each quadratic power map’s
inverse is a composition of the other two. So while they do not satisfy any of the properties
in § 4.1, we can implement them all with a considerable amount of resource sharing. To

×"#$
%&'

×"#$
%&'

%(

Figure 3: Efficient implementation of the 7-bit quadratic power maps x5 or x9 together
with their inverse. The linear block can evaluate either x4 or x8.
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Table 6: Minimal-depth 7-bit S-boxes Overview
Cryptanalytic Prop. Implementation Prop.

S δ L WP Degree D Prop.
S S−1 S S−1

x3 2 16 2−6 2 4 1 2 S−1 ∼ x5 ◦ x9

x5 2 16 2−6 2 4 1 2 S−1 ∼ x3 ◦ x9

x9 2 16 2−6 2 4 1 2 S−1 ∼ x3 ◦ x5

see this, consider their implementations at the algebraic level in F27 . Each of these power
maps can be implemented using a linear power-two exponentiation, followed by a Galois
field multiplication in F27 . The dominating component for the cost is the multiplication,
which is common to all three functions. Hence, an implementation of such a quadratic
map (for example x5 or x9) together with its inverse could be realised as in Figure 3. We
do note that implementing a power map by means of a finite field multiplication ×F27 is
not as efficient as by optimization of the Boolean circuit.

We do not extend our search beyond these power maps, since they already obtain the
best cryptanalytic properties and can also be implemented together with their inverse with
a very high level of sharing. We summarize the properties in Table 6. From this point,
it becomes infeasible for the tool to calculate the AND gate complexity. The remaining
search aims primarily at AND depth and resource sharing with inverse S-boxes.

4.5 Larger S-boxes
With increasing S-box size, a comprehensive search becomes more and more challenging.
We finish our search with an exploration of low-depth power functions of various sizes that
satisfy one of the properties of § 4.1. The results are summarized in Table 7. At a size of
8 bits, the AES S-box is currently the best known. There are no quadratic power maps
over F28 which form a bijection. For 9 bits, there are four quadratic power maps: x3, x5,
x9 and x17, of which all but x9 are AB. For two of the others, we found that they satisfy
Property 2:
• x1/5 = x409 ∼ x5 ◦ x23 with deg(x23) = 3
• x1/17 = x481 ∼ x17 ◦ x23 with deg(x23) = 3

Moreover, Nikova et al. found in [NNR19] that the F29 inversion x510 can be decomposed
into the three quadratic ABs: x−1 = x510 ∼ x17 ◦ x5 ◦ x3.

Increasing the size brings us to 10 bits, which is even. Hence, there are no quadratic AB
power maps. Furthermore, the F210 inversion’s decomposition into quadratic power maps
has a depth of 15 [NNR19] and is thus not a good option at the moment. Nevertheless, x5

and x17 are bijective with very good cryptanalytic properties (δ,L) = (4, 64). In addition,
they both satisfy Property 2 since x17 ◦ x17 ◦ x5 ◦ x5 ∼ x, i.e.
• x1/5 = x614 ∼ x5 ◦ x17 ◦ x17

• x1/17 = x662 ∼ x17 ◦ x5 ◦ x5

We also learn from this that there exists an involution of AND depth 2: x340 = x4 ◦x5 ◦x17

and x1/340 = x340. Its cryptanalytic properties are (δ,L) = (10, 112) with algebraic degree
4.

Finally, with 11 bits, the AB power map x17 has a nicely decomposable inverse
x1445 = x17 ◦ x17 ◦ x5 and thus also satisfies Property 2. The finite field inversion x2046

has AND depth 8 when composed into quadratics [NNR19].
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Table 7: Low-depth 8- to 11-bit S-boxes Overview
Cryptanalytic Prop. Implementation Prop.

s S δ L WP Degree D Prop.
S S−1 S S−1

8 x254 4 32 2−6 7 7 4 4 1

9 x5 2 32 2−8 2 5 1 ≥ 3 2
x17 2 32 2−8 2 5 1 ≥ 3 2
x510 [NNR19] 2 44 2−7 8 8 3 3 1

10 x5 4 64 2−8 2 5 1 3 2
x17 4 64 2−8 2 5 1 3 2
x340 10 112 2−6.4 4 4 2 2 1

11 x17 2 64 2−10 2 6 1 3 2

5 Growing up: S-boxes from Domain-Extension Structures
Goal. The previous section showed that a class-based approach does not work when the
S-box size becomes large. As of 7 bits, the search is limited to power maps. Also at this
point, it becomes unfeasible for the tool from §3 to find efficient implementations. Hence
in this section, we continue with a (no longer exhaustive) exploration based on domain-
extending constructions. We use known constructions from literature and also introduce
a new one. These constructions allow us (1) to control the AND depth and the level of
resource sharing with the inverse from the start and (2) to determine the implementation
costs of our S-boxes, using the results from previous sections. For simplicity, we will
restrict to length-doubling structures.

Domain-extension structures. We consider three structures: 3-round Feistel, 3-round
Misty and Bridge (new). Feistel and Misty are classical length-doubling structures,
respectively introduced in [Fei73, DES77] and [Mat97] to design ciphers. In [LW14], Li
and Wang gave initial bounds of security for 3-round Feistel S-boxes. These results were
extended by Canteaut et al. in [CDL15] and used to find 8-bit S-boxes with few AND
gates. Boss et al. [BGG+17] then reduced the area of 8-bit S-boxes at the cost of depth
(including AND depth). The advantage of Feistel and Misty is that theoretical results are
known on how to build them and what security to expect, from [LW14, CDL15] in general,
and from [PUB16] for a particular case of Feistel which is an instance of the Butterfly
structure. An interesting S-box for low AND depth is Littlun [KG16] by Karpman, with a
Lai-Massey-like structure [LM90], whose inverse has a low AND depth. Bridge is a new
structure, which can be seen as AE to the Littlun structure with a slightly lower cost.

Overview of the results. By plugging in quadratic components obtained from the tool,
we get a variety of results with trade-offs between AND depth, AND gate count, cost of
inverse and cryptanalytic properties (δ,L). These results are summarized in Table 8.

5.1 Definition of the Schemes
The schemes that we use and their inverses are defined in Figures 4(a), 4(b) and 4(c). For
comparison with Bridge, we also show the Littlun-like Lai Massey network in Figure 4(d).

Lemma 2 (Feistel, Misty, Bridge AND depth). Let F , M and B be respectively a 3-round
Feistel, a 3-round Misty and a Bridge schemes, with internal functions S1, S2 and S3.
Then for the AND depth of the forward and inverse S-boxes we have:
• D(F ) = D(F−1) = D(S1) +D(S2) +D(S3),
• D(M) = D(S1) + maxi=2,3 D(Si), D(M−1) = D(S−1

1 ) +D(S−1
2 ) +D(S−1

3 ),
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Table 8: S-boxes obtained using length-doubling structures and low-depth components.
The ? symbol means that no good implementation was found by the tool for one of the
components. The last column indicates whether the S-box is involutive (inv) or has a
zero-overhead inverse (zo).

Cryptanalytic Prop. Implementation Prop.
s S δ L WP Degr. D # AND # XOR Prop.

S S−1 S S−1 S S−1 S S−1

6 Feistel3,3,3(x3, x3, x3) 4 16 2−4 4 4 3 3 9 9 27 27 inv
Misty3,3,3(x6, x6, x6) 4 16 2−4 3 4 2 3 9 9 21 21 zo
Bridge3,3,3(x6, x6, x6) 4 16 2−4 3 4 2 2 9 9 21 21 zo

8 Feistel4,4,4(x3, iC13, x3) 8 64 2−4 5 5 4 4 12 12 50 50 inv
Bridge4,4,4(x3, iC13, iC13) 16 64 2−4 5 6 3 3 12 12 39 39 zo
Misty4,4,4(iC13, iC13, iC13) 24 64 2−3.4 5 6 4 6 12 12 30 32 zo
M = Misty5,3,5(x3, x6, x3) 10 64 2−4 3 5 2 5 17 27 71 71 -

10 Feistel5,5,5(x3, x
1
3 , x3) 4 64 2−8 5 5 4 4 25 25 128 128 inv

Feistel5,5,5(x3, x3, x3) 6 96 2−6.6 4 4 3 3 21 21 102 102 inv
Bridge5,5,5(x3, x3, x3) 10 64 2−6.7 3 6 2 3 21 29 97 159 -
Misty5,5,5(x3, x3, x3) 10 96 2−6.7 3 6 2 6 21 29 97 175 -

12 Feistel6,6,6(x3, Q2258, x3) 12 256 2−8 7 7 3 3 26 26 140 140 inv
Bridge6,6,6(x3, Q2258, Q2258) 18 512 2−6 4 6 2 3 25 53? 131 161 -
Misty6,6,6(Q2258, Q2258, Q2258)24 512 2−6 4 7 2 6 24 66? 126 171 -

14 Feistel7,7,7(x3, x1/3, x3) 4 256 2−12 8 8 4 4 121? 121? - - inv
Feistel7,7,7(x3, x3, x3) 12 512 2−10 4 4 3 3 45 45 261 261 inv
Bridge7,7,7(x3, x3, x3) 12 256 2−10.4 3 8 2 3 45 197? 254 - -
Misty7,7,7(x3, x3, x3) 16 512 2−10 3 8 2 6 45 241? 254 - -

16 Feistel8,8,8(x3, x−1, x3) 10 1280 2−11.3 11 11 6 6 90? 90? - - inv
Feistel8,8,8(x3,M, x3) 20 2048 2−10 10 10 4 4 63? 63? - - inv
Bridge8,8,8(x3,M,M) 64 3072 2−8 6 10 3 6 62? 72? - - -
Misty8,8,8(M,M,M) 100 4096 2−8 6 12 4 15 51 81 229 229 -

• D(B) = D(S1) + maxi=2,3 D(Si), D(B−1) = D(S1) + maxi=2,3 D(S−1
i )

Remark 4 (Non-bijective components). The Feistel scheme is bijective independently of
the bijectivity of its components (although according to [LW14, CDL15], S2 must be
bijective to have good cryptanalytic properties) and Bridge is bijective independently of
the bijectivity of S1. We will exploit this, since using non-bijective components is less
restrictive and sometimes useful. For instance, there are no quadratic APN permutations
on even sizes, but there are quadratic APN functions, such as x3.

Field polynomials. In the following, many components are quadratic power maps over
finite fields of size m. These fields are defined using the following irreducible polynomials:

• F23 : X3 +X + 1;
• F24 : X4 +X + 1;
• F25 : X5 +X2 + 1;

• F26 : X6 +X4 +X3 + 1;
• F27 : X7 +X + 1;
• F28 : X8 +X4 +X3 +X2 + 1.

5.1.1 Butterfly-like Feistel

This structure is so well understood from results in [PUB16] and further results from
[CDP17, FFW17, LTYW18, CPT19] that we can get all the results we need from theory. It
is only defined for n = 2m,m odd, and corresponds to the 3-round Feistelm,m,m(xe, x1/e, xe),
with e of Hamming weight 2. We know that it always has δ = 4, L = 2m+1, deg = m+ 1
and, since xe is quadratic, it can be implemented with D = 1. We obtain the cost for the
inverse at low D from §4.5, and the cost in gates is the sum of the cost of the components,
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Figure 4(a): 3-round Feistel (left) and inverse
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Figure 4(b): 3-round Misty (left) and inverse
(right).
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Figure 4(c): Bridge (left) and inverse (right).
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Figure 4(d): Littlun-like scheme equivalent rep-
resentations.

plus the cost of three m-bit XORs. Moreover, a Feistel structure with S1 = S3 = xe is
automatically an involution, which makes this structure excellent for the inversion criterion.
For simplicity, we restrict ourselves to e = 3. The results are summarized in Table 8.

5.1.2 Feistel

Although the Butterfly-like Feistel gives the best cryptanalytic properties that a 3-round
Feistel network can reach, the use of the inverse of a quadratic permutation is costly. We
hereby study Feistel networks on n = 2m bits for which all the components are quadratic.
Following [LW14, CDL15], we restrict S2 to be bijective to get good cryptanalytic properties.
As long as it is possible, we use x3 on F2m as component. When this component is not
bijective (i.e. when m is even), we use a quadratic bijection when available. In particular,
we use the best 4-bit bijective S-box from the tool iClass13, and on 8 bits, we use x−1,
or alternatively an unbalanced Misty structure with D = 2, defined in §5.1.3. We also
keep the restriction of S1 = S3 so that our resulting S-boxes are always involutive. Some
components cannot be run by the tool, such as x3 on F28 , x1/3 on F27 and Q2258−1.
Therefore, we use ad hoc sub-optimal implementations obtained from the ANF.

The resulting S-boxes have weaker (δ,L) than the Butterfly-like Feistel, but at a lower
cost. On 8 bits, we can compare with the Scream v3 S-box [GLS+14], a 3-round Feistel
based on [CDL15] with 12 ANDs at AND depth 5 (we get AND depth 4).
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5.1.3 Misty

As was observed in [CDL15], Misty requires bijective components to get a bijective
construction and may lead to worse cryptanalytic properties than Feistel. Yet apart from
the special case with 4-bit components, it seems that both Feistel and Misty give similar
cryptanalytic properties. Misty has the advantage of allowing to spare one m-bit XOR
and of having a lower D for the forward direction.

We use the same components as the bijective components of the Feistel network. The
Misty structure has as drawback that it does not yield involutive S-boxes. Yet if we use
involutive components, the inverse can be implemented with zero overhead over the forward
S-box (barring multiplexers and control logic). We therefore use x6 rather than x3 on F23 .

On 8 bits, we can compare with the Robin S-box [GLSV14], a 3-round Misty defined
as Misty4,4,4(Class13, Class13, Class13). Its properties are the same as the one using
iClass13 instead (see Table 8), which are not very good compared to other 8-bit schemes.

Unbalanced Misty. Following the reasoning in [CDL15], we add an 8-bit unbalanced
Misty network. We use Misty5,3,5(x3, x6, x3), where the compression function used on
the left input of the round 1 XOR is (x0, x1, x2, x3, x4) 7→ (x2, x3, x0) and the expansion
function used on the left input of the round 2 XOR is (x0, x1, x2) 7→ (x0, 0, x2, x1, 0). This
gives a similar result as the one from [CDL15].

5.1.4 Bridge

The Bridge scheme derives from the Littlun structure, which in itself derives from the
Lai-Massey structure [LM90]. Bridge can also be seen as a mix between Feistel and Misty,
or Feistel and SPN. It has a low AND depth, both for the forward and backward directions.
Like Misty, it cannot result in an involutive S-box, but if S2 and S3 are involutions, the
inverse has zero overhead. We thus use the same bijective components as the Misty case
(to have involutions) and the same non-bijective components as the Feistel case.

On 8 bits, we can compare with Littlun [KG16], which uses S1 = S2 = S3 = Class13,
has (D,G) = (4, 12). Our 8-bit example reaches (D,G) = (3, 12), with the same (δ,L).
Note however that Littlun has branch number 3, which we do not consider.

5.2 Discussion
Bridge > Misty. In practice, it appears that balanced Bridge and Misty give similar δ
and L. They also have similar D in the forward direction, but Bridge has a lower D in the
backward direction, which makes it a better candidate than balanced Misty in general.
Additionally, in the case of Bridge, the scheme can be bijective even if S1 is not bijective,
which allows for more choices of S1 than in the case of Misty.

Bridge vs Feistel. Bridge and Feistel usually give similar results in terms of δ and L, but
Feistel has a worse D in the forward direction. However, the inverse of Bridge requires
the use of S−1

2 and S−1
3 which, in general, are more costly and have a higher D than S2

and S3. Therefore, Feistel can still give a better overall D than Bridge, but Bridge can be
better when lightweight inverses for S2 and S3 are available (in particular, inverses with
low D).

Unbalanced Feistel and Bridge. Note that an unbalanced Feistel network built in the
same way as the Misty one (dropping bits on odd rounds and inserting bits at round
2, without changing anything else), cannot give good cryptanalytic properties since it
breaks the rule of having S2 bijective, required from [LW14, CDL15]. Other unbalanced
schemes can be considered (as in [BGG+17] for instance, were the linear layer is modified)
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to avoid this issue, but this is a more complicated approach which is out of our scope. The
Bridge structure does not share this rule of needing one bijective component to get good
cryptanalytic properties, but in practice, the same way of building an unbalanced Bridge
seems to give bad cryptanalytic properties.

Significance of the Search Space. We chose a limited search space for our length-
doubling search: we only used few choices of components Si. Yet, this is enough to get
some idea of what to expect. Indeed, focusing on the Feistel structure, we expect the
best possible WP , given by LP , to be roughly maxi,j 6=i LP (Si)LP (Sj). We reach this
optimum apart from the 16-bit case (the optimum is 2−12 and we reach 2−11.3). With
Misty and Bridge, we expect to be able to reach something close to this bound with
another choice of Si. This is enough to give us an idea of what to expect from S-boxes
built from length-doubling structures and to have a first idea of how they compare with
smaller S-boxes.

Widening the Search Space. Our approach can be extended in various ways. First, we
only considered length-doubling structures and some very simple unbalanced structures.
Considering more complex domain-extension structures, in particular on more than two
branches, may give some very different results. We also limited our search to the use of
only three components, in order to limit the number of AND gates, but maybe a trade-off
is possible between number of ANDs and AND depth by using more components (for
instance with 2-round SPN, like investigated in [BGG+17]).

The main limitation on the implementation properties of the results comes from the
use of inverses, which are generally costly. The use of non-bijective components helps in
this case, because we have them at a lower cost, even though they are less studied, which
implies that more work on non-bijective components should be able to mitigate the cost.

Finally, we should note that all three structures considered here, Feistel, Misty and
Bridge, have a common issue when it comes to linearity, see Lemma 3. Identifying some
new structures able to reach a low LP as well as a low DP would be a worthwhile work,
not only in this context, since it deals with the security of widely-used structures.

Lemma 3 (Sub-optimality for LP ). Feistel and Misty are notably worse for LP than for
DP . In particular, on n = 2m bits, with WP (Si) = DP (Si) = LP (Si) equal for all i:

DP ≥ 2
2mWP (Si) , LP ≥ 16

2mWP (Si) .

Proof. From [CDL15], for Feistel and Misty, δ ≥ 2δ(Si) and L ≥ 4L(Si). Then:

DP ≥ 2
22m δ = 2

2mWP (Si) ,

LP ≥
( 4

22mL
)2 = 16

2mWP (Si) .

We conjecture the same for Bridge.

6 Conclusions
Our work produces a toolbox of ready-to-use S-boxes with low AND depth, low AND
complexity and efficient inverses. We demonstrated optimal S-box circuits on 4 bits for low
latency masking, by introducing a tool that is able to jointly minimize two criteria. For
larger sizes, we provide new insights into the properties of existing S-boxes or construct
new S-boxes according to our criteria. Our research demonstrates that it is possible to
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combine strong functional properties with efficient implementations, even when sharing
resources with the inverse S-box is desired.

We observed that odd S-box sizes, despite being very unpopular in cipher designs,
typically result in better functional properties at lower cost. In particular, Table 9 shows
that we did not encounter any 2n-bit S-box with a lower WP than the 2n− 1-bit S-boxes.

Additionally, there is a bias towards small bit sizes in the state-of-the-art, which seems
to be due to the simpler exhaustive exploration of the search space more than due to
qualitative considerations. Our observations naturally suggest the further exploration
of unconventional design choices (odd and larger S-box sizes) as an interesting research
direction.

Finally, considering S-boxes with differential, linear and algebraic criteria is not enough.
Several research directions include (1) considering more cryptanalytic properties, (2)
exploring and comparing diffusion layers and (3) exploring and comparing full primitives
based on S-boxes and diffusion layers. In this view, odd and large S-boxes appear as
interesting candidates which need testing at the primitive level.
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A Description of the tool
Our tool works in two steps. First, it extends Stoffelen’s tool by minimizing jointly G
and D. Second, we isolate the input and output affine layers and optimize them using
the CADENCE Genus synthesizer7. We use the naming and notation from [Sto16]: The
variables xi and yi represent S-box inputs and outputs respectively.

SAT (satisfiability) solver step. As done in [Sto16], we create a generic model of gates
and a set of constraints on wiring and feed it to a SAT solver. The SAT solver assigns the
wires such that the circuit implements the correct S-box. Our model is shown in Figure 5
and is built in order to optimize our criteria of AND depth D and AND gate count G.
There are D layers of AND gates, separated by affine layers. This means that the inputs
of any AND gate can be assigned to some affine combination of the inputs and outputs of
the previous layers. The same is true for the circuit outputs yi. We restrict to AND, XOR
and NOT gates, since OR, NAND and NOR gates can be obtained with few additional
NOTs, which hardly matter for our purposes. We introduce an additional meta-parameter
WFD which is the number of AND chains of full AND-depth. This parameter gives more
control over the implementation, as it allows to reduce G for target D and ultimately
reduce the runtime. We start with WFD full chains of AND depth D, then potentially
treat a last un-full chain (of length mod(G,D))8. To allow for the algebraic degree of the
un-full chain to be maximal, we place the ANDs of the un-full chain at maximal depth
(i.e. their inputs can come of any xi or AND gates at depth less than D− 1). Algorithm 1
describes more specifically how we generate the equations for the SAT solver.
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Figure 5: Generated circuit structure by Algorithm 1 for the SAT solver

Synthesis-tool step. We use the CADENCE Genus synthesizer to optimize the affine
layers (i.e. minimize the number of XOR and NOT gates). We restrict the cell library
(.lib file) by using the librar_domain and avoid attributes and give a reprehensive cost for
AND cells (using the multiply attribute). This way, we ensure that only XOR and NOT
gates are used in the implementation of the affine layers.

7https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/
digital-design-signoff/genus-synthesis-solution-ds.pdf

8The algorithm branches to D-1 cases which correspond to the possible values of mod(G,D).
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Supplementary Material

Overview of the results

Table 9: Overview of all S-boxes.
Functional Prop. Implementation Prop.

s S δ L WP Degr. D # AND Prop.
S S−1 S S−1 S S−1

3 x3 and AE-equivalents∗ 2 4 2−2 2 2 1 1 3 3
4 Class13, Prøst, Noekeon,

Piccolo, Skinny, Present,
. . .

4 8 2−2 3 3 2 2 4 4

5 (x30) 2 12 2−2.8 4 4 2 2 ≤ 14 ≤ 14 inv
(x5) 2 8 2−4 2 3 1 2 7 10 2
Fides (∼ x3) 2 8 2−4 2 3 1 2 7 10 -
Ascon (∼Keccak) 8 16 2−2 2 3 1 2 5 9 -

6 Feistel3,3,3(x3, x3, x3) 4 16 2−4 4 4 3 3 9 9 inv
Misty3,3,3(x6, x6, x6) 4 16 2−4 3 4 2 3 9 9 zo
Bridge3,3,3(x6, x6, x6) 4 16 2−4 3 4 2 2 9 9 zo
Q2230 16 32 2−2 2 2 1 1 ≤ 6 ≤ 6 1
Q2258 4 16 2−4 2 3 1 2 8 22 -
Q2263 (∼ x5) 4 16 2−4 2 3 1 2 8 ≤ 26 2

7 x3 2 16 2−6 2 4 1 2 ≤ 15 §4.4
x5 2 16 2−6 2 4 1 2 ≤ 21 §4.4
x9 2 16 2−6 2 4 1 2 ≤ 21 §4.4

8 x254 [CB09] 4 32 2−6 7 7 4 4 32 32 inv
Feistel4,4,4(x3, iC13, x3) 8 64 2−4 5 5 4 4 12 12 inv
Bridge4,4,4(x6, iC13, iC13) 16 64 2−4 5 6 3 3 12 12 zo
M = Misty5,3,5(x3, x6, x3) 8 64 2−4 3 5 2 5 17 27 -

9 x510 [NNR19] 2 44 2−7 8 8 3 3 inv
x5 2 32 2−8 2 5 1 ≥ 3 2
x17 2 32 2−8 2 5 1 ≥ 3 2

10 Feistel5,5,5(x3, x
1
3 , x3) 4 64 2−8 5 5 4 4 25 25 inv

Feistel5,5,5(x3, x3, x3) 6 96 2−6.6 4 4 3 3 21 21 inv
x340 10 112 2−6.4 4 4 2 2 inv
x5 4 64 2−8 2 5 1 3 2
x17 4 64 2−8 2 5 1 3 2
Bridge5,5,5(x3, x3, x3) 10 64 2−6.7 3 6 2 3 21 29 -

11 x17 2 64 2−10 2 6 1 3 2

12 Feistel6,6,6(x3, Q2258, x3) 12 256 2−8 7 7 3 3 26 26 inv
Bridge6,6,6(x3, Q2258, Q2258) 18 512 2−6 4 6 2 3 25 53? -

14 Feistel7,7,7(x3, x1/3, x3) 4 256 2−12 8 8 4 4 121? 121? inv
Feistel7,7,7(x3, x3, x3) 12 512 2−10 4 4 3 3 45 45 inv
Bridge7,7,7(x3, x3, x3) 12 256 2−10.4 3 8 2 3 45 197? -

16 Feistel8,8,8(x3, x−1, x3) 10 1280 2−11.3 11 11 6 6 90? 90? inv
Feistel8,8,8(x3,M, x3) 20 2048 2−10 10 10 4 4 63? 63? inv
Bridge8,8,8(x3,M,M) 64 3072 2−8 6 10 3 6 62? 72? -

∗ All APN 3-bit permutations are AE-equivalent (see [Bri07], Theorem 4.17 for instance).
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Algorithm 1 Generate ANF equations for joint multiplicative-depth (D) and
multiplicative-complexity(G) target
1: Input: G, D, WFD.
2: Output: Eq.-set for q∗, t∗, y∗.
3: qb =tb = ab = 0;
4: Z = {xl}, l ∈ {0, ..., n− 1};
5: Gfull = WFD ·D;
6: for g‘ = 0 to G− 1 do . Gen. ANDs loop
7: for q‘ = 0 to 1 do . Gen. AND inputs
8: qq‘+qb

= aab
; ab++1

9: ∀z ∈ Z: qq‘+qb
+ = aab

· z; ab++1;
10: ttb = qqb

· qqb+1; . Gen. ANDs
11: if Gfull > D − 1 then . Full-depth layers
12: if g‘ < D − 1 then
13: Z = Z ∪ ttb
14: else
15: if mod (g‘ + 1, D) = 0 then
16: Z = {xl}, l ∈ {0, ..., n− 1};
17: else
18: for ii = 0 to mod(g‘, D) + 1 do
19: for jj = 0 to bg‘/Dc+ 1 do
20: Z = Z ∪ ttii+D·jj

21: else . Partial-depth layers
22: if g‘ < D − 1 then
23: Z = Z ∪ ttb
24: else
25: if mod (g‘ + 1, D) = 0 then . Example depth=1
26: Z = {xl}, l ∈ {0, ..., n− 1};
27: for ii = 0 to mod(g‘, D) do
28: for jj = 0 to bWFD − 1c+ 1 do
29: Z = Z ∪ ttii+D·jj

30: else . Example depth=2
31: Z = {xl}, l ∈ {0, ..., n− 1};
32: for ii = 0 to mod(g‘, D) + 1 do
33: for jj = 0 to bWFD − 1c+ 1 do
34: Z = Z ∪ ttii+D·jj

. Continue if deeded (D > 3)
35: tb++1; qb++2; Gfull- -1;
36: Z = {xl}, l ∈ {0, ..., n− 1}; . Assign outputs
37: for l = 0 to g‘− 1 do
38: Z = Z ∪ ttii

39: for l = 0 to n− 1 do
40: ∀z ∈ Z : yl = aab

· z; ab++1;
41: return q∗, t∗, y∗

S-box circuits

3-bit S-box circuits9

9For the circuits description appended we use the following notations for the XOR, AND, OR and
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LowMC S:
D=1 G=3.
· p0 = x0 · x2;
· p1 = x0 · x1;
· p2 = x1 · x2;
· y0 = x0 ⊕ p2;
· l1 = x0 ⊕ x1;
· y1 = l1 ⊕ p0;
· l2 = x0 ⊕ x1;
· l3 = l2 ⊕ x2;
· y2 = l3 ⊕ p1;

SEA S:
D=1 G=3.

· p0 = x0 · x2;
· p1 = x0 · x1;
· p2 = x1 · x2;
· y0 = x0 ⊕ p2;
· l1 = x1 ⊕ p0;
· y1 = l1 ⊕ p2;
· l2 = x0 ⊕ x1;
· l3 = l2 ⊕ x2;
· y2 = l3 ⊕ p1;

x3 S:
D=1 G=3.

· p0 = x0 · x2;
· p1 = x0 · x1;
· p2 = x1 · x2;
· l0 = x0 ⊕ x1;
· l1 = l0 ⊕ x2;
· y0 = l1 ⊕ p2;
· l2 = x1 ⊕ p0;
· y1 = l2 ⊕ p1;
· y2 = x2 ⊕ p1;

x5 S:
D=1 G=3.

· p0 = x0 · x2;
· p1 = x0 · x1;
· p2 = x1 · x2;
· l0 = x0 ⊕ x1;
· l1 = l0 ⊕ x2;
· y0 = l1 ⊕ p2;
· l2 = x1 ⊕ x2;
· y1 = l2 ⊕ p0;
· l3 = x1 ⊕ p1;
· y2 = l3 ⊕ p0;

x6 S:
D=1 G=3.

· p0 = x0 · x2;
· p1 = x0 · x1;
· p2 = x1 · x2;
· l1 = x1 ⊕ x2;
· l0 = x0 ⊕ l1;
· y0 = l0 ⊕ p2;
· y1 = x2 ⊕ p1;
· y2 = l1 ⊕ p0;

4-bit S-box circuits
Present S:
D=2 G=4.
· l0 = x1 ⊕ x2;
· q0 = ∼l0;
· l1 = x0 ⊕ x1;
· q1 = ∼l1;
· t0 = q0 · q1;
· l2 = q1 ⊕ x2;
· q2 = l2 ⊕ t0;
· q3 = ∼x3;
· t1 = q2 · q3;
· q4 = ∼x2;
· t2 = q4 · x1;
· l3 = q0 ⊕ x3;
· l4 = t0 ⊕ t2;
· q6 = l3 ⊕ l4;
· l5 = x0 ⊕ x3;
· q7 = l5 ⊕ t0;
· t3 = q6 · q7;
· l6 = x3 ⊕ t2;
· l7 = t0 ⊕ t1;
· y0 = l6 ⊕ l7;
· l8 = x0 ⊕ x2;
· l9 = l7 ⊕ t3;
· y1 = l8 ⊕ l9;
· l10 = ∼l2;
· l11 = l10 ⊕ t1;
· y2 = l11 ⊕ t2;
· l12 = x0 ⊕ x3;
· y3 = l12 ⊕ t2;

Present S−1:
D=2 G=4.

· l0 = x0 ⊕ x2;
· l1 = x1 ⊕ x3;
· l2 = l1 ⊕ x2;
· l3 = l1 ⊕ x0;
· l4 = l0 ⊕ l1;
· l5 = l0 ⊕ x3;
· q0 = ∼l2;
· q1 = l3;
· t0 = q0 · q1;
· q2 = x0 ⊕ x3 ⊕ t0;
· q3 = ∼l4 ⊕ t0;
· t1 = q2 · q3;
· q4 = ∼l0;
· q5 = ∼l1;
· t2 = q4 · q5;
· l6 = t0 ⊕ t2;
· q6 = ∼x0 ⊕ l6;
· q7 = l5 ⊕ l6;
· t3 = q6 · q7;
· y0 = x1⊕ t0⊕ t1⊕ t3;
· y1 = l2 ⊕ t1 ⊕ t2;
· y2 = l5 ⊕ t1;
· y3 = x2 ⊕ l6;

Rectangle S:
D=2 G=4.
· q6 = x0 ⊕ x1;
· l0 = x0 ⊕ x3;
· q3 = x1 ⊕ x2;
· l1 = x2 ⊕ x3;
· l2 = q6 ⊕ l1;
· q1 = ∼x3;
· t0 = x2 · q1;
· q2 = ∼l0 ⊕ t0;
· t1 = q2 · q3;
· q4 = ∼l0;
· q5 = ∼x2;
· t2 = q4 · q5;
· l3 = t0 ⊕ t2;
· q7 = ∼q3 ⊕ l3;
· t3 = q6 · q7;
· y0 = q3 ⊕ t3;
· y1 = l1 ⊕ t1 ⊕ t2;
· y2 = q6 ⊕ x2 ⊕ l3;
· y3 = l2 ⊕ t0;

Rectangle S−1:
D=2 G=4.

· q0 = ∼x3;
· q1 = x0 ⊕ x1;
· q5 = x1 ⊕ x3;
· l0 = x0 ⊕ x3;
· l1 = x0 ⊕ x2;
· t0 = q0 · q1;
· q2 = ∼l0 ⊕ t0;
· q3 = l1 ⊕ t0;
· t1 = q2 · q3;
· q4 = ∼x1;
· t2 = q4 · q5;
· q6 = ∼l1 ⊕ x3 ⊕ t0;
· q7 = ∼l0 ⊕ t2;
· t3 = q6 · q7;
· y0 = q1 ⊕ x3 ⊕ t1 ⊕
t2 ⊕ t3;
· y1 = x2 ⊕ t0 ⊕ t2;
· y2 = l1 ⊕ t0;
· y3 = q1⊕x2⊕ t0⊕ t3;

Class-13 S:
D=2 G=4.
· y0 = (x0 · x1)⊕ x2;
· y2 = (x1|x2)⊕ x3;
· y3 = (y0 · x3)⊕ x0;
· y1 = (y2 · x0)⊕ x1;

Class-13 S−1:
D=2 G=4.

· l0 = x1 ⊕ x3;
· l1 = x2 ⊕ x3;
· q1 = ∼x0;
· t0 = x1 · q1;
· q2 = x2 ⊕ t0;
· q3 = ∼l1 ⊕ t0;
· t1 = q2 · q3;
· q4 = x0 ⊕ l0;
· t2 = q4 · x1;
· l3 = t0 ⊕ t2;
· q6 = x0 ⊕ l1 ⊕ l3;

· t3 = q6 · x2;
· y0 = l1 ⊕ t1 ⊕ t2;
· y1 = x1⊕ l1⊕ t0⊕ t3;
· y2 = x1 ⊕ x2 ⊕ t0;
· y3 = x0 ⊕ x3 ⊕ l3;

NOT gates, respectively: ⊕, ·, | and ∼.
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Skinny S:
D=2 G=4.
· y0 = ∼(x0|x1)⊕ x3;
· y1 = ∼(x1|x2)⊕ x0;
· y2 = ∼(x2|y0)⊕ x1;
· y3 = ∼(y0|y1)⊕ x2;

Skinny S−1:
D=2 G=4.

· q0 = ∼x1;
· q1 = ∼x0;
· t0 = q0 · q1;

· q7 = ∼x2;
· q2 = q7 ⊕ t0;
· q4 = x1 ⊕ x3;
· q3 = q4 ⊕ x2;
· t1 = q2 · q3;
· q5 = ∼x0;
· t2 = q4 · q5;

· y2 = x3 ⊕ t0;
· q6 = q7 ⊕ y2;
· t3 = q6 · q7;
· y0 = x1 ⊕ t2 ⊕ t3;
· y1 = x2 ⊕ t2;
· y3 = x0⊕ t0⊕ t1⊕ t2;

Piccolo: Equal to Skinny with a NOT on y2 (resp. on x2 for the inverse).

Gift S:
D=2 G=5.
· l0 = x2 ⊕ x3;
· q8 = x0 ⊕ x1;
· q6 = x0 ⊕ x3;
· l1 = l0 ⊕ q8;
· l2 = x1 ⊕ x2;
· q0 = ∼l0;
· q1 = ∼x0;
· t0 = q0 · q1;
· q3 = ∼x1 ⊕ x3 ⊕ t0;
· t1 = l1 · q3;
· q5 = ∼l2;
· t2 = x3 · q5;
· q7 = ∼t0 ⊕ t2;
· t3 = q6 · q7;
· l4 = x0 ⊕ x2;
· q9 = l4 ⊕ t0;
· t4 = q8 · q9;
· l3 = t3 ⊕ t4;
· y0 = l4 ⊕ t1 ⊕ t2 ⊕ l3;
· y1 = x2 ⊕ l3;
· y2 = q8 ⊕ t2;
· y3 = l2⊕ t0⊕ t1⊕ t4;

Gift S−1:
D=2 G=5.

· l0 = x1 ⊕ x3;
· l1 = l0 ⊕ x2;
· l2 = x0 ⊕ x2;
· l3 = l0 ⊕ l2;
· q0 = ∼l0;
· t0 = q0 · x1;
· q2 = ∼l1;
· q3 = ∼l2 ⊕ t0;
· t1 = q2 · q3;
· q4 = ∼x3;
· q5 = ∼x0 ⊕ l0;
· t2 = q4 · q5;
· l4 = t0 ⊕ t2;
· q6 = ∼l4;
· q7 = x2 ⊕ x3 ⊕ l4;
· t3 = q6 · q7;
· q8 = l3 ⊕ t2;
· q9 = l1 ⊕ t0;
· t4 = q8 · q9;
· l5 = t2 ⊕ t4;
· y0 = x0⊕x1⊕ l5⊕t3;
· y1 = l2 ⊕ l4;
· y2 = l2⊕x1⊕ l4⊕ t1;
· y3 = l1 ⊕ l5;

Prince S:
D=2 G=6.
· q0 = x1 ⊕ x3;
· l0 = q0 ⊕ x2;
· q2 = x2 ⊕ x3;
· q8 = x0 ⊕ x1;
· l1 = q8 ⊕ q2;
· l2 = x0 ⊕ x3;
· q1 = ∼l0;
· t0 = q0 · q1;
· q3 = q8 ⊕ x2 ⊕ t0;
· t1 = q2 · q3;
· q4 = ∼l2;
· q5 = ∼l1;
· t2 = q4 · q5;
· q6 = ∼x3;
· q7 = x2 ⊕ t2;
· t3 = q6 · q7;
· q9 = x0 ⊕ t2;
· t4 = q8 · q9;
· q10 = q4 ⊕ t0 ⊕ t2;
· q11 = q4 ⊕ x2;
· t5 = q10 · q11;
· l3 = t1 ⊕ t2;
· l4 = t3 ⊕ t4;
· l5 = l3 ⊕ l4;
· y0 = q0⊕ t0⊕ t1⊕ t3;
· y1 = q0 ⊕ l5 ⊕ t5;
· y2 = q0 ⊕ l4;
· y3 = x3 ⊕ t0 ⊕ l3;

Prince S−1:
D=2 G=6.

· l0 = x1 ⊕ x3;
· l1 = x2 ⊕ x3;
· l2 = x0 ⊕ x3;
· l3 = x0 ⊕ x1;
· l4 = l1 ⊕ l3;
· l5 = ∼l2;
· l6 = l1 ⊕ x1;
· q0 = ∼x2;
· t0 = q0 · l4;
· q2 = l5 ⊕ t0;
· q3 = ∼l1 ⊕ t0;
· t1 = q2 · q3;
· q4 = ∼l0;
· q5 = ∼l1;
· t2 = q4 · q5;
· q6 = x3 ⊕ t0;
· q7 = q4 ⊕ t0;
· t3 = q6 · q7;
· q8 = l5 ⊕ t2;
· q9 = ∼x3 ⊕ t2;
· t4 = q8 · q9;
· q10 = l6 ⊕ t2;
· q11 = ∼l3;
· t5 = q10 · q11;
· l7 = t1 ⊕ t3;
· y0 = l4 ⊕ l7 ⊕ t4;
· y1 = x0 ⊕ l7 ⊕ t2;
· y2 = x0⊕x2⊕t4⊕t5;
· y3 = t3 ⊕ t5;
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Prøst S:
D=2 G=4.
l0 = x0 ⊕ x1;
l1 = l0 ⊕ x2;
l2 = l0 ⊕ x3;
l3 = x2 ⊕ x3;
l4 = l0 ⊕ l3;
q1 = ∼x1;
t0 = l1 · q1;
q2 = q1⊕ l3⊕ t0;
t1 = q2 · x0;
t2 = x1 · x0;
l6 = t0 ⊕ t2;
q6 = ∼l2 ⊕ t0;
q7 = l4 ⊕ l6;
t3 = q6 · q7;
l5 = t0 ⊕ t3;
y0 = x2 ⊕ t2;
y1 = x0⊕ l3⊕ l6;
y2 = x2 ⊕ l5;
y3 = l1⊕ l5⊕ t1;

iClass13 S:
D=2 G=4.

t0 = x1 · x2;
t1 = x0 · x2;
l2 = t0 ⊕ t1;
l3 = x3 ⊕ t1;
n1 = x0 ⊕ t0;
t3 = x3 · n1;
n3 = x2 ⊕ t0;
l4 = x1 ⊕ l2;
t4 = l3 · x1;
y2 = x3 ⊕ l2;
y0 = l4 ⊕ t3;
y3 = n3 ⊕ t4;
y1 = n1;

x3 S:
D=2 G=4.

q3 = x0 ⊕ x3;
q1 = x1 ⊕ x3;
l0 = x0 ⊕ x2;
l1 = l0 ⊕ q1;
l2 = l0 ⊕ x1;
q0 = ∼x2;
t0 = q0 · q1;
q2 = ∼l0;
t1 = q2 · q3;
q5 = ∼x0;
t2 = l2 · q5;
q7 = q3 ⊕ x2;
t3 = l1 · q7;
y0 = x0 ⊕ t2;
y1 = l2⊕ t1⊕ t3;
y2 = x1 ⊕ x2 ⊕
t0 ⊕ t3;
y3 = x0 ⊕ x1 ⊕
t2 ⊕ t3;

x6 S:
D=2 G=4.

q3 = x0 ⊕ x1;
q5 = x2 ⊕ x3;
l0 = q3 ⊕ q5;
q7 = x1 ⊕ x2;
l2 = q3 ⊕ x3;
l3 = ∼x0;
q1 = x0 ⊕ q5;
t0 = l0 · q1;
q2 = ∼l2;
t1 = q2 · q3;
q4 = l3 ⊕ x3;
t2 = q4 · q5;
t3 = l3 · q7;
y0 = x0 ⊕ t3;
y1 = x1⊕t1⊕t2;
y2 = l2⊕ t0⊕ t2;
y3 = x3⊕t2⊕t3;

NOEKEON
S:
D=2 G=4.

q0 = ∼x0;
q1 = ∼x1;
t0 = q0 · q1;
q2 = ∼x2 ⊕ x3;
q3 = q0 ⊕ x1 ⊕
x2 ⊕ t0;
t1 = q2 · q3;
q4 = q1 ⊕ x2;
t2 = q4 · x1;
l0 = x0⊕x1⊕x3;
q6 = l0 ⊕ t2;
q7 = x2 ⊕ t0;
t3 = q6 · q7;
l1 = t0 ⊕ t2;
y0 = x3 ⊕ t2;
y1 = l0⊕x2⊕ l1;
y2 = t1 ⊕ l1;
y3 = x0 ⊕ x2 ⊕
t0 ⊕ t3;

x−1 S:
D=2 G=6.
· l0 = x0 ⊕ x3;
· l1 = x1 ⊕ x2;
· l2 = l0 ⊕ l1;
· l3 = x0 ⊕ x2;
· l4 = x1 ⊕ x3;
· l5 = l0 ⊕ x1;
· l6 = l0 ⊕ x2;
· q10 = ∼l2;
· q0 = ∼l0;
· q1 = ∼x0 ⊕ l1;
· t0 = q0 · q1;
· q2 = ∼x2;
· q3 = l5 ⊕ t0;
· t1 = q2 · q3;
· t2 = q2 · x1;
· l9 = t0 ⊕ t2;
· q6 = q10 ⊕ l9;
· q7 = l3 ⊕ l9;
· t3 = q6 · q7;
· q8 = l6 ⊕ t2;
· q9 = x2 ⊕ x3 ⊕ t2;
· t4 = q8 · q9;
· q11 = x0 ⊕ l9;
· t5 = q10 · q11;
· l7 = t2 ⊕ t4;
· l8 = l7 ⊕ t3;
· y0 = l5 ⊕ l6;
· y1 = x3 ⊕ t1 ⊕ t5;
· y2 = l2 ⊕ l7;
· y3 = l4 ⊕ t0 ⊕ t1 ⊕ l7;

Look-up tables (LUTs):
iClass13, S = [0, 2, 1, 3, 8, 15, 6, 9, 4, 7, 13, 14, 12, 10, 11, 5]
Present, S = [12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2]

Present, S−1 = [5, 14, 15, 8, 12, 1, 2, 13, 11, 4, 6, 3, 0, 7, 9, 10]
Rectangle, S = [6, 5, 12, 10, 1, 14, 7, 9, 11, 0, 3, 13, 8, 15, 4, 2]
Rectangle, S = [9, 4, 15, 10, 14, 1, 0, 6, 12, 7, 3, 8, 2, 11, 5, 13]

Class13, S = [0, 8, 6, 13, 5, 15, 7, 12, 4, 14, 2, 3, 9, 1, 11, 10]
Class13, S−1 = [0, 13, 10, 11, 8, 4, 2, 6, 1, 12, 15, 14, 7, 3, 9, 5]

NOEKEON, S = [7, 10, 2, 12, 4, 8, 15, 0, 5, 9, 1, 14, 3, 13, 11, 6]
Prost, S = [0, 4, 8, 15, 1, 5, 14, 9, 2, 7, 10, 12, 11, 13, 6, 3]

Skinny, S = [12, 6, 9, 0, 1, 10, 2, 11, 3, 8, 5, 13, 4, 14, 7, 15]
Skinny, S = [3, 4, 6, 8, 12, 10, 1, 14, 9, 2, 5, 7, 0, 11, 13, 15]
Prince, S = [11, 15, 3, 2, 10, 12, 9, 1, 6, 7, 8, 0, 14, 5, 13, 4]

Prince, S−1 = [11, 7, 3, 2, 15, 13, 8, 9, 10, 6, 4, 0, 5, 14, 12, 1]
Gift, S = [1, 10, 4, 12, 6, 15, 3, 9, 2, 13, 11, 7, 5, 0, 8, 14]

Gift, S−1 = [13, 0, 8, 6, 2, 12, 4, 11, 14, 7, 1, 10, 3, 9, 15, 5]
x−1, S = [0, 1, 9, 14, 13, 11, 7, 6, 15, 2, 12, 5, 10, 4, 3, 8]

x3(non− bij) = [0, 1, 8, 15, 12, 10, 1, 1, 10, 15, 15, 12, 8, 10, 8, 12]
x6(non− bij) = [0, 1, 12, 10, 15, 8, 1, 1, 8, 10, 10, 15, 12, 8, 12, 15]
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5-bit S-box circuits

Keccak S−1:
D=2 G=9.

· l0 = x0 ⊕ x2;
· l1 = x0 ⊕ x4;
· l2 = x1 ⊕ x2;
· l3 = x2 ⊕ x4;
· l4 = l2 ⊕ x3;
· l5 = x1 ⊕ x3;
· l6 = l5 ⊕ l0;
· q0 = ∼l0;
· t0 = q0 · x2;
· q2 = ∼x2 ⊕ t0;
· q3 = ∼x3 ⊕ t0;
· t1 = q2 · q3;
· q4 = ∼l1;
· q5 = ∼x1;
· t2 = q4 · q5;
· l9 = t0 ⊕ t2;
· q6 = ∼x4 ⊕ l9;
· q7 = ∼l4;
· t3 = q6 · q7;
· q8 = ∼l2;
· t4 = q8 · x0;
· l10 = l9 ⊕ t4;
· l11 = t0 ⊕ t4;
· q10 = l3 ⊕ l11;
· q11 = ∼l1 ⊕ x3 ⊕ l10;
· t5 = q10 · q11;
· q12 = ∼l6 ⊕ t2 ⊕ t4;
· q13 = ∼l5 ⊕ l9;
· t6 = q12 · q13;
· q14 = ∼t4;
· q15 = ∼x0 ⊕ l5 ⊕ t0;
· t7 = q14 · q15;
· q16 = l5 ⊕ x4;
· q17 = ∼l10;
· t8 = q16 · q17;
· l12 = t3 ⊕ t8;
· y0 = t2 ⊕ l12 ⊕ t7;
· y1 = x2 ⊕ t0 ⊕ l12 ⊕ t5;
· y2 = l6 ⊕ l11 ⊕ t8;
· y3 = x1 ⊕ x4 ⊕ t4 ⊕ t5 ⊕ t6;
· y4 = l1 ⊕ x1 ⊕ t1 ⊕ t4 ⊕ t7;

Fides S:
D=1 G=7.
· n0 = ∼x2;
· n1 = ∼x4;
· q1 = x1 ⊕ n1;
· q2 = x3 ⊕ q1;
· q0 = n0 ⊕ q2;
· t0 = q0 · q1;
· n3 = x0 ⊕ x2;
· n2 = ∼n3;
· l2 = ∼q1;
· q3 = l2 ⊕ n2;
· t1 = q2 · q3;
· l0 = x1 ⊕ x2;
· q4 = l0;
· l1 = x1 ⊕ x3;
· q5 = l1 ⊕ n3;
· t2 = q4 · q5;
· q6 = x3 ⊕ n1;
· q7 = x1 ⊕ n3;
· t3 = q6 · q7;
· q8 = x4 ⊕ n3;
· q9 = x4;
· t4 = q8 · q9;
· q10 = x2;
· q11 = n2 ⊕ q2;
· t5 = q10 · q11;
· q12 = n0 ⊕ q6;
· n7 = ∼l1;
· q13 = x0 ⊕ n7;
· t6 = q12 · q13;
· m1 = t4 ⊕ t6;
· m2 = t1 ⊕ t2;
· m3 = t0 ⊕ t2;
· m4 = t3 ⊕ t5;
· m5 = t0 ⊕ t6;
· m6 = m1 ⊕ t3;
· y0 = l0 ⊕ t0 ⊕m1;
· y1 = l2 ⊕m4 ⊕m5;
· y2 = l1 ⊕m3 ⊕m6;
· y3 = x1 ⊕m6;
· y4 = x3 ⊕m2 ⊕m6;

Fides S−1:
D=2 G=10.

· l0 = x0 ⊕ x2;
· q1 = x1 ⊕ x2;
· q2 = x2 ⊕ x4;
· q13 = x1 ⊕ x3;
· l1 = l0 ⊕ x4;
· l2 = q13 ⊕ x0;
· l3 = l2 ⊕ x4;
· l4 = x0 ⊕ x1;
· l5 = l4 ⊕ x4;
· l6 = x2 ⊕ x3;
· q0 = ∼l0;
· t0 = q0 · q1;
· q3 = ∼l4 ⊕ t0;
· t1 = q2 · q3;
· q4 = ∼l6 ⊕ x4;
· q5 = ∼l2;
· t2 = q4 · q5;
· l8 = t0 ⊕ t2;
· q6 = l3 ⊕ x2 ⊕ l8;
· t3 = q6 · x1;
· q8 = ∼x0 ⊕ l6;
· q9 = ∼x0;
· t4 = q8 · q9;
· l9 = t2 ⊕ t4;
· l10 = t4 ⊕ t6;
· q10 = ∼x0 ⊕ x4 ⊕ t4;
· q11 = ∼l2 ⊕ x2;
· t5 = q10 · q11;
· q12 = ∼l3;
· t6 = q12 · q13;
· q14 = l1 ⊕ l9;
· q15 = x4 ⊕ t6;
· t7 = q14 · q15;
· q16 = ∼l3 ⊕ l9;
· q17 = l5 ⊕ t2 ⊕ l10;
· t8 = q16 · q17;
· l11 = t1 ⊕ t8;
· l12 = t3 ⊕ t5;
· q18 = ∼l5;
· q19 = ∼x4 ⊕ l9;
· t9 = q18 · q19;
· y0 = l1 ⊕ t0 ⊕ l11 ⊕ t3 ⊕ t6;
· y1 = x1 ⊕ x3 ⊕ l11 ⊕ l9;
· y2 = l4⊕x2⊕l9⊕l12⊕t8⊕t9;
· y3 = l3 ⊕ t1 ⊕ l9 ⊕ t5;
· y4 = l1⊕x1⊕ t0⊕ l11⊕ l12⊕
l10 ⊕ t7;
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x3 S:
D=1 G=7.
· q1 = x0 ⊕ x3;
· q0 = q1 ⊕ x2;
· q3 = x2 ⊕ x4;
· q5 = x0 ⊕ q3;
· q9 = q3 ⊕ x3;
· q7 = x0 ⊕ x1;
· q8 = x0 ⊕ x2;
· l0 = q7 ⊕ q3;
· l2 = x1 ⊕ x4;
· l3 = x2 ⊕ x3;
· l4 = x1 ⊕ x2;
· t0 = q0 · q1;
· q2 = ∼x3 ⊕ x4;
· t1 = q2 · q3;
· q4 = ∼l2;
· t2 = q4 · q5;
· q6 = ∼q9;
· t3 = q6 · q7;
· t4 = q8 · q9;
· q10 = ∼x0 ⊕ x4;
· t5 = q10 · l0;
· q13 = ∼x1;
· t6 = x3 · q13;
· l6 = t0 ⊕ t5;
· l7 = t2 ⊕ t6;
· y0 = l4 ⊕ x3 ⊕ l6 ⊕ t3;
· y1 = l3 ⊕ t2 ⊕ t5;
· y2 = l4⊕ t0⊕ t1⊕ l7⊕ t3⊕ t4;
· y3 = l3 ⊕ l6 ⊕ t1;
· y4 = l2 ⊕ l6 ⊕ l7;

x3 S−1:
D=2 G=12.

· q22 = x0 ⊕ x1;
· l0 = x3 ⊕ x4;
· q2 = q22 ⊕ l0;
· l2 = q22 ⊕ x3;
· l3 = q22 ⊕ x2;
· l4 = l0 ⊕ x2;
· l5 = l0 ⊕ x0;
· l6 = x1 ⊕ x3;
· l7 = l6 ⊕ x4;
· l8 = x0 ⊕ x4;
· q0 = q2 ⊕ x2;
· q1 = ∼q22;
· t0 = q0 · q1;
· q3 = l6 ⊕ x2 ⊕ t0;
· t1 = q2 · q3;
· q4 = ∼l6;
· t2 = q4 · q1;
· l9 = t0 ⊕ t2;
· q6 = ∼x1 ⊕ l9;
· q7 = ∼l3;
· t3 = q6 · q7;
· q8 = l3 ⊕ x4;
· q9 = ∼x1 ⊕ x4;
· t4 = q8 · q9;
· q10 = ∼l5 ⊕ x2;
· q11 = l8 ⊕ t4;
· t5 = q10 · q11;
· q12 = ∼x2 ⊕ x3;
· q13 = ∼x2;
· t6 = q12 · q13;
· l10 = l9 ⊕ t6;
· l11 = t4 ⊕ t6;
· l12 = l11 ⊕ t0;
· q14 = ∼q2 ⊕ l10;
· q15 = l8 ⊕ l10;
· t7 = q14 · q15;
· q16 = ∼l7 ⊕ l12;
· t8 = q16 · l5;
· q19 = l6 ⊕ l11;
· t9 = x4 · q19;
· q20 = l5 ⊕ x2 ⊕ t0;
· q21 = ∼l3 ⊕ t2;
· t10 = q20 · q21;
· q23 = l8 ⊕ x2 ⊕ l12;
· t11 = q22 · q23;
· l13 = t5 ⊕ t8;
· l14 = l13 ⊕ t10;
· l15 = t10 ⊕ t11;
· l16 = t7 ⊕ t9;
· y0 = l2 ⊕ t4 ⊕ t5 ⊕ t9 ⊕ l15;
· y1 = x1 ⊕ t2 ⊕ t3 ⊕ l14 ⊕ t6;
· y2 = q2 ⊕ l13 ⊕ t11;
· y3 = l4 ⊕ t0 ⊕ t1 ⊕ t3 ⊕ l14 ⊕
l16 ⊕ t11;
· y4 = l2 ⊕ t3 ⊕ t5 ⊕ l16;

x5 S:
D=1 G=7.
· l0 = x0 ⊕ x3;
· l1 = x2 ⊕ x3;
· l2 = x0 ⊕ x4;
· l3 = x1 ⊕ x2;
· l4 = l2 ⊕ l3;
· l5 = l2 ⊕ x2;
· l6 = x1 ⊕ x4;
· l7 = l1 ⊕ l6;
· q0 = x0 ⊕ l3;
· t0 = q0 · l4;
· q2 = ∼l2 ⊕ x3;
· q3 = ∼x3;
· t1 = q2 · q3;
· q5 = ∼l1;
· t2 = x1 · q5;
· q6 = ∼x4;
· t3 = q6 · q3;
· q8 = ∼l5;
· q9 = ∼l0;
· t4 = q8 · q9;
· q10 = ∼l2 ⊕ x1;
· q11 = ∼l7;
· t5 = q10 · q11;
· q12 = l6 ⊕ x3;
· t6 = q12 · l5;
· l9 = t2 ⊕ t5;
· y0 = l2 ⊕ t0 ⊕ t6;
· y1 = x2 ⊕ t3 ⊕ t5;
· y2 = l0 ⊕ t0 ⊕ l9 ⊕ t3;
· y3 = l6 ⊕ l9 ⊕ t4 ⊕ t6;
· y4 = l6 ⊕ x3 ⊕ t1 ⊕ l9;
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x5 S−1:
D=2 G=10.

· q1 = x1 ⊕ x3;
· l0 = x1 ⊕ x2;
· l1 = x1 ⊕ x4;
· q12 = ∼l0;
· q0 = ∼l1;
· l2 = l0 ⊕ x3;
· l3 = x0 ⊕ x1;
· l4 = x3 ⊕ x4;
· l5 = l4 ⊕ x2;
· l6 = l3 ⊕ x2;
· t0 = q0 · q1;
· q2 = x2 ⊕ x3 ⊕ t0;
· q3 = x1 ⊕ t0;
· t1 = q2 · q3;
· q4 = x1 ⊕ l5;
· t2 = q4 · q1;
· l8 = t0 ⊕ t2;
· q6 = ∼l2 ⊕ t0;
· q7 = ∼x0 ⊕ x2 ⊕ x3 ⊕ l8;
· t3 = q6 · q7;
· q8 = l2;
· q9 = ∼l3 ⊕ l4;

· t4 = q8 · q9;
· q10 = ∼l6 ⊕ x4;
· q11 = l3 ⊕ x3 ⊕ t0 ⊕ t4;
· t5 = q10 · q11;
· q13 = ∼x1 ⊕ l4;
· t6 = q12 · q13;
· l9 = t4 ⊕ t6;
· l10 = t2 ⊕ t4;
· q14 = ∼l6 ⊕ l9;
· q15 = ∼l6 ⊕ x4;
· t7 = q14 · q15;
· q16 = ∼x0 ⊕ l4 ⊕ l10;
· q17 = l4 ⊕ l10;
· t8 = q16 · q17;
· q18 = l6 ⊕ x3;
· q19 = ∼x0 ⊕ l5 ⊕ l8 ⊕ t6;
· t9 = q18 · q19;
· l11 = t7 ⊕ t8;
· l12 = t7 ⊕ t9;
· l13 = l11 ⊕ t9;
· l14 = l8 ⊕ t1;
· y0 = x2 ⊕ l14 ⊕ t4 ⊕ l13;
· y1 = l4 ⊕ t1 ⊕ t2 ⊕ t3 ⊕ t6 ⊕ l12;
· y2 = l0 ⊕ t0 ⊕ t5 ⊕ l13;
· y3 = l2 ⊕ l14 ⊕ t7;
· y4 = l5 ⊕ t0 ⊕ t4 ⊕ l11;

Look-up tables (LUTs):
· x3:

[0, 1, 8, 15, 10, 31, 23, 4, 26, 25, 3, 6, 9, 30, 5, 20, 14, 18, 22, 12, 24, 16, 21, 27, 2, 28, 11, 19, 13, 7, 17, 29]
· x3 inv:

[0, 1, 24, 10, 7, 14, 11, 29, 2, 12, 4, 26, 19, 28, 16, 3, 21, 30, 17, 27, 15, 22, 18, 6, 20, 9, 8, 23, 25, 31, 13, 5]
· FIDES:

[1, 0, 25, 26, 17, 29, 21, 27, 20, 5, 4, 23, 14, 18, 2, 28, 15, 8, 6, 3, 13, 7, 24, 16, 30, 9, 31, 10, 22, 12, 11, 19]
· FIDES inv:

[1, 0, 14, 19, 10, 9, 18, 21, 17, 25, 27, 30, 29, 20, 12, 16, 23, 4, 13, 31, 8, 6, 28, 11, 22, 2, 3, 7, 15, 5, 24, 26]
· Keccak:

[0, 9, 18, 11, 5, 12, 22, 15, 10, 3, 24, 1, 13, 4, 30, 7, 20, 21, 6, 23, 17, 16, 2, 19, 26, 27, 8, 25, 29, 28, 14, 31]
· Keccak inv:

[0, 11, 22, 9, 13, 4, 18, 15, 26, 1, 8, 3, 5, 12, 30, 7, 21, 20, 2, 23, 16, 17, 6, 19, 10, 27, 24, 25, 29, 28, 14, 31]
· x5:

[0, 1, 5, 22, 17, 25, 4, 30, 31, 24, 18, 7, 20, 26, 9, 21, 12, 6, 23, 15, 16, 19, 27, 10, 14, 2, 29, 3, 8, 13, 11, 28]
· x5 inv:

[0, 1, 25, 27, 6, 2, 17, 11, 28, 14, 23, 30, 16, 29, 24, 19, 20, 4, 10, 21, 12, 15, 3, 18, 9, 5, 13, 22, 31, 26, 7, 8]
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6-bit S-box circuits

Q2256 S:
D=1 G=8.
· l0 = x0 ⊕ x1;
· q7 = ∼l0;
· q9 = x1 ⊕ x2;
· q12 = x2 ⊕ x4;
· q13 = x0 ⊕ x3;
· l1 = x0 ⊕ x5;
· q15 = ∼l1;
· l2 = q9 ⊕ x3;
· l3 = q9 ⊕ x4;
· l4 = q12 ⊕ x0;
· l5 = x3 ⊕ x5;
· q0 = l2 ⊕ x4 ⊕ x5;
· q1 = ∼x0 ⊕ q9;
· t0 = q0 · q1;
· q2 = ∼x0 ⊕ l2;
· t1 = q2 · x5;
· q4 = ∼l4;
· t2 = q4 · x1;
· q6 = l3;
· t3 = q6 · q7;
· q8 = l4 ⊕ x5;
· t4 = q8 · q9;
· q10 = ∼x2;
· q11 = l2 ⊕ x5;
· t5 = q10 · q11;
· t6 = q12 · q13;
· t7 = x2 · q15;
· l7 = t3 ⊕ t4;
· l8 = l7 ⊕ t2;
· l9 = l7 ⊕ t7;
· l10 = l8 ⊕ t1;
· y0 = x1 ⊕ l5 ⊕ t0 ⊕ l8;
· y1 = l3 ⊕ t2 ⊕ l9;
· y2 = x0 ⊕ l5 ⊕ t4 ⊕ t5;
· y3 = x2 ⊕ x5 ⊕ t0 ⊕ l9;
· y4 = l1 ⊕ x1 ⊕ l10;
· y5 = l5 ⊕ t0 ⊕ l10 ⊕ t6;

Q2257 S:
D=1 G=8.
· l0 = x0 ⊕ x3;
· l1 = x3 ⊕ x4;
· l2 = x0 ⊕ x4;
· q1 = ∼l0;
· q6 = ∼l1;
· q11 = ∼l2;
· l3 = x4 ⊕ x5;
· l4 = l3 ⊕ x2;
· l5 = x1 ⊕ x2;
· l6 = x0 ⊕ x5;
· l7 = l5 ⊕ x4;
· l8 = l1 ⊕ x1;
· l9 = l6 ⊕ x2;
· l10 = l3 ⊕ x1;
· q0 = ∼x0 ⊕ l8;
· t0 = q0 · q1;
· q2 = ∼l10;
· q3 = ∼l4;
· t1 = q2 · q3;
· q4 = ∼l0 ⊕ x2;
· q5 = ∼x0 ⊕ l10;
· t2 = q4 · q5;
· q7 = ∼l8;
· t3 = q6 · q7;
· q8 = ∼l6 ⊕ l8;
· q9 = ∼l6 ⊕ x1;
· t4 = q8 · q9;
· q10 = l9 ⊕ x1;
· t5 = q10 · q11;
· q12 = x0 ⊕ l8;
· q13 = l9 ⊕ l1;
· t6 = q12 · q13;
· q14 = l9 ⊕ x4;
· t7 = q14 · l7;
· l12 = t0 ⊕ t2;
· l13 = t3 ⊕ t4;
· l14 = l12 ⊕ l13;
· l15 = t4 ⊕ t5;
· l16 = t6 ⊕ t7;
· l17 = l15 ⊕ l16;
· y0 = l6 ⊕ x3 ⊕ l12 ⊕ l16;
· y1 = l2 ⊕ l14 ⊕ t7;
· y2 = x0 ⊕ x5 ⊕ t1 ⊕ l17;
· y3 = x1 ⊕ t3 ⊕ l17;
· y4 = l7 ⊕ l13 ⊕ t5;
· y5 = l7 ⊕ t0 ⊕ t4 ⊕ t7;

Q2258 S:
D=1 G=8.

· l0 = x0 ⊕ x4;
· l1 = x2 ⊕ x5;
· l2 = x3 ⊕ x5;
· q4 = ∼l0;
· q7 = ∼l1;
· q8 = ∼l2;
· l3 = x1 ⊕ x5;
· l4 = l3 ⊕ x2;
· l5 = l1 ⊕ x4;
· l6 = x2 ⊕ x3;
· l7 = x1 ⊕ x2;
· l8 = l6 ⊕ x5;
· q0 = ∼l4;
· q1 = ∼l5;
· t0 = q0 · q1;
· q3 = q4 ⊕ l6;
· t1 = q1 · q3;
· t2 = q4 · q0;
· q6 = q4 ⊕ x2;
· t3 = q6 · q7;
· q9 = ∼l7 ⊕ x4;
· t4 = q8 · q9;
· q10 = x0 ⊕ l7;
· q11 = l6 ⊕ x4;
· t5 = q10 · q11;
· q12 = l7 ⊕ x3;
· q13 = ∼l0 ⊕ x5;
· t6 = q12 · q13;
· q14 = ∼x1;
· q15 = l8;
· t7 = q14 · q15;
· l10 = t1 ⊕ t2;
· l11 = t6 ⊕ t7;
· l12 = t5 ⊕ t7;
· y0 = l2 ⊕ l10 ⊕ l11;
· y1 = x0⊕l8⊕t0⊕t1⊕l12⊕t6;
· y2 = x0 ⊕ x1 ⊕ l8 ⊕ l12;
· y3 = l3 ⊕ t1 ⊕ t3 ⊕ l11;
· y4 = x1⊕x4⊕t2⊕t4⊕t5⊕t6;
· y5 = l10 ⊕ l12;
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Q2260 S:
D=1 G=8.
· q4 = x2 ⊕ x4;
· q5 = x1 ⊕ x4;
· q15 = x0 ⊕ x1;
· l0 = x2 ⊕ x5;
· l1 = x0 ⊕ x5;
· q6 = ∼q15;
· q8 = ∼l0;
· q12 = ∼l1;
· l2 = x2 ⊕ x3;
· l3 = q15 ⊕ x2;
· l4 = q15 ⊕ l2;
· l5 = l2 ⊕ x1;
· q0 = l1 ⊕ x3 ⊕ q5;
· t0 = q0 · l3;
· q2 = ∼l2 ⊕ x4;
· t1 = q2 · l3;
· t2 = q4 · q5;
· q7 = l2 ⊕ x4 ⊕ x5;
· t3 = q6 · q7;
· t4 = q8 · l5;
· q11 = ∼l4;
· t5 = x4 · q11;
· t6 = q12 · l3;
· q14 = l5 ⊕ x5;
· t7 = q14 · q15;
· l7 = t2 ⊕ t3;
· l8 = t1 ⊕ t7;
· l9 = l7 ⊕ l8;
· y0 = l1 ⊕ l2 ⊕ l9;
· y1 = l2 ⊕ x5 ⊕ l7;
· y2 = x3 ⊕ x5 ⊕ t0 ⊕ l7 ⊕ t4 ⊕ t6 ⊕ t7;
· y3 = x0 ⊕ x3 ⊕ x4 ⊕ t5 ⊕ t6;
· y4 = l0 ⊕ l9 ⊕ t4 ⊕ t5;
· y5 = l4 ⊕ x5 ⊕ t0 ⊕ t2 ⊕ t5 ⊕ t7;

Q2263 S:
D=1 G=8.

· l0 = x1 ⊕ x5;
· l1 = x0 ⊕ x1;
· l2 = x2 ⊕ x4;
· q3 = ∼l0;
· q7 = ∼l1;
· q12 = ∼l2;
· l3 = l1 ⊕ x4;
· l4 = x3 ⊕ x5;
· l5 = l2 ⊕ x3;
· l6 = x2 ⊕ x5;
· l7 = l6 ⊕ l1;
· l8 = x0 ⊕ x4;
· q0 = x0 ⊕ l2 ⊕ l4;
· t0 = q0 · l7;
· q2 = q7 ⊕ x3;
· t1 = q2 · q3;
· q4 = ∼l3;
· q5 = ∼x3;
· t2 = q4 · q5;
· q6 = ∼l8 ⊕ l4;
· t3 = q6 · q7;
· q8 = ∼x1 ⊕ l2;
· q9 = l3 ⊕ l4;
· t4 = q8 · q9;
· q10 = ∼l4 ⊕ x4;
· q11 = ∼x1 ⊕ l5;
· t5 = q10 · q11;
· q13 = ∼x5;
· t6 = q12 · q13;
· q14 = l5;
· q15 = q7 ⊕ l4;
· t7 = q14 · q15;
· l10 = t2 ⊕ t3;
· l11 = t4 ⊕ t7;
· l12 = t5 ⊕ t6;
· y0 = l8 ⊕ x5 ⊕ t2 ⊕ t5 ⊕ t7;
· y1 = x5 ⊕ l10;
· y2 = x1 ⊕ x2 ⊕ t0 ⊕ t1 ⊕ t6 ⊕ l11;
· y3 = l3 ⊕ l10 ⊕ l11;
· y4 = l4 ⊕ t1 ⊕ t2 ⊕ l12;
· y5 = l7 ⊕ x3 ⊕ l12;
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Q2256 S−1:
D=2 G=31.

· l0 = x1 · x2;
· l1 = x0 · x3;
· l2 = x2 · x3;
· l3 = x2 · x4;
· l4 = x3 · x4;
· l5 = x2 · x5;
· l6 = x4 · x5;
· l7 = x0 · x2;
· l8 = x1 · x3;
· l9 = x0 · x4;
· l10 = x1 · x4;
· l11 = x0 · x5;
· l12 = x1 · x5;
· l13 = x3 · x5;
· l14 = l0 · x3;
· l15 = l0 · x4;
· l16 = l1 · x4;
· l17 = l5 · x0;
· l18 = l0 · x5;
· l19 = l1 · x5;
· l20 = l8 · x5;
· l21 = l2 · x5;
· l22 = l6 · x1;
· l23 = l3 · x5;
· l24 = l2 · x4;
· l25 = l9 · x1;
· l26 = l11 · x1;
· l27 = l11 · x4;
· l28 = l13 · x4;
· l29 = l8 · x4;
· l30 = l8 · x0;
· m1 = l14 ⊕ l15 ⊕ l16 ⊕ l17;
· m2 = m1 ⊕ l18;
· m3 = l20 ⊕ l22;
· m4 = l21 ⊕ l23;
· m5 = m3 ⊕m4;
· m6 = m4 ⊕ l20;
· m7 = l19 ⊕ l23 ⊕ l29;
· m8 = l19 ⊕ l21;
· m9 = m3 ⊕m8 ⊕ l30 ⊕ l25 ⊕ l24;
· m10 = m5 ⊕ l19;
· d1 = l26 ⊕ l27;
· d2 = l26 ⊕ l28;
· d3 = d1 ⊕ l28;
· s1 = l5 ⊕ l6;
· s2 = s1 ⊕ l2 ⊕ l3;
· s3 = x2 ⊕ x5;
· s4 = l4 ⊕ l1 ⊕ l0 ⊕ x0;
· s5 = l8 ⊕ l10;
· s6 = s5 ⊕ s1;
· s7 = l4 ⊕ l12;
· s8 = x3 ⊕ l1 ⊕ x4 ⊕ l9 ⊕ l4 ⊕ x5;
· s9 = x1 ⊕ l7 ⊕ l0 ⊕ x4 ⊕ l9;
· s10 = l1 ⊕ l9 ⊕ l10 ⊕ l11 ⊕ l12 ⊕ l13;
· y0 = m2 ⊕m10 ⊕ s2 ⊕ s4;
· y1 = m2 ⊕m9 ⊕ d3 ⊕ s5 ⊕ s9;
· y2 = m1 ⊕m7 ⊕ d2 ⊕ s2 ⊕ s3;
· y3 = m2 ⊕m5 ⊕ d1 ⊕ s6 ⊕ s8;
· y4 = m2 ⊕m6 ⊕ d3 ⊕ s1 ⊕ s10;
· y5 = m3 ⊕ s6 ⊕ s7;

x3 non-bij,
D=1 G=9.

· l0 = x4 ⊕ x5;
· l1 = x1 ⊕ x2;
· l2 = x2 ⊕ x3;
· q8 = ∼l0;
· q10 = ∼l1;
· q16 = ∼l2;
· l3 = x0 ⊕ x1;
· l4 = l2 ⊕ l3;
· l5 = x3 ⊕ x5;
· l6 = x0 ⊕ x2;
· q0 = ∼x1 ⊕ l0;
· q1 = ∼x3 ⊕ l0;
· t0 = q0 · q1;
· q2 = l6 ⊕ x4;
· q3 = x1 ⊕ x2 ⊕ l0;
· t1 = q2 · q3;
· q4 = ∼x0 ⊕ l0;
· q5 = ∼x1 ⊕ l2;
· t2 = q4 · q5;
· q6 = ∼x4;
· q7 = ∼x2;
· t3 = q6 · q7;
· q9 = ∼l3 ⊕ x2;
· t4 = q8 · q9;
· q11 = x0 ⊕ l2;
· t5 = q10 · q11;
· q12 = ∼l4 ⊕ x4;
· q13 = ∼x1 ⊕ l5;
· t6 = q12 · q13;
· q14 = l6 ⊕ x5;
· q15 = l0 ⊕ l3;
· t7 = q14 · q15;
· q17 = l3 ⊕ l5;
· t8 = q16 · q17;
· l8 = t2 ⊕ t3;
· l9 = t4 ⊕ t6;
· l10 = l8 ⊕ l9;
· y0 = l1 ⊕ l8 ⊕ t5 ⊕ t8;
· y1 = x1 ⊕ x4 ⊕ t1 ⊕ l8 ⊕ t7;
· y2 = x1 ⊕ t0 ⊕ t1 ⊕ t5 ⊕ t6;
· y3 = l6 ⊕ l10 ⊕ t8;
· y4 = x1 ⊕ x5 ⊕ t5 ⊕ l10;
· y5 = l4 ⊕ t2 ⊕ t6 ⊕ t7;
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Q2258 S−1:
D=2 G=22.

· l0 = x0 ⊕ x5;
· p12 = x1 · x2;
· p03 = x0 · x3;
· p15 = x1 · x5;
· p13 = x1 · x3;
· p34 = x3 · x4;
· p25 = x2 · x5;
· p02 = x0 · x2;
· p23 = x2 · x3;
· p05 = x0 · x5;
· p35 = x3 · x5;
· p14 = x1 · x4;
· p45 = x4 · x5;
· l6 = x0 ⊕ x3;
· l1 = p13 ⊕ p34;
· l2 = l6 ⊕ x4;
· l3 = l6 ⊕ x2;
· l4 = x3 ⊕ x4 ⊕ x5;
· l5 = l1 ⊕ p14;
· l7 = p12 ⊕ p03 ⊕ p15 ⊕ p23;
· l8 = x0 ⊕ p13 ⊕ p25 ⊕ p03;
· l9 = p13 ⊕ p05 ⊕ p34 ⊕ p02;
· l10 = p23 ⊕ p14 ⊕ p45;
· l11 = p34 ⊕ p15;
· l12 = x4 · ∼l3 · ∼x1;
· l13 = p12 · ∼x4;
· l14 = l8 · ∼l2;
· l15 = x4⊕ l5;
· l16 = x2 · l15;
· l17 = ∼x0 ⊕ x2;
· l18 = p34 · l17;
· l19 = x0 · l5;
· m1 = x4 · l0;
· m2 = x5 · l1;
· m3 = p25 · l2;
· m4 = p14 ⊕ p03 ⊕ p25 ⊕ p05;
· m5 = m2 ⊕ p35;
· y0 = x0 ⊕ x4 ⊕m1 ⊕ l7 ⊕ l12;
· y1 = x1 ⊕ x4 ⊕m5 ⊕ l9 ⊕ l13 ⊕ l14;
· y2 = x2 ⊕ x5 ⊕m2 ⊕m3 ⊕ l10 ⊕ l16;
· y3 = l4 ⊕ p13 ⊕m1 ⊕m4 ⊕ l18;
· y4 = m1 ⊕m3 ⊕m4 ⊕m5 ⊕ l11 ⊕ l19;
· y5 = l5 ⊕ p05 ⊕ p25 ⊕ p35 ⊕ p45;

Look-up tables (LUTs):
Q2256 = [0, 1, 2, 3, 4, 6, 7, 5, 8, 12, 16, 20, 32, 39, 57, 62, 9, 17

21, 13, 40, 51, 53, 46, 50, 47, 52, 41, 63, 33, 56, 38, 10
45, 27, 60, 43, 15, 59, 31, 58, 24, 49, 19, 55, 22, 61, 28
29, 35, 18, 44, 25, 36, 23, 42, 30, 37, 11, 48, 54, 14, 34, 26]

Q2257 = [0, 1, 2, 3, 4, 6, 7, 5, 8, 12, 16, 20, 32, 39, 57, 62, 9, 17
21, 13, 41, 50, 52, 47, 40, 53, 46, 51, 36, 58, 35, 61, 10
25, 37, 54, 33, 49, 15, 31, 45, 59, 24, 14, 42, 63, 30, 11
29, 23, 44, 38, 18, 27, 34, 43, 19, 28, 56, 55, 48, 60, 26, 22]

Q2258 = [0, 1, 2, 3, 4, 6, 7, 5, 8, 12, 16, 20, 32, 39, 57, 62, 9, 17
21, 13, 41, 50, 52, 47, 55, 42, 49, 44, 59, 37, 60, 34, 10
25, 38, 53, 35, 51, 14, 30, 61, 43, 11, 29, 56, 45, 15, 26
22, 28, 36, 46, 27, 18, 40, 33, 23, 24, 63, 48, 54, 58, 31, 19]

Q2260 = [0, 1, 2, 3, 4, 6, 8, 10, 5, 11, 16, 30, 32, 45, 59, 54, 7, 24
40, 55, 48, 44, 17, 13, 9, 25, 49, 33, 31, 12, 41, 58, 14
27, 26, 15, 57, 47, 35, 53, 61, 39, 62, 36, 43, 50, 38, 63
46, 37, 23, 28, 42, 34, 29, 21, 22, 18, 56, 60, 51, 52, 19, 20]

Q2263 = [0, 1, 2, 3, 4, 8, 16, 28, 5, 12, 32, 41, 10, 14, 57, 61, 6
62, 23, 47, 33, 20, 38, 19, 43, 27, 29, 45, 7, 58, 39, 26, 9
22, 55, 40, 11, 25, 35, 49, 44, 59, 53, 34, 37, 63, 42, 48
21, 51, 56, 30, 52, 31, 15, 36, 24, 54, 18, 60, 50, 17, 46, 13]

x3 (non-bij)= [0, 1, 8, 15, 27, 14, 35, 48, 53, 39, 43, 63, 47, 41, 1, 1
41, 15, 15, 47, 52, 6, 34, 22, 20, 33, 36, 23, 8, 41, 8, 47, 36
52, 35, 53, 35, 39, 20, 22, 33, 34, 48, 53, 39, 48, 6, 23, 22
33, 63, 14, 23, 52, 14, 43, 27, 63, 36, 6, 27, 43, 20, 34]
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7-bit S-box circuits

x3 S:
D=1 G=15.

· q18 = x0 ⊕ x6;
· l0 = x1 ⊕ x4;
· l1 = x1 ⊕ x3;
· l2 = x0 ⊕ x1;
· l3 = x1 ⊕ x5;
· l4 = x0 ⊕ x3;
· q0 = ∼l0;
· q1 = ∼l1;
· q7 = ∼l2;
· q8 = ∼l3;
· q19 = ∼l4;
· l5 = x2 ⊕ x3;
· l6 = x4 ⊕ x6;
· l7 = l5 ⊕ l6;
· l8 = l6 ⊕ x5;
· l9 = x5 ⊕ x6;
· l10 = x4 ⊕ x5;
· l11 = l8 ⊕ x2;
· l12 = x0 ⊕ x4;
· l13 = l12 ⊕ l5;
· l14 = l2 ⊕ l5;
· l15 = l5 ⊕ l9;
· t0 = q0 · q1;
· q2 = x1 ⊕ l11;
· q3 = ∼q18 ⊕ l1;
· t1 = q2 · q3;
· q4 = l0 ⊕ l5;
· q5 = x0 ⊕ l15;
· t2 = q4 · q5;
· q6 = q7 ⊕ x4;
· t3 = q6 · q7;
· q9 = l13;
· t4 = q8 · q9;
· q10 = ∼x0;
· q11 = l0 ⊕ x2;

· t5 = q10 · q11;
· q12 = x0 ⊕ l10;
· q13 = l2 ⊕ x5;
· t6 = q12 · q13;
· q14 = l14 ⊕ l6;
· q15 = x0 ⊕ l8;
· t7 = q14 · q15;
· q16 = ∼l7;
· q17 = ∼x0 ⊕ x2 ⊕ l10;
· t8 = q16 · q17;
· t9 = q18 · q19;
· q20 = x0 ⊕ l15;
· q21 = ∼x3;
· t10 = q20 · q21;
· q22 = q7 ⊕ x2 ⊕ l6;
· q23 = ∼l4 ⊕ l9;
· t11 = q22 · q23;
· q24 = x1 ⊕ l10;
· q25 = l4 ⊕ x5;
· t12 = q24 · q25;
· q26 = l2 ⊕ x3 ⊕ x5;
· q27 = ∼x1 ⊕ l5 ⊕ x6;
· t13 = q26 · q27;
· q28 = ∼l12 ⊕ x2;
· q29 = q7 ⊕ x6;
· t14 = q28 · q29;
· l16 = t1 ⊕ t3;
· l17 = l16 ⊕ t6;
· l18 = t9 ⊕ t10;
· l19 = t13 ⊕ t14;
· y0 = x1 ⊕ l15 ⊕ l17 ⊕ t8;
· y1 = x0 ⊕ l11 ⊕ t0 ⊕ t3 ⊕ t5 ⊕ t8 ⊕ t10 ⊕ l19;
· y2 = l2 ⊕ l11 ⊕ t2 ⊕ l16 ⊕ t8 ⊕ t12;
· y3 = l14 ⊕ l9 ⊕ t0 ⊕ t2 ⊕ t6 ⊕ l18 ⊕ t14;
· y4 = l13 ⊕ t2 ⊕ t4 ⊕ l18 ⊕ t13;
· y5 = l7 ⊕ t5 ⊕ l17 ⊕ t7 ⊕ t9 ⊕ t11 ⊕ t12;
· y6 = x3 ⊕ l9 ⊕ t6 ⊕ t11 ⊕ l19;

Look-up table (LUT):
x3, S = [0, 1, 8, 15, 64, 85, 120, 107, 12, 69, 39, 104, 73, 20, 82, 9, 96, 119, 36, 53, 62, 61, 74, 79, 68, 27, 35, 122,

31, 84, 72, 5, 10, 51, 49, 14, 38, 11, 45, 6, 117, 4, 109, 26, 92, 57, 116, 23, 44, 3, 91, 114, 30, 37, 89, 100,
123, 28, 47, 78, 76, 63, 40, 93, 80, 113, 29, 58, 13, 56, 112, 67, 54, 95, 88, 55, 110, 19, 48, 75, 33, 22, 32,
17, 98, 65, 83, 118, 111, 16, 77, 52, 41, 66, 59, 86, 102, 127, 24, 7, 87, 90, 25, 18, 115 34, 46, 121, 71, 2,
42, 105, 81, 94, 99, 106, 126, 101, 124, 97, 108, 43, 125, 60, 70, 21, 103, 50]
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